KR20130075339A - Carbon-metal compound anode material and manufacturing method of the same - Google Patents

Carbon-metal compound anode material and manufacturing method of the same Download PDF

Info

Publication number
KR20130075339A
KR20130075339A KR1020110143673A KR20110143673A KR20130075339A KR 20130075339 A KR20130075339 A KR 20130075339A KR 1020110143673 A KR1020110143673 A KR 1020110143673A KR 20110143673 A KR20110143673 A KR 20110143673A KR 20130075339 A KR20130075339 A KR 20130075339A
Authority
KR
South Korea
Prior art keywords
metal
carbon
anode material
negative electrode
binder pitch
Prior art date
Application number
KR1020110143673A
Other languages
Korean (ko)
Inventor
김병주
박세민
배일준
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020110143673A priority Critical patent/KR20130075339A/en
Publication of KR20130075339A publication Critical patent/KR20130075339A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: A carbon-metal composite anode material is provided to improve a tab density by bonding a metal anode and kish graphite, improve conductivity and high voltage performance, and to be quickly charged and discharged. CONSTITUTION: A carbon-metal composite anode material includes 60-85 wt% of a metal anode material, 14-35 wt% of a binder pitch, and 1-5 wt% of a kish graphite. A manufacturing method of the carbon-metal composite anode material comprises a step of manufacturing a dispersion by dispersing 60-85 wt% of the metal anode material, 14-35 wt% of the binder pitch, and 1-5 wt% of the kish graphite into an aqueous solution; a step of manufacturing a composite precursor by spray-drying the dispersion (S10); and a step of melting and carbonizing the binder pitch of the composite precursor (S120,S130). [Reference numerals] (S100) Disperse a Si-based anode material + a kish graphite binder pitch powder into an aqueous solution; (S110) Manufacture precursor powder (spray drying); (S120) Melt the binder pitch; (S130) Carbonize the binder pitch

Description

탄소-금속 복합 음극재 및 그 제조방법{CARBON-METAL COMPOUND ANODE MATERIAL AND MANUFACTURING METHOD OF THE SAME}Carbon-Metal Composite Cathode Materials and Manufacturing Method Thereof {CARBON-METAL COMPOUND ANODE MATERIAL AND MANUFACTURING METHOD OF THE SAME}

본 발명은 탄소-금속 복합 음극재 및 그 제조방법에 관한 것으로, 보다 상세하게는 키쉬 흑연, 바인더 핏치 및 금속 음극재의 혼합물을 열처리하여 제조되는 탄소-금속 복합 음극재 및 그 제조방법에 관한 것이다.The present invention relates to a carbon-metal composite negative electrode material and a method for manufacturing the same, and more particularly, to a carbon-metal composite negative electrode material and a method for producing the mixture of the Kish graphite, binder pitch and the metal negative electrode material.

일반적으로 리튬 이차전지는 에너지 밀도가 높고 수명이 긴 전지로 가장 주목을 받고 있다. 통상적으로 리튬 이차전지는 탄소 재료나 리튬 금속 합금으로 된 음극, 리튬 금속 산화물로 된 양극 및 유기용매에 리튬염을 용해시킨 전해질을 구비한다.In general, lithium secondary batteries have received the most attention as batteries having high energy density and long lifespan. Typically, a lithium secondary battery includes an anode made of a carbon material or a lithium metal alloy, a cathode made of a lithium metal oxide, and an electrolyte in which lithium salt is dissolved in an organic solvent.

리튬 이차전지의 음극을 구성하는 음극 활물질로는 초기에는 리튬 금속이 사용되었으나 리튬은 가역성 및 안전성이 낮은 문제점이 있어, 현재 리튬 이차전지의 음극 활물질로는 주로 탄소재가 사용되고 있다. 탄소재는 리튬 금속에 비해 용량은 작지만, 부피 변화가 적고 가역성이 뛰어나며 가격 측면에서 유리한 장점이 있다.Although lithium metal was initially used as a negative electrode active material constituting the negative electrode of the lithium secondary battery, lithium has a problem of low reversibility and safety, and carbon materials are mainly used as negative electrode active materials of the lithium secondary battery. Carbon materials have a smaller capacity than lithium metal, but have a small volume change, excellent reversibility, and an advantageous price.

