KR20130061285A - Magnetic inductive type position sensor - Google Patents

Magnetic inductive type position sensor Download PDF

Info

Publication number
KR20130061285A
KR20130061285A KR1020110127511A KR20110127511A KR20130061285A KR 20130061285 A KR20130061285 A KR 20130061285A KR 1020110127511 A KR1020110127511 A KR 1020110127511A KR 20110127511 A KR20110127511 A KR 20110127511A KR 20130061285 A KR20130061285 A KR 20130061285A
Authority
KR
South Korea
Prior art keywords
rotor
wing
guide member
members
guide
Prior art date
Application number
KR1020110127511A
Other languages
Korean (ko)
Other versions
KR101332157B1 (en
Inventor
이창환
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020110127511A priority Critical patent/KR101332157B1/en
Priority to EP12176657.0A priority patent/EP2600111B1/en
Priority to US13/556,909 priority patent/US9116017B2/en
Publication of KR20130061285A publication Critical patent/KR20130061285A/en
Application granted granted Critical
Publication of KR101332157B1 publication Critical patent/KR101332157B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/2033Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils controlling the saturation of a magnetic circuit by means of a movable element, e.g. a magnet

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE: A magnetic inductive location sensor is provided to maintain the flatness of blade members regularly by minimizing the deformation of the blade members, thereby maintaining a measurement value of the sensor to be uniform. CONSTITUTION: A magnetic inductive location sensor comprises one or more rotor bodies, a PCB(Printed Circuit Board)(10), and a guide member. The rotor bodies, which are joined to a rotary shaft, rotate by being interlocked with the rotation of the rotary shaft. The rotor bodies include a plurality of blade members protruded in a circumferential direction. The PCB is arranged to be faced to the rotor bodies. The guide member connects the tip end portions of the blade members, thereby guiding the blade members to be arranged on a same plane.

Description

자기유도 위치감지 센서{Magnetic inductive type position sensor}Magnetic inductive type position sensor

본 발명은 자기유도를 이용한 위치 센서에 관한 것이다.
The present invention relates to a position sensor using magnetic induction.

로터와 스테이터의 상호 움직임에 따라, 회전축의 위치를 감지하는 센서는 다양한 방식으로 구현 가능하다. 이 중, 자기유도 방식을 이용한 위치 센서의 일 예는 유럽 등록특허 EP1081454와, 미국 등록특허 US6384598에 공개된 바 있다.According to the mutual movement of the rotor and the stator, a sensor for detecting the position of the rotation axis can be implemented in various ways. Among these, an example of a position sensor using a magnetic induction method has been disclosed in European Patent EP1081454 and US Patent US6384598.

상기한 선행기술에서는 로터에 디스크를 마련하되, 상기 디스크에는 부채모양의 방사형상의 날개를 복수 개로 형성하여, 상기 복수 개의 날개와 마주보게 배치된 인쇄회로기판에는, 상기 복수 개의 날개와 대응되는 위치에 전류가 통전되는 회로패턴을 형성하여, 상기 회로패턴에 전류를 통전할 때 발생하는 자기장이 상기 날개와의 상호 작용을 통해 변경되는 값을 이용하여, 상기 로터의 위치를 감지하는 기술이 개시된 바 있다.In the above-described prior art, a disk is provided in the rotor, and the disk has a plurality of fan-shaped radial wings, and the printed circuit board disposed to face the plurality of wings is located at a position corresponding to the plurality of wings. Forming a circuit pattern through which a current is energized, a technique for detecting the position of the rotor using a value that changes when the magnetic field generated when energizing the circuit pattern through interaction with the blade has been disclosed. .

그런데, 이와 같은 종래 기술에 따르면, 디스크에 방사형으로 돌출 형성된 상기 날개들의 평단도가 균일하게 형성되지 못할 경우, 로터 회전 시 상대되는 인쇄회로기판과 날개 사이의 간격이 일정하게 유지되지 못하므로, 자기 유도 특성도 불균일하게 나타날 수 있다. 이러한 기구적인 오차로 인해, 감지센서의 출력특성이 리플(ripple) 현상으로 나타나, 센서 출력특성 오차(error)를 증가시킬 수 있다는 문제점이 있다.
However, according to the related art, when the flatness of the blades radially protruding from the disk is not uniformly formed, the distance between the printed circuit board and the blades that are opposed during the rotation of the rotor is not kept constant. Induction characteristics may also appear nonuniform. Due to this mechanical error, the output characteristic of the sensing sensor appears as a ripple phenomenon, which may increase the sensor output characteristic error.

