KR20130076031A - 결정 데이터에 기초하여 벡터 도플러 영상을 제공하는 초음파 시스템 및 방법 - Google Patents

결정 데이터에 기초하여 벡터 도플러 영상을 제공하는 초음파 시스템 및 방법 Download PDF

Info

Publication number
KR20130076031A
KR20130076031A KR1020110144432A KR20110144432A KR20130076031A KR 20130076031 A KR20130076031 A KR 20130076031A KR 1020110144432 A KR1020110144432 A KR 1020110144432A KR 20110144432 A KR20110144432 A KR 20110144432A KR 20130076031 A KR20130076031 A KR 20130076031A
Authority
KR
South Korea
Prior art keywords
ultrasound
vector
data
information
power threshold
Prior art date
Application number
KR1020110144432A
Other languages
English (en)
Other versions
KR101323330B1 (ko
Inventor
최석원
Original Assignee
삼성메디슨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성메디슨 주식회사 filed Critical 삼성메디슨 주식회사
Priority to KR1020110144432A priority Critical patent/KR101323330B1/ko
Priority to JP2012285469A priority patent/JP2013138868A/ja
Priority to EP12199553.4A priority patent/EP2609871A1/en
Priority to CN201210579820.1A priority patent/CN103181789B/zh
Priority to US13/730,477 priority patent/US20130172745A1/en
Publication of KR20130076031A publication Critical patent/KR20130076031A/ko
Application granted granted Critical
Publication of KR101323330B1 publication Critical patent/KR101323330B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5246Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • G01S15/8984Measuring the velocity vector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Acoustics & Sound (AREA)
  • Hematology (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

대상체에 대응하는 결정 데이터를 이용하여 벡터 도플러 영상을 제공하는 초음파 시스템 및 방법이 개시된다. 본 발명에 따른 초음파 시스템은, 대상체에 대응하는 초음파 데이터를 이용하여 대상체의 벡터 정보 및 부가 정보를 검출하고, 부가 정보를 이용하여 대상체에 대응하는 결정 데이터를 설정하고, 결정 데이터 및 벡터 정보를 이용하여 벡터 도플러 영상을 형성하도록 동작하는 프로세서를 포함한다.