그러나, 리튬 이차전지의 사용이 확대되면서 점차 고용량 리튬 이차전지에 대한 수요가 증가하고 있는 실정이며, 이에 따라 용량이 작은 탄소재를 대체할 수 있는 고용량의 음극 활물질에 대한 요구가 있다. 이러한 요구를 충족하기 위하여 탄소재보다는 높은 충방전 용량을 나타내고, 리튬과 전기화학적으로 합금화가 가능한 금속, 예를 들면 Si, Sn 등을 음극 활물질로 이용한 시도가 있었다.However, as the use of lithium secondary batteries expands, the demand for high capacity lithium secondary batteries is gradually increasing. Accordingly, there is a demand for a high capacity negative electrode active material that can replace a carbon material having a small capacity. In order to satisfy these demands, there has been an attempt to use a metal that exhibits a higher charge / discharge capacity than a carbon material and which can be electrochemically alloyed with lithium, such as Si, Sn, etc. as a negative electrode active material.

그러나, 이러한 금속계 음극 활물질은 리튬의 충방전에 수반된 체적의 변화가 심하여 균열이 생기고 미분화되어 이러한 금속계 음극 활물질을 사용한 이차 전지는 충방전 사이클이 진행됨에 따라 용량이 급격하게 저하되고, 사이클 수명이 짧게 되는 문제가 있었다.However, the metal-based negative electrode active material has a severe change in volume associated with the charge and discharge of lithium, resulting in cracking and micronization, so that the secondary battery using the metal-based negative electrode active material rapidly decreases its capacity as the charge and discharge cycle progresses, and thus the cycle life is increased. There was a problem that became short.

또한, Si계 음극재는 충방전 용량이 우수한 반면, 전기 전도도가 결여되고, 부피팽창이 300% 이상이어서, 이를 극복하기 위해서 나노 사이즈의 Si를 그래핀에 분산시켜, 고용량, 고출력을 도모하는 방법이 제안(Electrochemistry Communications 12, (2010) 303-306, Electrochemistry Communications 12, (2010) 1467-1470)되어 있으나, 현재로서는 나노물질인 그래핀의 복합화를 위해 분산성 개선을 통한 활물질 입자 내 균일성의 확보가 해결되어야 하는 문제가 있었다.In addition, the Si-based negative electrode material has excellent charge and discharge capacity, but lacks electrical conductivity and has a volume expansion of 300% or more. In order to overcome this problem, a nano-size Si is dispersed in graphene to achieve high capacity and high output. Although it is proposed (Electrochemistry Communications 12, (2010) 303-306, Electrochemistry Communications 12, (2010) 1467-1470), it is possible to secure uniformity in active material particles by improving dispersibility for complexing graphene, a nanomaterial. There was a problem that had to be solved.

본 발명의 실시예들은 고용량을 나타내는 금속 음극재의 전도성을 향상시키기 위해서 금속 음극재와 La방향으로의 전도성이 우수한 키쉬 흑연을 바인터 핏치와 결합 후 탄화시켜 탄소-금속 복합 음극재 및 그 제조방법을 제공하고자 한다. Embodiments of the present invention are carbon-metal composite anode material and a method for producing the carbon-metal composite anode material and a method of manufacturing the carbon negative electrode material and a high-conductivity of the metal graphite material combined with the binder pitch to the carbon pitcher to improve the conductivity To provide.

본 발명의 하나 또는 다수의 실시예에서는 금속 음극재: 60~85중량%, 바인더 핏치:14~35중량% 및 키쉬(kish) 흑연: 1~5중량%를 포함하는 탄소-금속 복합 음극재가 제공될 수 있다.In one or more embodiments of the present invention, there is provided a carbon-metal composite anode material comprising a metal anode material: 60 to 85% by weight, binder pitch: 14 to 35% by weight and kish graphite: 1 to 5% by weight. Can be.

