KR20130056705A - 녹스 발생량 예측 방법 - Google Patents
녹스 발생량 예측 방법 Download PDFInfo
- Publication number
- KR20130056705A KR20130056705A KR1020110122437A KR20110122437A KR20130056705A KR 20130056705 A KR20130056705 A KR 20130056705A KR 1020110122437 A KR1020110122437 A KR 1020110122437A KR 20110122437 A KR20110122437 A KR 20110122437A KR 20130056705 A KR20130056705 A KR 20130056705A
- Authority
- KR
- South Korea
- Prior art keywords
- generation
- equation
- combustion chamber
- calculated
- combustion
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/023—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/025—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
- F02D35/026—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
- F02D41/1461—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
- F02D41/1462—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/06—Fuel or fuel supply system parameters
- F02D2200/0614—Actual fuel mass or fuel injection amount
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/10—Parameters related to the engine output, e.g. engine torque or engine speed
- F02D2200/101—Engine speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/028—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/0065—Specific aspects of external EGR control
- F02D41/0072—Estimating, calculating or determining the EGR rate, amount or flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
본 발명은 엔진 연소압력 및 엔진 운전 변수를 이용하여 NO 발생률을 계산하는 단계와, 상기 엔진 연소압력을 이용하여 NO 생성기간을 산출하는 단계와, 상기 NO 발생률과 상기 NO 생성기간으로부터 NO 발생량을 계산하는 단계 및 상기 NO 발생량과 엔진 운전영역에 따른 NO와 NO2의 비율로부터 NO2 발생량을 산출하여 녹스(NOx) 발생량을 예측하는 단계를 포함하는 녹스 발생량 예측 방법에 관한 것으로서, 본 발명에 따르면 별도로 녹스 측정을 위한 센서를 구비할 필요가 없어 비용이 감축되고 센서의 오작동과 같은 문제가 없으므로 신뢰성이 향상되는 효과가 있다
Description
본 발명은 녹스 발생량 예측 방법에 관한 것으로서, 보다 상세하게는 별도의 녹스 측정 센서 없이도 차량의 엔진에서 발생하는 녹스의 양을 계측할 수 있는 녹스 발생량 예측 방법에 관한 것이다.
내연 기관들을 구비하는 차량에서의 오염물 배출 허용에 관한 법규들이 점점 더 엄격해지면서, 내연 기관의 동작 동안 오염물 배출을 가능한 한 낮게 유지하는 것이 요구되고 있다. 이를 얻을 수 있는 방법들 중 하나는 내연 기관의 각각의 실린더 내 공기/연료 혼합물의 연소 동안 발생하는 오염물 배출을 줄이는 것이다.
다른 하나는 내연 기관들 내 배기 가스 후처리 시스템을 사용하는 것인데, 배기 가스 후처리 시스템은 각각의 실린더 내 공기/연료 혼합물의 연소 프로세스 동안 발생한 배출된 오염물을 무해한 물질로 변환한다. 이런 목적으로 일산화탄소, 탄화수소 및 질소산화물을 무해한 물질로 변환하는 촉매 컨버터들이 사용된다.
이러한 배기 가스 촉매 컨버터를 사용하여 효율적으로 오염 성분을 변환하기 위해서는 엔진에서 발생하는 질소산화물 즉, 녹스(Nitrogen Oxides)의 양을 정확하게 측정하는 것이 필요하다.
종래기술의 경우 별도로 배기 분석 장치나, 녹스 측정을 위한 센서를 구비하였다. 그러나 상기와 같은 배기 분석 장치나 녹스 측정 센서를 별도로 구비할 경우 비용이 상승되는 문제가 있었고, 엔진 배기가스 내의 조성물들이 배기 분석 장치나 녹스 센서를 오염시킴으로써 센서 자체가 오작동되는 문제가 있었다.
또한, 상기와 같은 문제를 해결하기 위하여 종래 녹스 예측 기술이 제시되었으나, 이러한 종래 기술들의 경우 지나치게 복잡한 계산과정을 통하거나, 단순화된 열발생율 식으로부터 계산된 온도를 이용하여 녹스를 예측하기 때문에 신뢰성이 떨어지는 문제가 있었다.
본 발명은 상술한 문제를 해결하기 위하여 안출된 것으로서, 연소압력 및 엔진의 운전 변수를 이용하여 별도의 배기 분석 장치나 녹스 측정 센서 없이도 실시간으로 신뢰성있게 녹스의 양을 예측할 수 있는 녹스 발생량 예측 방법을 제공하는 것을 목적으로 한다.