유럽 등록특허 EP1081454(2000.08.30.)European Patent EP1081454 (2000.08.30.) 미국 등록특허 US6384598(2002.05.07.)US registered patent US6384598 (2002.05.07.)

본 발명은 로터에 마련된 부채모양의 날개부재의 평탄도를 균일하게 유지할 수 있도록 구조가 개선된 자기유도 위치감지 센서를 제공하는데 그 목적이 있다.
It is an object of the present invention to provide a magnetic induction position sensor having an improved structure to maintain the flatness of the fan-shaped wing member provided in the rotor.

본 발명에 의한 자기유도 위치감지 센서는, 회전축과 결합되어, 상기 회전축의 회전에 연동하여 회전하며, 원주 방향으로 돌출 형성되는 복수 개의 날개부재를 가지는 적어도 하나의 로터 몸체; 상기 날개부재와 대응되는 위치에 전류가 흐르는 회로패턴을 가지는 인쇄회로기판; 및 상기 날개부재 끝단을 서로 연결하여, 상기 날개부재가 동일 평면상에 배치되도록 가이드 하는 가이드 부재;를 포함하는 것을 특징으로 한다.Magnetic induction position detection sensor according to the present invention, coupled to the rotation axis, rotates in conjunction with the rotation of the rotation axis, at least one rotor body having a plurality of wing members protruding in the circumferential direction; A printed circuit board having a circuit pattern through which current flows at a position corresponding to the wing member; And a guide member connecting the ends of the wing members to each other to guide the wing members to be disposed on the same plane.

본 발명의 바람직한 일 실시예에 따르면, 상기 로터 몸체는, 상기 인쇄회로기판의 앞면에 배치되는 제 1 로터; 및 상기 인쇄회로기판의 뒷면에 배치되는 제 2 로터;를 포함하는 것이 좋다.According to a preferred embodiment of the present invention, the rotor body comprises: a first rotor disposed on the front surface of the printed circuit board; And a second rotor disposed on a rear surface of the printed circuit board.

이때, 상기 제 1 및 제 2 로터는 서로 다른 개수와 면적의 날개부재를 가지는 것이 바람직하다.At this time, it is preferable that the first and second rotors have wing members having different numbers and areas.

상기 가이드 부재는, 상기 복수 개의 날개부재 끝단에 결합되는 링 형상의 부재로 마련될 수도 있고, 상기 날개부재와 일체로 형성되는 것도 가능하다.The guide member may be provided as a ring-shaped member coupled to the plurality of wing member ends, or may be integrally formed with the wing member.

한편, 상기 가이드 부재는, 상기 제 1 로터에 배치되는 제 1 가이드 부재; 및 상기 제 2 로터에 배치되는 제 2 가이드 부재;를 포함하며, 상기 제 1 및 제 2 가이드 부재는, 상기 제 1 및 제 2 로터에 결합되는 링 형상의 부재로 마련될 수도 있고, 상기 제 1 및 제 2 로터에 배치된 날개부재와 일체로 형성되는 것도 가능하다.On the other hand, the guide member, the first guide member disposed in the first rotor; And a second guide member disposed on the second rotor, wherein the first and second guide members may be provided as ring-shaped members coupled to the first and second rotors. And it may be formed integrally with the wing member disposed on the second rotor.

또는, 상기 제 1 가이드 부재는 상기 제 1 로터의 날개부재와 서로 다른 부품으로 형성되고, 상기 제 2 가이드 부재는 상기 제 2 로터의 날개부재와 일체로 형성되거나, 상기 제 1 가이드 부재는 상기 제 1 로터의 날개부재와 일체로 형성되고, 상기 제 2 가이드 부재는 상기 제 2 로터의 날개부재와 서로 다른 부품으로 형성되는 것도 가능하다.
Alternatively, the first guide member may be formed of a component different from the wing member of the first rotor, and the second guide member may be integrally formed with the wing member of the second rotor, or the first guide member may be formed of the first guide member. It is also formed integrally with the wing member of the first rotor, the second guide member may be formed of a different component from the wing member of the second rotor.