본 발명의 하나 또는 다수의 실시예에서 금속 음극재의 크기는 1 ㎛이하이고, 상기 키쉬 흑연의 두께는 1~10㎛이며 상기 복합 음극재의 크기는 5~30㎛인 것을 특징으로 한다.In one or more embodiments of the present invention, the size of the metal negative electrode material is 1 μm or less, the thickness of the Kish graphite is 1 to 10 μm, and the size of the composite negative electrode material is 5 to 30 μm.

본 발명의 하나 또는 다수의 실시예에서 금속 음극재는 Sn, Si, Al, Ge 및 Pb 로부터 선택되는 하나 이상으로 이루어지는 것을 특징으로 한다.In one or more embodiments of the present invention, the metal anode material is characterized in that it is made of one or more selected from Sn, Si, Al, Ge and Pb.

본 발명의 하나 또는 다수의 실시예에서는 금속 음극재: 60~85중량%, 바인더 핏치:14~35중량% 및 키쉬(kish) 흑연: 1~5중량%를 수용액에 분산시켜 분산액을 제조하는 단계; 상기 분산액을 분무 건조(spray drying)하여 복합 전구체를 제조하는 단계; 및 상기 복합 전구체의 바인더 핏치를 용융 및 탄화시키는 단계; 를 포함하는 탄소-금속 복합 음극재 제조방법이 제공될 수 있다.In one or more embodiments of the present invention to prepare a dispersion by dispersing a metal anode material: 60 to 85% by weight, binder pitch: 14 to 35% by weight and kish graphite: 1 to 5% by weight in an aqueous solution ; Spray drying the dispersion to prepare a composite precursor; Melting and carbonizing the binder pitch of the composite precursor; Carbon-metal composite negative electrode manufacturing method comprising a may be provided.

본 발명의 하나 또는 다수의 실시예에서 용융 및 탄화는 질소분위기의 600~1500℃ 사이에서 수행되는 것을 특징으로 한다.Melting and carbonization in one or more embodiments of the invention is characterized in that it is carried out between 600 ~ 1500 ℃ of the nitrogen atmosphere.

본 발명의 실시예들은 미세한 금속 음극재와 키쉬 흑연의 복합화를 통하여 탭 밀도를 향상시키며, 키쉬 흑연을 사용함으로써 전도성 및 고율특성을 개선하여 고속 충방전이 가능하고 고출력 특성을 향상시킬 수 있는 효과가 있다.Embodiments of the present invention improve the tap density through the combination of the fine metal negative electrode material and Kish graphite, and by using the Kish graphite to improve the conductivity and high rate characteristics to enable high-speed charging and discharging and to improve the high output characteristics have.

또한, 바인더 핏치의 탄화를 통해 형성되는 탄소 조직은 금속 음극재의 팽창 시, 완충역할을 함과 동시에 전해질과의 부반응을 방지해 주어 음극재의 수명특성 개선 효과를 기대할 수 있다.In addition, the carbon structure formed through the carbonization of the binder pitch may act as a buffer during expansion of the metal anode material and prevent side reactions with the electrolyte, thereby improving the life characteristics of the anode material.

도 1은 본 발명의 실시예에 따른 탄소-금속 복합 음극재 제조공정의 모식도이다.
도 2는 본 발명의 실시예에 따른 탄소-금속 복합 음극재 제조방법의 순서도이다.
1 is a schematic diagram of a carbon-metal composite anode material manufacturing process according to an embodiment of the present invention.
Figure 2 is a flow chart of the carbon-metal composite anode material manufacturing method according to an embodiment of the present invention.

이하, 첨부한 도면을 참조하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 위주로 설명한다. Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention.

이러한 실시예는 본 발명에 따른 일실시예로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 여러 가지 상이한 형태로 구현할 수 있으므로, 본 발명의 권리범위는 이하에서 설명하는 실시예에 한정되지 않는다 할 것이다.
It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to be illustrative of the invention, and are not intended to limit the scope of the inventions. I will do it.