상술한 과제를 해결하기 위한 수단으로서 본 발명의 실시예에서는 녹스 발생량 예측 방법을 제공한다. 몇몇 실시예에서, 상기 녹스 발생량 예측 방법은 엔진 연소압력 및 엔진 운전 변수를 이용하여 NO 발생률을 계산하는 단계; 상기 엔진 연소압력을 이용하여 NO 생성기간을 산출하는 단계; 상기 NO 발생률과 상기 NO 생성기간으로부터 NO 발생량을 계산하는 단계; 및 상기 NO 발생량과 엔진 운전영역에 따른 NO와 NO2의 비율로부터 NO2 발생량을 산출하여 녹스(NOx) 발생량을 예측하는 단계;를 포함할 수 있다.
상기 엔진 운전 변수는 연료량, 엔진 회전수(RPM), 공연비(AF) 및 EGR 중 적어도 하나 이상을 포함하는 것을 특징으로 할 수 있다.
상기 NO 발생률은 연소실의 화염 온도와 연소실 내의 산소 농도 및 질소 농도를 이용하여 계산하는 것을 특징으로 할 수 있다.
상기 NO 발생률은 하기 수학식 1을 이용하여 계산하는 것을 특징으로 할 수 있다.
<수학식 1>
(상기 수학식 1에서 d[NO]/dt는 시간에 따른 NO 발생률이고, T는 화염 온도이며, [O2]는 연소실 내 산소농도이고, [N2]는 연소실 내 질소 농도이며, A와 B는 상수이다.)
상기 수학식 1의 화염 온도(T=Tflame)는 단열 화염 온도(Tad)에 연소시 압력 상승에 의한 추가적인 연소실 상승 온도 고려하여 계산하는 것을 특징으로 할 수 있다.
상기 수학식 1의 화염 온도(T=Tflame)는 하기 수학식 2에 의해 계산되는 것을 특징으로 할 수 있다.
<수학식 2>
{상기 수학식 2에서 Tflame은 화염 온도(T)이고, Tad는 단열 화염 온도이며, Pi는 연소시작시점의 압력이고, Pmax는 최고 연소압이며, k는 비열비(specific heat ratio)=Cv(정적비열)/Cp (정압비열)이다.}
상기 수학식 2의 단열 화염 온도(Tad)는 하기 수학식 3에 의해 계산되는 것을 특징으로 할 수 있다.
<수학식 3>
(상기 수학식 3에서 Tsoc는 연소 시작시점에서 연소실 온도이고, [O2]는 연소실 내 산소농도이다.)
상기 수학식 1의 연소실 내의 산소 농도[O2]와 질소 농도[N2]는 하기 수학식 4에 의해 계산하는 것을 특징으로 할 수 있다.
<수학식 4>
(상기 수학식 4에서 상기 O2_in과 N2_in은 연소실 내 산소농도[O2]와 질소농도[N2]이고, O2_Air[vol,%]와 N2_Air[vol,%]은 공기 중 산소와 질소의 농도이며, O2_EGR[vol,%]과 N2_EGR[vol,%]은 EGR가스 중 산소와 질소의 농도이다.)
상기 NO 생성기간은 MFB40-80 구간 또는 MFB50-90 구간을 사용하여 산출하는 것을 특징으로 할 수 있다.
본 발명에 따른 녹스 발생량 예측 방법에 의하면 차량의 연료량, 엔진 회전수, 공연비 및 EGR 정보를 토대로 하여 간단한 계산을 통해 녹스 발생량을 실시간으로 예측할 수 있으므로 별도로 녹스 측정을 위한 센서를 구비할 필요가 없어 비용이 감축되고 센서의 오작동과 같은 문제가 없으므로 신뢰성이 향상되는 효과가 있다.
도 1은 본 발명의 실시예에 따른 녹스 발생량 예측 방법의 흐름도이다.
도 2는 본 발명의 실시예에 따른 녹스 발생량 예측 방법의 개념도이다.
도 3은 본 발명의 실시예에 따른 NO 생성기간을 도시한 그래프이다.
도 4는 본 발명의 실시예에 따른 NO 발생량에 관련된 그래프이다.
도 2는 본 발명의 실시예에 따른 녹스 발생량 예측 방법의 개념도이다.
도 3은 본 발명의 실시예에 따른 NO 생성기간을 도시한 그래프이다.
도 4는 본 발명의 실시예에 따른 NO 발생량에 관련된 그래프이다.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조로 상세하게 설명하면 다음과 같다.