본 발명에 따르면, 로터에 날개부재를 제조하는 공정 중에, 날개부재의 끝단이 서로 연결되기 때문에, 각각의 날개부재들의 변형을 최소화할 수 있어, 날개부재의 평탄도를 일정하게 구성하여 센서 측정값을 균일하게 유지할 수 있다.According to the present invention, during the manufacturing process of the wing member in the rotor, since the ends of the wing members are connected to each other, it is possible to minimize the deformation of each wing member, so that the flatness of the wing member is configured to a constant sensor measurement value Can be kept uniform.

도 1은 본 발명에 의한 자기유도 위치감지 센서의 동작원리를 설명하기 위한 도면,
도 2는 본 발명의 바람직한 일 실시예에 따른 자기유도 위치감지 센서의 일 예를 도시한 사시도,
도 3은 도 2의 분해 사시도, 그리고,
도 4는 도 2의 제 1 로터를 도시한 평면도 이다.
1 is a view for explaining the operation principle of the magnetic induction position sensor according to the present invention,
2 is a perspective view showing an example of a magnetic induction position sensor according to an embodiment of the present invention,
3 is an exploded perspective view of FIG. 2, and
4 is a plan view illustrating the first rotor of FIG. 2.

이하, 본 발명의 바람직한 실시예를 도면을 참고하여 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

도 1은 본 발명에 의한 자기유도 위치감지 센서의 동작원리를 설명하기 위한 도면, 도 2는 본 발명의 바람직한 일 실시예에 따른 자기유도 위치감지 센서의 일 예를 도시한 사시도, 도 3은 도 2의 분해 사시도, 그리고, 도 4는 도 2의 제 1 로터를 도시한 평면도 이다.1 is a view for explaining the operation principle of the magnetic induction position sensor according to the present invention, Figure 2 is a perspective view showing an example of a magnetic induction position sensor according to an embodiment of the present invention, Figure 3 2 is an exploded perspective view and FIG. 4 is a plan view illustrating the first rotor of FIG. 2.

도 1에 도시된 바와 같이, 본 발명에 의한 자기유도 위치감지 센서는, 인쇄회로기판(10)와 로터(20)를 포함하여 구성될 수 있다.As shown in FIG. 1, the magnetic induction position sensor according to the present invention may include a printed circuit board 10 and a rotor 20.

인쇄회로기판(10)에는 전류가 흐르는 회로패턴(11)이 방사상으로 형성되어 있으며, 소정의 제어부(12)가 실장 될 수 있다. 상기 제어부(12)는 일반적으로 주문형 집적회로(ASCI, application-specific integrated circuit)로 구성될 수 있으며, 동일한 종류의 주문형 집적회로를 한 쌍으로 구성할 수 있다. 또한, 상기 전류를 3상 전원을 인가 받을 수 있다.In the printed circuit board 10, a circuit pattern 11 through which current flows is formed radially, and a predetermined controller 12 may be mounted. The control unit 12 may generally be configured as an application-specific integrated circuit (ASCI), and may be configured as a pair of custom integrated circuits of the same type. In addition, the current may be applied to a three-phase power source.

로터(20)는 미도시된 회전축이 중앙에 결합되며, 복수 매의 날개부재(21)가 끝단이 링 형상의 가이드 부재(22)로 연결될 수 있다. 본 발명의 바람직한 일 실시예에 따르면, 상기 로터(20)는 디스크 형상의 몸체에, 프레스 가공으로 동일한 형상의 날개부재(21)를 관통 형성한 후, 끝단은 링 형상을 가지되, 상기 날개부재(21)와 동일한 재질로서 일체가 되도록 구성할 수 있다.The rotor 20 is coupled to the center of the rotation shaft is not shown, a plurality of wing members 21 may be connected to the end of the ring-shaped guide member 22. According to a preferred embodiment of the present invention, the rotor 20 is formed in the disk-shaped body, through the wing member 21 of the same shape by pressing, the end has a ring shape, the wing member It can be comprised so that it may become one with the same material as (21).