본 발명의 실시예에 따르면 금속 음극재(20), 바인더 핏치(30) 및 키쉬 흑연(40)을 이용한 탄소-금속 복합 음극재(55) 및 그 제조방법이 제공되는데, 상기 탄소-금속 복합 음극재(55)는 금속 음극재: 60~85중량%, 바인더 핏치:14~35중량% 및 키쉬(kish) 흑연: 1~5중량%를 포함하여 제조된다.According to an embodiment of the present invention, a carbon-metal composite anode material 55 and a manufacturing method using the metal anode material 20, the binder pitch 30, and Kish graphite 40 are provided. The ash 55 is made of a metal anode material: 60 to 85% by weight, binder pitch: 14 to 35% by weight and kish graphite: 1 to 5% by weight.

본 발명에 따른 실시예에서 키쉬 흑연(40)은 복합 음극재(55) 내부에 도전성을 부여하기 위한 기능을 수행한다. 종래에는 입자 내 도전성을 부여하기 위하여 CNT 및 카본 나노파이버(Carbon Nanofiber)를 사용하였는데, 본 발명에 따른 실시예에서는 키쉬 흑연(40)을 사용하여 La 방향으로의 입자 면적이 넓기 때문에 복합재 내부에서 전자의 이동경로가 증가되어 전도성이 향상될 수 있고, 나아가 출력 특성이 향상될 수 있다. 또한 복합재 내에 잘 분산된 키쉬흑연은 금속입자의 부피팽창에 대한 완충작용의 역할을 하여, 활물질의 내구성을 향상시키는 역할을 한다.In the exemplary embodiment according to the present invention, the Kish graphite 40 functions to impart conductivity to the inside of the composite anode material 55. Conventionally, CNTs and carbon nanofibers are used to impart conductivity in the particles. In the embodiment of the present invention, the Kish graphite 40 is used so that the particle area in the La direction is wider. The movement path of is increased, so that conductivity can be improved, and further, output characteristics can be improved. In addition, Kish graphite well dispersed in the composite serves to buffer the volume expansion of the metal particles, thereby improving the durability of the active material.

본 발명에 따른 실시예에서는 상기 금속 음극재(20)로 Sn, Si, Al, Ge 및 Pb 로부터 선택되는 하나 이상으로 이루어진 것을 사용한다. In the embodiment according to the present invention, the metal anode material 20 uses one or more selected from Sn, Si, Al, Ge, and Pb.

본 발명에 따른 실시예에서는 금속 음극재를 60~85중량%, 바인더 핏치를 14~35중량%, 키쉬 흑연을 1~5중량% 함유하는데, 수치 한정 이유는 다음과 같다.In the embodiment according to the present invention, 60 to 85% by weight of the metal negative electrode material, 14 to 35% by weight of the binder pitch, 1 to 5% by weight of Kish graphite, the reason for numerical limitation is as follows.

상기 바인더 핏치(30)는 음극재의 구조적 안정성을 위해 사용되는데 만약, 바인더 핏치(30)의 함량이 14중량% 보다 적다면 안정적인 과립을 형성하는 것이 곤란해지고, 35중량%를 초과하여 첨가하면 용량이 작아지는 단점이 있다.The binder pitch 30 is used for structural stability of the negative electrode material. If the content of the binder pitch 30 is less than 14% by weight, it is difficult to form stable granules. There is a disadvantage that it becomes smaller.

또한, 상기 키쉬 흑연(40)은 전도성을 개선하기 위하여 사용하는데, 만약 키쉬 흑연(40)의 함량이 1중량%보다 적으면 전도성 개선 효과가 미미하고, 5중량%보다 많게 사용하면 불필요하게 과도한 양을 사용하는 것이 되는 단점이 있다.In addition, the Kish graphite 40 is used to improve the conductivity, if the content of the Kish graphite 40 is less than 1% by weight, the conductivity improvement effect is insignificant, if used more than 5% by weight excessively excessive amount There is a drawback to using.