도 1은 본 발명의 실시예에 따른 녹스 발생량 예측 방법의 흐름도이고, 도 2는 본 발명의 실시예에 따른 녹스 발생량 예측 방법의 개념도이다.
도 1 및 도 2에 도시된 바와 같이 본 발명의 실시예에 따른 녹스 발생량 예측 방법은 엔진 연소압력(100) 및 엔진 운전 변수(200)를 이용하여 NO 발생률(300)을 계산하는 단계(S10)와, 상기 엔진 연소압력(100)을 이용하여 NO 생성기간(400)을 산출하는 단계(S20)와, 상기 NO 발생률(300)과 상기 NO 생성기간(400)으로부터 NO 발생량(500)을 계산하는 단계(S30) 및 상기 NO 발생량(500)과 엔진 운전영역에 따른 NO와 NO2의 비율로부터 NO2 발생량을 산출하여 녹스(NOx) 발생량을 예측하는 단계(S40)를 포함할 수 있다.
우선 엔진의 연소압력(100)(Pressure) 및 엔진 운전 변수(200)들을 이용하여 NO(일산화질소)의 발생률(300)을 계산한다(S10).
상기 엔진 운전 변수(200)에는 도 2에 도시된 바와 같이 연료량(210)(mfuel)과, 엔진 회전수(220)(RPM)와, 공연비(230)(AF) 및 EGR량, EGR율(EGR_rate)과 같은 EGR(240) 정보가 포함될 수 있다. 이러한 엔진 운전 변수(200)들을 기초로 하여 NO 발생률(300)을 계산하게 된다.
하나 또는 다수의 실시예에서 상기 NO 발생률(300)은 하기의 수학식 1을 사용하여 계산할 수 있다.
상기 수학식 1에서 d[NO]/dt는 NO 발생률(300)이고, T는 화염온도(310)이며, [O2]는 연소실 내 산소농도(320)이고, [N2]는 연소실 내 질소농도(330)이며, A와 B는 실험이나 해석에 의해 정해지는 경험 상수이다.
따라서, 상기 NO 발생률(300)(d[NO]/dt)을 구하기 위해서는 연소실의 화염 온도(T)(310)와 연소실 내의 산소 농도[O2](320) 및 질소 농도[N2](330)를 알아야 한다.
이하에서는 연소실의 화염 온도(T)와 연소실 내의 산소 농도[O2] 및 질소 농도[N2]를 구하는 방법을 각각 설명한다.
상기 연소실의 화염온도(T=Tflame)(310)는 단열 화염 온도(Tad)에 연소시 압력 상승에 의한 추가적인 연소실 상승 온도 고려하여 계산할 수 있다.
하나 또는 다수의 실시예에서 상기 연소실의 화염온도(310)는 하기의 수학식 2에 의해 계산될 수 있다.
상기 수학식 2에서 Tflame은 화염 온도(T)(310)를 나타내고, 상기 Tad는 단열 화염 온도이며, 상기 Pi는 연소시작시점의 압력이고, 상기 Pmax는 최고 연소압이며, 상기 k는 비열비(specific heat ratio)로서 Cv(정적비열)/Cp (정압비열) 값에 해당한다.
상기 Pi(연소시작시점의 압력)와 Pmax(최고 연소압)은 상기 엔진의 연소압력(100)을 측정하는 엔진의 연소압 센서로 측정될 수 있으며 그 정보는 전기적 신호로 전환되어 차량의 ECU(Electric Control Unit)와 같은 제어부로 전송된다.
그리고 상기 수학식 2에서 상기 단열 화염 온도(Tad)는 하나 또는 다수의 실시예에서 하기의 수학식 3에 의해 계산될 수 있다.
상기 수학식 3에서 Tsoc는 연소 시작시점에서 연소실 온도이고, [O2]는 연소실 내 산소농도(320)이다.
상기 연소 시작시점의 연소실 온도(Tsoc)는 도 2에 도시된 바와 같이 연소실의 연소압력(100)(Pressure) 및 열발산율(Heat Release Rate, HRR)로부터 연소 시작시점(Start Of Converstion, SOC)을 결정하고, 결정된 연소 시작시점(Start Of Converstion, SOC)을 이용하여 구할 수 있다.
하나 또는 다수의 실시예에서 상기 연소 시작시점의 연소실 온도(Tsoc)는 하기의 (3-1) 식에 의해 구할 수 있다.