다른 실시예로는, 상기 날개부재(21)를 프레스 가공으로 공간부를 절취하여 구성한 후에, 상기 날개부재(21)의 끝단을 링 형상의 고무, 실리콘, 합성수지 재질 중 어느 하나의 재질로 마련된 가이드 부재(22)로 고정하여, 상기 복수 개의 날개부재(21)들을 가이드 하여, 각각의 날개부재(21)들이 상기 인쇄회로기판(10)에 대하여, 일정한 간격으로 이격 될 수 있도록 가이드 할 수 있다.In another embodiment, after the wing member 21 is formed by cutting the space part by press working, the end of the wing member 21 is formed of a guide member made of any one of ring-shaped rubber, silicone, and synthetic materials. By fixing to 22, the plurality of wing members 21 may be guided to guide each of the wing members 21 to be spaced at regular intervals with respect to the printed circuit board 10.

이와 같은 구성에 따르면, 상기 회전축의 회전으로 회전하는 복수 개의 날개부재(21)들이 항상 일정한 간격으로 상기 인쇄회로기판(10)에 형성된 회로패턴(11)과 이격 될 수 있어, 로터 회전에 다른 감지신호의 리플(ripple)이 발생하지 않는다.According to this configuration, the plurality of wing members 21 rotated by the rotation of the rotary shaft can always be spaced apart from the circuit pattern 11 formed on the printed circuit board 10 at regular intervals, the detection of the rotor rotation different There is no ripple in the signal.

도 2 및 도 3은, 이와 같은 구성을 가지는 자기유도 위치감지 센서의 원리를 이용하여 토크센서를 구성한 상태를 도시한 도면이다.2 and 3 are views illustrating a state in which a torque sensor is configured by using the principle of the magnetic induction position sensor having such a configuration.

도시된 바와 같이, 인쇄회로기판(10)의 내부에는 소정 형상의 회로패턴(11)이 마련되며, 상기 회로패턴(11)과 마주보는 위치로서, 상측과 하측에 제 1 및 제 2 로터(20)(30)가 배치될 수 있다. 한편, 상기 인쇄회로기판(10)의 하측에는 상기 인쇄회로기판(10)을 지지하는 커버부재(15)가 결합되는데, 상기 커버부재(15)는 상기 회로패턴(11)에서 형성되는 자기력을 투자할 수 있는 재질로 마련되는 것이 바람직하며, 수지재질로 형성되는 것이 좋다.As shown in the drawing, a circuit pattern 11 having a predetermined shape is provided inside the printed circuit board 10 and faces the circuit pattern 11. The first and second rotors 20 are disposed above and below. ) 30 may be disposed. On the other hand, the cover member 15 for supporting the printed circuit board 10 is coupled to the lower side of the printed circuit board 10, the cover member 15 invests a magnetic force formed in the circuit pattern 11 It is preferable to be provided with a material that can be, and preferably formed of a resin material.

제 1 로터(20)는 제 1 개수(n1)의 제 1 날개부재(21)가 마련되고, 상기 제 1 날개부재(21)의 끝단에는 별도 부재로 마련된 링 형상의 제 1 가이드 부재(22)가 결합된다. The first rotor 20 is provided with a first wing member 21 of a first number n1, and a ring-shaped first guide member 22 provided as a separate member at the end of the first wing member 21. Is combined.

제 2 로터(30)는 제 2 개수(n2)의 제 2 날개부재(31)가 마련되고, 상기 제 2 날개부재(31)의 끝단에는 별도 부재로 마련된 링 형상의 제 2 가이드 부재(32)가 결합된다. The second rotor 30 is provided with a second wing member 31 of a second number n2, and a ring-shaped second guide member 32 provided as a separate member at the end of the second wing member 31. Is combined.

한편, 상기 제 1 및 제 2 날개부재(21)(31)의 개수는 서로 다르게 구성되는 것이 좋은데, 필요에 따라 제 1 날개부재(21)의 개수를 크게 할 수도 있고, 그 반대로 제 2 날개(31)의 개수를 크게 하는 것도 가능하다.Meanwhile, the number of the first and second wing members 21 and 31 may be different from each other. If necessary, the number of the first wing members 21 may be increased, and vice versa. It is also possible to increase the number of 31).

상기 제 1 및 제 2 날개부재(21)(31)의 개수를 다르게 하는 이유는, 상기 제 1 로터(20)에 연결되는 입력축(미도시)의 비틀림 각과 제 2 로터(30)에 연결되는 출력축(미도시)의 비틀림 각을 각각 측정하여, 상기 제 1 및 제 2 로터(20)(30)에서 측정된 비틀림 각의 평균치를 이용하여, 각도와 토크를 연산할 수 있다.The reason for varying the number of the first and second wing members 21 and 31 is a torsion angle of an input shaft (not shown) connected to the first rotor 20 and an output shaft connected to the second rotor 30. Torsion angles (not shown) may be measured, and angles and torques may be calculated using average values of the torsion angles measured by the first and second rotors 20 and 30.

즉, 상기한 바와 같이 제 1 및 제 2 날개부재(21)(31)의 개수를 다르게 하면, 상기 회로패턴(11)과의 상호작용으로 감지되는 자기변화가 제 1 및 제 2 날개부재(21)(31)의 면적 차이로 인해, 서로 다른 피크의 신호를 감지할 수 있어, 입력축과 출력축의 비틀림 각을 개별적으로 계산할 수 있기 때문이다.That is, when the number of the first and second wing members 21 and 31 is different as described above, the magnetic change sensed by the interaction with the circuit pattern 11 is the first and second wing members 21. Due to the difference in the area of the 31), signals of different peaks can be detected, and the torsion angles of the input shaft and the output shaft can be calculated separately.

한편, 도시하지는 않았으나, 상기 제 1 및 제 2 가이드 부재(22)(32)를 상기 제 1 및 제 2 로터(20)(30)와 한 몸으로 구성할 수도 있다. 즉, 디스크 형상의 상기 제 1 및 제 2 로터(20)(30)에 프레스 가공 등으로, 제 1 및 제 2 날개부재(21)(31)를 형성할 때, 상기 제 1 및 제 2 날개부재(21)(31)들의 끝단이 링 형상으로 연결될 수 있도록, 상기 제 1 및 제 2 날개부재(21)(31)들의 서로 이격된 공간부만을 펀칭 등으로 제거하여 형성할 수도 있다. 이 경우, 별도의 제 1 및 제 2 가이드 부재(22)(32) 조립 공정을 생략할 수 있어 간편하며, 제 1 및 제 2 날개부재(21)(31)를 형성하는 공정 중에, 상기 제 1 및 제 2 날개부재(21)(31)가 휘어지는 것을 방지할 수 있다.Although not shown, the first and second guide members 22 and 32 may be configured as one body with the first and second rotors 20 and 30. That is, when the first and second wing members 21 and 31 are formed in the disk-shaped first and second rotors 20 and 30 by press working or the like, the first and second wing members are formed. The ends of the (21) and (31) may be formed by removing only the spaced portions of the first and second wing members (21) (31) spaced apart from each other by punching or the like. In this case, the assembly process of the first and second guide members 22 and 32 can be omitted, and the first and second wing members 21 and 31 can be omitted. And it is possible to prevent the second wing member (21, 31) is bent.

이처럼, 상기 제 1 및 제 2 가이드 부재(22)(32)를 별도 부재로 마련하여 조립하거나, 상기 제 1 및 제 2 날개부재(21)(31)와 일체화된 구성으로 마련하면, 상기 제 1 및 제 2 날개부재(21)(31)의 끝단이 링 형상의 제 1 및 제 2 가이드 부재(22)(32)에 의해 가이드 되므로, 각각의 제 1 및 제 2 날개부재(21)(31)가 가공공정 중에 높낮이가 서로 다르게 형성되는 것을 방지할 수 있다. As such, when the first and second guide members 22 and 32 are provided as separate members and assembled, or when the first and second guide members 22 and 32 are integrated with the first and second wing members 21 and 31, the first and second guide members 22 and 32 may be integrated. And the ends of the second wing members 21 and 31 are guided by the ring-shaped first and second guide members 22 and 32, so that the first and second wing members 21 and 31 respectively. It is possible to prevent the height is formed differently during the processing process.

또한, 별도 부재로 상기 제 1 및 제 2 가이드 부재(22)(32)를 형성할 경우, 가공 공정 중에 상기 제 1 및 제 2 날개부재(21)(31)가 다소 높낮이가 다르게 가공되더라도, 제 1 및 제 2 가이드 부재(22)(32)의 결합을 통해, 정확한 위치에 상기 제 1 및 제 2 날개부재(21)(31)들이 위치할 수 있도록 위치 보정이 가능하다.In addition, when the first and second guide members 22 and 32 are formed as separate members, even if the first and second wing members 21 and 31 are slightly different in height during processing, Through the combination of the first and second guide members 22 and 32, position correction is possible so that the first and second wing members 21 and 31 can be positioned at the correct position.

따라서, 제 1 및 제 2 날개부재(21)(31)와 인쇄회로기판(10)의 회로패턴(11) 가이의 거리가 일정하게 유지될 수 있어, 자기장 변화 감지신호의 리플(ripple) 현상을 최소화할 수 있어, 센서의 신뢰성을 향상시킬 수 있다.Accordingly, the distance between the first and second wing members 21 and 31 and the circuit pattern 11 of the printed circuit board 10 can be kept constant, thereby preventing the ripple of the magnetic field change detection signal. It can be minimized, thereby improving the reliability of the sensor.

앞에서 설명되고, 도면에 도시된 본 발명의 실시예는, 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.
The embodiments of the present invention described above and shown in the drawings should not be construed as limiting the technical idea of the present invention. The scope of protection of the present invention is limited only by the matters described in the claims, and those skilled in the art will be able to modify the technical idea of the present invention in various forms. Accordingly, such improvements and modifications will fall within the scope of the present invention as long as they are obvious to those skilled in the art.

10; 인쇄회로기판 11; 회로패턴
20; 제 1 로터 21; 제 1 날개부재
22; 제 1 가이드 부재 30; 제 2 로터
31; 제 2 날개부재 32; 제 2 가이드 부재
10; A printed circuit board 11; Circuit pattern
20; First rotor 21; First wing member
22; First guide member 30; The second rotor
31; Second wing member 32; Second guide member

Claims (11)

회전축과 결합되어, 상기 회전축의 회전에 연동하여 회전하며, 원주 방향으로 돌출 형성되는 복수 개의 날개부재를 가지는 적어도 하나의 로터 몸체;
상기 로터 몸체와 마주보게 배치되는 인쇄회로기판; 및
상기 날개부재 끝단을 서로 연결하여, 상기 날개부재가 동일 평면상에 배치되도록 가이드 하는 가이드 부재;를 포함하는 자기유도 위치감지 센서.
At least one rotor body coupled to a rotating shaft and rotating in association with the rotation of the rotating shaft, the rotor body having a plurality of wing members protruding in a circumferential direction;
A printed circuit board disposed to face the rotor body; And
And a guide member for connecting the ends of the wing members to each other so as to guide the wing members to be disposed on the same plane.
제 1 항에 있어서, 상기 인쇄회로기판은,
상기 날개부재와 대응되는 위치에 전류가 흐르는 회로패턴을 포함하는 자기유도 위치감지 센서.
The printed circuit board according to claim 1,
A magnetic induction position sensor comprising a circuit pattern through which current flows in a position corresponding to the wing member.
제 1 항에 있어서, 상기 로터 몸체는,
상기 인쇄회로기판의 앞면에 배치되는 제 1 로터; 및
상기 인쇄회로기판의 뒷면에 배치되는 제 2 로터;를 포함하는 자기유도 위치감지 센서.
The method of claim 1, wherein the rotor body,
A first rotor disposed on the front surface of the printed circuit board; And
And a second rotor disposed on a rear surface of the printed circuit board.
제 3 항에 있어서,
상기 제 1 및 제 2 로터는 서로 다른 개수와 면적의 날개부재를 가지는 것을 특징으로 하는 자기유도 위치감지 센서.
The method of claim 3, wherein
The first and second rotors are magnetically inductive position sensor, characterized in that having a different number and area of wing members.
제 1 항에 있어서, 상기 가이드 부재는,
상기 복수 개의 날개부재 끝단에 결합되는 링 형상의 부재인 것을 특징으로 하는 자기유도 위치감지 센서.
The method of claim 1, wherein the guide member,
Magnetic induction position detection sensor, characterized in that the ring-shaped member coupled to the plurality of wing member ends.
제 1 항에 있어서, 상기 가이드 부재는,
상기 날개부재와 일체로 형성되는 자기유도 위치감지 센서.
The method of claim 1, wherein the guide member,
Magnetic induction position sensor formed integrally with the wing member.
제 4 항에 있어서, 상기 가이드 부재는,
상기 제 1 로터에 배치되는 제 1 가이드 부재; 및
상기 제 2 로터에 배치되는 제 2 가이드 부재;를 포함하는 자기유도 위치감지 센서.
The method of claim 4, wherein the guide member,
A first guide member disposed on the first rotor; And
And a second guide member disposed in the second rotor.
제 7 항에 있어서,
상기 제 1 및 제 2 가이드 부재는, 상기 제 1 및 제 2 로터에 결합되는 링 형상의 부재인 것을 특징으로 하는 자기유도 위치감지 센서.
The method of claim 7, wherein
And the first and second guide members are ring-shaped members coupled to the first and second rotors.
제 7 항에 있어서,
상기 제 1 및 제 2 가이드 부재는, 상기 제 1 및 제 2 로터에 배치된 날개부재와 일체로 형성되는 자기유도 위치감지 센서.
The method of claim 7, wherein
And the first and second guide members are integrally formed with the wing members disposed in the first and second rotors.
제 7 항에 있어서,
상기 제 1 가이드 부재는 상기 제 1 로터의 날개부재와 서로 다른 부품으로 형성되고,
상기 제 2 가이드 부재는 상기 제 2 로터의 날개부재와 일체로 형성되는 자기유도 위치감지 센서.
The method of claim 7, wherein
The first guide member is formed of a different component from the wing member of the first rotor,
And the second guide member is integrally formed with the wing member of the second rotor.
제 7 항에 있어서,
상기 제 1 가이드 부재는 상기 제 1 로터의 날개부재와 일체로 형성되고,
상기 제 2 가이드 부재는 상기 제 2 로터의 날개부재와 서로 다른 부품으로 형성되는 자기유도 위치감지 센서.
The method of claim 7, wherein
The first guide member is integrally formed with the wing member of the first rotor,
The second guide member is a magnetic induction position sensor formed of a different component from the wing member of the second rotor.
KR1020110127511A 2011-12-01 2011-12-01 Magnetic inductive type position sensor KR101332157B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020110127511A KR101332157B1 (en) 2011-12-01 2011-12-01 Magnetic inductive type position sensor
EP12176657.0A EP2600111B1 (en) 2011-12-01 2012-07-17 Magnetic inductive type position sensor
US13/556,909 US9116017B2 (en) 2011-12-01 2012-07-24 Magnetic inductive type position sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110127511A KR101332157B1 (en) 2011-12-01 2011-12-01 Magnetic inductive type position sensor

Publications (2)

Publication Number Publication Date
KR20130061285A true KR20130061285A (en) 2013-06-11
KR101332157B1 KR101332157B1 (en) 2013-11-21

Family

ID=46548254

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110127511A KR101332157B1 (en) 2011-12-01 2011-12-01 Magnetic inductive type position sensor

Country Status (3)

Country Link
US (1) US9116017B2 (en)
EP (1) EP2600111B1 (en)
KR (1) KR101332157B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020041704A1 (en) * 2018-08-24 2020-02-27 KSR IP Holdings, LLC End of shaft inductive angular position sensor with a metal-ferrite complementary coupler

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105164502B (en) 2013-05-03 2019-07-16 Ksr Ip控股有限责任公司 Micro- inductive pick-up
JP6878430B2 (en) * 2015-12-10 2021-05-26 ボーンズ・インコーポレーテッドBourns,Incorporated Long range magnetic proximity sensor
EP4083577A1 (en) * 2021-04-29 2022-11-02 Melexis Technologies SA Reliable position sensor
DE202022002891U1 (en) 2022-12-21 2023-12-23 Swoboda Schorndorf KG Sensor wheel for an inductive rotation angle sensor, inductive rotation angle sensor with such a sensor wheel and system with an inductive rotation angle sensor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2951148C2 (en) * 1979-12-19 1984-04-19 Robert Bosch Gmbh, 7000 Stuttgart Measuring device for an angle of rotation and / or a torque
JPH02119544A (en) 1988-10-26 1990-05-07 Matsushita Electric Works Ltd Permanent magnet rotor
JP2769061B2 (en) 1991-12-26 1998-06-25 川崎製鉄株式会社 Extremely anisotropically oriented magnet
JP3179881B2 (en) 1992-09-16 2001-06-25 松下電工株式会社 Brushless motor rotor
FR2766566B1 (en) * 1997-07-25 1999-10-22 Magneti Marelli France ANGLE SENSOR FOR MOTOR VEHICLE, ESPECIALLY FOR STEERING SHAFT
DE19941464A1 (en) 1999-09-01 2001-03-15 Hella Kg Hueck & Co Inductive position sensor
JP4642987B2 (en) * 2000-09-28 2011-03-02 株式会社アミテック Relative rotational position detector
US6525938B1 (en) * 2002-01-02 2003-02-25 Yen Sun Technology Corp. Circuit board fixing structure of heatsink fan
FR2838186B1 (en) * 2002-04-09 2004-06-04 Moving Magnet Tech MAGNETIC SENSOR DEVICE WITH ANGULAR POSITION
US7105975B2 (en) * 2003-10-06 2006-09-12 Light Engineering, Inc. Efficient axial airgap electric machine having a frontiron
KR100789514B1 (en) 2006-05-10 2007-12-28 삼성전기주식회사 Brushless motor
CN100547354C (en) * 2007-11-26 2009-10-07 桂林市晶瑞传感技术有限公司 The absolute type circle capacitor grid transducer measurement mechanism that is used for Absolute position measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020041704A1 (en) * 2018-08-24 2020-02-27 KSR IP Holdings, LLC End of shaft inductive angular position sensor with a metal-ferrite complementary coupler
US11125584B2 (en) 2018-08-24 2021-09-21 KSR IP Holdings, LLC End of shaft inductive angular position sensor with a metal-ferrite complementary coupler

Also Published As

Publication number Publication date
KR101332157B1 (en) 2013-11-21
EP2600111B1 (en) 2016-03-16
US9116017B2 (en) 2015-08-25
US20130141083A1 (en) 2013-06-06
EP2600111A1 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
KR101332157B1 (en) Magnetic inductive type position sensor
US10782149B2 (en) Sensor module and motor comprising same
KR102542137B1 (en) Detecting device for sensing the rotor position and method thereof
JP6062882B2 (en) Rotation angle detector with pedestal and rotary machine
US10320261B2 (en) Rotor alignment for reducing vibrations and noise
WO2015145456A1 (en) Angular position sensing device
US10439468B2 (en) Motor including bearing seating unit
JP2013142702A (en) Torque detection sensor system
JP2015200650A (en) Dynamic balance process of rotor, and device
EP3193141B1 (en) Position sensor for electromechanical actuator
JP5421198B2 (en) Rotation angle detector
EP3826167A1 (en) Motor
JP5411084B2 (en) Rotation angle detector
JP6393952B2 (en) Coil temperature measuring device
EP2602627A1 (en) Speed sensor wheel with asymmetry for determining direction of rotation
JP2021530707A (en) Rotation angle measurement system
KR20180080493A (en) Detecting device for sensing the rotor position and method thereof
EP3327906B1 (en) A magnetic sensor for rotating electric machines
US11740069B2 (en) Inductive sensor with split lobe target
JP5620728B2 (en) Rotation angle detector
JP2021124451A (en) Rotation position detector
KR102491102B1 (en) Detecting device for sensing the rotor position and motor having the same
US10119840B2 (en) Measuring system and drive system
KR20220087012A (en) Apparatus for sensing
KR20240007053A (en) position sensor and steering apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161006

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181010

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191010

Year of fee payment: 7