이때, 상기 금속 음극재(20)는 전극의 용량을 결정하는데 중요한 요소인데, 본 발명에 따른 실시예에서는 60~85중량%를 사용한다.
At this time, the metal negative electrode material 20 is an important factor in determining the capacity of the electrode, in the embodiment according to the present invention uses 60 to 85% by weight.

상기 금속 음극재(20)는 1㎛ 이하인 것을 사용하는데 보다 바람직하게는 100~500nm인 것을 사용한다. 이는 금속 음극재(20)가 팽창하게 되면 금속 음극재(20)가 균열이 발생되기 때문이다. 그리고, 본 발명에 따른 실시예에서 키쉬 흑연(40)의 두께는 1~10㎛인 것을 사용하는데, 보다 바람직하게는 1~5㎛가 되도록 하는 것이 좋다. 만약, 키쉬 흑연(40)의 두께가 1㎛보다 작다면 비표면적이 증가하게 될 뿐만 아니라, 제조가 곤란하여 제조 비용이 상승하는 문제가 있으며, 키쉬 흑연(40)의 두께가 10㎛ 보다 크다면 복합 음극재(55)에 결합되기가 곤란한 문제가 있다.The metal negative electrode material 20 is less than 1㎛ use more preferably 100 ~ 500nm. This is because the metal negative electrode material 20 is cracked when the metal negative electrode material 20 is expanded. And, in the embodiment according to the present invention, the thickness of the Kish graphite 40 is used 1 to 10㎛, more preferably 1 to 5㎛. If the thickness of the Kish graphite 40 is less than 1 μm, the specific surface area is not only increased, but also the manufacturing is difficult and the manufacturing cost increases, and if the thickness of the Kish graphite 40 is larger than 10 μm, There is a problem in that it is difficult to couple to the composite negative electrode material 55.

이때, 복합 음극재(55)의 크기는 5~30㎛ 정도의 크기를 갖는다. 보다 바람직하게는 5~20㎛의 크기를 갖는 것이 좋다. 만약, 5㎛보다 작다면 충진 밀도가 나빠져 전극 밀도가 낮아지게 되어 결국 전지의 체적당 에너지밀도가 저하된다. 반면, 30㎛보다 크다면 방전과정의 전기화학반응 과정에서 탄소 입자 내부에서 리튬이 탈리되어 입자 밖으로 이동되는 입자 내 확산반응에 대한 저항이 증가하여 출력 특성이 저하되어 음극재로 사용이 곤란하게 된다.At this time, the size of the composite negative electrode material 55 has a size of about 5 ~ 30㎛. More preferably, it has a size of 5-20 micrometers. If it is smaller than 5 μm, the filling density is lowered and the electrode density is lowered, thereby lowering the energy density per volume of the battery. On the other hand, if it is larger than 30 μm, lithium is desorbed from the inside of the carbon particles during the electrochemical reaction of the discharge process, and the resistance to the diffusion reaction in the particles moved out of the particles increases, resulting in poor output characteristics, making it difficult to use as a negative electrode material. .

이하에서는 본 발명의 실시예에 따른 탄소-금속 복합 음극재(55) 제조방법에 대하여 도 1 및 도 2를 참조하여 설명한다.Hereinafter, a method of manufacturing a carbon-metal composite anode material 55 according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