Description

결정 데이터에 기초하여 벡터 도플러 영상을 제공하는 초음파 시스템 및 방법{ULTRASOUND SYSTEM AND METHOD FOR PROVIDING VECTOR DOPPLER IMAGE BASED ON DECISION DATA}
본 발명은 초음파 시스템에 관한 것으로, 특히 결정 데이터에 기초하여 벡터 도플러 영상을 제공하는 초음파 시스템 및 방법에 관한 것이다.
초음파 시스템은 무침습 및 비파괴 특성을 가지고 있어, 생체 내부의 정보를 얻기 위한 의료 분야에서 널리 이용되고 있다. 초음파 시스템은 생체를 직접 절개하여 관찰하는 외과 수술의 필요 없이, 생체 내부 조직의 고해상도 영상을 실시간으로 제공할 수 있으므로 의료 분야에서 매우 중요하게 사용되고 있다.
초음파 시스템은 대상체로부터 반사되는 초음파 신호(즉, 초음파 에코신호)의 반사 계수를 2차원 영상으로 보이는 B 모드(brightness mode) 영상, 도플러 효과(Doppler effect)를 이용하여 대상체의 속도를 도플러 스펙트럼으로 보이는 도플러 스펙트럼 영상, 도플러 효과를 이용하여 대상체의 속도와 방향을 컬러로 보이는 컬러 도플러 영상, 대상체에 컴프레션(compression)을 가할 때와 가하지 않을 때의 반응 차이를 영상으로 보이는 탄성 영상 등을 제공하고 있다.
컬러 도플러 영상은 혈류의 흐름 정도를 컬러에 대응하여 보여주는 것으로, 혈관, 심장 등의 질환을 검증하는데 유용하게 이용된다. 그러나, 컬러 도플러 영상에서의 각 컬러는 초음파 신호가 송신되는 방향으로 혈류가 다가오고 멀어지는 정도를 나타내므로 정확한 혈류의 움직임을 표현하는데 한계가 있다.
이러한 문제점을 해결하기 위해, 혈류의 속도뿐만 아니라 방향까지 얻을 수 있는 벡터 도플러 방식이 이용되고 있다. 벡터 도플러 방식중 하나인 교차 빔 기반(cross beam-based) 방식은 2개 이상의 다른 방향으로부터 속도 크기 성분을 획득하고 이들을 조합하여, 2차원 또는 3차원의 방향과 크기 정보를 갖는 벡터를 구하는 것으로 이루어진다.
본 발명은 대상체에 대응하는 결정 데이터를 이용하여 벡터 도플러 영상을 제공하는 초음파 시스템 및 방법을 제공한다.
본 발명에 따른 초음파 시스템은, 대상체에 대응하는 초음파 데이터를 이용하여 상기 대상체의 벡터 정보 및 부가 정보를 검출하고, 상기 부가 정보를 이용하여 상기 대상체에 대응하는 결정 데이터를 설정하고, 상기 결정 데이터 및 상기 벡터 정보를 이용하여 벡터 도플러 영상을 형성하도록 동작하는 프로세서를 포함한다.
또한, 본 발명에 따른 벡터 도플러 영상 제공 방법은, a) 대상체에 대응하는 초음파 데이터를 이용하여 상기 대상체의 벡터 정보 및 부가 정보를 검출하는 단계; b) 상기 부가 정보를 이용하여 상기 대상체에 대응하는 결정 데이터를 설정하는 단계; 및 c) 상기 결정 데이터 및 상기 벡터 정보를 이용하여 벡터 도플러 영상을 형성하는 단계를 포함한다.
본 발명은 부가적인 데이터(예를 들어, B 모드 영상에 대응하는 초음파 데이터, 파워 등)를 이용하여 혈류의 양에 따라 벡터 도플러 영상을 제공할 수 있어, 사용자가 병변에서의 혈류 특성을 파악하고 진단하는데 도움을 줄 수 있다.
또한, 본 발명은 조직의 밝기와 관련된 혈류의 운동 특성을 관찰할 수 있다.
또한, 본 발명은 파워 정보와 관련된 혈류의 운동 특성을 관찰하거나, 혈류 속도 크기에 따라 혈류의 움직임이 균일하지 못한 현상 등을 관찰할 수 있다.
도 1은 본 발명의 실시예에 따른 초음파 시스템의 구성을 보이는 블록도.
도 2는 B 모드 영상 및 관심영역을 보이는 예시도.
도 3은 본 발명의 실시예에 따른 초음파 데이터 획득부의 구성을 보이는 블록도.
도 4 내지 도 7은 본 발명의 실시예에 따른 송신 빔의 송신 방향 및 수신 빔의 수신 방향을 보이는 예시도.
도 8은 본 발명의 실시예에 따른 샘플링 데이터 및 초음파 영상의 픽셀을 보이는 예시도.
도 9 내지 도 12는 본 발명의 실시예에 따른 수신 빔 포밍 처리를 수행하는 예를 보이는 예시도.
도 13은 본 발명의 실시예에 따라 가중치를 설정하는 예를 보이는 예시도.
도 14는 본 발명의 실시예에 따라 샘플링 데이터 세트를 설정하는 예를 보이는 예시도.
도 15는 본 발명의 실시예에 따라 결정 데이터에 기초하여 벡터 도플러 영상을 형성하는 절차를 보이는 플로우챠트.
도 16은 본 발명의 실시예에 따른 송신 및 수신 방향, 벡터 정보 및 초과 조건 문제(over-determined problem)을 보이는 예시도.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 설명한다.
도 1은 본 발명의 실시예에 따른 초음파 시스템의 구성을 보이는 블록도이다. 도 1을 참조하면, 초음파 시스템(100)은 사용자 입력부(110)를 포함한다.
사용자 입력부(110)는 사용자의 입력정보를 수신한다. 본 실시예에 있어서, 입력정보는 도 2에 도시된 바와 같이, B 모드(brightness mode) 영상(BI)에 관심영역(ROI)을 설정하기 위한 입력정보를 포함한다. 관심영역은 대상체의 벡터 정보(즉, 대상체의 속도 및 방향에 대응하는 벡터 정보)를 이용하여 벡터 도플러 영상을 얻기 위한 컬러 박스(color box)를 포함한다. 벡터 도플러 영상은 2차원 벡터 도플러 영상 또는 3차원 벡터 도플러 영상을 포함한다. 그러나, 입력정보는 반드시 이에 한정되지 않는다. 도 2에 있어서, 도면부호 BV는 혈관벽을 나타낸다. 사용자 입력부(110)는 컨트롤 패널(control panel), 트랙볼(track ball), 마우스(mouse), 키보드(keyboard) 등을 포함한다.
초음파 시스템(100)은 초음파 데이터 획득부(120)를 더 포함한다. 초음파 데이터 획득부(120)는 초음파 신호를 생체에 송신한다. 생체는 대상체(예를 들어, 혈류, 혈관, 심장 등)를 포함한다. 또한, 초음파 데이터 획득부(120)는 생체로부터 반사되는 초음파 신호(즉, 초음파 에코신호)를 수신하여 초음파 영상에 대응하는 초음파 데이터를 획득한다.
도 3은 본 발명의 실시예에 따른 초음파 데이터 획득부의 구성을 보이는 블록도이다. 도 3을 참조하면, 초음파 데이터 획득부(120)는 초음파 프로브(310)를 포함한다.
초음파 프로브(310)는 전기적 신호와 초음파 신호를 상호 변환하도록 동작하는 복수의 변환소자(transducer element)(311, 도 4 참조)를 포함한다. 초음파 프로브(310)는 초음파 신호를 생체에 송신한다. 초음파 프로브(310)로부터 송신된 초음파 신호는 평면파(plane wave) 신호 또는 집속(focused) 신호일 수 있다. 그러나, 초음파 신호는 반드시 이에 한정되지 않는다. 초음파 프로브(310)는 생체로부터 반사되는 초음파 에코신호를 수신하여 수신신호를 형성한다. 수신신호는 아날로그 신호이다. 초음파 프로브(310)는 컨벡스 프로브(convex probe), 리니어 프로브(linear probe) 등을 포함한다.
초음파 데이터 획득부(120)는 송신부(320)를 더 포함한다. 송신부(320)는 초음파 신호의 송신을 제어한다. 또한, 송신부(320)는 변환소자를 고려하여, 초음파 영상을 얻기 위한 전기적 신호(이하, 송신신호라 함)를 형성한다.
일실시예에 있어서, 송신부(320)는 변환소자(311)를 고려하여, B 모드 영상(BI)을 얻기 위한 송신신호(이하, B 모드 송신신호라 함)를 형성한다. 따라서, 초음파 프로브(310)는 송신부(320)로부터 B 모드 송신신호가 제공되면, B 모드 송신신호를 초음파 신호로 변환하여 생체에 송신하고, 생체로부터 반사되는 초음파 에코신호를 수신하여 수신신호(이하, B 모드 수신신호라 함)를 형성한다.
또한, 송신부(320)는 도 4에 도시된 바와 같이, 초음파 신호(즉, 송신(Tx) 빔)를 송신하는 방향(이하, 송신방향) 및 변환소자(311)를 고려하여, 앙상블 넘버(ensemble number)에 대응하는 송신신호(이하, 도플러 모드 송신신호라 함)를 형성한다. 도 4는 1개의 송신방향(Tx)과, 초음파 에코신호(즉, 수신 빔)이 서로 다른 2개의 각도로 수신되는 방향(이하, 수신방향(Rx1, Rx2)이라 함)을 보이는 예시도이다. 송신방향은 변환소자(311)의 길이방향과 수직한 방향(0°) 내지 초음파 빔을 최대로 스티어링할 수 있는 방향중 어느 하나의 방향이다. 앙상블 넘버는 빔 포밍(beamforming reiong)에 대응하는 도플러 신호를 얻기 위해 초음파 신호를 송수신하는 횟수를 나타낸다. 따라서, 초음파 프로브(310)는 송신부(320)로부터 도플러 모드 송신신호가 제공되면, 도플러 모드 송신신호를 초음파 신호로 변환하여 생체에 송신하고, 생체로부터 반사되는 초음파 에코신호를 수신하여 수신신호(이하, 도플러 모드 수신신호라 함)를 형성한다.
