KR20130078049A - Furfural-tolerant yeast strains - Google Patents

Furfural-tolerant yeast strains Download PDF

Info

Publication number
KR20130078049A
KR20130078049A KR1020110146764A KR20110146764A KR20130078049A KR 20130078049 A KR20130078049 A KR 20130078049A KR 1020110146764 A KR1020110146764 A KR 1020110146764A KR 20110146764 A KR20110146764 A KR 20110146764A KR 20130078049 A KR20130078049 A KR 20130078049A
Authority
KR
South Korea
Prior art keywords
spp
perfural
furfural
yeast strain
yeast
Prior art date
Application number
KR1020110146764A
Other languages
Korean (ko)
Inventor
최원자
김완기
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Priority to KR1020110146764A priority Critical patent/KR20130078049A/en
Publication of KR20130078049A publication Critical patent/KR20130078049A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE: A transformed yeast strain containing mutant ScSPT15 gene with furfural-resistance, which is able to grow in high concentration furfural, preferably 10-30 mM of furfural, is provided to industrially produce necessary products (biomass) with resistance to various stresses. CONSTITUTION: A furfural-resistant transformed yeast strain contains mutant ScSPT15 gene. The yeast strain is able to grow under a culture condition of 10-50 mM of furfural. The yeast strain is Saccharomyces spp., Schizosaccharomyces spp., Pichia spp., Paffia spp., Kluyveromyces spp., Candida spp., Talaromyces spp., Brettanomyces spp., Pachysolen spp., or Debaryomyces spp.

Description

퍼퓨랄―저항성 효모 스트레인{Furfural―Tolerant Yeast Strains}Furfural-Tolerant Yeast Strains

본 발명은 퍼퓨랄-저항성 효모 스트레인에 대한 것이다.
The present invention is directed to perfural-resistant yeast strains.

목질섬유계 재료(lignocellulosic materials) 및 농업잔존물(agricultural residues)을 포함하는 저-비용 재생용 바이오매스(low-cost renewable biomass)로부터 바이오에탄올을 생산하기 위한 많은 노력들이 최근까지 행해지고 있다. 하지만, 산 가수분해(dilute acid hydrolysis)에 의한 바이오매스의 전처리 과정 동안 발생되는 독성 화합물들이 미생물 성장 및 이후 발효 과정을 억제한다(Klinke et al., 2004). 상기 화합물 중에 2개의 주요 억제제들이 퍼퓨랄 및 5-하이드록시메틸 퍼퓨랄(5-hydroxymethyl furfural, HMF)로, 각각 헤미셀룰로오스 및 셀룰로오스로부터 배출된 펜토오스 및 헥소오스의 탈수에 의해 형성된다. 가수분해물(hydrolysates)에서 상기 강력한 억제제들의 농도는 바이오매스의 종류 및 가수분해에 따라 다양하다(Larsson et al., 1999; Palmqvist et al., 2000). 10 mM의 퍼퓨랄 농도는 사카로마이세스 세레비지애(Saccharomyces cerevisiae)에서 억제 활성을 가지기에 충분한 농도이다(Liu et al., 2004 및 상기 문헌의 참고문헌). 세포 성장에 대한 억제 효과 면에서 퍼퓨랄은 동일 농도에서 HMF보다 더 강력하고, 퍼퓨랄과 HMF의 혼합 처리는 세포 성장을 보다 더 강력하게(synergistically) 억제한다(Liu et al., 2004). 바이오매스의 에탄올로의 효과적인 발효 전환을 위해 상기 억제제들을 해독하기 위한 추가적인 과정들이 필요하지만, 상기 과정들(approaches)은 생산과정 비용의 증가 및 과정의 복잡성으로 인해 매우 큰 문제다(Mussatto et al., 2004). 따라서, 억제제-저항성 미생물의 획득이 목질섬유계 월재료로부터 바이오에탄올의 저-비용 생산을 위한 매우 흥미로운 또 다른 방법(alternative)이다.Many efforts have been made until recently to produce bioethanol from low-cost renewable biomass, including lignocellulosic materials and agricultural residues. However, toxic compounds generated during biomass pretreatment by dilute acid hydrolysis inhibit microbial growth and subsequent fermentation (Klinke et al., 2004). Two major inhibitors in the compound are formed in perfural and 5-hydroxymethyl furfural (HMF) by dehydration of pentose and hexose released from hemicellulose and cellulose, respectively. The concentration of the potent inhibitors in hydrolysates varies with the type and hydrolysis of the biomass (Larsson et al., 1999; Palmqvist et al., 2000). A concentration of 10 mM perfural is sufficient to have inhibitory activity in Saccharomyces cerevisiae (Liu et al., 2004 and references therein). Perfural is more potent than HMF at the same concentration in terms of its inhibitory effect on cell growth, and the combination treatment of perfural and HMF inhibits cell growth more synergistically (Liu et al., 2004). Although additional processes are needed to decipher the inhibitors for the effective fermentation conversion of biomass to ethanol, the approaches are very problematic due to increased production costs and complexity of the process (Mussatto et al. , 2004). Thus, the acquisition of inhibitor-resistant microorganisms is another very interesting alternative for low-cost production of bioethanol from wood fiber based monthly materials.

퍼퓨랄은 세포 생존, 성장률, 세포 버딩(budding), 에탄올 수율(yield), 바이오매스 수율 및 효소 활성 같은 여러 생리학적 특성에 영향을 미친다(Palmqvist et al., 2000; Taherzadeh et al., 1999). 더 나아가, 퍼퓨랄은 S. 세레비지애에서 활성산소종(reactive oxygen species, ROS)의 축적을 유도하고 마이토콘드리아 및 액포막, 액틴 사이토스켈레톤 및 핵 크로마틴 같은 여러 세포 내 구성성분에 손상을 가한다(Allen at al., 2010). 따라서, 퍼퓨랄에 개선된 저항성을 가지는 이상적인 스트레인들은 퍼퓨랄 및 ROS의 레벨을 감소시킬 수 있는 스트레인들이다.Perfural affects several physiological properties such as cell survival, growth rate, cell budding, ethanol yield, biomass yield and enzyme activity (Palmqvist et al., 2000; Taherzadeh et al., 1999) . Furthermore, perfural induces the accumulation of reactive oxygen species (ROS) in S. cerevisiae and damages several cellular components such as mitochondria and vacuole membranes, actin cytoskeleton and nuclear chromatin. (Allen at al., 2010). Thus, ideal strains with improved resistance to perfural are strains that can reduce the levels of perfural and ROS.

효모 세포는 치사량에 가까운(sublethal) 조건 하에서 퍼퓨랄을 퍼퓨릴 알코올(furfuryl alcohol)로의 전환을 통해 해독할 수 있다. 여러 가지 전략을 이용하여, 다양한 퍼퓨랄-저항성 스트레인들이 이전에 개발되었으며, 몇몇 스트레인들은 30 mM 이상의 농도에서도 기능할 수 있다(US Pat. No. 2009004726; Liu et al., 2005; Gorsich et al., 2006; Heer and Sauer, 2008; Heer et al., 2009; Park et al., 2011; Lu et al. 2011). 에탄올 저항성 스트레인을 개발하기 위한 또 다른 접근방법이 gTME(global transcriptional machinery engineering)이다. 이전에 치명적인 에탄올 농도에서 성장할 수 있게 해주는 SPT15에 의해 인코딩되는 TATA-결합 단백질의 돌연변이를 유발하여 증가된 에탄올 저항성을 가진 스트레인을 제조하기 위해 상기 접근방법이 이용되었다(Alper et al., 2006). 하지만, 다른 저자들은 상기 증가된 에탄올 저항성이 산업적 적용에서 선택사항이 아닌 풍부 배지에서 재생산되지 않는다는 것을 보고하였다(Baerends et al., 2009). 본 발명자들은 에탄올에 대한 저항적인 스트레인들을 제조하기 위한 수단으로서 gTME의 유용성을 증명하였으며, 다른 스트레스에 대한 증가한 저항성을 가진 스트레인들을 얻기 위한 적용방법을 제안하였다(Yang et al., 2011). 본 연구에서, 본 발명자들은 20 mM 퍼퓨랄의 존재 하에서 SPT15 돌연변이 라이브러리를 스크리닝하여 5개의 퍼퓨랄 저항성 스트레인들을 얻었다.
Yeast cells can be detoxified by converting perfural to furfuryl alcohol under sublethal conditions. Using various strategies, various perfural-resistant strains have been previously developed, and some strains can function at concentrations above 30 mM (US Pat. No. 2009004726; Liu et al., 2005; Gorsich et al. , 2006; Heer and Sauer, 2008; Heer et al., 2009; Park et al., 2011; Lu et al. 2011). Another approach to developing ethanol resistant strains is gTME (global transcriptional machinery engineering). This approach has been used to produce strains with increased ethanol resistance by inducing mutations in the TATA-binding protein encoded by SPT15, which previously allowed to grow at lethal ethanol concentrations (Alper et al., 2006). However, other authors have reported that the increased ethanol resistance is not reproduced in rich media that is not an option in industrial applications (Baerends et al., 2009). The inventors have demonstrated the usefulness of gTME as a means for producing strains resistant to ethanol and proposed an application method for obtaining strains with increased resistance to other stresses (Yang et al., 2011). In this study, we screened the SPT15 mutant library in the presence of 20 mM perfural to obtain five perfural resistant strains.

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
Numerous papers and patent documents are referenced and cited throughout this specification. The disclosures of the cited papers and patent documents are incorporated herein by reference in their entirety to better understand the state of the art to which the present invention pertains and the content of the present invention.

본 발명자들은 퍼퓨랄(furfural)-저항성을 보유한 산업적으로 유용한 효모 스트레인을 개발하고자 노력하였다. 그 결과, 본 발명자들은 PCR-매개된 임의적 돌연변이유발법(random mutagenesis)을 이용하여 돌연변이된 SPT15 유전자를 제작하고 이를 효모에 형질전환시켜 퍼퓨랄-저항성 형질변형 효모 스트레인을 분리하였으며, 이들이 고농도 퍼퓨랄(예컨대, 10 mM, 15 mM, 20 mM, 30 mM)에서 성장할 수 있다는 것을 확인함으로써, 본 발명을 완성하게 되었다.The inventors have sought to develop industrially useful yeast strains with furfural-resistance. As a result, the inventors constructed a mutated SPT15 gene using PCR-mediated random mutagenesis and transformed it into yeast to isolate perfural-resistant transformed yeast strains, which were highly concentrated perfural. The present invention was completed by confirming that it can grow at (eg, 10 mM, 15 mM, 20 mM, 30 mM).

따라서, 본 발명의 목적은 퍼퓨랄-저항성 효모 스트레인을 제공하는 데 있다.
It is therefore an object of the present invention to provide perfural-resistant yeast strains.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

본 발명의 양태에 따르면, 본 발명은 돌연변이(mutation)된 ScSPT15 유전자를 포함하는 퍼퓨랄-저항성 형질변형 스트레인을 제공한다.
According to an aspect of the present invention, the present invention provides a perfural-resistant transformed strain comprising a mutated ScSPT15 gene.

본 발명자들은 퍼퓨랄-저항성을 보유한 산업적으로 유용한 효모 스트레인을 개발하고자 노력하였다. 그 결과, 본 발명자들은 PCR-매개된 임의적 돌연변이유발법을 이용하여 돌연변이된 SPT15 유전자를 제작하고 이를 효모에 형질전환시켜 퍼퓨랄-저항성 형질변형 효모 스트레인을 분리하였으며, 이들이 고농도 퍼퓨랄(예컨대, 10 mM, 15 mM, 20 mM, 30 mM)에서 성장할 수 있다는 것을 확인하였다.We have sought to develop an industrially useful yeast strain that possesses perfural-resistance. As a result, the inventors constructed the mutated SPT15 gene using PCR-mediated random mutagenesis and transformed it into yeast to isolate perfural-resistant transformed yeast strains, which were highly concentrated perfural (eg, 10). mM, 15 mM, 20 mM, 30 mM).

퍼퓨랄은 옥수수, 귀리, 밀기울 및 톱밥 같은 다양한 농산 부산물들로부터 유래된 유기 화합물로써, 하기의 화학식 (OC4H3CHO)로 표시되는 링 구조를 가진 방향족 알데하이드이다:Perfural is an organic compound derived from various agricultural by-products such as corn, oats, bran and sawdust and is an aromatic aldehyde having a ring structure represented by the following formula (OC 4 H 3 CHO):

Figure pat00001
(I)
Figure pat00001
(I)

퍼퓨랄은 아몬드 향을 가진 무색의 오일 액체이지만, 공기 중에 노출되면 빠르게 노란색으로 변한다. 보통, 퍼퓨랄은 다른 하이드로카본으로부터 디엔을 추출하는 석유화학적 정체 과정에서 용매로서 이용된다. 퍼퓨랄 및 이의 알코올 유도체들은 페놀, 아세톤 또는 우레아와 함께 고형 레진을 제조하는 데 이용된다. 이러한 레진들은 섬유유리, 비행기 구성성분 및 자동브레이크에 이용된다. 퍼퓨랄은 효모세포의 ADH, PDH, ALDH 등의 효소를 억제하고 해당과정을 억제하여 효모의 성장을 저해하는 활성을 지니는 억제인자로써, 효모를 이용한 에탄올 생산에 있어서 이에 대한 저항성을 가지는 스트레인을 개발하는 것이 매우 중요하다.Perfural is a colorless oily liquid with an almond flavor, but turns yellow quickly when exposed to air. Usually, furfural is used as a solvent in the petrochemical stagnation process of extracting dienes from other hydrocarbons. Perfural and its alcohol derivatives are used together with phenol, acetone or urea to produce solid resins. These resins are used in fiberglass, aircraft components, and automatic brakes. Perfural is an inhibitor that inhibits the growth of yeast by inhibiting enzymes such as ADH, PDH, ALDH, etc. of yeast and inhibits glycolysis, and develops strains resistant to ethanol production using yeast. It is very important to.

본 발명은 돌연변이된 ScSPT15로 형질전환된 효모에서 퍼퓨랄-저항성이 증가된 형질변형 효모 스트레인을 제공한다.The present invention provides transformed yeast strains with increased perfural-resistance in yeast transformed with mutated ScSPT15.

본 발명은 (a) 효모 염색체에 돌연변이(mutations)된 ScSPT15 유전자를 도입시키는 단계; 및 (b) 상기 돌연변이된 효모를 고농도 퍼퓨랄을 포함하는 배지에서 배양시키는 단계를 포함하는 퍼퓨랄-저항성이 증가된 형질변형 효모 스트레인의 스크리닝 방법을 제공한다.The present invention comprises the steps of (a) introducing a ScSPT15 gene mutated to the yeast chromosome; And (b) culturing the mutated yeast in a medium containing high concentrations of furfural.

본 발명에 따르면, 돌연변이된 ScSPT15로 형질전환된 효모 스트레인을 고농도 퍼퓨랄에서 배양하여 성장이 가능한 스트레인을 분리/동정한다. 본 발명에서는 다양한 농도의 퍼퓨랄(10 mM, 15 mM, 20 mM, 30 mM)에서 효모 스트레인의 성장 어세이(spot assay)를 실시하여 퍼퓨랄-저항성 스트레인들을 선택하였다.According to the present invention, a strain capable of growing is isolated / identified by culturing the yeast strain transformed with the mutated ScSPT15 in a high concentration of furfural. In the present invention, perpural-resistant strains were selected by performing a growth assay of yeast strain at various concentrations of perfural (10 mM, 15 mM, 20 mM, 30 mM).

본 발명의 바람직한 구현예에 따르면, 상술한 돌연변이된 ScSPT15 유전자로 형질전환된 효모 스트레인은 고농도 퍼퓨랄, 보다 바람직하게는 10-100 mM 퍼퓨랄, 보다 더 바람직하게는 10-50 mM 퍼퓨랄, 그리고 가장 바람직하게는 10-30 mM 퍼퓨랄에서 성장할 수 있다.According to a preferred embodiment of the present invention, the yeast strain transformed with the mutated ScSPT15 gene described above is highly concentrated perfural, more preferably 10-100 mM perfural, even more preferably 10-50 mM perfural, and Most preferably at 10-30 mM perfural.

본 발명의 바람직한 구현예에 따르면, 상술한 효모 스트레인은 사카로마이세스 종(Saccharomyces spp.), 시조사카로마이세스 종(Schizosaccharomyces spp.), 피키아 종(Pichia spp.), 파피아 종(Paffia spp.), 클루이베로미세스 종(Kluyveromyces spp.), 칸디다 종(Candida spp.), 탈라로미세스 종(Talaromyces spp.), 브레타노미세스 종(Brettanomyces spp.), 파키솔렌 종(Pachysolen spp.) 또는 데바리오미세스 종(Debaryomyces spp.) 효모 스트레인이며, 보다 바람직하게는 사카로마이세스 종이고, 가장 바람직하게는 사카로마이세스 세레비지애(Schizosaccharomyces cerevisiae)이다.According to a preferred embodiment of the present invention, the above-described yeast strain is selected from the group consisting of Saccharomyces species spp.), Schizosaccharomyces sp. spp.), Pichia sp. spp.), papia spp.), Kluyveromyces species spp.), Candida sp. spp.), Talaromyces sp. spp.), Brescia Gaetano MRS species (Brettanomyces spp.), Parkinson solren species (Pachysolen spp.) or Deva Rio MRS species (and Debaryomyces spp.) yeast strain, and more preferably from my process paper as Saccharomyces, and most preferably Lt; RTI ID = 0.0 > Schizosaccharomyces < / RTI > cerevisiae .

본 발명의 바람직한 구현예에 따르면, 상술한 돌연변이된 ScSPT15 유전자는 플라스미드로 효모 세포에 도입될 수 있다. 또한, 본 발명의 바람직한 구현예에 따르면, 상술한 돌연변이된 ScSPT15 유전자는 효모 세포의 지놈(genomic) DNA에 도입될 수 있다.According to a preferred embodiment of the present invention, the above-mentioned mutated ScSPT15 gene can be introduced into a yeast cell as a plasmid. Further, according to a preferred embodiment of the present invention, the above-mentioned mutated ScSPT15 gene can be introduced into the genomic DNA of the yeast cell.

또한, 본 발명은 상술한 돌연변이된 ScSPT15 유전자를 포함하는 재조합 벡터 또는 그의 전사체에 의해 감염된 세포 및 유전자 도입에 의한 형질전환된 세포를 제공한다. 또한, 본 발명은 상술한 돌연변이된 ScSPT15 유전자를 포함하는 재조합 벡터 또는 상술한 돌연변이된 ScSPT15 단백질에 의해 형질전환된 형질전환체를 제공한다In addition, the present invention provides a transformed cell by transfection with a recombinant vector comprising the above-mentioned mutated ScSPT15 gene or a transcript thereof and gene introduction. In addition, the present invention provides a recombinant vector comprising the above-mentioned mutated ScSPT15 gene or a transformant transformed with the aforementioned mutated ScSPT15 protein

본 발명의 벡터 시스템은 당업계에 공지된 다양한 방법을 통해 구축될 수 있으며, 이에 대한 구체적인 방법은 Sambrook et al., Molecular Cloning , A Laboratory Manual, Cold Spring Harbor Laboratory Press(2001)에 개시되어 있으며, 이 문헌은 본 명세서에 참조로서 삽입된다.The vector system of the present invention can be constructed through various methods known in the art, and specific methods for this can be found in Sambrook et < RTI ID = 0.0 > al ., Molecular Cloning , A Laboratory Manual , Cold Spring Harbor Laboratory Press (2001), which is incorporated herein by reference.

본 발명의 재조합 발현벡터를 이용하여 형질전환된 효모 세포의 제조는 당업계에 통상적으로 공지된 유전자 전이방법에 의해 실시될 수 있다. 예를 들어, 전기천공법(electroporation), 리튬 아세테이트/DMSO 방법(Hill, et al., (1991), DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res. 19, 5791), 리포좀-매개 전이방법(Wong, et al ., 1980), 레트로바이러스-매개 전이방법(Chen, et al ., (1990), J. Reprod. Fert. 41:173-182; Kopchick, et al ., (1991) Methods for the introduction of recombinant DNA into chicken embryos. In Transgenic Animals, ed. N.L. First & F.P. Haseltine, pp.275-293, Boston; Butterworth-Heinemann; Lee, M.-R. and Shuman, R. (1990) Proc. 4th World Congr. Genet. Appl. Livestock Prod. 16, 107-110) 등을 이용하여 실시하며, 가장 바람직하게는 리튬 아세테이트/DMSO 방법을 이용하여 실시한다.Production of transformed yeast cells using the recombinant expression vector of the present invention can be carried out by a gene transfer method commonly known in the art. For example, electroporation, lithium acetate / DMSO method (Hill, et al ., (1991), DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res. 19, 5791), liposome-mediated transfer methods (Wong, et al ., 1980), retroviral-mediated transfer methods (Chen, et al ., (1990), J. Reprod. Fert. 41: 173-182; Kopchick, et al ., (1991) Methods for introduction of recombinant DNA into chicken embryos. In Transgenic Animals, ed. NL First & FP Haseltine, pp. 275-293, Boston; Butterworth-Heinemann; Lee, M.-R. and Shuman, R. (1990) Proc. 4th World Congr. Genet. Appl. Livestock Prod. 16, 107-110), and most preferably by using a lithium acetate / DMSO method.

한편, 본 발명의 발현대상물질 단백질을 유효성분으로써 유전자 도입에 이용하기 위해 발현대상물질 단백질이 효과적으로 세포 내로 침투할 수 있어야 한다. 예를 들어, 상술한 돌연변이된 ScSPT15 단백질을 유효성분으로 이용하는 경우, 단백질 운반 도메인(PTD: protein transduction domain)을 돌연변이된 ScSPT15 단백질에 부착시키는 것이 바람직하다. 즉, 유효성분으로서 본 발명의 돌연변이된 ScSPT15 단백질을 세포 내로 도입(permeable peptide transduction)하기 위하여 단백질 운반 도메인(PTD: protein transduction domain)을 상기 단백질과 융합하여 융합 단백질을 만든다. 상기 단백질 운반 도메인(PTD)은 라이신/아르기닌 등 기본 아미노산 잔기들을 주로 포함하고 있어서 이와 융합된 단백질들을 세포막을 투과하여 세포내로 침투시키는 역할을 한다. 상기 단백질 운반 도메인(PTD)은 바람직하게는 HIV-1 Tat 단백질, 드로소필라 안테나페디아의 homeodomain, HSV VP22 전사조절단백질, vFGF에서 유도된 MTS 펩타이드, 페네트라틴, 트랜스포탄 또는 Pep-1 펩타이드에서 유래된 서열을 포함하나, 이에 한정되는 것은 아니다.On the other hand, in order to utilize the expressed protein substance of the present invention as an effective ingredient for gene transfer, the protein of the expressed substance must be able to effectively penetrate into the cell. For example, when the above-mentioned mutated ScSPT15 protein is used as an active ingredient, it is preferable to attach the protein transduction domain (PTD) to the mutated ScSPT15 protein. That is, in order to introduce the mutated ScSPT15 protein of the present invention as an active ingredient into cells (permeable peptide transduction), a protein transduction domain (PTD) is fused with the protein to form a fusion protein. The protein transport domain (PTD) mainly contains basic amino acid residues such as lysine / arginine, and serves to permeate the proteins fused therewith into the cell through the cell membrane. The protein transport domain (PTD) is preferably selected from the group consisting of the HIV-1 Tat protein, the homeodomain of Drosophila antennae, the HSV VP22 transcriptional regulatory protein, the MTS peptide derived from vFGF, the pennantatin, the transposon or the Pep- Derived sequences, but are not limited thereto.

본 발명의 바람직한 구현예에 따르면, 상술한 형질전환은 사카로마이세스 종(Saccharomyces spp.), 시조사카로마이세스 종(Schizosaccharomyces spp.), 피키아 종(Pichia spp.), 파피아 종(Paffia spp.), 클루이베로미세스 종(Kluyveromyces spp.), 칸디다 종(Candida spp.), 탈라로미세스 종(Talaromyces spp.), 브레타노미세스 종(Brettanomyces spp.), 파키솔렌 종(Pachysolen spp.) 또는 데바리오미세스 종(Debaryomyces spp.) 효모 스트레인에서 실시하며, 보다 바람직하게는 사카로마이세스 종 또는 클루이베로미세스 종에서 실시하고, 가장 바람직하게는 사카로마이세스 세레비지애(Saccharomyces cerevisiae)에서 실시한다.
According to a preferred embodiment of the invention, the above-mentioned transformation is Saccharomyces species spp.), Schizosaccharomyces sp. spp.), Pichia sp. spp.), papia spp.), Kluyveromyces species spp.), Candida sp. spp.), Talaromyces sp. spp.), Brescia Gaetano in MRS species (Brettanomyces spp.), Parkinson solren species (Pachysolen spp.) or Deva Rio MRS species (Debaryomyces spp.), and carried out in the yeast strain, more preferably from my process species Saccharomyces or inclusive Yves It is carried out in Mrs. species, most preferably in Saccharomyces cerevisiae .

본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:

(a) 본 발명은 돌연변이(mutation)된 ScSPT15 유전자를 포함하는 퍼퓨랄-저항성 형질변형 효모 스트레인에 관한 것이다.(a) The present invention relates to a perfural-resistant transformed yeast strain comprising a mutated ScSPT15 gene.

(b) 본 발명의 효모 스트레인은 고농도 퍼퓨랄, 바람직하게는 10-30 mM 퍼퓨랄에서 성장할 수 있는 효모 스트레인이다.(b) Yeast strains of the invention are yeast strains capable of growing at high concentrations of perfural, preferably 10-30 mM perfural.

(c) 고농도의 퍼퓨랄에 내성을 보이는 스트레인을 발명함으로써 바이오에탄올 생산공정 시 발생하는 여러 스트레스에 저항성을 가진 소망하는 산물들(바이오매스)의 산업적 생산에 매우 유용하게 적용될 수 있다.
(c) By inventing strains that are resistant to high concentrations of furfural, they can be very useful for the industrial production of desired products (biomass) that are resistant to the various stresses generated during the bioethanol production process.

도 1은 퍼퓨랄 저항성 스트레인의 동정을 보여주는 결과이다. FTS-1 내지 FTS-5 스트레인들이 10배씩 연속적으로 희석되어 퍼퓨랄의 존재 또는 부존재 하에서 YPD 플레이트에 스팟팅되어 30℃에서 배양하였다.1 is a result showing the identification of perfural resistant strain. FTS-1 to FTS-5 strains were serially diluted 10-fold, spotted on YPD plates in the presence or absence of perfural and incubated at 30 ° C.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예Example

실험재료 및 실험방법Materials and Experiments

효모 스트레인 및 배지Yeast strain and medium

S. 세레비지애 BY4741(MAT his31 leu20 met150 ura30)를 발현 숙주(transformation recipients)로 이용하였다. 효모 세포는 YPD(1% 효모 추출물, 2% 펩톤 및 2% 글루코오스; 및 고형 플레이트를 이용하는 경우, 1.5% 아가 첨가)에서 30에서 배양하였다.
S. cerevisiae BY4741 ( MAT his31 leu20 met150 ura30 ) was used as the transformation recipients. Yeast cells were incubated at 30 in YPD (1% yeast extract, 2% peptone and 2% glucose; and 1.5% agar when using solid plates).

분자생물학적 방법Molecular biology method

플라스미드 제조 및 시퀀싱은 이전에 기술된 것과 동일하게 실시하였다(Sambrook J and Russell D, 2001). 대장균(Escherichia coli) 스트레인인 DH5는 플라스미드 제조를 위한 숙주로 이용하였다.
Plasmid preparation and sequencing were performed in the same manner as previously described (Sambrook J and Russell D, 2001). Escherichia coli strain DH5 was used as a host for plasmid preparation.

SPT15SPT15 돌연변이 라이브러리 스크리닝 Mutant Library Screening

S. 세레비지애 SPT 돌연변이 라이브러리는 이전에 기재된 바와 같이 구축되었으며(Yang et al., 2011), 상기 라이브러리는 이용할 때까지 20% 글라이세롤의 존재 하에 -80℃에 저장되었다. 상기 스톡의 분취액(aliquots; 2×106 CFUs)이 해동되어 20 mM 퍼퓨랄을 포함하는 YPD 배지에서 퍼퓨랄-저항성 스트레인들의 스크리닝에 이용되었다.
The S. cerevisiae SPT mutation library was constructed as described previously (Yang et al., 2011) and the library was stored at −80 ° C. in the presence of 20% glycerol until use. Aliquots of the stock (2 × 10 6 CFUs) were thawed and used for screening perfural-resistant strains in YPD medium containing 20 mM perfural.

효모 형질전환Yeast transformation

효모 형질전환을 위한 모든 플라스미드들은 RNA 절단 없이 수작업으로 제조되었다. DNA 농도는 알려진 농도의 대조군 DNA의 밴드 강도와 비교함으로써 대략적으로 측정하였다. DNAs 및 RNAs의 혼합물이 이전에 기재된 바와 같이 효모 형질전환에 이용하였다(Gietz et al., 2002).
All plasmids for yeast transformation were prepared manually without RNA cleavage. The DNA concentration was approximately determined by comparing the band intensity of the control DNA of known concentration. Mixtures of DNAs and RNAs were used for yeast transformation as previously described (Gietz et al., 2002).

스팟 어세이Spot Assay

스팟 어세이를 위해, 1.0의 광학밀도(OD600)까지 성장한 세포의 분취액(5 ㎕)이 10배씩 연속적으로 희석되어 30 mM까지 퍼퓨랄을 포함하는 고형 YPD 플레이트에 스팟팅되었다. 상기 플레이트들이 적정 시간 동안 30℃에서 배양되었다.
For spot assays, aliquots (5 μl) of cells grown to an optical density of 1.0 (OD 600 ) were serially diluted 10-fold and spotted onto solid YPD plates containing perfural up to 30 mM. The plates were incubated at 30 ° C. for an appropriate time.

실험결과Experiment result

본 연구에서 구축된 효모 SPT15 돌연변이 라이브러리를 스크리닝하여 퍼퓨랄 저항성 스트레인들을 얻기 위해, 2×106 CFUs(colony forming units)의 효모가 20 mM 퍼퓨랄이 첨가된 고형 YPD 플레이트에 플레이팅되어 30℃에서 배양하였다. 수일 후에, 25개의 콜로니들이 성장하였다. 최종적인 5개의 스트레인들(FTS-1 내지 FTS-5)이 선택되어 30 mM 퍼퓨랄까지 포함하는 고형 YPD 플레이트에서 스팟 어세이를 통해 조사하였다. 상기 5개의 스트레인들은 7일 후에도 30 mM 퍼퓨랄에 대한 저항성을 나타낸 반면에, 1일 배양 시 대조군(BY4741)은 10 mM 퍼퓨랄의 낮은 농도에도 민감하였다(도 1).
To screen the yeast SPT15 mutant library constructed in this study to obtain perfural resistant strains, yeasts of 2 × 10 6 CFUs (colony forming units) were plated on solid YPD plates added with 20 mM perfural at 30 ° C. Incubated. After a few days, 25 colonies grew. The final five strains (FTS-1 to FTS-5) were selected and examined via spot assay in solid YPD plates containing up to 30 mM perfural. The five strains showed resistance to 30 mM perfural even after 7 days, whereas the control group (BY4741) was sensitive to low concentrations of 10 mM perfural in 1 day culture (FIG. 1).

이상으로 본 발명의 특정한 부분을 상세히 기술 하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the present invention. Thus, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.

참고문헌references

Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW. 2010. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels 3: 2-10.Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae . Biotechnol Biofuels 3: 2-10.

Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. 2006. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314: 1565-1568.Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. 2006. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314: 1565-1568.

Baerends RJ, Qiu JL, Rasmussen S, Nielsen HB, Brandt A. 2009. Impaired uptake and/or utilization of leucine by Saccharomyces cerevisiae is suppressed by the SPT15-300 allele of the TATA-binding protein gene. Appl Environ Microbiol 75: 6055-6061.Baerends RJ, Qiu JL, Rasmussen S, Nielsen HB, Brandt A. 2009. Impaired uptake and / or utilization of leucine by Saccharomyces cerevisiae is suppressed by the SPT15-300 allele of the TATA-binding protein gene. Appl Environ Microbiol 75: 6055-6061.

Gietz RD, Woods RA. 2002. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350: 87-96.Gietz RD, Woods RA. 2002. Transformation of yeast by lithium acetate / single-stranded carrier DNA / polyethylene glycol method. Methods Enzymol 350: 87-96.

Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. 2006. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 71: 339-349.Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. 2006. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae . Appl Microbiol Biotechnol 71: 339-349.

Heer D, Sauer U. 2008. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol 1: 497-506.Heer D, Sauer U. 2008. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol 1: 497-506.

Heer D, Heine D, Sauer U. 2009. Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at keast two oxireductases. Appl Environ Microbiol 75: 76317638.Heer D, Heine D, Sauer U. 2009. Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at keast two oxireductases. Appl Environ Microbiol 75: 76317638.

Klinke HB, Thomsen AB, Ahring BK. 2004. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66: 10-26.Klinke HB, Thomsen AB, Ahring BK. 2004.Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66: 10-26.

Larsson S, Palmqvist E, Hahn-Hgerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant N.O. Nilvebrant. 1999. The generation of inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24: 151-159.Larsson S, Palmqvist E, Hahn-Hgerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant N.O. Nilvebrant. 1999.The generation of inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24: 151-159.

Liu ZL, Slininger PJ, Gorsich SW. 2005. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121-124: 451-460.Liu ZL, Slininger PJ, Gorsich SW. 2005. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121-124: 451-460.

Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW. 2004. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31: 345352.Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW. 2004. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31: 345352.

Lu Y, Cheng YF, He XP, Guo XN, Zhang BR. 2011. Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors. J Ind Microbiol Biotechnol Epub ahead of print.Lu Y, Cheng YF, He XP, Guo XN, Zhang BR. 2011.Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors. J Ind Microbiol Biotechnol Epub ahead of print.

Mussatto SI, Roberto IC. 2004. Alternatives for detoxification of dilute-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93: 1-10.Mussatto SI, Roberto IC. 2004. Alternatives for detoxification of dilute-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93: 1-10.

Palmqvist E, Hahn-Hgerdal B. 2000. Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition. Bioresour Technol 74: 25-33.Palmqvist E, Hahn-Hgerdal B. 2000. Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition. Bioresour Technol 74: 25-33.

Park SE, Koo HM, Park YK, Park SM, Park JC, Lee OK, Park YC, Seo JH. 2011. Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae. Bioresour Technol 102: 6033-6038.Park SE, Koo HM, Park YK, Park SM, Park JC, Lee OK, Park YC, Seo JH. 2011.Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae . Bioresour Technol 102: 6033-6038.

Sambrook J, Russell D. 2001. Molecular cloning: a laboratory manual, 3rd ed. ed. Cold Spring Harbor Laboratory Press, N.Y.Sambrook J, Russell D. 2001. Molecular cloning: a laboratory manual, 3rd ed. ed. Cold Spring Harbor Laboratory Press, N.Y.

Taherzadeh MJ, Gustafsson L, Niklasson C, Lidn G. 1999. Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J Biosci Bioeng 87:169-174.Taherzadeh MJ, Gustafsson L, Niklasson C, Lidn G. 1999. Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae . J Biosci Bioeng 87: 169-174.

Yang J, Bae JY, Lee YM, Kwon HJ, Moon H-Y, Kang HA, Lee S-B, Kim W, Choi W. 2011. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Biotechnol Bioeng 108: 1776-1787.
Yang J, Bae JY, Lee YM, Kwon HJ, Moon HY, Kang HA, Lee SB, Kim W, Choi W. 2011.Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Biotechnol Bioeng 108: 1776-1787.

Claims (5)

돌연변이(mutation)된 ScSPT15 유전자를 포함하는 퍼퓨랄-저항성 형질변형 스트레인.
A perfural-resistant transformed strain comprising a mutated ScSPT15 gene.
제 1 항에 있어서, 상기 효모 스트레인은 10-50 mM 퍼퓨랄 배양 조건에서 성장할 수 있는 것을 특징으로 하는 효모 스트레인.
2. The yeast strain of claim 1, wherein said yeast strain is capable of growing at 10-50 mM perfural culture conditions.
제 2 항에 있어서, 상기 효모 스트레인은 10-30 mM 퍼퓨랄 배양 조건에서 성장할 있는 것을 특징으로 하는 효모 스트레인.
3. The yeast strain of claim 2, wherein said yeast strain is capable of growing at 10-30 mM perfural culture conditions.
제 1 항에 있어서, 상기 효모 스트레인은 사카로마이세스 종(Saccharomyces spp.), 시조사카로마이세스 종(Schizosaccharomyces spp.), 피키아 종(Pichia spp.), 파피아 종(Paffia spp.), 클루이베로미세스 종(Kluyveromyces spp.), 칸디다 종(Candida spp.), 탈라로미세스 종(Talaromyces spp.), 브레타노미세스 종(Brettanomyces spp.), 파키솔렌 종(Pachysolen spp.) 또는 데바리오미세스 종(Debaryomyces spp.) 효모 스트레인인 것을 특징으로 하는 효모 스트레인.
The yeast strain according to claim 1, wherein the yeast strain is selected from the group consisting of Saccharomyces spp., Schizosaccharomyces spp., Pichia spp., Paffia spp. , Kluyveromyces spp., Candida spp., Talaromyces spp., Brettanomyces spp., Pachysolen spp., Or Devario spp. A strain of yeast characterized by being Debaryomyces spp. Yeast strain.
제 4 항에 있어서, 상기 효모 스트레인은 사카로마이세스 종인 것을 특징으로 하는 효모 스트레인.
5. The yeast strain of claim 4, wherein said yeast strain is Saccharomyces species.
KR1020110146764A 2011-12-30 2011-12-30 Furfural-tolerant yeast strains KR20130078049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110146764A KR20130078049A (en) 2011-12-30 2011-12-30 Furfural-tolerant yeast strains

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110146764A KR20130078049A (en) 2011-12-30 2011-12-30 Furfural-tolerant yeast strains

Publications (1)

Publication Number Publication Date
KR20130078049A true KR20130078049A (en) 2013-07-10

Family

ID=48991109

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110146764A KR20130078049A (en) 2011-12-30 2011-12-30 Furfural-tolerant yeast strains

Country Status (1)

Country Link
KR (1) KR20130078049A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106434700A (en) * 2016-08-19 2017-02-22 南阳师范学院 Saccharomyces cerevisiae spt15 fixed point saturated gene mutation method for increasing yield of ethanol
CN107937297A (en) * 2017-11-29 2018-04-20 大连理工大学 Mortifier stress tolerance saccharomyces cerevisiae more than one plant and preparation method, application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106434700A (en) * 2016-08-19 2017-02-22 南阳师范学院 Saccharomyces cerevisiae spt15 fixed point saturated gene mutation method for increasing yield of ethanol
CN106434700B (en) * 2016-08-19 2019-05-03 南阳师范学院 A kind of saccharomyces cerevisiae spt15 fixed point saturation gene mutation method improving alcohol yied
CN107937297A (en) * 2017-11-29 2018-04-20 大连理工大学 Mortifier stress tolerance saccharomyces cerevisiae more than one plant and preparation method, application

Similar Documents

Publication Publication Date Title
Jansen et al. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation
Unrean et al. Integrated lignocellulosic bioprocess for co-production of ethanol and xylitol from sugarcane bagasse
Ruchala et al. Construction of advanced producers of first-and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha)
Yuan et al. Biocatalytic production of 2, 5-furandicarboxylic acid: recent advances and future perspectives
Almeida et al. Metabolic effects of furaldehydes and impacts on biotechnological processes
Favaro et al. Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production
Alriksson et al. Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors
Charoensopharat et al. Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing
US20130035515A1 (en) Lignocellulosic hydrolysates as feedstocks for isobutanol fermentation
US7285403B2 (en) Xylose-fermenting recombinant yeast strains
US8916367B2 (en) Sugar transport sequences, yeast strains having improved sugar uptake, and methods of use
Zhang et al. Elucidating and alleviating impacts of lignocellulose-derived microbial inhibitors on Clostridium beijerinckii during fermentation of Miscanthus giganteus to butanol
Wang et al. Transcriptional analysis of Amorphotheca resinae ZN1 on biological degradation of furfural and 5-hydroxymethylfurfural derived from lignocellulose pretreatment
Akinosho et al. Toxicological challenges to microbial bioethanol production and strategies for improved tolerance
CA2983776A1 (en) Acetate consuming yeast cell
Kuanyshev et al. Domesticating a food spoilage yeast into an organic acid‐tolerant metabolic engineering host: Lactic acid production by engineered Zygosaccharomyces bailii
US11535872B2 (en) Microbial strains and uses thereof
US9347077B2 (en) Over-expression of a putative oxidoreductase (UcpA) for increasing furfural or 5-hydroxymethylfurfural tolerance
KR20130078049A (en) Furfural-tolerant yeast strains
Tiukova Dekkera bruxellensis, a non-conventional ethanol production yeast
JP6240344B2 (en) High efficiency ethanol fermentation
Sharma et al. Engineering Microbial Cell Factories for Improved Whey Fermentation to Produce Bioethanol
Thontowi et al. Evaluation of Non-Saccharomyces cerevisiae strains isolated from sea water against inhibitory compounds for ethanol production
US20120196342A1 (en) Industrial Applications of A Novel Aldo/Keto Reductase Of Zymomonas Mobilis
WO2016070258A1 (en) Expression cartridge for the transformation of eukaryotic cells, genetically modified micro-organism with efficient xylose consumption, method for producing biofuels and/or biochemicals, and thus produced biofuel and/or biochemical and/or ethanol

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
WITB Written withdrawal of application