본 발명의 실시예에 따르면 도 1의 (a)에 도시된 바와 같이, 먼저 금속 음극재(20), 키쉬 흑연(40) 및 바인더 핏치(30) 미분을 수용액에 분산시켜 분산액(10) 을 제조(S100)한다. 상기 원료들을 균일하게 혼합되도록 한 후 상기 분산액(10)을분무 건조(spray drying) 공정을 거쳐 도 1의 (b)에 도시된 바와 같이, 과립체인 복합 전구체(50)를 제조(S110)한다. 이후에는 상기 복합 전구체(50)를 열처리하여 바인더 핏치(30)를 용융(S120) 및 탄화(S130)시키는데, 상기 바인더 핏치(30)의 용융 및 탄화는 질소분위기의 600~1500℃에서 약 30분 내지 1시간 동안 열처리하여 탄화 공정을 진행함으로써 이루어진다. 이는 도 1의 (c) 및 (d)에 도시된 바와 같이, 바인더 핏치(30)가 녹아 용융된 바인더 핏치(30a)로 된 다음 탄화된 바인더 핏치(30b)가 된다. 이때, 공극이 용융된 바인더 핏치(30a)에 의해 채워져 복합 음극재(55)의 밀도가 높아지게 된다.According to an embodiment of the present invention, as shown in FIG. 1A, first, the fine powder of the metal anode material 20, the Kish graphite 40, and the binder pitch 30 are dispersed in an aqueous solution to prepare a dispersion 10. (S100). After the raw materials are uniformly mixed, the dispersion 10 is spray-dried (spray drying) process, as shown in Figure 1 (b), to prepare a composite precursor 50 of a granule (S110). Thereafter, the composite precursor 50 is heat-treated to melt the binder pitch 30 (S120) and carbonization (S130). The melting and carbonization of the binder pitch 30 is performed at 600 to 1500 ° C. in a nitrogen atmosphere for about 30 minutes. It is made by performing a carbonization process by heat treatment for 1 hour. As shown in FIGS. 1C and 1D, the binder pitch 30 is melted into a melted binder pitch 30a and then becomes a carbonized binder pitch 30b. At this time, the voids are filled by the melted binder pitch 30a to increase the density of the composite negative electrode material 55.

즉, 상기 탄화 공정을 통해 입자상의 바인더 핏치(30) 미분은 용융되어 복합 음극재(55) 내부에 비정질 탄소상으로 변환되며, 과립상의 입자 내부에 존재하던 공극은 용융된 바인더 핏치(30)에 의해서 채워져 입자의 밀도가 증가시켜 탭 밀도가 향상된다. 또한, 상기 바인더 핏치(30)는키쉬흑연화 마찬가지로 금속 음극재(20)가 팽창할 때 완충 역할을 하게 되고, 또한 전해질과의 부반응을 방지해주어 복합 음극재(55)의 수명을 연장할 수 있다.That is, through the carbonization process, the fine particles of the particulate binder pitch 30 are melted and converted into the amorphous carbon phase inside the composite negative electrode material 55, and the voids existing in the granular particles are transferred to the molten binder pitch 30. Filled to increase the density of the particles, thereby improving the tap density. In addition, the binder pitch 30 may act as a buffer when the metal negative electrode material 20 is expanded, similar to the kinetic graphite, and may also prevent side reactions with the electrolyte, thereby extending the life of the composite negative electrode material 55. .

만약, 상기 용융 및 탄화를 600℃보다 낮은 온도에서 실시하게 되면 탄소화가 충분히 진행되지 않기 때문에 전기화학적으로 비가역성이 큰 충방전 특성을 나타내게 된다. 또한, 1500℃보다 높은 온도에서는 탄소-금속 복합 음극재에 대한 탄화 또는 흑연화를 더 진행시켜 구조 변화가 수반될 수 있다. 즉, 상기 복합 전구체(50)는 일종의 활물질이므로 고온에서는 흑연화 가능성이 있다.If the melting and carbonization is performed at a temperature lower than 600 ° C., since carbonization does not proceed sufficiently, it exhibits a charge and discharge characteristic which is electrochemically irreversible. In addition, at temperatures higher than 1500 ° C., carbonization or graphitization of the carbon-metal composite negative electrode may be further performed, thereby accompanied by structural changes. That is, since the composite precursor 50 is a kind of active material, there is a possibility of graphitization at a high temperature.

본 발명에 따른 실시예는 금속 음극재(20)와 키쉬 흑연(40)을 석탄계 콜타로부터 제조된 바인더 핏치(30)를 결합하여 일체화된 복합 전구체(50)를 형성시킨 후, 상기 전구체(45)를 탄화하여 복합화된 음극재(55) 분말을 제공하는 것이다.According to the embodiment of the present invention, after the metal anode material 20 and the Kish graphite 40 are combined with the binder pitch 30 made from coal-based coalta to form an integrated composite precursor 50, the precursor 45 ) To provide a composite negative electrode material 55 powder.