다른 실시예에 있어서, 송신부(320)는 변환소자를 고려하여, B 모드 영상(BI)을 얻기 위한 B 모드 송신신호를 형성한다. 따라서, 초음파 프로브(310)는 송신부(320)로부터 B 모드 송신신호가 제공되면, B 모드 송신신호를 초음파 신호로 변환하여 생체에 송신하고 생체로부터 반사되는 초음파 에코신호를 수신하여 B 모드 수신신호를 형성한다.
또한, 송신부(320)는 복수의 송신방향 및 변환소자를 고려하여, 앙상블 넘버에 대응하는 도플러 모드 송신신호를 형성한다. 복수의 송신방향은 서로 다른 송신방향이다. 따라서, 초음파 프로브(310)는 송신부(320)로부터 도플러 모드 송신신호가 제공되면, 도플러 모드 송신신호를 초음파 신호로 변환하여 생체에 송신하고, 생체로부터 반사되는 초음파 에코신호를 수신하여 수신신호(이하, 도플러 모드 수신신호라 함)를 형성한다.
예를 들면, 송신부(320)는 도 5에 도시된 바와 같이, 제1 송신방향(Tx1) 및 변환소자(311)를 고려하여, 앙상블 넘버에 대응하는 제1 도플러 모드 송신신호를 형성한다. 따라서, 초음파 프로브(310)는 송신부(320)로부터 제1 도플러 모드 송신신호가 제공되면, 제1 도플러 모드 송신신호를 초음파 신호로 변환하고, 변환된 초음파 신호를 제1 송신방향(Tx1)으로 생체에 송신하고, 생체로부터 반사되는 초음파 에코신호를 수신하여 제1 도플러 모드 수신신호를 형성한다. 또한, 송신부(320)는 도 5에 도시된 바와 같이, 제2 송신방향(Tx2) 및 변환소자(311)를 고려하여, 앙상블 넘버에 대응하는 제2 도플러 모드 송신신호를 형성한다. 따라서, 초음파 프로브(310)는 송신부(320)로부터 제2 도플러 모드 송신신호가 제공되면, 제2 도플러 모드 송신신호를 초음파 신호로 변환하고, 변환된 초음파 신호를 제2 송신방향(Tx2)으로 생체에 송신하고, 생체로부터 반사되는 초음파 에코신호를 수신하여 제2 도플러 모드 수신신호를 형성한다. 도 5에 있어서, PRI는 펄스 반복 간격(pulse repeat interval)을 나타낸다.
또 다른 실시예에 있어서, 송신부(320)는 변환소자를 고려하여, B 모드 영상(BI)을 얻기 위한 B 모드 송신신호를 형성한다. 따라서, 초음파 프로브(310)는 송신부(320)로부터 B 모드 송신신호가 제공되면, B 모드 송신신호를 초음파 신호로 변환하여 생체에 송신하고 생체로부터 반사되는 초음파 에코신호를 수신하여 B 모드 수신신호를 형성한다.
또한, 송신부(320)는 복수의 송신방향 및 변환소자를 고려하여, 앙상블 넘버에 대응하는 도플러 모드 송신신호를 형성한다. 따라서, 초음파 프로브(310)는 송신부(320)로부터 도플러 모드 송신신호가 제공되면, 도플러 모드 송신신호를 초음파 신호로 변환하여 생체에 송신하고, 생체로부터 반사되는 초음파 에코신호를 수신하여 수신신호(이하, 도플러 모드 수신신호라 함)를 형성한다. 이때, 초음파 신호는 인터리브 송신(interleaved Tx) 방식으로 송신된다.
예를 들면, 송신부(320)는 도 6에 도시된 바와 같이, 제1 송신방향(Tx1) 및 변환소자(311)를 고려하여, 제1 도플러 모드 송신신호를 형성한다. 따라서, 초음파 프로브(310)는 송신부(320)로부터 제1 도플러 모드 송신신호가 제공되면, 제1 도플러 모드 송신신호를 초음파 신호로 변환하고, 변환된 초음파 신호를 제1 송신방향(Tx1)으로 생체에 송신한다. 이어서, 송신부(320)는 도 6에 도시된 바와 같이, 제2 송신방향(Tx2) 및 변환소자(311)를 고려하여, 제2 도플러 모드 송신신호를 형성한다. 따라서, 초음파 프로브(310)는 송신부(320)로부터 제2 도플러 모드 송신신호가 제공되면, 제2 도플러 모드 송신신호를 초음파 신호로 변환하고, 변환된 초음파 신호를 제2 송신방향(Tx2)으로 생체에 송신한다. 초음파 프로브(310)는 생체로부터 반사되는 초음파 에코신호를 수신하여 제1 도플러 모드 송신신호에 대응하는 제1 도플러 모드 수신신호를 형성한다. 또한, 초음파 프로브(310)는 생체로부터 반사되는 초음파 에코신호를 수신하여 제2 도플러 모드 송신신호에 대응하는 제2 도플러 모드 수신신호를 형성한다.
이어서, 송신부(320)는 도 6에 도시된 바와 같이, PRI를 고려하여 제1 도플러 모드 송신신호를 형성한다. 따라서, 초음파 프로브(310)는 송신부(320)로부터 제1 도플러 모드 송신신호가 제공되면, 제1 도플러 모드 송신신호를 초음파 신호로 변환하고, 변환된 초음파 신호를 제1 송신방향(Tx1)으로 생체에 송신한다. 송신부(320)는 도 6에 도시된 바와 같이, PRI를 고려하여 제2 도플러 모드 송신신호를 형성한다. 따라서, 초음파 프로브(310)는 송신부(320)로부터 제2 도플러 모드 송신신호가 제공되면, 제2 도플러 모드 송신신호를 초음파 신호로 변환하고, 변환된 초음파 신호를 제2 송신방향(Tx2)으로 생체에 송신한다. 초음파 프로브(310)는 생체로부터 반사되는 초음파 에코신호를 수신하여 제1 도플러 모드 송신신호에 대응하는 제1 도플러 모드 수신신호를 형성한다. 또한, 초음파 프로브(310)는 생체로부터 반사되는 초음파 에코신호를 수신하여 제2 도플러 모드 송신신호에 대응하는 제2 도플러 모드 수신신호를 형성한다.
송신부(320)는 전술한 바와 같은 과정을 수행하여 앙상블 넘버에 대응하는 제1 도플러 모드 송신신호 및 제2 도플러 모드 송신신호를 형성한다.
또 다른 실시예에 있어서, 송신부(320)는 변환소자를 고려하여, B 모드 영상(BI)을 얻기 위한 B 모드 송신신호를 형성한다. 따라서, 초음파 프로브(310)는 송신부(320)로부터 B 모드 송신신호가 제공되면, B 모드 송신신호를 초음파 신호로 변환하여 생체에 송신하고 생체로부터 반사되는 초음파 에코신호를 수신하여 B 모드 수신신호를 형성한다.
또한, 송신부(320)는 복수의 송신방향 및 변환소자를 고려하여, 앙상블 넘버에 대응하는 도플러 모드 송신신호를 형성한다. 따라서, 초음파 프로브(310)는 송신부(320)로부터 도플러 모드 송신신호가 제공되면, 도플러 모드 송신신호를 초음파 신호로 변환하여 생체에 송신하고, 생체로부터 반사되는 초음파 에코신호를 수신하여 수신신호(이하, 도플러 모드 수신신호라 함)를 형성한다. 이때, 초음파 신호는 PRI에 따라 송신된다.
예를 들면, 송신부(320)는 도 7에 도시된 바와 같이, 제1 송신방향(Tx1) 및 변환소자(311)를 고려하여, 제1 도플러 모드 송신신호를 형성한다. 따라서, 초음파 프로브(310)는 송신부(320)로부터 제1 도플러 모드 송신신호가 제공되면, 제1 도플러 모드 송신신호를 초음파 신호로 변환하고, 변환된 초음파 신호를 제1 송신방향(Tx1)으로 생체에 송신하고, 생체로부터 반사되는 초음파 에코신호를 수신하여 제1 도플러 모드 수신신호를 형성한다. 송신부(320)는 도 7에 도시된 바와 같이, PRI에 따라 제2 송신방향(Tx2) 및 변환소자(311)를 고려하여, 제2 도플러 모드 송신신호를 형성한다. 따라서, 초음파 프로브(310)는 송신부(320)로부터 제2 도플러 모드 송신신호가 제공되면, 제2 도플러 모드 송신신호를 초음파 신호로 변환하고, 변환된 초음파 신호를 제2 송신방향(Tx2)으로 생체에 송신하고, 생체로부터 반사되는 초음파 에코신호를 수신하여 제2 도플러 모드 수신신호를 형성한다.
송신부(320)는 전술한 바와 같은 과정을 수행하여 앙상블 넘버에 대응하는 제1 도플러 모드 송신신호 및 제2 도플러 모드 송신신호를 형성한다.
전술한 예들에서는 2개의 송신방향 및 2개의 수신방향을 고려하는 것으로 설명하였지만, 반드시 이에 한정되지 않고, 적어도 하나의 송신방향 및 적어도 하나의 수신방향을 고려할 수도 있다.