(3-1)
상기 식에서 상기 Pi는 연소시작시점의 압력으로서, 상기에서 결정된 연소 시작시점(SOC)을 이용하여 그 시점에서 상기 엔진의 연소압력 센서로 측정된 값이고, 상기 R은 이상기체 상태 방정식의 기체상수이다.
그리고, 상기 m은 실린더 내부의 혼합기체 전체의 양을 나타내는 값으로서 하기 (3-2)의 식에 의해 구할 수 있다.
(3-2)
여기서, AF는 공연비(230)이고, mfuel은 차량의 ECU 신호로 알 수 있는 연료량(210)이다. AF와 mfuel 모두 상기 엔진의 운전 변수(200)로서 입력되는 값이다.
한편, 상기 V는 연소 시작점의 부피로서 하기 (3-2)의 식에 의해 계산될 수 있다.
(3-3)
상기 식에서 Vc는 클리어런스 볼륨(clearance volume)이고, rc는 압축비(compression ratio)이며, r은 커넥팅 로드 길이(connecting rod length)이며, a는 크랭크 오프셋(crank offset)이 되고, 상기 B는 실린더의 직경, S는 피스톤 왕복 높이가 된다.
따라서, 상기 (3-2)과 (3-3) 식으로부터 구한 m과 V 값을 상기 (3-1)식에 대입하여 연소 시작시점의 연소실 온도(Tsoc)를 알 수 있게 된다.
한편, 상기 단열 화염 온도(Tad)를 구하기 위하여 수학식 3을 계산하기 위해서는 연소실 내 산소농도 [O2]를 구하여야 하는데 이를 구하는 방법에 대해서는 하기에서 설명한다.
도 2에 도시된 바와 같이 연소실 내 산소농도 [O2](320)를 구하게 되면 이로부터 수학식 3을 계산하여 단열 화염 온도(Tad)를 알 수 있고, 이를 이용하여 연소실의 화염온도(T=Tflame)(310)를 구할 수 있게 된다.
하나 또는 다수의 실시예에서 상기 수학식 1의 연소실 내의 산소 농도[O2]와 질소 농도[N2]는 하기 수학식 4에 의해 계산할 수 있다.
상기 수학식 4에서 상기 O2_in과 N2_in은 연소실 내의 산소농도[O2]와 질소농도[N2]을 나타내고, 상기 EGR_rate는 EGR율이며, O2_Air[vol,%]와 N2_Air[vol,%]는 각각 공기 중 산소와 질소의 농도를 나타내고, O2_EGR[vol,%]과 N2_EGR[vol,%]는 각각 EGR가스 중 산소와 질소의 농도를 나타낸다.
결국, 연소실 내의 산소농도[O2](320)는 흡입 공기 중 산소농도 O2_Air[vol,%]와 EGR가스 중 산소 농도 O2_EGR[vol,%]로부터 구할 수 있으며, 연소실 내의 질소농도[N2](330)는 흡입 공기 중 질소농도 N2_Air[vol,%]와 EGR가스 중 질소 농도 N2_EGR[vol,%]로부터 구할 수 있다.
상기 EGR율(EGR_rate)은 배기가스 재순환율로서 일반적으로 EGR 가스량/(EGR 가스량 + 흡입공기량) * 100로 계산하거나, 배기분석 장치로 흡기관 내의 이산화탄소의 농도에서 대기 중의 이산화탄소를 뺀 것과 배기가스 내 이산화탄소의 농도에서 대기 중의 이산화탄소를 뺀 것의 비를 측정하여 산출할 수 있다.
상기 O2_Air[vol,%]와 N2_Air[vol,%]는 흡입 공기 중 산소와 질소의 농도를 나타내는 것으로서 공기 중 산소의 농도와 질소의 농도를 사용한다.
상기 O2_EGR[vol,%]과 N2_EGR[vol,%]는 EGR가스 중 산소 농도와 질소 농도로서 하기의 (4-1) 내지 (4-3) 식에 의해 구할 수 있다.
(4-1)
(4-2)
(4-3)
상기 (4-3) 식에서 상기 AF는 공연비(230)로서 연소에 사용된 연료에 대한 공기의 중량 비율을 나타내며 본 발명에서는 엔진 운전 변수(200)로서 측정되어 입력된다. 그리고 상기 AFstoi는 이론 공연비로서 연료의 종류에 따라 결정되는 값이며 해당 연료에서 이상적인 공연비가 된다. 상기 y 역시 연료에 따라 결정되는 값이며 해당 연료의 분자식의 수소(H)와 탄소(C)의 비율(y=H/C_ratio)에 의해 정해진다.
상기 (4-2) 식에서 상기 Q는 EGR가스에서 질소의 조성비로서 이는 연료에 따라 정해지는 값이 된다. 예를 들어 디젤 연료인 경우 상기 Q값은 3.773이 될 수 있다.
결국 상기 (4-1) 내지 (4-3)의 식에서 측정되어 입력되는 값은 공연비 (AF)(230) 하나이며, 나머지 Q, AFstoi 및 y 값은 연료의 종류에 따라 결정되는 값이 된다.
따라서, 상기 (4-3) 식과 상기 (4-2)식으로부터 상기 (4-1) 식의 O2_EGR[vol,%]과 N2_EGR[vol,%]을 구할 수 있으며 이를 다시 상기 수학식 4에 대입하면 연소실 내의 산소농도[O2]와 연소실 내의 질소농도[N2]를 구할 수 있게 된다.
한편, 도 2에 도시된 바와 같이 상기에서 구한 연소실 내의 산소농도[O2](320)를 상기 수학식 3에 대입하면 상기 단열 화염 온도(Tad)를 구할 수 있고, 상기 Tad로부터 수학식 2에 의해 화염온도(T)(310)가 구해진다.
결국, 상기에서 살펴본 바와 같이 본 발명의 실시예에 따르면 상기 화염온도(310)(T)와 산소 농도[O2](320) 및 질소 농도[N2](330)를 모두 구할 수 있게 되므로 이를 수학식 1에 적용하여 NO 발생률(d[NO]/dt)(300)을 구할 수 있게 된다.
그리고, 상기 엔진 연소압력(Pressure)(100)을 이용하여 NO 생성기간(400)을 산출한다(S20).
NO 생성기간(400)은 NO의 발생이 MFB의 변화와 유사하게 나타나는 점을 이용한다. 이를 위해, 도 2에 도시된 바와 같이 엔진의 연소압력(100)으로부터 열발산율(Heat Release Rate, HRR)을 구하고, 열발산율(HRR)을 적산하여 최대(Maximum)가 되는 지점을 기준으로 MFB(Mass Fraction Burned)를 계산할 수 있다.
연소 압력으로부터 연소 해석을 통하여 MFB(Mass Fraction Burned)의 변화를 도출하여 NO 생성기간(400)을 정하게 된다.
하나 또는 다수의 실시예에서 상기 NO 생성기간(400)은 MFB40-80 구간 또는 MFB50-90 구간을 사용하여 산출할 수 있다. 도 3에서 실시예로 도시된 바와 같이 상기 NO가 20~90% 생성되는 구간을 NO 생성기간(400)으로 가정할 때 이와 매칭되는 MFB의 구간은 MFB40-80 구간이 해당된다. 따라서 MFB40-80 구간이나 MFB50-90 구간을 이용하면 유효하게 NO의 생성기간(400)을 산출할 수 있게 된다.
상기와 같이 NO 생성기간(400)이 산출되면, 도 4에 실시예로 도시된 바와 같이 상기 수학식 1에서 구한 NO 발생률(d[NO]/dt)(300)과 상기 NO 생성기간(t)(400)으로부터 NO 발생량(500)을 계산한다(S30).
상기 NO 발생량(500)과 엔진 운전영역에 따른 NO와 NO2의 비율로부터 NO2 발생량을 산출하여 녹스(NOx) 발생량(600)을 예측한다(S40).
하나 또는 다수의 실시예에서 상기 NO2의 발생량은 엔진 운전 영역에 따라서 NO 발생량(500)과 NO2 발생량의 비율을 실험식을 활용하여 산출할 수 있다.
상기 녹스(NOx)의 발생량(600)은 NO 발생량(500)과 NO2 발생량을 더한 값으로 예측된다.
이상에서 설명한 바와 같이 본 발명의 실시예에 따른 녹스 발생량 예측 방법의 경우 차량의 연료량(210), 엔진 회전수(220), 공연비(230) 및 EGR(240) 정보를 토대로 하여 간단한 계산을 통해 녹스 발생량(600)을 실시간 예측할 수 있으므로 별도로 녹스 측정을 위한 센서를 구비할 필요가 없다. 따라서 본 발명의 녹스 발생량 예측 방법을 녹스 측정을 위한 가상의 센서라고도 하며, 본 발명에 따르면 비용이 감축될 수 있고 센서의 오작동과 같은 문제가 없으므로 신뢰성이 향상되는 효과가 있다.
이상으로 본 발명에 관한 바람직한 실시예를 설명하였으나, 본 발명은 상기 실시예에 한정되지 아니하며, 본 발명의 실시예로부터 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의한 용이하게 변경되어 균등하다고 인정되는 범위의 모든 변경을 포함한다.
100: 엔진 연소압력 200: 엔진 운전 변수
210: 연료량(mfuel) 220: 엔진 회전수(RPM)
230: 공연비(AF) 240: EGR
300: NO 발생률 310: 화염온도(T)
320: 산소농도[O2] 330: 질소농도[N2]
400: NO 생성기간 500: NO 발생량
600: NOx 발생량
210: 연료량(mfuel) 220: 엔진 회전수(RPM)
230: 공연비(AF) 240: EGR
300: NO 발생률 310: 화염온도(T)
320: 산소농도[O2] 330: 질소농도[N2]
400: NO 생성기간 500: NO 발생량
600: NOx 발생량
Claims (9)
- 녹스 발생량 예측 방법에 있어서,
엔진 연소압력 및 엔진 운전 변수를 이용하여 NO 발생률을 계산하는 단계;
상기 엔진 연소압력을 이용하여 NO 생성기간을 산출하는 단계;
상기 NO 발생률과 상기 NO 생성기간으로부터 NO 발생량을 계산하는 단계; 및
상기 NO 발생량과 엔진 운전영역에 따른 NO와 NO2의 비율로부터 NO2 발생량을 산출하여 녹스(NOx) 발생량을 예측하는 단계;
를 포함하는 녹스 발생량 예측 방법. - 제1항에 있어서,
상기 엔진 운전 변수는 연료량, 엔진 회전수(RPM), 공연비(AF) 및 EGR 중 적어도 하나 이상을 포함하는 것을 특징으로 하는 녹스 발생량 예측 방법. - 제1항에 있어서,
상기 NO 발생률은 연소실의 화염 온도와 연소실 내의 산소 농도 및 질소 농도를 이용하여 계산하는 것을 특징으로 하는 녹스 발생량 예측 방법. - 제4항에 있어서,
상기 수학식 1의 화염 온도(T=Tflame)는 단열 화염 온도(Tad)에 연소시 압력 상승에 의한 추가적인 연소실 상승 온도 고려하여 계산하는 것을 특징으로 하는 녹스 발생량 예측 방법. - 제6항에 있어서,
상기 NO 생성기간은 MFB40-80 구간 또는 MFB50-90 구간을 사용하여 산출하는 것을 특징으로 하는 녹스 발생량 예측 방법.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110122437A KR101317410B1 (ko) | 2011-11-22 | 2011-11-22 | 녹스 발생량 예측 방법 |
JP2012085657A JP2013108490A (ja) | 2011-11-22 | 2012-04-04 | ノックス発生量予測方法 |
US13/551,095 US8849544B2 (en) | 2011-11-22 | 2012-07-17 | Method of predicting NOx generation amount |
CN201210327329.XA CN103133104B (zh) | 2011-11-22 | 2012-07-30 | 预测NOx生成量的方法 |
DE102012106929A DE102012106929A1 (de) | 2011-11-22 | 2012-07-30 | Verfahren zum Vorhersagen der NOx-Erzeugungsmenge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110122437A KR101317410B1 (ko) | 2011-11-22 | 2011-11-22 | 녹스 발생량 예측 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130056705A true KR20130056705A (ko) | 2013-05-30 |
KR101317410B1 KR101317410B1 (ko) | 2013-10-10 |
Family
ID=48222152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110122437A KR101317410B1 (ko) | 2011-11-22 | 2011-11-22 | 녹스 발생량 예측 방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8849544B2 (ko) |
JP (1) | JP2013108490A (ko) |
KR (1) | KR101317410B1 (ko) |
CN (1) | CN103133104B (ko) |
DE (1) | DE102012106929A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015103341A1 (de) | 2014-03-07 | 2015-09-17 | Denso Corporation | NOx-Emissionsmengen-Abschätzvorrichtung |
US10253674B2 (en) | 2015-12-10 | 2019-04-09 | Hyundai Motor Company | Device and method of predicting NOx generation amount |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3012526B1 (fr) * | 2013-10-24 | 2015-10-30 | Renault Sas | Systeme et procede d'estimation du debit d'oxydes d'azotes dans les gaz d'echappement d'un moteur a combustion interne pour vehicule automobile. |
DE102014210841A1 (de) * | 2014-06-06 | 2015-12-17 | Robert Bosch Gmbh | Verfahren zum Ermitteln einer Stickoxid-Emission beim Betrieb einer Brennkraftmaschine |
US9863346B2 (en) | 2014-10-03 | 2018-01-09 | GM Global Technology Operations LLC | Method and apparatus for estimating nitrogen oxides out of an engine |
EP3056706A1 (en) | 2015-02-16 | 2016-08-17 | Honeywell International Inc. | An approach for aftertreatment system modeling and model identification |
DE102015206135A1 (de) * | 2015-04-07 | 2016-10-13 | Robert Bosch Gmbh | Ermitteln von Stickoxiden im Abgas einer Brennkraftmaschine |
EP3125052B1 (en) | 2015-07-31 | 2020-09-02 | Garrett Transportation I Inc. | Quadratic program solver for mpc using variable ordering |
US10272779B2 (en) | 2015-08-05 | 2019-04-30 | Garrett Transportation I Inc. | System and approach for dynamic vehicle speed optimization |
US10415492B2 (en) * | 2016-01-29 | 2019-09-17 | Garrett Transportation I Inc. | Engine system with inferential sensor |
US10036338B2 (en) | 2016-04-26 | 2018-07-31 | Honeywell International Inc. | Condition-based powertrain control system |
US10728249B2 (en) | 2016-04-26 | 2020-07-28 | Garrett Transporation I Inc. | Approach for securing a vehicle access port |
US10124750B2 (en) | 2016-04-26 | 2018-11-13 | Honeywell International Inc. | Vehicle security module system |
EP3548729B1 (en) | 2016-11-29 | 2023-02-22 | Garrett Transportation I Inc. | An inferential flow sensor |
US11057213B2 (en) | 2017-10-13 | 2021-07-06 | Garrett Transportation I, Inc. | Authentication system for electronic control unit on a bus |
KR102394626B1 (ko) * | 2017-11-30 | 2022-05-09 | 현대자동차주식회사 | 엔진의 이산화질소 배출량 예측 방법 |
KR102506940B1 (ko) * | 2018-09-28 | 2023-03-07 | 현대자동차 주식회사 | 녹스 발생량 예측 및 제어 방법 |
CN109736925A (zh) * | 2019-01-02 | 2019-05-10 | 北京工业大学 | 一种柴油机大管径尾气管道氮氧化物测定方法 |
CN113217922B (zh) * | 2021-02-25 | 2022-02-18 | 华南理工大学 | 一种垃圾焚烧NOx源头产生量预测方法与系统 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09317522A (ja) * | 1995-11-10 | 1997-12-09 | Yamaha Motor Co Ltd | エンジンの制御方法 |
JP3282660B2 (ja) * | 1997-06-16 | 2002-05-20 | 本田技研工業株式会社 | 内燃機関の排気ガス浄化装置 |
JP2002195071A (ja) * | 2000-12-25 | 2002-07-10 | Mitsubishi Electric Corp | 内燃機関制御装置 |
JP4706134B2 (ja) | 2001-06-15 | 2011-06-22 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
US6775623B2 (en) * | 2002-10-11 | 2004-08-10 | General Motors Corporation | Real-time nitrogen oxides (NOx) estimation process |
JP4333180B2 (ja) | 2003-03-27 | 2009-09-16 | いすゞ自動車株式会社 | 排気ガス浄化システム |
JP2007127004A (ja) | 2005-11-01 | 2007-05-24 | Toyota Central Res & Dev Lab Inc | 内燃機関の状態量推定装置、内燃機関の制御装置、及び内燃機関の状態量推定方法 |
JP2008184908A (ja) | 2007-01-26 | 2008-08-14 | Mitsubishi Fuso Truck & Bus Corp | エンジン制御装置 |
JP4830912B2 (ja) * | 2007-03-05 | 2011-12-07 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
JP4706659B2 (ja) * | 2007-04-05 | 2011-06-22 | トヨタ自動車株式会社 | アンモニア酸化触媒におけるn2o生成量推定方法および内燃機関の排気浄化システム |
JP2008309006A (ja) * | 2007-06-12 | 2008-12-25 | Toyota Motor Corp | 内燃機関の制御装置 |
JP2009275691A (ja) | 2008-04-16 | 2009-11-26 | Mitsubishi Heavy Ind Ltd | 内燃機関の燃焼制御方法および制御装置 |
US7613561B1 (en) * | 2008-04-24 | 2009-11-03 | Honeywell International Inc | Measurement of NO and NO2 for control of selective catalytic reduction |
JP5240065B2 (ja) * | 2009-05-19 | 2013-07-17 | トヨタ自動車株式会社 | 排気浄化装置の故障検出装置 |
GB2479746A (en) * | 2010-04-20 | 2011-10-26 | Gm Global Tech Operations Inc | Method of estimating NO2 concentration in exhaust gas |
KR101190202B1 (ko) | 2010-05-04 | 2012-10-12 | 한국과학기술연구원 | 에멀젼 전기 방사법을 이용한 탄화규소 나노섬유의 제조방법 및 이에 따라 제조된 탄화규소 나노섬유 |
KR101317413B1 (ko) * | 2011-11-22 | 2013-10-10 | 서울대학교산학협력단 | 녹스 제어 시스템 및 방법 |
-
2011
- 2011-11-22 KR KR1020110122437A patent/KR101317410B1/ko active IP Right Grant
-
2012
- 2012-04-04 JP JP2012085657A patent/JP2013108490A/ja active Pending
- 2012-07-17 US US13/551,095 patent/US8849544B2/en active Active
- 2012-07-30 CN CN201210327329.XA patent/CN103133104B/zh not_active Expired - Fee Related
- 2012-07-30 DE DE102012106929A patent/DE102012106929A1/de not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015103341A1 (de) | 2014-03-07 | 2015-09-17 | Denso Corporation | NOx-Emissionsmengen-Abschätzvorrichtung |
US10253674B2 (en) | 2015-12-10 | 2019-04-09 | Hyundai Motor Company | Device and method of predicting NOx generation amount |
Also Published As
Publication number | Publication date |
---|---|
US20130131954A1 (en) | 2013-05-23 |
JP2013108490A (ja) | 2013-06-06 |
CN103133104A (zh) | 2013-06-05 |
CN103133104B (zh) | 2017-06-06 |
DE102012106929A1 (de) | 2013-05-23 |
US8849544B2 (en) | 2014-09-30 |
KR101317410B1 (ko) | 2013-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101317410B1 (ko) | 녹스 발생량 예측 방법 | |
KR101317413B1 (ko) | 녹스 제어 시스템 및 방법 | |
US9988963B2 (en) | Method for monitoring an oxidation catalysis device | |
US8401727B2 (en) | Method and device for the diagnosis of an NOx sensor for an internal combustion engine | |
Arrègle et al. | Sensitivity study of a NOx estimation model for on-board applications | |
JP2004132379A (ja) | 実時間窒素酸化物(NOx)推定法 | |
US20090183551A1 (en) | NOx mass estimating unit and method | |
JP4008810B2 (ja) | 内燃機関の排気ガス中の窒素酸化物含有量の算出方法 | |
KR101734240B1 (ko) | 녹스 발생량 예측 장치 및 이를 이용한 녹스 발생량 예측 방법 | |
US10683822B2 (en) | Fuel-cetane-number estimation method and apparatus | |
KR20140094604A (ko) | 자동차 파워 플랜트의 내연기관의 연소실 내의 기체 혼합물의 농후도를 평가하기 위한 시스템 및 방법 | |
US9008949B2 (en) | Soot discharge estimating device for internal combustion engines | |
Lee et al. | Development of semi-empirical soot emission model for a CI engine | |
JP5904197B2 (ja) | 内燃機関の診断装置 | |
Lee et al. | Virtual NOx sensor for transient operation in light-duty diesel engine | |
Kassa et al. | In-cylinder oxygen mass fraction estimation method for minimizing cylinder-to-cylinder variations | |
Carlucci et al. | Improvement of the control-oriented model for the engine-out NO x estimation based on in-cylinder pressure measurement | |
Chung et al. | Real-time empirical NO x model based on In-cylinder pressure measurements for light-duty diesel engines | |
Allawi et al. | Experimental investigation of exhaust emissions from spark-ignition engine using the different types of fuels | |
Asad et al. | Transient build-up and effectiveness of diesel exhaust gas recirculation | |
US8315782B2 (en) | Method and device for operating an internal combustion engine | |
KR102394626B1 (ko) | 엔진의 이산화질소 배출량 예측 방법 | |
RU2700177C2 (ru) | Способ продувки уловителя оксидов азота и соответствующая силовая установка | |
RU2012152794A (ru) | Способ оценки работоспособности каталитического нейтрализатора отработавших газов двигателя внутреннего сгорания с принудительным зажиганием | |
Leach et al. | Cycle-to-Cycle NO and NOx Emissions From a HSDI Diesel Engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20180928 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190926 Year of fee payment: 7 |