이상으로 본 발명에 관한 바람직한 실시예를 설명하였으나, 본 발명은 상기 실시예에 한정되지 아니하며, 본 발명의 실시예로부터 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의한 용이하게 변경되어 균등하다고 인정되는 범위의 모든 변경을 포함한다. While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, And all changes to the scope that are deemed to be valid.

Claims (6)

금속 음극재: 60~85중량%, 바인더 핏치:14~35중량% 및 키쉬(kish) 흑연: 1~5중량%를 포함하는 탄소-금속 복합 음극재.Metal negative electrode material: 60 to 85% by weight, binder pitch: 14 to 35% by weight and Kish graphite: 1 to 5% by weight comprising a carbon-metal composite anode material. 제1항에 있어서,
상기 금속 음극재의 크기는 1 ㎛이하이고, 상기 키쉬 흑연의 두께는 1~10㎛이며 상기 복합 음극재의 크기는 5~30㎛인 것을 특징으로 하는 탄소-금속 복합 음극재.
The method of claim 1,
The size of the metal negative electrode material is 1 ㎛ or less, the thickness of the Kish graphite is 1 ~ 10㎛ and the size of the composite negative electrode material is characterized in that the carbon-metal composite negative electrode material.
제1항에 있어서,
상기 금속 음극재는 Sn, Si, Al, Ge 및 Pb 로부터 선택되는 하나 이상으로 이루어지는 것을 특징으로 하는 탄소-금속 복합 음극재.
The method of claim 1,
The metal negative electrode material is a carbon-metal composite negative electrode material, characterized in that made of at least one selected from Sn, Si, Al, Ge and Pb.
금속 음극재: 60~85중량%, 바인더 핏치:14~35중량% 및 키쉬(kish) 흑연: 1~5중량%를 수용액에 분산시켜 분산액을 제조하는 단계;
상기 분산액을 분무 건조(spray drying)하여 복합 전구체를 제조하는 단계; 및
상기 복합 전구체의 바인더 핏치를 용융 및 탄화시키는 단계;
를 포함하는 탄소-금속 복합 음극재 제조방법.
Dispersing a metal anode material: 60 to 85% by weight, binder pitch: 14 to 35% by weight and kish graphite: 1 to 5% by weight in an aqueous solution to prepare a dispersion;
Spray drying the dispersion to prepare a composite precursor; And
Melting and carbonizing a binder pitch of the composite precursor;
Carbon-metal composite negative electrode manufacturing method comprising a.
제4항에 있어서,
상기 용융 및 탄화는 질소분위기의 600~1500℃ 사이에서 수행되는 것을 특징으로 하는 탄소-금속 복합 음극재 제조방법.
5. The method of claim 4,
The melting and carbonization method of producing a carbon-metal composite anode material, characterized in that carried out between 600 ~ 1500 ℃ of the nitrogen atmosphere.
제4항에 있어서,
상기 금속 음극재는 Sn, Si, Al, Ge 및 Pb 로부터 선택되는 하나 이상으로 이루어지는 것을 특징으로 하는 탄소-금속 복합 음극재 제조방법.
5. The method of claim 4,
The metal anode material is a carbon-metal composite anode material manufacturing method characterized in that made of at least one selected from Sn, Si, Al, Ge and Pb.
KR1020110143673A 2011-12-27 2011-12-27 Carbon-metal compound anode material and manufacturing method of the same KR20130075339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110143673A KR20130075339A (en) 2011-12-27 2011-12-27 Carbon-metal compound anode material and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110143673A KR20130075339A (en) 2011-12-27 2011-12-27 Carbon-metal compound anode material and manufacturing method of the same

Publications (1)

Publication Number Publication Date
KR20130075339A true KR20130075339A (en) 2013-07-05

Family

ID=48989244

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110143673A KR20130075339A (en) 2011-12-27 2011-12-27 Carbon-metal compound anode material and manufacturing method of the same

Country Status (1)