다시 도 3을 참조하면, 초음파 데이터 획득부(120)는 수신부(330)를 더 포함한다. 수신부(330)는 초음파 프로브(310)로부터 제공되는 수신신호를 아날로그 디지털 변환하여 샘플링 데이터를 형성한다. 또한, 수신부(330)는 변환소자를 고려하여 샘플링 데이터에 수신 빔 포밍(receiving beam forming)을 수행하여 수신집속 데이터를 형성한다. 수신 빔 포밍은 아래에서 상세하게 설명한다.
본 실시예에 있어서, 수신부(330)는 초음파 프로브(310)로부터 B 모드 수신신호가 제공되면, B 모드 수신신호를 아날로그 디지털 변환하여 샘플링 데이터(이하, B 모드 샘플링 데이터라 함)를 형성한다. 수신부(330)는 B 모드 샘플링 데이터에 수신 빔 포밍을 수행하여 수신집속 데이터(이하, B 모드 수신집속 데이터라 함)를 형성한다.
또한, 수신부(330)는 초음파 프로브(310)로부터 도플러 모드 수신신호가 제공되면, 도플러 모드 수신신호를 아날로그 디지털 변환하여 샘플링 데이터(이하, 도플러 모드 샘플링 데이터라 함)를 형성한다. 수신부(330)는 도플러 모드 샘플링 데이터에 수신 빔 포밍을 수행하여 수신집속 데이터(이하, 도플러 모드 수신집속 데이터라 함)를 형성한다.
일례로서, 수신부(330)는 초음파 프로브(310)로부터 도플러 모드 수신신호가 제공되면, 도플러 모드 수신신호를 아날로그 디지털 변환하여 도플러 모드 샘플링 데이터를 형성한다. 수신부(330)는 도플러 모드 샘플링 데이터에 수신 빔 포밍을 수행하여 도 4에 도시된 바와 같이, 제1 수신방향(Rx1)에 대응하는 제1 도플러 모드 수신집속 데이터 및 제2 수신방향(Rx2)에 대응하는 제2 도플러 모드 수신집속 데이터를 형성한다.
다른 예로서, 수신부(330)는 도 5에 도시된 바와 같이, 초음파 프로브(310)로부터 제1 송신방향(Tx1)에 대응하는 제1 도플러 모드 수신신호가 제공되면, 제1 도플러 모드 수신신호를 아날로그 디지털 변환하여 제1 도플러 모드 샘플링 데이터를 형성한다. 수신부(330)는 제1 도플러 모드 샘플링 데이터에 수신 빔 포밍을 수행하여 제1 수신방향(Rx1)에 대응하는 제1 도플러 모드 수신집속 데이터를 형성한다. 수신부(330)는 도 5에 도시된 바와 같이, 초음파 프로브(310)로부터 제2 송신방향(Tx2)에 대응하는 제2 도플러 모드 수신신호가 제공되면, 제2 도플러 모드 수신신호를 아날로그 디지털 변환하여 제2 도플러 모드 샘플링 데이터를 형성한다. 수신부(330)는 제2 도플러 모드 샘플링 데이터에 수신 빔 포밍을 수행하여 제2 수신방향(Rx2)에 대응하는 제2 도플러 모드 수신집속 데이터를 형성한다. 이때, 수신방향을 초음파 프로브의 변환소자와 수직으로 하면 최대 구경 크기(aperture size)를 사용할 수 있다.
전술한 예에서는 제1 수신방향(Rx1)과 제2 수신방향(Rx2)이 동일한 방향인 것으로 설명하였지만, 다른 실시예에서는 제1 수신방향(Rx1)과 제2 수신방향(Rx2)이 상이한 방향일 수도 있다.
또한, 전술한 예들에서는 2개의 수신방향(Rx1, Rx2)에 대응하는 도플러 모드 수신집속 데이터를 형성하는 것으로 설명하였지만, 다른 실시예에서는 필요에 따라 적어도 2개의 수신방향에 대응하는 도플러 모드 수신 집속 데이터를 형성할 수도 있다.
이하, 첨부된 도면을 참조하여 수신 빔 포밍에 대해 설명하기로 한다.
일실시예에 있어서, 수신부(330)는 도 8에 도시된 바와 같이, 초음파 프로브(310)로부터 복수의 채널(CHk(1≤k≤p))를 통해 수신되는 수신신호를 아날로그 디지털 변환하여 샘플링 데이터(Sk ,j(i≤j≤t))를 형성한다. 샘플링 데이터(Sk ,j)는 저장부(140)에 저장될 수 있다. 수신부(330)는 변환소자의 위치와, 초음파 영상(UI)의 픽셀의 방위(orientation)에 기초하여, 각 샘플링 데이터에 대응하는 픽셀을 검출한다. 즉, 수신부(330)는 변환소자의 위치와, 초음파 영상의 픽셀의 방위에 기초하여, 각 샘플링 데이터가 수신 빔 포밍 처리에 이용되는 픽셀을 검출한다. 수신부(330)는 검출된 픽셀에 해당 샘플링 데이터를 누적 할당한다.
예를 들면, 수신부(330)는 도 9에 도시된 바와 같이, 샘플링 데이터(S6 ,3)에 대응하는 픽셀, 즉 샘플링 데이터(S6 ,3)가 수신 빔 포밍 처리에 이용되는 픽셀을 검출하기 위한 곡선(이하, 수신 빔 포밍 곡선이라 함)(CV6 ,3)을 설정한다. 수신부(330)는 초음파 영상(UI)의 픽셀들(Pa ,b(1≤a≤M, 1≤b≤M))에서 수신 빔 포밍 곡선(CV6 ,3)에 대응하는 픽셀(P3 ,1, P3 ,2, P4 ,2, P4 ,3, P4 ,4, P4 ,5, P4 ,6, P4 ,7, P4 ,8, P4 ,9, …, P3,N)을 검출한다. 수신부(330)는 도 10에 도시된 바와 같이 검출된 픽셀(P3 ,1, P3 ,2, P4,2, P4 ,3, P4 ,4, P4 ,5, P4 ,6, P4 ,7, P4 ,8, P4 ,9, …, P3 ,N)에 샘플링 데이터(S6 ,3)를 누적 할당한다.
이어서, 수신부(330)는 변환소자의 위치와, 초음파 영상의 픽셀의 방위에 기초하여, 도 11에 도시된 바와 같이 샘플링 데이터(S6 ,4)에 대응하는 픽셀, 즉 샘플링 데이터(S6 ,4)가 수신 빔 포밍 처리에 이용되는 픽셀을 검출하기 위한 수신 빔 포밍 곡선(CV6 ,4)을 설정한다. 수신부(330)는 초음파 영상(UI)의 픽셀들(Pa ,b(1≤a≤M, 1≤b≤M))에서 수신 빔 포밍 곡선(CV6 ,3)에 대응하는 픽셀(P2 ,1, P3 ,1, P3 ,2, P4 ,2, P4 ,3, P4,4, P5 ,4, P5 ,5, P5 ,6, P5 ,7, P5 ,8, P4 ,9, P5 ,9, … P4 ,N, P3 ,N)을 검출한다. 수신부(330)는 도 12에 도시된 바와 같이, 검출된 픽셀(P2 ,1, P3 ,1, P3 ,2, P4 ,2, P4 ,3, P4 ,4, P5 ,4, P5 ,5, P5,6, P5 ,7, P5 ,8, P4 ,9, P5 ,9, … P4 ,N, P3 ,N)에 샘플링 데이터(S6 ,4)를 누적 할당한다.
수신부(330)는 초음파 영상(UI)의 픽셀들(Pa ,b) 각각에 누적 할당된 샘플링 데이터에 수신 빔 포밍 처리(즉, 가산(summing))를 수행하여 수신집속 데이터를 형성한다.
다른 실시예에 있어서, 수신부(330)는 도 8에 도시된 바와 같이, 초음파 프로브(310)로부터 복수의 채널(CHk(1≤k≤p))을 통해 제공되는 수신신호를 아날로그 디지털 변환하여 샘플링 데이터(Sk ,j)를 형성한다. 샘플링 데이터(Sk ,j)는 저장부(140)에 저장될 수 있다. 수신부(330)는 변환소자의 위치와, 초음파 영상의 픽셀의 방위에 기초하여, 각 샘플링 데이터에 대응하는 픽셀을 검출한다. 즉, 수신부(330)는 변환소자의 위치와, 초음파 영상의 픽셀의 방위에 기초하여, 각 샘플링 데이터가 수신 빔 포밍 처리에 이용되는 픽셀을 검출한다. 수신부(330)는 검출된 픽셀에 해당 샘플링 데이터를 누적 할당한다. 수신부(330)는 검출된 픽셀중에서 동일한 열(column)에 존재하는 픽셀을 검출하고, 동일한 열에 존재하는 픽셀에 대응하는 가중치를 설정하며, 설정된 가중치를 해당 픽셀에 할당된 샘플링 데이터에 가한다.
예를 들면, 수신부(330)는 변환소자의 위치와 초음파 영상의 픽셀의 방위에 기초하여, 도 9에 도시된 바와 같이 샘플링 데이터(S6 ,3)에 대응하는 픽셀, 즉 샘플링 데이터(S6 ,3)가 수신 빔 포밍 처리에 이용되는 픽셀을 검출하기 위한 수신 빔 포밍 곡선(CV6 ,3)을 설정한다. 수신부(330)는 초음파 영상(UI)의 픽셀들(Pa ,b(1≤a≤M, 1≤b≤N))에서 수신 빔 포밍 곡선(CV6 ,3)에 대응하는 픽셀(P3 ,1, P3 ,2, P4 ,2, P4 ,3, P4 ,4, P4,5, P4 ,6, P4 ,7, P4 ,8, P4 ,9, … P3 ,N)을 검출한다. 수신부(330)는 도 10에 도시된 바와 같이 검출된 픽셀(P3 ,1, P3 ,2, P4 ,2, P4 ,3, P4 ,4, P4 ,5, P4 ,6, P4 ,7, P4 ,8, P4 ,9, … P3 ,N)에 샘플링 데이터(S6 ,3)를 누적 할당한다. 수신부(330)는 도 13에 도시된 바와 같이, 검출된 픽셀(P3 ,1, P3 ,2, P4 ,2, P4 ,3, P4 ,4, P4 ,5, P4 ,6, P4 ,7, P4 ,8, P4 ,9, … P3 ,N)중에서 동일한 열에 존재하는 픽셀(P3 ,2, P4 ,2)의 중점을 기준으로 중점과 수신 빔 포밍 곡선(CV6 ,3) 간의 거리(W1 및 W2)를 산출하고, 산출된 거리에 기초하여 픽셀(P3 ,2)에 대한 제1 가중치(α1) 및 픽셀(P4 ,2)에 대한 제2 가중치(α2)를 설정한다. 제1 가중치(α1) 및 제2 가중치(α2)는 산출된 거리에 비례 또는 반비례하게 설정될 수 있다. 수신부(330)는 제1 가중치(α1)를 픽셀(P3 ,2)에 할당된 샘플링 데이터(S6 ,3)에 가하고, 제2 가중치(α2)는 픽셀(P4,2)에 할당된 샘플링 데이터(S6 ,3)에 가한다. 수신부(330)는 나머지 샘플링 데이터에 대해서도 전술한 바와 같이 수행한다.
수신부(330)는 초음파 영상(UI)의 픽셀들(Pa ,b) 각각에 누적 할당된 샘플링 데이터에 수신 빔 포밍 처리를 수행하여 수신집속 데이터를 형성한다.
또 다른 실시예에 있어서, 수신부(330)는 도 8에 도시된 바와 같이, 초음파 프로브(310)로부터 복수의 채널(CHk(1≤k≤N))를 통해 제공되는 수신신호를 아날로그 디지털 변환하여 샘플링 데이터(Sk ,j)를 형성한다. 샘플링 데이터(Sk ,j)는 저장부(140)에 저장될 수 있다. 수신부(330)는 샘플링 데이터(Sk ,j)중에서 수신 빔 포밍 처리에 이용되는 픽셀을 검출하기 위한 샘플링 데이터 세트를 설정한다.
예를 들면, 수신부(330)는 도 14에 도시된 바와 같이, 샘플링 데이터(Sk,j)중에서 수신 빔 포밍에 관여하는 픽셀을 검출하기 위한 샘플링 데이터 세트(S1 ,1, S1 ,4 … S1 ,t, S2 ,1, S2 ,4 … S2 ,t … Sp ,t)(박스 표시)를 설정한다.
수신부(330)는 변환소자의 위치와, 초음파 영상의 픽셀의 방위에 기초하여, 샘플링 데이터 세트의 각 샘플링 데이터에 대응하는 픽셀을 검출한다. 즉, 수신부(330)는 변환소자의 위치와, 초음파 영상의 픽셀의 방위에 기초하여, 샘플링 데이터 세트의 각 샘플링 데이터가 수신 빔 포밍 처리에 이용되는 픽셀을 검출한다. 수신부(330)는 검출된 픽셀에 해당 샘플링 데이터를 전술한 실시예와 같이 누적 할당한다. 수신부(330)는 초음파 영상의 픽셀들 각각에 누적 할당된 샘플링 데이터에 수신 빔 포밍 처리를 수행하여 수신집속 데이터를 형성한다.
또 다른 실시예에 있어서, 수신부(330)는 초음파 프로브(310)로부터 복수의 채널을 통해 제공되는 수신신호를 다운 샘플링하여 다운 샘플링된 샘플링 데이터를 형성한다. 수신부(330)는 전술한 바와 같이, 변환소자의 위치와 초음파 영상의 픽셀의 방위에 기초하여, 각 샘플링 데이터에 대응하는 픽셀을 검출한다. 즉, 수신부(330)는 변환소자의 위치와 초음파 영상의 픽셀의 방위에 기초하여, 각 샘플링 데이터가 수신 빔 포밍 처리에 이용되는 픽셀을 검출한다. 수신부(330)는 검출된 픽셀에 해당 샘플링 데이터를 전술한 실시예와 같이 누적 할당한다. 수신부(330)는 초음파 영상의 픽셀들 각각에 누적 할당된 샘플링 데이터에 수신 빔 포밍 처리를 수행하여 수신집속 데이터를 형성한다.
그러나, 수신 빔 포밍은 반드시 이에 한정되지 않고 다양한 수신 빔 포밍 방법이 이용될 수 있다.
다시 도 3을 참조하면, 초음파 데이터 획득부(120)는 초음파 데이터 형성부(340)를 더 포함한다. 초음파 데이터 형성부(340)는 수신부(330)로부터 제공되는 수신집속 데이터를 이용하여 초음파 영상에 대응하는 초음파 데이터를 형성한다. 또한, 초음파 데이터 형성부(340)는 초음파 데이터를 형성하는데 필요한 다양한 데이터 처리(예를 들어, 이득(gain) 조절 등)를 수신집속 데이터에 수행할 수도 있다.
본 실시예에 있어서, 초음파 데이터 형성부(340)는 수신부(330)로부터 B 모드 수신집속 데이터가 제공되면, B 모드 수신집속 데이터를 이용하여 B 모드 영상에 대응하는 초음파 데이터(이하, B 모드 초음파 데이터라 함)를 형성한다. B 모드 초음파 데이터는 RF(radio frequency) 데이터를 포함한다.
또한, 초음파 데이터 형성부(340)는 수신부(330)로부터 도플러 모드 수신집속 데이터가 제공되면, 도플러 모드 수신집속 데이터를 이용하여 벡터 도플러 영상에 대응하는 초음파 데이터(이하, 도플러 모드 초음파 데이터라 함)를 형성한다. 도플러 모드 초음파 데이터는 RF 데이터 또는 IQ(in-phase/quadradure) 데이터를 포함한다. 그러나, 도플러 모드 초음파 데이터는 반드시 이에 한정되지 않는다.
일례로서, 초음파 데이터 형성부(340)는 수신부(330)로부터 제1 도플러 모드 수신집속 데이터가 제공되면, 제1 도플러 모드 수신집속 데이터를 이용하여 제1 도플러 모드 초음파 데이터를 형성한다. 또한, 초음파 데이터 형성부(340)는 수신부(330)로부터 제2 도플러 모드 수신집속 데이터가 제공되면, 제2 도플러 모드 수신집속 데이터를 이용하여 제2 도플러 모드 초음파 데이터를 형성한다.
다시 도 1을 참조하면, 초음파 시스템(100)은 프로세서(130)를 더 포함한다. 프로세서(130)는 사용자 입력부(110) 및 초음파 데이터 획득부(120)에 연결된다. 프로세서(130)는 CPU(central processing unit), 마이크로프로세서(microprocessor), GPU(graphic processing unit) 등을 포함한다.
도 15는 본 발명의 실시예에 따라 결정 데이터(decision data)에 기초하여 벡터 도플러 영상을 형성하는 절차를 보이는 플로우챠트이다. 도 15를 참조하면, 프로세서(130)는 초음파 데이터 획득부(120)로부터 제공되는 제1 초음파 데이터를 이용하여 B 모드 영상(BI)을 형성한다(S1502). B 모드 영상(BI)은 디스플레이부(150)에 디스플레이된다. 따라서, 사용자는 사용자 입력부(110)를 이용하여 디스플레이부(150)에 디스플레이된 B 모드 영상(BI)에 관심영역(ROI)을 설정한다.
프로세서(130)는 사용자 입력부(110)로부터 제공되는 입력정보에 기초하여 B 모드 영상(BI)에 관심영역(ROI)을 설정한다(S1504). 따라서, 초음파 데이터 획득부(120)는 관심영역(ROI)을 고려하여 초음파 신호를 생체에 송신하고 생체로부터 반사되는 초음파 에코신호를 수신하여 도플러 모드 초음파 데이터를 획득한다.
프로세서(130)는 초음파 데이터 획득부(120)로부터 제공되는 도플러 모드 초음파 데이터를 이용하여 대상체의 벡터 정보(즉, 대상체의 속도 및 방향에 대응하는 벡터 크기 및 방향을 나타내는 벡터 정보)를 검출한다(S1506).
일반적으로, 초음파 신호의 송신방향(Tx)과 초음파 에코신호의 수신방향(Rx)이 동일하고, 초음파 신호(즉, 송신 빔 또는 수신 빔)와 혈류가 이루는 각도가 θ인 경우, 다음과 같은 관계가 성립한다.
Figure pat00001
수학식 1에 있어서, X는 혈류의 속도 크기, C0는 생체내 초음파 음속, fd는 도플러 시프트 주파수(Doppler shift frequency), f0는 초음파 메인 주파수(main frequency)를 나타낸다.
앙상블 넘버에 대응하는 초음파 신호(즉, 송신 빔)의 송신을 통해, 도플러 시프트 주파수가 산출될 수 있고, 수학식 1을 통해 송신(Tx) 빔 방향으로 투사된 속도 성분(Xcosθ)이 산출될 수 있다.
한편, 초음파 신호(즉, 송신 빔)의 송신방향(Tx) 빔과 초음파 에코신호(즉, 수신 빔)의 수신방향(Rx)이 상이하면, 다음과 같은 관계가 성립한다.
Figure pat00002
수학식 2에 있어서, θT는 초음파 신호(즉, 송신 빔)와 혈류가 이루는 각도, θR는 초음파 에코신호(즉, 수신 빔)와 혈류가 이루는 각도를 나타낸다.
도 16은 본 발명의 실시예에 따른 송신 및 수신 방향, 벡터 정보 및 초과 조건 문제(over-determined problem)을 보이는 예시도이다. 도 16을 참조하여, 초음파 신호(즉, 송신 빔)가 제1 방향(D1)으로 송신되고, 초음파 에코신호(즉, 수신 빔)가 제1 방향(D1)으로 수신되면, 다음과 같은 관계가 얻어질 수 있다.
Figure pat00003
수학식 1에 있어서,
Figure pat00004
는 제1 방향의 단위 벡터이고,
Figure pat00005
는 변수를 나타내며, y1은 수학식 1로부터 산출될 수 있다.
한편, 초음파 신호(즉, 송신 빔)가 제2 방향(D2)으로 송신되고, 초음파 에코신호(즉, 수신 빔)가 제3 방향(D3)으로 수신되면, 다음과 같은 관계가 얻어질 수 있다.
Figure pat00006
수학식 3 및 수학식 4는 2차원 환경을 가정한 것이고, 3차원으로 확장될 수 있다. 즉, 수학식 3 및 수학식 4를 3차원으로 확장하면, 다음과 같은 관계가 얻어질 수 있다.
Figure pat00007
2차원 벡터의 경우 변수(x1, x2)가 산출되어야 하므로 2개 이상의 수신관계가 필요하다. 예를 들면, 도 16에 있어서, 송신 빔이 제3 방향(D3)으로 송신되고, 수신 빔이 제2 방향(D2) 및 제4 방향(D4)로 수신되면, 다음과 같은 2개의 수학식이 얻어진다.
Figure pat00008
Figure pat00009
수학식 6에서의 2개의 수학식으로부터 벡터
Figure pat00010
가 산출될 수 있다.
한편, 수신 빔 포밍이 2개 이상의 각도(즉, 수신방향)로 수행되면, 도 16에 도시된 바와 같이, 2개 이상의 수학식이 얻어지며 초과 조건 문제(over-determined problem)으로 나타낼 수 있다. 초과 조건 문제는 도플러 시프트 주파수에 추가된 노이즈 특성에 따라 의사 역행렬 방법(Pseudo inverse method), 가중 최소 제곱법(weighted least square method) 등에 의해 산출될 수 있다. 즉, M개의 송신방향과, 각 송신마다 N개의 수신방향의 빔 포밍을 통해 M×N개의 수학식이 획득될 수 있다.
다시 도 15를 참조하면, 프로세서(130)는 초음파 데이터 획득부(120)로부터 제공되는 도플러 모드 초음파 데이터를 이용하여 대상체에 대응하는 부가 정보를 검출한다(S1508). 본 실시예에 있어서, 부가 정보는 대상체의 파워 정보(또는 분산 정보), 세기값(즉, 밝기값) 정보 및 도플러 정보 중 적어도 하나를 포함한다.
전술한 실시예에서는 초음파 데이터(즉, 도플러 모드 초음파 데이터)를 이용하여 벡터 정보를 검출하고, 부가 정보를 검출하는 것으로 설명하였지만, 반드시 이에 한정되지 않고, 초음파 데이터(즉, 도플러 모드 초음파 데이터)를 이용하여 벡터 정보 및 부가 정보를 동시에 검출하거나, 부가 정보를 검출하고 벡터 정보를 검출할 수도 있다.
프로세서(130)는 부가 정보를 이용하여 결정 데이터를 설정한다(S1510). 결정 데이터는 대상체의 유무 및 양을 결정하기 위한 데이터이다. 즉, 결정 데이터는 벡터 정보에 필터링 처리를 수행하기 위한 데이터이다. 결정 데이터는 공지된 다양한 방법을 이용하여 설정될 수 있다.
일실시예에 있어서, 프로세서(130)는 부가 정보를 이용하여 대상체(예를 들어, 혈관벽(BV))에 대응하는 세기값(즉, 밝기값)을 검출한다. 프로세서(130)는 검출된 밝기값을 벡터 도플러 영상에서 혈관벽을 필터링(즉, 투명 처리)하는 필터링 처리를 수행하기 위한 결정 데이터로서 설정한다.
다른 실시예에 있어서, 프로세서(130)는 부가 정보를 이용하여 파워 임계값을 설정한다. 파워 임계값은 공지된 다양한 방법을 이용하여 설정될 수 있으므로 본 실시예에서 상세하게 설명하지 않는다. 프로세서(130)는 파워 임계값을 기준으로 파워 임계값 이하의 파워에 대응하는 벡터 정보를 필터링(제거)하기 위한 결정 데이터를 설정한다.
또 다른 실시예에 있어서, 프로세서(130)는 부가 정보를 이용하여 파워 임계값을 설정한다. 프로세서(130)는 파워 임계값을 기준으로 파워 임계값 이하의 파워에 대응하는 벡터 정보에 투명 처리를 수행하기 위한 결정 데이터를 설정한다.
또 다른 실시예에 있어서, 프로세서(130)는 부가 정보를 이용하여 파워 임계값을 설정한다. 프로세서(130)는 파워 임계값을 기준으로 파워 임계값 이하의 벡터 정보를 약화시키고, 파워 임계값 이상의 벡터 정보를 강조시키는 필터링 처리를 수행하기 위한 결정 데이터를 설정한다. 필터링 처리는 알파 블렌딩 처리를 포함한다. 그러나, 필터링 처리는 반드시 이에 한정되지 않는다.
또 다른 실시예에 있어서, 프로세서(130)는 부가 정보를 이용하여 파워 임계값을 설정한다. 프로세서(130)는 파워 임계값을 기준으로 파워 임계값 이하의 벡터 정보를 강조시키고, 파워 임계값 이상의 벡터 정보를 약화시키는 필터링 처리를 수행하기 위한 결정 데이터를 설정한다.
프로세서(130)는 결정 데이터 및 벡터 정보를 이용하여 벡터 도플러 영상을 형성한다(S1512). 벡터 도플러 영상은 벡터 정보를 컬러 휠로 나타내는 벡터 도플러 영상, 벡터 크기를 길이로 나타내고 벡터 방향을 화살표로 나타내는 벡터 도플러 영상, 대상체의 움직임을 파티클의 움직임으로 나타내는 벡터 도플러 영상 등을 포함한다.
일실시예에 있어서, 프로세서(130)는 결정 데이터를 이용하여 대상체(예를 들어, 혈관벽)을 필터링하기 위한 필터링 처리를 벡터 정보에 수행한다. 프로세서(130)는 필터링 처리된 벡터 정보를 이용하여 벡터 도플러 영상을 형성한다.
다른 실시예에 있어서, 프로세서(130)는 결정 데이터를 이용하여 파워 임계값 이하의 파워에 대응하는 벡터 정보를 필터링하기 위한 결정 데이터 곡선을 형성한다. 프로세서(130)는 결정 데이터 곡선을 벡터 정보에 적용하여 필터링 처리를 수행한다. 프로세서(130)는 필터링 처리된 벡터 정보를 이용하여 벡터 도플러 영상을 형성한다.
또 다른 실시예에 있어서, 프로세서(130)는 결정 데이터를 이용하여 파워 임계값 이하의 파워에 대응하는 벡터 정보를 검출하고, 검출된 벡터 정보에 투명 처리를 수행한다. 프로세서(130)는 벡터 정보를 이용하여 벡터 도플러 영상을 형성한다.
또 다른 실시예에 있어서, 프로세서(130)는 결정 데이터를 이용하여, 파워 임계값 이하의 벡터 정보를 약화시키고 파워 임계값 이상의 벡터 정보를 강조시키기 위한 결정 데이터 곡선을 형성한다.
일례로서, 프로세서(130)는 결정 데이터를 이용하여 대상체의 양(예를 들어, 혈류의 양 등)에 따라 파티클 밀도(particle density), 파티클 크기 및 파티클 테일(particle tail) 중 적어도 하나를 조절하기 위한 결정 데이터 곡선을 형성한다.
다른 예로서, 프로세서(130)는 결정 데이터를 이용하여 대상체의 양에 따라 화살표 크기, 화살표 밀도, 화살표 길이 및 컬러 중 적어도 하나를 조절하기 위한 결정 데이터 곡선을 형성한다.
또 다른 예로서, 프로세서(130)는 결정 데이터를 이용하여 대상체의 양에 따라 스트림라인 밀도(streamline density), 스트림라인 컬러 및 스트림라인 알파 블렌딩중 적어도 하나를 조절하기 위한 결정 데이터 곡선을 형성한다.
또 다른 예로서, 프로세서(130)는 결정 데이터를 이용하여 대상체의 양에 따라 프로파일 라인(profile line)의 굵기, 밀도, 알파 블렌딩 및 점성 중 적어도 하나를 조절하기 위한 결정 데이터 곡선을 형성한다.
프로세서(130)는 결정 데이터 곡선을 벡터 정보에 적용하여 필터링 처리를 수행한다. 프로세서(130)는 필터링 처리된 벡터 정보를 이용하여 벡터 도플러 영상을 형성한다.
또 다른 실시예에 있어서, 프로세서(130)는 결정 데이터를 이용하여, 파워 임계값 이하의 벡터 정보를 강조시키고 파워 임계값 이상의 벡터 정보를 약화시키기 위한 결정 데이터 곡선을 형성한다. 프로세서(130)는 결정 데이터 곡선을 벡터 정보에 적용하여 필터링 처리를 수행한다. 프로세서(130)는 필터링 처리된 벡터 정보를 이용하여 벡터 도플러 영상을 형성한다.
다시 도 1을 참조하면, 초음파 시스템(100)은 저장부(140)를 더 포함한다. 저장부(140)는 초음파 데이터 획득부(120)에서 획득된 초음파 데이터(B 모드 초음파 데이터 및 도플러 모드 초음파 데이터)를 저장한다. 또한, 저장부(140)는 프로세서(130)에서 검출된 벡터 정보를 저장할 수도 있다.
초음파 시스템(100)은 디스플레이부(150)를 더 포함한다. 디스플레이부(150)는 프로세서(130)에서 형성된 B 모드 영상(BI)을 디스플레이한다. 또한, 디스플레이부(150)는 프로세서(130)에서 형성된 벡터 도플러 영상을 디스플레이한다.
본 발명은 바람직한 실시예를 통해 설명되고 예시되었으나, 당업자라면 첨부된 특허청구범위의 사항 및 범주를 벗어나지 않고 여러 가지 변경 및 변형이 이루어질 수 있음을 알 수 있을 것이다.
100: 초음파 시스템 110: 사용자 입력부
120: 초음파 데이터 획득부 130: 프로세서
140: 저장부 150: 디스플레이부
310: 초음파 프로브 320: 송신부
330: 수신부 340: 초음파 데이터 형성부
BI: B 모드 영상 ROI: 관심영역

Claims (36)

  1. 초음파 시스템으로서,
    대상체에 대응하는 초음파 데이터를 이용하여 상기 대상체의 벡터 정보 및 부가 정보를 검출하고, 상기 부가 정보를 이용하여 상기 대상체에 대응하는 결정 데이터를 설정하고, 상기 결정 데이터 및 상기 벡터 정보를 이용하여 벡터 도플러 영상을 형성하도록 동작하는 프로세서
    를 포함하는 초음파 시스템.
  2. 제1항에 있어서,
    상기 대상체를 포함하는 생체에 적어도 하나의 송신방향으로 초음파 신호를 송신하고, 상기 생체로부터 반사되는 초음파 빔을 적어도 하나의 수신방향으로 수신하여 상기 초음파 데이터를 획득하도록 동작하는 초음파 데이터 획득부
    를 더 포함하는 초음파 시스템.
  3. 제2항에 있어서, 상기 초음파 데이터 획득부는, 초음파 신호를 제1 송신방향으로 상기 생체에 송신하고, 상기 생체로부터 반사되는 초음파 에코신호를 제1 수신방향 및 제2 수신방향으로 수신하여 상기 제1 수신방향 및 상기 제2 수신방향 각각에 대응하는 상기 초음파 데이터를 획득하도록 동작하는 초음파 시스템.
  4. 제2항에 있어서, 상기 초음파 데이터 획득부는, 초음파 신호를 제1 송신방향 및 제2 송신방향 각각으로 상기 생체에 송신하고, 상기 생체로부터 반사되는 초음파 에코신호를 제1 수신방향으로 수신하여 상기 제1 송신방향 및 상기 제2 송신방향 각각의 상기 제1 수신방향에 대응하는 상기 초음파 데이터를 획득하도록 동작하는 초음파 시스템.
  5. 제2항에 있어서, 상기 초음파 데이터 획득부는, 초음파 신호를 제1 송신방향 및 제2 송신방향 각각으로 상기 생체에 송신하고, 상기 생체로부터 반사되는 초음파 에코신호를 제1 수신방향 및 제2 수신방향 각각으로 수신하여 상기 제1 수신방향 및 상기 제2 수신방향 각각에 대응하는 상기 초음파 데이터를 획득하도록 동작하는 초음파 시스템.
  6. 제2항 내지 제5항중 어느 한 항에 있어서, 상기 초음파 데이터 획득부는, 상기 초음파 신호를 인터리브 송신 방식으로 송신하도록 동작하는 초음파 시스템.
  7. 제2항 내지 제5항중 어느 한 항에 있어서, 상기 초음파 신호는 평면파 신호 또는 집속 신호를 포함하는 초음파 시스템.
  8. 제1항에 있어서, 상기 부가 정보는, 상기 대상체의 파워 정보, 분산 정보, 세기값 정보 및 도플러 정보 중 적어도 하나를 포함하는 초음파 시스템.
  9. 제8항에 있어서, 상기 프로세서는,
    상기 초음파 데이터를 이용하여 상기 대상체에 대응하는 상기 세기값 정보를 검출하고,
    상기 세기값 정보를 이용하여 상기 결정 데이터를 설정하도록 동작하는 초음파 시스템.
  10. 제9항에 있어서, 상기 프로세서는,
    상기 결정 데이터를 이용하여 상기 대상체를 필터링하기 위한 필터링 처리를 벡터 정보에 수행하고,
    상기 필터링 처리된 벡터 정보를 이용하여 상기 벡터 도플러 영상을 형성하도록 동작하는 초음파 시스템.
  11. 제8항에 있어서, 상기 프로세서는,
    상기 부가 정보를 이용하여 파워 임계값을 설정하고,
    상기 파워 임계값을 기준으로 상기 파워 임계값 이하의 파워에 대응하는 벡터 정보를 필터링하기 위한 상기 결정 데이터를 설정하도록 동작하는 초음파 시스템.
  12. 제11항에 있어서, 상기 프로세서는,
    상기 결정 데이터를 이용하여 상기 파워 임계값 이하의 파워에 대응하는 벡터 정보를 필터링하기 위한 결정 데이터 곡선을 형성하고,
    상기 결정 데이터 곡선을 상기 벡터 정보에 적용하여 필터링을 수행하고,
    상기 필터링 처리된 벡터 정보를 이용하여 상기 벡터 도플러 영상을 형성하도록 동작하는 초음파 시스템.
  13. 제8항에 있어서, 상기 프로세서는,
    상기 부가 정보를 이용하여 파워 임계값을 설정하고,
    상기 파워 임계값을 기준으로 상기 파워 임계값 이하의 파워에 대응하는 벡터 정보에 투명 처리를 수행하기 위한 상기 결정 데이터를 설정하도록 동작하는 초음파 시스템.
  14. 제13항에 있어서, 상기 프로세서는,
    상기 결정 데이터를 이용하여 상기 파워 임계값 이하의 파워에 대응하는 벡터 정보에 투명 처리를 수행하고,
    상기 벡터 정보를 이용하여 상기 벡터 도플러 영상을 형성하도록 동작하는 초음파 시스템.
  15. 제8항에 있어서, 상기 프로세서는,
    상기 부가 정보를 이용하여 파워 임계값을 설정하고,
    상기 파워 임계값을 기준으로 상기 파워 임계값 이상의 벡터 정보를 강조시키는 필터링 처리를 수행하기 위한 상기 결정 데이터를 설정하도록 동작하는 초음파 시스템.
  16. 제8항에 있어서, 상기 프로세서는,
    상기 부가 정보를 이용하여 파워 임계값을 설정하고,
    상기 파워 임계값을 기준으로 상기 파워 임계값 이하의 벡터 정보를 강조시키는 필터링 처리를 수행하기 위한 상기 결정 데이터를 설정하도록 동작하는 초음파 시스템.
  17. 제15항 또는 제16항에 있어서, 상기 프로세서는,
    상기 결정 데이터를 이용하여 결정 데이터 곡선을 형성하고,
    상기 결정 데이터 곡선을 상기 벡터 정보에 적용하여 필터링 처리를 수행하고,
    상기 필터링 처리된 벡터 정보를 이용하여 상기 벡터 도플러 영상을 형성하도록 동작하는 초음파 시스템.
  18. 제1항에 있어서, 상기 프로세서는, 상기 대상체의 속도 및 방향을 나타내는 상기 벡터 정보를 형성하도록 동작하는 초음파 시스템.
  19. 벡터 도플러 영상 제공 방법으로서,
    a) 대상체에 대응하는 초음파 데이터를 이용하여 상기 대상체의 벡터 정보 및 부가 정보를 검출하는 단계;
    b) 상기 부가 정보를 이용하여 상기 대상체에 대응하는 결정 데이터를 설정하는 단계; 및
    c) 상기 결정 데이터 및 상기 벡터 정보를 이용하여 벡터 도플러 영상을 형성하는 단계
    를 포함하는 벡터 도플러 영상 제공 방법.
  20. 제19항에 있어서, 상기 단계 a) 수행 이전에,
    상기 대상체를 포함하는 생체에 적어도 하나의 송신방향으로 초음파 신호를 송신하고, 상기 생체로부터 반사되는 초음파 빔을 적어도 하나의 수신방향으로 수신하여 상기 초음파 데이터를 획득하는 단계
    를 더 포함하는 벡터 도플러 영상 제공 방법.
  21. 제20항에 있어서, 상기 초음파 데이터를 획득하는 단계는,
    초음파 신호를 제1 송신방향으로 상기 대상체를 포함하는 생체에 송신하고, 상기 생체로부터 반사되는 초음파 에코신호를 제1 수신방향 및 제2 수신방향으로 수신하여 상기 제1 수신방향 및 상기 제2 수신방향 각각에 대응하는 상기 초음파 데이터를 획득하는 단계
    를 포함하는 벡터 도플러 영상 제공 방법.
  22. 제20항에 있어서, 상기 초음파 데이터를 획득하는 단계는,
    초음파 신호를 제1 송신방향 및 제2 송신방향 각각으로 상기 대상체를 포함하는 생체에 송신하고, 상기 생체로부터 반사되는 초음파 에코신호를 제1 수신방향으로 수신하여 상기 제1 송신방향 및 상기 제2 송신방향 각각의 상기 제1 수신방향에 대응하는 상기 초음파 데이터를 획득하는 단계
    를 포함하는 벡터 도플러 영상 제공 방법.
  23. 제20항에 있어서, 상기 초음파 데이터를 획득하는 단계는,
    초음파 신호를 제1 송신방향 및 제2 송신방향 각각으로 상기 대상체를 포함하는 생체에 송신하고, 상기 생체로부터 반사되는 초음파 에코신호를 제1 수신방향 및 제2 수신방향 각각으로 수신하여 상기 제1 수신방향 및 상기 제2 수신방향 각각에 대응하는 상기 초음파 데이터를 획득하는 단계
    를 포함하는 벡터 도플러 영상 제공 방법.
  24. 제20항 내지 제23항중 어느 한 항에 있어서, 상기 초음파 신호는 인터리브 송신 방식으로 송신되는 벡터 도플러 영상 제공 방법.
  25. 제20항 내지 제23항중 어느 한 항에 있어서, 상기 초음파 신호는 평면파 신호 또는 집속 신호를 포함하는 벡터 도플러 영상 제공 방법.
  26. 제19항에 있어서, 상기 부가 정보는, 상기 대상체의 파워 정보, 분산 정보, 세기값 정보 및 도플러 정보 중 적어도 하나를 포함하는 벡터 도플러 영상 제공 방법.
  27. 제26항에 있어서, 상기 단계 b)는,
    상기 초음파 데이터를 이용하여 상기 대상체에 대응하는 상기 세기값 정보를 검출하는 단계; 및
    상기 세기값 정보를 이용하여 상기 결정 데이터를 설정하는 단계
    를 포함하는 벡터 도플러 영상 제공 방법.
  28. 제27항에 있어서, 상기 단계 c)는,
    상기 결정 데이터를 이용하여 상기 대상체를 필터링하기 위한 필터링 처리를 벡터 정보에 수행하는 단계; 및
    상기 필터링 처리된 벡터 정보를 이용하여 상기 벡터 도플러 영상을 형성하는 단계
    를 포함하는 벡터 도플러 영상 제공 방법.
  29. 제26항에 있어서, 상기 단계 b)는,
    상기 부가 정보를 이용하여 파워 임계값을 설정하는 단계; 및
    상기 파워 임계값을 기준으로 상기 파워 임계값 이하의 파워에 대응하는 벡터 정보를 필터링하기 위한 상기 결정 데이터를 설정하는 단계
    를 포함하는 벡터 도플러 영상 제공 방법.
  30. 제29항에 있어서, 상기 단계 c)는,
    상기 결정 데이터를 이용하여 상기 파워 임계값 이하의 파워에 대응하는 벡터 정보를 필터링하기 위한 결정 데이터 곡선을 형성하는 단계;
    상기 결정 데이터 곡선을 상기 벡터 정보에 적용하여 필터링을 수행하는 단계; 및
    상기 필터링 처리된 벡터 정보를 이용하여 상기 벡터 도플러 영상을 형성하는 단계
    를 포함하는 벡터 도플러 영상 제공 방법.
  31. 제26항에 있어서, 상기 단계 b)는,
    상기 부가 정보를 이용하여 파워 임계값을 설정하는 단계; 및
    상기 파워 임계값을 기준으로 상기 파워 임계값 이하의 파워에 대응하는 벡터 정보에 투명 처리를 수행하기 위한 상기 결정 데이터를 설정하는 단계
    를 포함하는 벡터 도플러 영상 제공 방법.
  32. 제31항에 있어서, 상기 단계 c)는,
    상기 결정 데이터를 이용하여 상기 파워 임계값 이하의 파워에 대응하는 벡터 정보에 투명 처리를 수행하는 단계; 및
    상기 벡터 정보를 이용하여 상기 벡터 도플러 영상을 형성하는 단계
    를 포함하는 벡터 도플러 영상 제공 방법.
  33. 제26항에 있어서, 상기 단계 b)는,
    상기 부가 정보를 이용하여 파워 임계값을 설정하는 단계; 및
    상기 파워 임계값을 기준으로 상기 파워 임계값 이상의 벡터 정보를 강조시키는 필터링 처리를 수행하기 위한 상기 결정 데이터를 설정하는 단계
    를 포함하는 벡터 도플러 영상 제공 방법.
  34. 제26항에 있어서, 상기 단계 b)는,
    상기 부가 정보를 이용하여 파워 임계값을 설정하는 단계; 및
    상기 파워 임계값을 기준으로 상기 파워 임계값 이하의 벡터 정보를 강조시키는 필터링 처리를 수행하기 위한 상기 결정 데이터를 설정하는 단계
    를 포함하는 벡터 도플러 영상 제공 방법.
  35. 제33항 또는 제34항에 있어서, 상기 단계 c)는,
    상기 결정 데이터를 이용하여 결정 데이터 곡선을 형성하는 단계;
    상기 결정 데이터 곡선을 상기 벡터 정보에 적용하여 필터링 처리를 수행하는 단계; 및
    상기 필터링 처리된 벡터 정보를 이용하여 상기 벡터 도플러 영상을 형성하는 단계
    를 포함하는 벡터 도플러 영상 제공 방법.
  36. 제19항에 있어서, 상기 단계 b)는,
    상기 대상체의 속도 및 방향을 나타내는 상기 벡터 정보를 형성하는 단계
    를 포함하는 벡터 도플러 영상 제공 방법.
KR1020110144432A 2011-12-28 2011-12-28 결정 데이터에 기초하여 벡터 도플러 영상을 제공하는 초음파 시스템 및 방법 KR101323330B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020110144432A KR101323330B1 (ko) 2011-12-28 2011-12-28 결정 데이터에 기초하여 벡터 도플러 영상을 제공하는 초음파 시스템 및 방법
JP2012285469A JP2013138868A (ja) 2011-12-28 2012-12-27 決定データに基づいてベクトルドップラー映像を提供する超音波システムおよび方法
EP12199553.4A EP2609871A1 (en) 2011-12-28 2012-12-27 Providing vector doppler image based on decision data in ultrasound system
CN201210579820.1A CN103181789B (zh) 2011-12-28 2012-12-27 基于决定数据提供矢量多普勒图像的超声波系统和方法
US13/730,477 US20130172745A1 (en) 2011-12-28 2012-12-28 Providing vector doppler image based on decision data in ultrasound system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110144432A KR101323330B1 (ko) 2011-12-28 2011-12-28 결정 데이터에 기초하여 벡터 도플러 영상을 제공하는 초음파 시스템 및 방법

Publications (2)

Publication Number Publication Date
KR20130076031A true KR20130076031A (ko) 2013-07-08
KR101323330B1 KR101323330B1 (ko) 2013-10-29

Family

ID=47435825

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110144432A KR101323330B1 (ko) 2011-12-28 2011-12-28 결정 데이터에 기초하여 벡터 도플러 영상을 제공하는 초음파 시스템 및 방법

Country Status (5)

Country Link
US (1) US20130172745A1 (ko)
EP (1) EP2609871A1 (ko)
JP (1) JP2013138868A (ko)
KR (1) KR101323330B1 (ko)
CN (1) CN103181789B (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9877699B2 (en) 2012-03-26 2018-01-30 Teratech Corporation Tablet ultrasound system
US10667790B2 (en) 2012-03-26 2020-06-02 Teratech Corporation Tablet ultrasound system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080015569A1 (en) 2005-02-02 2008-01-17 Voyage Medical, Inc. Methods and apparatus for treatment of atrial fibrillation
US11478152B2 (en) 2005-02-02 2022-10-25 Intuitive Surgical Operations, Inc. Electrophysiology mapping and visualization system
US9510732B2 (en) 2005-10-25 2016-12-06 Intuitive Surgical Operations, Inc. Methods and apparatus for efficient purging
US9055906B2 (en) 2006-06-14 2015-06-16 Intuitive Surgical Operations, Inc. In-vivo visualization systems
US10004388B2 (en) * 2006-09-01 2018-06-26 Intuitive Surgical Operations, Inc. Coronary sinus cannulation
US20080097476A1 (en) 2006-09-01 2008-04-24 Voyage Medical, Inc. Precision control systems for tissue visualization and manipulation assemblies
US9226648B2 (en) 2006-12-21 2016-01-05 Intuitive Surgical Operations, Inc. Off-axis visualization systems
CN106999146B (zh) 2014-11-18 2020-11-10 C·R·巴德公司 具有自动图像呈现的超声成像系统
CN107106124B (zh) 2014-11-18 2021-01-08 C·R·巴德公司 具有自动图像呈现的超声成像系统
CN106061398B (zh) * 2015-01-30 2019-07-12 深圳迈瑞生物医疗电子股份有限公司 超声成像方法和系统
DE102017126158A1 (de) * 2017-11-08 2019-05-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultraschall-Bilderzeugungssystem
WO2020124349A1 (zh) * 2018-12-18 2020-06-25 深圳迈瑞生物医疗电子股份有限公司 一种超声成像系统及血流成像方法
CN110632585B (zh) * 2019-09-25 2021-06-29 华中科技大学 一种矢量多普勒效应测量方法和装置
CN112641468B (zh) * 2020-12-15 2022-11-04 青岛海信医疗设备股份有限公司 超声成像方法、超声图像处理方法、超声设备及存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357580A (en) * 1992-03-03 1994-10-18 Diasonics Ultrasound, Inc. Temporal filtering of color doppler signal data
US5897502A (en) * 1996-11-26 1999-04-27 Siemens Medical Systems, Inc. Persistence for ultrasonic flow imaging
US5908391A (en) * 1997-05-07 1999-06-01 General Electric Company Method and apparatus for enhancing resolution and sensitivity in color flow ultrasound imaging using multiple transmit focal zones
US5989189A (en) * 1997-10-24 1999-11-23 Mentor Corporation Ophthalmic ultrasound imaging
US6620103B1 (en) * 2002-06-11 2003-09-16 Koninklijke Philips Electronics N.V. Ultrasonic diagnostic imaging system for low flow rate contrast agents
JP4713862B2 (ja) * 2004-08-23 2011-06-29 株式会社東芝 超音波診断装置
JP4730125B2 (ja) 2006-02-22 2011-07-20 株式会社日立製作所 血流画像表示装置
US20080269611A1 (en) * 2007-04-24 2008-10-30 Gianni Pedrizzetti Flow characteristic imaging in medical diagnostic ultrasound
US20100069757A1 (en) * 2007-04-27 2010-03-18 Hideki Yoshikawa Ultrasonic diagnostic apparatus
DE102007057553B4 (de) * 2007-11-30 2012-02-16 Siemens Ag Verfahren zur Untersuchung eines menschlichen oder tierischen Körpers sowie medizinische Bildgebungsvorrichtung hierfür
CA2728998C (en) * 2008-06-26 2021-11-16 Verasonics, Inc. High frame rate quantitative doppler flow imaging using unfocused transmit beams
KR101117900B1 (ko) * 2009-04-30 2012-05-21 삼성메디슨 주식회사 고유벡터를 설정하는 초음파 시스템 및 방법
KR101120812B1 (ko) * 2009-06-01 2012-03-22 삼성메디슨 주식회사 움직임 벡터를 제공하는 초음파 시스템 및 방법
US9204858B2 (en) * 2010-02-05 2015-12-08 Ultrasonix Medical Corporation Ultrasound pulse-wave doppler measurement of blood flow velocity and/or turbulence

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9877699B2 (en) 2012-03-26 2018-01-30 Teratech Corporation Tablet ultrasound system
US10667790B2 (en) 2012-03-26 2020-06-02 Teratech Corporation Tablet ultrasound system
US11179138B2 (en) 2012-03-26 2021-11-23 Teratech Corporation Tablet ultrasound system
US11857363B2 (en) 2012-03-26 2024-01-02 Teratech Corporation Tablet ultrasound system
US12102480B2 (en) 2012-03-26 2024-10-01 Teratech Corporation Tablet ultrasound system
US12115023B2 (en) 2012-03-26 2024-10-15 Teratech Corporation Tablet ultrasound system

Also Published As

Publication number Publication date
CN103181789B (zh) 2018-03-16
CN103181789A (zh) 2013-07-03
JP2013138868A (ja) 2013-07-18
EP2609871A1 (en) 2013-07-03
KR101323330B1 (ko) 2013-10-29
US20130172745A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
KR101323330B1 (ko) 결정 데이터에 기초하여 벡터 도플러 영상을 제공하는 초음파 시스템 및 방법
KR101364527B1 (ko) 대상체의 움직임 프로파일 정보를 제공하는 초음파 시스템 및 방법
KR101348773B1 (ko) 벡터 도플러를 이용하여 난류 정보를 제공하는 초음파 시스템 및 방법
US11826203B2 (en) Analyzing apparatus
KR101406807B1 (ko) 사용자 인터페이스를 제공하는 초음파 시스템 및 방법
KR101348771B1 (ko) 벡터 도플러를 이용하여 파티클의 움직임을 추정하는 초음파 시스템 및 방법
US10564281B2 (en) Ultrasonography apparatus and ultrasonic imaging method
KR101386099B1 (ko) 벡터 모션 모드 영상을 제공하는 초음파 시스템 및 방법
KR101406806B1 (ko) 초음파 영상을 제공하는 초음파 시스템 및 방법
KR20090042183A (ko) 합성 영상을 이용한 조직 도플러 영상 생성 장치 및 방법
US20130172749A1 (en) Providing doppler spectrum images corresponding to at least two sample volumes in ultrasound system
KR101398467B1 (ko) 벡터 도플러를 이용하여 벡터 정보를 검출하는 초음파 시스템 및 방법
US9510803B2 (en) Providing compound image of doppler spectrum images in ultrasound system
KR101390187B1 (ko) 파티클 플로우 영상을 제공하는 초음파 시스템 및 방법
KR101364528B1 (ko) 벡터 도플러를 이용하여 대상체의 움직임 정보를 제공하는 초음파 시스템 및 방법
KR20130075486A (ko) 송신 지연을 이용하여 벡터 정보를 검출하는 초음파 시스템 및 방법
KR101511502B1 (ko) 송신 지연을 이용하여 벡터 정보를 검출하는 초음파 시스템 및 방법
WO2017047328A1 (ja) 超音波診断装置、及び超音波撮像方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161011

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171011

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181004

Year of fee payment: 6