Country Link
KR (1) KR20130075339A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425802A (en) * 2013-09-11 2015-03-18 上海杉杉科技有限公司 Silicon-based composite material and preparation method and application thereof and prepared lithium ion battery
WO2020067609A1 (en) * 2018-09-28 2020-04-02 주식회사 포스코 Anode active material for lithium secondary battery and lithium secondary battery comprising same
WO2020111446A1 (en) * 2018-11-30 2020-06-04 주식회사 포스코 Anode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
KR102447926B1 (en) * 2021-12-27 2022-09-28 주식회사 제이피에너지 Method for manufacturing nano-clustered metal composite graphite and lithium ion secondary battery manufactured therefrom
KR102447918B1 (en) * 2021-12-27 2022-09-28 주식회사 제이피에너지 Nanoclustered metal composite graphite and lithium ion secondary battery using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425802A (en) * 2013-09-11 2015-03-18 上海杉杉科技有限公司 Silicon-based composite material and preparation method and application thereof and prepared lithium ion battery
WO2020067609A1 (en) * 2018-09-28 2020-04-02 주식회사 포스코 Anode active material for lithium secondary battery and lithium secondary battery comprising same
CN113169317A (en) * 2018-09-28 2021-07-23 株式会社Posco Negative electrode active material for lithium secondary battery and lithium secondary battery comprising same
WO2020111446A1 (en) * 2018-11-30 2020-06-04 주식회사 포스코 Anode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
KR102447926B1 (en) * 2021-12-27 2022-09-28 주식회사 제이피에너지 Method for manufacturing nano-clustered metal composite graphite and lithium ion secondary battery manufactured therefrom
KR102447918B1 (en) * 2021-12-27 2022-09-28 주식회사 제이피에너지 Nanoclustered metal composite graphite and lithium ion secondary battery using the same

Similar Documents

Publication Publication Date Title
CN108232145B (en) Silicon oxide composite material with space buffering and lithium doping functions, preparation method of silicon oxide composite material and lithium ion battery
JP6466635B2 (en) Method for producing negative electrode for nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
EP2503626B1 (en) Positive-electrode material for a lithium ion secondary battery, and manufacturing method therefor
US20040229041A1 (en) Graphite granules and their method of fabrication
Zhang et al. Carbon nanomaterials used as conductive additives in lithium ion batteries
CN105489887B (en) Negative lead paste of lead-carbon battery
JP5518317B2 (en) Carbon black composite and its use
KR20090109225A (en) Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
WO2013067956A1 (en) Nano-silicon/carbon composite material and preparation method therefor
WO2015049836A1 (en) Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
CN104303339B (en) Anode material of secondary cell and preparation method thereof
Li et al. Highly stable GeO x@ C core–shell fibrous anodes for improved capacity in lithium-ion batteries
KR20130075339A (en) Carbon-metal compound anode material and manufacturing method of the same
CN112510185A (en) Silicon-carbon composite negative electrode material and manufacturing method thereof
KR101348200B1 (en) Carbon nanofiber composite containing silicon nanoparticles coated with stabilizer, preparation of the same and lithium secondary battery using the same
CN110550635B (en) Preparation method of novel carbon-coated silica negative electrode material
Zhao et al. Electrospun Nanofiber Electrodes for Lithium‐Ion Batteries
CN115101739A (en) Preparation method of multifunctional silicon carbide carbon negative electrode material and silicon carbon negative electrode material
WO2019068186A1 (en) Method of preparing carbon-graphene-lead composite particles
KR101018659B1 (en) Silicon anode active material for lithium secondary battery
TW202112662A (en) Method for manufacturing graphite material
TW202106618A (en) Composite carbon particles, method for manufacturing same and use thereof
CN113851614A (en) Low-temperature quick-charging artificial graphite cathode material, preparation method thereof and low-temperature quick-charging battery
JP5196365B2 (en) Carbon particle powder for negative electrode material of lithium ion secondary battery, method for producing the same, and negative electrode material of lithium ion secondary battery
WO2023005987A1 (en) Two-element lithium supplementing additive, preparation method therefor, and use thereof

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid