KR20130049920A - Method for estimating battery soc of vehicle - Google Patents

Method for estimating battery soc of vehicle Download PDF

Info

Publication number
KR20130049920A
KR20130049920A KR1020110114973A KR20110114973A KR20130049920A KR 20130049920 A KR20130049920 A KR 20130049920A KR 1020110114973 A KR1020110114973 A KR 1020110114973A KR 20110114973 A KR20110114973 A KR 20110114973A KR 20130049920 A KR20130049920 A KR 20130049920A
Authority
KR
South Korea
Prior art keywords
battery
equation
vehicle
soc
electrolyte
Prior art date
Application number
KR1020110114973A
Other languages
Korean (ko)
Other versions
KR101282687B1 (en
Inventor
최문수
김성태
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020110114973A priority Critical patent/KR101282687B1/en
Publication of KR20130049920A publication Critical patent/KR20130049920A/en
Application granted granted Critical
Publication of KR101282687B1 publication Critical patent/KR101282687B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/484Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring electrolyte level, electrolyte density or electrolyte conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PURPOSE: A method for predicting vehicle battery state is provided to predict the battery state accurately by applying an algorithm capable of obtaining numerical solution of a two-dimensional model using a finite element method. CONSTITUTION: Operation factors and reaction speed factors are inputted to a calculation part respectively as input elements. The operation factors includes physical and chemical factors of a battery, a shape factor of the battery, an operation current and temperature of the battery. Battery SoC(State of Charge) is calculated by performing mathematical modeling using the input elements and at the same time calculating temporal change of the battery SoC on the basis of the mathematical modeling. [Reference numerals] (AA) Start; (BB) Charging/discharging mode select; (CC) SOC calculation; (DD) Electrode charge conservation equation; (EE) Ion mass conservation equations; (FF) Electrolyte charge conservation equation; (GG) Momentum conservation equation; (HH) Electrochemical reaction equation; (II) Porosity change equation; (JJ) Charging state equation

Description

차량용 배터리 상태 예측 방법{Method for estimating battery SOC of vehicle}Method for estimating battery status for a vehicle {Method for estimating battery SOC of vehicle}

본 발명은 차량용 배터리 충전 상태 예측 방법에 관한 것으로서, 더욱 상세하게는 차량의 배터리 충전 상태(SOC: State of Charge)를 배터리의 다양한 인자를 이용하여 정확하게 예측할 수 있도록 한 차량용 배터리 충전 상태 예측 방법에 관한 것이다.
The present invention relates to a method of predicting a battery charge state of a vehicle, and more particularly, to a method of predicting a battery charge state of a vehicle, which can accurately predict a state of charge (SOC) of a vehicle using various factors of a battery. will be.

일반적으로 차량용 배터리로서 12-V 납축전지가 사용되고 있으며, 이 12-V 납축전지는 2차 전지의 한 종류로서 PbO2의 양극과 다공성 Pb의 음극 및 황산 전해질로 구성되어 있다.In general, a 12-V lead acid battery is used as a battery for a vehicle, and this 12-V lead acid battery is composed of a positive electrode of PbO 2 , a negative electrode of porous Pb, and a sulfuric acid electrolyte.

첨부한 도 5에 도시된 바와 같이, 납축전지는 양극의 PbO2와 음극의 Pb가 황산이온과 반응하여 PbSO4와 물을 만드는 방전반응을 통해 화학에너지를 전기에너지로 변환하고, 또한 PbSO4와 물이 분해되어서 PbO2와 Pb로 환원되는 충전반응을 통해 본래의 방전가능 상태로 복귀하며, 이러한 납축전지 내부에서 일어나는 화학반응은 다음의 반응식과 같다.As shown in FIG. 5, the lead acid battery converts chemical energy into electrical energy through a discharge reaction in which PbO 2 of the positive electrode and Pb of the negative electrode react with sulfate ions to form PbSO 4 and water, and also PbSO 4 and The water is decomposed and returned to the original dischargeable state through a charging reaction in which PbO 2 and Pb are reduced, and the chemical reaction occurring in the lead acid battery is as follows.

(납축전지 양극에서의 반응)(Reaction at Lead Acid Battery Anode)

Figure pat00001
Figure pat00001

(납축전지 음극에서의 반응)(Reaction at Lead Acid Battery Anode)

Figure pat00002
Figure pat00002

(납축전지 전체의 반응)(Reaction of the whole lead acid battery)

Figure pat00003
Figure pat00003

이러한 납축전지는 다른 2차 전지에 비해 가격이 저렴하고 안정성이 뛰어난 장점 때문에, 현재까지도 차량의 시동(Starting), 점등(Lighting), 점화(Ignition) 기능을 비롯하여 차량의 전기 부하가 공급장치의 용량을 초과할 경우 여분의 에너지를 공급하는 역할을 담당하고 있으며, 차세대 차량에서는 조향(Steering), 제동(Braking), 공조(Air-conditioning) 등의 기계적 구성요소가 안전성, 경제성, 안락함 등의 이유로 동일 기능을 수행하는 전기적 구성요소로 대체되고 있는 점을 감안하면 납축전지에게 요구되는 전기부하가 급속도로 증가하고 있는 추세에 있다.These lead-acid batteries are inexpensive and reliable compared to other rechargeable batteries, so to this day, the vehicle's electrical load, including the starting, lighting, and ignition functions of the vehicle, It is responsible for supplying extra energy when exceeding, and in next-generation vehicles, mechanical components such as steering, braking, and air-conditioning are the same for safety, economy, and comfort. Considering that it is being replaced by an electrical component that performs a function, the electrical load required for the lead acid battery is increasing rapidly.

이와 같이 더 가혹해진 충/방전 환경에서 납축전지는 안정적으로 작동하여 차량에 충분한 전원을 공급할 수 있어야 하며, 이를 위해 납축전지 즉, 배터리 상태(SOC)를 정확하게 예측하는 것이 필수적으로 요구되고 있다.In such a more severe charging / discharging environment, a lead acid battery must operate stably to supply sufficient power to a vehicle. For this purpose, it is essential to accurately predict a lead acid battery, that is, a battery condition (SOC).

차량에 적용되는 발전제어 및 ISG 시스템은 전기에너지 절감을 위해 적용된 기술들로서, 이 발전제어 및 ISG 시스템 구성에서 가장 중요한 부분은 배터리의 충방전 효율이며, 이를 향상시키기 위해서는 배터리 상태를 정확하게 모니터링하는 배터리 센서 및 이를 제어하는 알고리즘이 필요하고, 결국 배터리 상태(SOC)를 정확하게 예측하는 것이 필요하다.The power generation control and ISG system applied to the vehicle are technologies applied to reduce electric energy. The most important part of the power generation control and ISG system configuration is the battery charging and discharging efficiency. And an algorithm for controlling this, and eventually it is necessary to accurately predict the battery state (SOC).

즉, BMS(Battery Management System) 기술은 배터리 전압(V), 배터리 전류(A), 배터리 온도(℃), 배터리 충전상태(SOC), 배터리 노화정도(SOH), 배터리 기능(SOF) 등의 정보를 포함하고 있고, 이러한 정보를 BMS에서 ECU에 제공하면 ECU가 각종 전기부하에 대한 전원분배제어와, 배터리를 충전시키는 알터네이터의 작동 제어 등과 같은 발전제어 및 ISG 시스템 제어를 하게 되므로, 결론적으로 BMS 정보의 정확도가 발전제어/ISG 시스템 연비 향상의 중요한 요소라고 말할 수 있고, 이에 배터리 상태 정보에 대한 정확도를 보다 높인다면 연비 향상을 추가로 얻을 수 있다.In other words, BMS (Battery Management System) technology provides information such as battery voltage (V), battery current (A), battery temperature (℃), battery charge status (SOC), battery aging (SOH), and battery function (SOF). If this information is provided to the ECU from the BMS, the ECU performs power distribution control for various electric loads, generation control such as the operation control of the alternator charging the battery, and ISG system control. Can be said to be an important factor in improving fuel efficiency of the power generation control / ISG system, and further improving fuel efficiency can be obtained by increasing the accuracy of the battery status information.

종래의 배터리 상태 예측 방법은 전기 등가 방식의 배터리 모델 개발을 통한 예측 방법으로서, 첨부한 도 6에 도시된 바와 같이 전기화학을 전기등가 방식으로 모사한 배터리 충전 또는 방전 모델을 구축하고, 이 모델에서 이루어지는 배터리 충전 및 방전전류를 적산하여 배터리 상태를 예측하였지만, 배터리 상태(SOC)의 정확도는 ±10% 를 나타내고 있으므로, BMS 및 ECU와 같은 제어기의 제어용 신호로 사용 가능하지만 보다 정확한 배터리 상태 예측 방법이 요구되고 있다.
The conventional battery state prediction method is a prediction method through the development of an electric equivalent battery model, as shown in the accompanying Figure 6 to build a battery charging or discharging model that simulates the electrochemistry in an electric equivalent method, in this model The battery status was estimated by integrating the battery charge and discharge currents, but the accuracy of the battery status (SOC) is ± 10%, which can be used as a control signal for controllers such as BMS and ECU, It is required.

본 발명은 상기와 같은 점을 감안하여 안출한 것으로서, 배터리의 전기화학 반응, 전해질의 유동 및 대류에 의한 이온의 전달, 전극의 공극률 등의 여러 현상들이 복합적으로 고려된 수학적 모델을 설정하고, 유한요소법을 이용하여 2차원 모델의 수치해를 구할 수 있는 알고리즘을 적용하여, 배터리 상태(이하, 배터리 SOC로 칭함)를 보다 정확하게 예측할 수 있도록 한 차량용 배터리 충전 상태 예측 방법을 제공하는데 그 목적이 있다.
The present invention has been devised in view of the above, and sets a mathematical model in which various phenomena such as electrochemical reaction of a battery, transfer of ions by flow and convection of an electrolyte, and porosity of an electrode are considered in combination. It is an object of the present invention to provide a method for predicting the state of charge of a battery for a vehicle, which can more accurately predict a battery state (hereinafter referred to as a battery SOC) by applying an algorithm that can obtain a numerical solution of a two-dimensional model using the element method.

상기한 목적을 달성하기 위한 본 발명은: 입력요소로서, 배터리의 물리적 및 화학적 성질인자와, 배터리의 형태인자와, 배터리의 작동전류 및 온도를 포함하는 작동인자와, 반응속도인자가 각각 연산부에 입력되는 단계와; 연산부에서, 입력된 입력요소를 이용하여 수학적 모델링을 하는 동시에 수학적 모델링을 기반으로 배터리 SOC의 시간에 따른 변화를 연산하여 배터리 SOC를 산출하는 단계와; 각종 전장품 제어 데이터로 활용되도록 산출된 SOC를 차량 제어기로 전송하는 단계와; 산출된 SOC가 초기 SOC로서 피드백되어 연산부에 입력되는 단계; 를 포함하는 것을 특징으로 하는 차량용 배터리 상태 예측 방법을 제공한다.The present invention for achieving the above object is: as an input element, the physical and chemical properties of the battery, the form factor of the battery, the operating factors including the operating current and temperature of the battery, and the reaction rate factors are respectively calculated in the calculation unit An input step; Calculating a battery SOC by performing a mathematical modeling using an input element at the same time and calculating a change over time of the battery SOC based on the mathematical modeling; Transmitting an SOC calculated to be utilized as various electronic equipment control data to a vehicle controller; The calculated SOC is fed back as an initial SOC and input to an operation unit; It provides a vehicle battery state prediction method comprising a.

상기 입력요소의 물리적 성질인자는 전해액에서의 이온 확산계수와, 전해액의 전도도, 점도, 밀도를 포함하고, 화학적 성질인자는 전해액의 초기농도를 포함하는 것을 특징으로 한다.The physical properties of the input element include the ion diffusion coefficient in the electrolyte, the conductivity, viscosity, and density of the electrolyte, and the chemical properties include the initial concentration of the electrolyte.

상기 입력요소의 형태인자는 배터리의 크기, 양극과 음극의 두께 및 공극율, 극판 간의 간격, 격리판의 두께 및 공극율을 포함하는 것을 특징으로 한다.The shape factor of the input element is characterized in that it includes the size of the battery, the thickness and porosity of the positive and negative electrodes, the gap between the pole plates, the thickness and porosity of the separator.

상기 입력요소의 작동인자는 배터리의 작동전류 및 작동온도를 포함하는 것을 특징으로 한다.The operation factor of the input element is characterized in that it comprises the operating current and the operating temperature of the battery.

본 발명에 따르면, 상기 배터리 SOC의 시간에 따른 변화율은 각 입력요소들이 연산부에 입력되어 According to the present invention, the rate of change over time of the battery SOC is determined by inputting each input element to a calculation unit.

고체전극의 전하량 보존방정식(

Figure pat00004
)과, Equation preservation equation of solid electrode
Figure pat00004
)and,

전해질의 전하량 보존방정식(

Figure pat00005
)과, Equation for preserving charge of electrolyte
Figure pat00005
)and,

전기화학 반응속도식(

Figure pat00006
)에 각각 대입된 후, Electrochemical kinetics (
Figure pat00006
) Respectively,

충전상태 방정식(

Figure pat00007
)을 통하여 산출되는 것을 특징으로 한다.
State of charge equation (
Figure pat00007
It is characterized in that it is calculated through.

상기한 과제 해결 수단을 통하여, 본 발명은 다음과 같은 효과를 제공한다.Through the above-mentioned means for solving the problems, the present invention provides the following effects.

본 발명에 따르면, 납축전지의 충전 및 방전거동을 예측할 수 있는 수학적 모델링, 즉 납축전지 내부에서 일어나는 전기화학 반응, 전해질의 유동 및 대류에 의한 이온의 전달, 전극의 공극률 등의 여러 현상들이 복합적으로 고려한 수학적 모델링을 통하여 납축전지 내부의 전류 밀도와 전해액 농도, SOC 분포 변화 등을 보다 현실적으로 예측할 수 있다.According to the present invention, a number of phenomena such as mathematical modeling for predicting the charging and discharging behavior of a lead acid battery, ie, electrochemical reactions occurring inside the lead acid battery, ion transfer by flow and convection of an electrolyte, and porosity of an electrode are combined. Considering the mathematical modeling, it is possible to more realistically predict the current density, electrolyte concentration, and SOC distribution in the lead acid battery.

특히, 배터리의 전기화학 반응, 전해질의 유동 및 대류에 의한 이온의 전달, 전극의 공극률 등의 여러 현상들이 복합적으로 고려된 수학적 모델을 설정하고, 유한요소법을 이용하여 2차원 모델의 수치해를 구할 수 있는 알고리즘을 적용하여, 배터리 상태(SOC)를 보다 정확하게 예측할 수 있다.In particular, it is possible to establish a mathematical model that considers various phenomena such as the electrochemical reaction of the battery, the transfer of ions by the flow and convection of the electrolyte, and the porosity of the electrode, and to obtain the numerical solution of the two-dimensional model using the finite element method. By applying the same algorithm, the SOC can be predicted more accurately.

따라서, 차량의 각종 제어기에서 각종 전기부하에 대한 전원분배제어와, 배터리를 충전시키는 알터네이터의 작동 제어 등과 같은 발전제어 및 ISG 시스템을 제어할 때, 정확하게 산출된 SOC 정보를 이용하게 되므로, 차량의 연비 향상을 도모할 수 있다.
Therefore, the control of the power distribution for various electric loads in the various controllers of the vehicle, the generation control such as the operation control of the alternator for charging the battery, and the control of the ISG system, the accurate calculated SOC information is used, so that the fuel economy of the vehicle Improvement can be aimed at.

도 1은 본 발명에 따른 차량용 배터리 상태 예측 방법을 설명하는 제어도,
도 2는 본 발명에 따른 차량용 배터리 상태 예측 방법의 입력 및 출력인자를 설명하는 모식도,
도 3은 본 발명의 차량용 배터리 상태 예측 방법에 대한 실험예 결과를 나타내는 그래프,
도 4는 본 발명에 따른 차량용 배터리 상태 예측 방법의 수학적 모델링에 사용되는 각 수학식의 항을 설명하는 표.
도 5는 배터리(납축전지)의 셀 단위 모식도,
도 6은 기존의 배터리 상태 예측 방법을 위한 전기 등가방식의 모델링을 나타낸 개략도.
1 is a control diagram illustrating a vehicle battery state prediction method according to the present invention;
2 is a schematic diagram illustrating input and output factors of a vehicle battery state prediction method according to the present invention;
3 is a graph showing an experimental example result for a vehicle battery state prediction method of the present invention;
4 is a table for explaining terms of respective equations used for mathematical modeling of a vehicle battery state prediction method according to the present invention;
5 is a schematic diagram of a cell unit of a battery (lead storage battery);
Figure 6 is a schematic diagram showing the modeling of the electric equivalent method for the conventional battery state prediction method.

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

먼저, 배터리의 물리적 및 화학적 성질인자와, 배터리의 형태인자와, 배터리의 작동전류 및 온도를 포함하는 작동인자와, 반응속도인자 등을 포함하는 입력요소가 연산부에 입력되어 수학적 모델 구축에 이용된다.First, input elements including the physical and chemical properties of the battery, the form factor of the battery, the operating factors including the operating current and temperature of the battery, the reaction rate factor, and the like are input to the calculation unit and used for constructing a mathematical model. .

상기 입력요소의 물리적 성질인자는 전해액에서의 이온 확산계수(㎠/s)와, 전해액의 전도도(S/㎝), 점도(g/㎝ㆍs), 밀도(g/㎠)를 포함하고, 화학적 성질인자는 전해액의 초기농도(mol/㎠)를 포함하며, 또한 상기 형태인자는 배터리의 크기(가로,세로,폭), 양극과 음극의 두께(㎝) 및 공극율, 극판 간의 간격(㎝), 격리판의 두께(㎝) 및 공극율을 포함하고, 작동인자는 배터리의 작동전류(A) 및 작동온도(℃)를 포함하며, 상기 반응속도인자는 배터리의 각종 화학적 반응속도 상수를 의미한다.Physical property factors of the input element include ion diffusion coefficient (cm / s) in electrolyte, conductivity (S / cm), viscosity (g / cm · s), density (g / cm 2) The property factors include the initial concentration of the electrolyte (mol / cm 2), and the shape factors include the size of the battery (width, length, width), the thickness (cm) and porosity of the positive and negative electrodes, the spacing between the electrode plates (cm), The thickness of the separator (cm) and the porosity, the operating factor includes the operating current (A) and the operating temperature (° C) of the battery, the reaction rate factor means various chemical reaction rate constant of the battery.

이러한 입력요소들이 연산부에 입력되면, 입력된 입력요소를 이용하여 수학적 모델링이 이루어지고, 수학적 모델링을 기반으로 배터리 SOC의 시간에 따른 변화를 연산하여 배터리 SOC 산출이 이루어진다.When these input elements are input to the calculator, mathematical modeling is performed using the input elements, and the battery SOC is calculated by calculating a change over time of the battery SOC based on the mathematical modeling.

여기서, 상기 입력요소들을 기반으로 이루어지는 수학적 모델링 및 이를 통한 배터리 SOC 산출 과정을 첨부한 도 1 및 도 2를 참조로 살펴보면 다음과 같다.Here, referring to Figures 1 and 2 attached to the mathematical modeling based on the input elements and the calculation process of the battery SOC through the same as follows.

12-V 배터리(납축전지)의 정전류(정전압) 충/방전 특성을 모델링하여 배터리 상태를 예측할 수 있도록 수학적 모델을 설정하는 바, 수학적 모델에는 전극의 고체부분과 전극에 함침된 전해질 용액의 전하량 보존, 유동 및 대류에 의한 이온의 질량 보존, Butler-Volmer의 전기화학 반응속도, 충전상태를 나타내는 SOC(state of charge)의 변화, 그리고 전극의 공극률 변화를 나타내는 미분방정식들이 이용된다.A mathematical model is set up to model the constant-current (constant-voltage) charge / discharge characteristics of a 12-V battery (lead acid battery) to predict the state of the battery.The mathematical model preserves the amount of charge in the solid part of the electrode and in the electrolyte solution , Differential equations representing mass preservation of ions by flow and convection, butler-volmer electrochemical reaction rate, change of state of charge (SOC) indicating charge state, and porosity change of electrode.

참고로, 하기에 설명되는 각 수학식의 항에 대한 의미는 첨부한 도 4의 표에 일괄적으로 기재된 바와 같다.For reference, the meanings of the terms of each equation described below are as collectively described in the accompanying table of FIG.

먼저, 전극의 고체부분과 전극에 함침된 전해질 용액의 전하량 보존을 나타내는 미분방정식에 대하여 살펴보면, 방전 및 충전반응이 일어나면서 발생하는 총 전류밀도(i)는 고체형태의 전극 반응에서 흐르는 전류밀도(is)와 전해질 용액에서 흐르는 전하의 이동으로 생기는 전류밀도(il)의 합으로 표현되고, 또한 고체 전극에서 흘러나온 전하가 반드시 세공 속의 액상으로 흐른다는 가정을 통해, 총 전류밀도의 발산(divergence)은 0이 된다. 이를 정리하면 아래의 수학식 1 및 2와 같다.First, the differential equation representing the preservation of the charge amount of the solid part of the electrode and the electrolyte solution impregnated in the electrode, the total current density (i) generated during the discharge and charging reaction is the current density flowing in the solid-state electrode reaction ( i s ) is expressed as the sum of the current density (i l ) resulting from the transfer of charge in the electrolyte solution, and the total current density divergence (assuming that the charge from the solid electrode must flow into the liquid phase in the pore). divergence) is zero. This is summarized as Equations 1 and 2 below.

Figure pat00008
Figure pat00008

Figure pat00009
Figure pat00009

배터리의 전해질 용액에서 흐르는 전하 플럭스(flux)는 아래의 수학식 3과 같이 전극 활물질과 전극 기공 속의 전해액간 계면의 넓이(A)와 Butler-Volmer의 전기화학 반응속도 식으로 정의되는 전달전류밀도(transfer current density, j)의 곱으로 표현되고, 전달전류밀도는 아래의 수학식 4와 같다.The charge flux flowing from the electrolyte solution of the battery is defined as the area (A) of the interface between the electrode active material and the electrolyte in the electrode pores and the transfer current density defined by Butler-Volmer's electrochemical reaction rate equation as shown in Equation 3 below. Expressed by the product of the transfer current density, j), the transfer current density is expressed by Equation 4 below.

Figure pat00010
Figure pat00010

Figure pat00011
Figure pat00011

수학식 4에서 과전위 η는 PbO2에 대하여

Figure pat00012
, Pb에 대하여
Figure pat00013
로 정의되고, PbO2의 경우 평형전위(ΔUPbO2 )는 전극과 전해액의 조성과 온도의 함수이다. In equation (4), the overpotential η is equal to PbO 2
Figure pat00012
, Against Pb
Figure pat00013
For a definition and, PbO 2 in equilibrium potential (ΔU PbO2) is a function of composition and temperature of the electrode and the electrolyte.

본 발명에 따른 수학적 모델에서는 모델의 단순화를 위하여 이 평형전위를 상수(2.05)로 가정하고, 그리고 αac)는 양극(음극)의 겉보기 전달 상수(anodic(cathodic) apparent transfer coefficient)로서, αa=1.5, αc=0.6 이다.In the mathematical model according to the present invention, for simplicity of the model, this equilibrium potential is assumed as a constant (2.05), and α ac ) is an apparent transfer coefficient of the anode (cathode). , α a = 1.5 and α c = 0.6.

이때, 배터리의 고체전극 전류밀도(is)는 옴의 법칙에 따라 아래의 수학식 5와 같이 고체내부의 전위기울기에 비례한다.At this time, the solid-state electrode current density (i s ) of the battery is proportional to the potential gradient inside the solid as shown in Equation 5 below according to Ohm's law.

Figure pat00014
Figure pat00014

여기서, 다공성 고체전극의 전도도(σ)는 공극률(ε=0.6)로 보정하여 다음의 수학식 6과 같이 표현되는 유효전도도 값을 사용한다.Here, the conductivity (σ) of the porous solid electrode is corrected by the porosity (ε = 0.6) to use an effective conductivity value expressed by Equation 6 below.

Figure pat00015
Figure pat00015

또한, 전극 세공 속의 전해액의 전류밀도(il)는 전위기울기와 전해액의 농도기울기에 비례하며, 다음의 수학식 7과 같이 표현된다.In addition, the current density i 1 of the electrolyte in the electrode pores is proportional to the potential gradient and the concentration gradient of the electrolyte, and is expressed by Equation 7 below.

Figure pat00016
Figure pat00016

여기서

Figure pat00017
는 이온의 확산에 의해 이동하는 하전입자들의 속도로 측정되는 확산전도도 값으로서, 이를 토대로 고체부분과 전극에 함침된 전해질 용액의 전하량 보존을 나타내는 미분방정식을 나타내면 다음의 수학식 8 및 9와 같이 표현된다.here
Figure pat00017
Is a diffusion conductivity value measured by the velocity of charged particles moving by diffusion of ions, and based on this, a differential equation representing the charge retention of the electrolyte solution impregnated in the solid part and the electrode is expressed as in Equations 8 and 9 do.

Figure pat00018
Figure pat00018

Figure pat00019
Figure pat00019

전기적으로 활성화된 면적(A)은 납축전지의 성능을 나타내는 형태인자 중에 하나이며, 그 이유는 전기화학반응이 진행되면서 전극과 전해질간의 화학반응에 의해 물질이동이 일어남에 따라, 방전반응에서 전기적으로 활성화된 면적은 충전반응에서의 면적과 일치하지 않기 때문이다.The electrically activated area (A) is one of the form factors representing the performance of lead acid batteries. The reason for this is that as the electrochemical reaction proceeds, the material is moved by the chemical reaction between the electrode and the electrolyte. This is because the activated area does not match the area in the charging reaction.

이에, 전기적으로 활성화된 면적은 아래의 수학식 10 및 11과 같이 SOC값을 이용한 경험식으로 표현된다.Thus, the electrically activated area is represented by an empirical equation using SOC values as shown in Equations 10 and 11 below.

Figure pat00020
Figure pat00020

Figure pat00021
Figure pat00021

수학식 11에서, Amax는 활성화된 면적의 최대값이다.In Equation 11, A max is the maximum value of the activated area.

여기서, 배터리 SOC의 시간에 따른 변화를 나타내는 식은 위의 수학식 3 및 4를 기반으로 하여 아래의 수학식 12와 같이 표현된다.Here, the equation representing the change over time of the battery SOC is expressed as Equation 12 below based on Equations 3 and 4 above.

Figure pat00022
Figure pat00022

수학식 12에서, Qmax 는 만충전 상태에 있는 전극으로부터 이용할 수 있는 최대전하량을 나타낸다.In Equation 12, Q max represents the maximum amount of charge available from the electrode in the fully charged state.

한편, 수학식 5 내지 수학식 9에서 사용한 유효물성(위 첨자 eff)들은 납축전지의 성능을 나타내는 또 다른 형태인자인 공극률과 밀접한 연관을 가지고 있으며, 시간에 따른 공극률의 변화를 나타내는 식은 아래의 수학식 13과 같다.On the other hand, the effective properties (superscript eff) used in Equations 5 to 9 are closely related to the porosity, which is another form factor representing the performance of the lead acid battery. Equation 13

Figure pat00023
Figure pat00023

여기서

Figure pat00024
는 이온 플럭스(flux)값으로, 패러데이(Faraday)법칙을 따르는 전기화학반응에서 발생된 전류전달(Aㆍj)에 기인하고, 또한 a1은 전환된 활물질의 몰당 부피변화로, PbO2에 대하여
Figure pat00025
, Pb에 대하여
Figure pat00026
이다.here
Figure pat00024
Is the ion flux value, which is due to the current transfer (A · j) generated in the electrochemical reaction following Faraday's law, and a 1 is the volume change per mole of the converted active material, with respect to PbO 2
Figure pat00025
, Against Pb
Figure pat00026
to be.

한편, 대류, 확산, 이동(migration)에 의한 물질전달현상에서 이온의 질량 보존을 나타내는 식은 다음의 수학식 14와 같이 표현된다.On the other hand, in the mass transfer phenomenon due to convection, diffusion, migration (migration) the equation for the conservation of ions is expressed by the following equation (14).

Figure pat00027
Figure pat00027

수학식 14에서, a2는 PbO2에 대하여

Figure pat00028
, Pb에 대하여
Figure pat00029
이고, 또한 t+는 전달수(transference number)이다.In Equation 14, a 2 is PbO 2
Figure pat00028
, Against Pb
Figure pat00029
And t + is the transmission number.

마지막으로, 배터리 전해액의 유동은 아래의 수학식 15 및 16과 같이 Boussinesq 근사와 연속방정식이 포함된 Navier-Stokes식으로 표현할 수 있다.Finally, the flow of the battery electrolyte can be expressed by the Navier-Stokes equation including Boussinesq approximation and continuous equations as shown in Equations 15 and 16 below.

Figure pat00030
Figure pat00030

Figure pat00031
Figure pat00031

수학식 15에서,

Figure pat00032
는 유체의 점도와 침투도에서 기인하는 항력(drag)과 관련되어 있는 항이고, 또한 누출속도 (εv)는 낮은 침투도를 가진 전극에서 아래의 수학식 17과 같이 Darcy의 법칙을 따른다.In Equation (15)
Figure pat00032
Is a term related to drag due to the viscosity and permeability of the fluid, and the leak rate (εv) follows Darcy's law as shown in Equation 17 below for an electrode with low permeability.

Figure pat00033
Figure pat00033

위의 수학식 17에서 침투도(K)는 아래의 수학식 18과 같은 Kozeny-Carman식을 통해 구할 수 있다.Penetration degree (K) in the above Equation 17 can be obtained through Kozeny-Carman equation as shown in Equation 18 below.

Figure pat00034
Figure pat00034

수학식 18에서, d는 전극을 구성하는 입자들의 평균지름이다.In Equation 18, d is the average diameter of the particles constituting the electrode.

본 발명에 따른 납축전지의 수학적 모델링에 사용된 입력인자는 성질인자, 형태인자, 작동인자, 반응속도인자로 분류할 수 있고, 성질인자는 전해액에서의 이온의 확산계수와 전해액의 전도도, 점도, 밀도 등의 물리적 성질과 화학적 성질인 전해액의 농도를 포함하고, 형태인자는 전지의 크기, 극판의 두께 및 공극률, 극판간의 간격, 격리판의 두께 및 공극률를 포함하고, 또한 작동인자로는 작동 전류와 온도가 있고, 반응속도인자는 각종 반응속도 상수가 입력된다.Input factors used in the mathematical modeling of lead acid batteries according to the present invention can be classified into property factors, form factors, operating factors, and reaction rate factors, and the property factors include diffusion coefficient of ions in electrolyte solution, conductivity of electrolyte, viscosity, The concentration of the electrolyte, which is a physical and chemical property such as density, and the form factor includes the size of the battery, the thickness and porosity of the pole plate, the gap between the pole plates, the thickness and porosity of the separator, and the operating factors include There is temperature, and the reaction rate factor is input various reaction rate constants.

이렇게 연산부에 입력되는 입력요소들이 고체전극의 전하량 보존방정식(

Figure pat00035
)과, 전해질의 전하량 보존방정식(
Figure pat00036
)과, 전기화학 반응속도식(
Figure pat00037
)에 각각 대입된 후, 충전상태 방정식(
Figure pat00038
)를 통하여 시간에 따른 SOC 변화율을 구할 수 있게 된다.In this way, input elements inputted to the calculator are charge conservation equations of the solid electrode.
Figure pat00035
) And the charge storage equation of the electrolyte (
Figure pat00036
), And the electrochemical kinetics equation (
Figure pat00037
), And then the state of charge equation (
Figure pat00038
) Can be used to find the rate of change of SOC over time.

이때, 이온의 질량 보존 방정식(

Figure pat00039
), 운동량 보존방정식(
Figure pat00040
), 공극률 변화 방정식(
Figure pat00041
) 등을 통하여 시간에 따른 공극율 변화율을 구할 수 있으며, 결과적으로 연산부에서 배터리의 전지 전압(cell voltage) 및 전류밀도, SOC, 전해액의 농도가 출력된다.At this time, the mass conservation equation of the ion (
Figure pat00039
), Momentum conservation equation (
Figure pat00040
), Porosity change equation (
Figure pat00041
The porosity change rate with time can be obtained, and as a result, the cell voltage and current density of the battery, the concentration of the SOC, and the electrolyte are output from the calculation unit.

따라서, 상기 연산부에서 각 입력요소를 이용하여 수학적 모델링을 하는 동시에 수학적 모델링을 기반으로 배터리 SOC의 시간에 따른 변화를 연산하여 배터리 SOC를 산출하게 되며, 이렇게 산출된 SOC는 초기 SOC로서 피드백되어 연산부에 입력되는 동시에 각종 전장품 제어 데이터로 활용되도록 차량의 각종 제어기로 전송된다.Accordingly, the calculator performs mathematical modeling using each input element and calculates a battery SOC by calculating a change over time of the battery SOC based on the mathematical modeling. The calculated SOC is fed back as an initial SOC to the calculator. At the same time, it is transmitted to various controllers of the vehicle to be utilized as various electronic equipment control data.

여기서, 본 발명의 실험예로서, 배터리 방전 시험을 실시하였는 바, 배터리 방전시 상기와 같은 본 발명의 배터리 상태 예측 방법을 이용하여 얻어지는 배터리 전압값과, 실제로 배터리를 방전시키면서 전압센서를 이용하여 방전시 실제전압값을 측정하여 비교하였는 바, 그 결과는 첨부한 도 3에 도시된 그래프와 같다.Here, as an experimental example of the present invention, a battery discharge test was carried out. When the battery was discharged, the battery voltage value obtained by using the battery state prediction method of the present invention as described above, and the battery was discharged by using a voltage sensor while actually discharging the battery. The actual voltage values were measured and compared, and the results are as shown in the accompanying FIG. 3.

즉, 차량용 12-V(90Ah급) 납축전지를 사용하여, 실제 차량에서의 다양한 방전 상태를 대표할 수 있는 C/3(30A 방전), C/5(18A 방전), C/10(9A 방전), C/20(4.5A 방전)를 5시간, 10시간, 20시간 동안 실시하고, 종결전압으로 설정한 10.5V까지 방전실험을 수행하였다. That is, C / 3 (30A discharge), C / 5 (18A discharge), C / 10 (9A discharge) that can represent various discharge states in a real vehicle using a 12-V (90Ah) lead acid battery for vehicles ), C / 20 (4.5A discharge) was performed for 5 hours, 10 hours and 20 hours, and the discharge experiment was performed up to 10.5V set as the termination voltage.

첨부한 도 3의 그래프에서 실선 부분은 실제 전압센서를 이용하여 측정한 전압값이고, 원이 계속 이어진 형태의 선은 상기와 같은 본 발명의 배터리 예측 방법을 이용하여 시뮬레이션한 결과를 나타내며, 종결전압에서의 차이가 거의 유사함을 알 수 있었다.In the attached graph of FIG. 3, the solid line portion is a voltage value measured using an actual voltage sensor, and the line in a continuous shape indicates a simulation result using the battery prediction method of the present invention as described above. The difference in is almost similar.

다시 말해서, 첨부한 도 3의 그래프에서 보듯이, 실제 방전시 전압센서를 이용하여 측정한 전압값과, 수학적 모델링을 통한 시뮬레이션 전압값이 전반적으로 일치하였고, 각 방전전압이 변화해 가는 경향성이 매우 유사함을 알 수 있었으며, 방전 시간이 일치하기 때문에 본 발명에 따른 수학적 모델링을 기반으로 하는 배터리 상태 예측 방법은 납축전지의 비선형적인 방전거동을 잘 모사함을 알 수 있었다.In other words, as shown in the attached graph of FIG. 3, the voltage value measured using the voltage sensor during actual discharge and the simulated voltage value through mathematical modeling generally match, and each discharge voltage tends to change. It can be seen that the similarity, and since the discharge time is the same, the battery state prediction method based on the mathematical modeling according to the present invention well simulates the nonlinear discharge behavior of the lead acid battery.

결과적으로, 상기와 같은 실험예를 통하여 알 수 있듯이, 본 발명의 수학적 모델링을 통하여 정확하게 산출된 SOC 값이 차량의 제어기에로 전송되면, 각종 전기부하에 대한 전원분배제어와, 배터리를 충전시키는 알터네이터의 작동 제어 등과 같은 발전제어 및 ISG 시스템 제어를 보다 정밀하게 제어하게 되므로, 차량의 연비 향상을 도모할 수 있게 된다.As a result, as can be seen from the above experimental example, when the SOC value accurately calculated through the mathematical modeling of the present invention is transmitted to the controller of the vehicle, power distribution control for various electric loads, and an alternator for charging the battery It is possible to more precisely control the generation control and ISG system control such as the operation control of the vehicle, it is possible to improve the fuel economy of the vehicle.

Claims (6)

입력요소로서, 배터리의 물리적 및 화학적 성질인자와, 배터리의 형태인자와, 배터리의 작동전류 및 온도를 포함하는 작동인자와, 반응속도인자가 각각 연산부에 입력되는 단계와;
상기 연산부에서, 입력된 입력요소를 이용하여 수학적 모델링을 하는 동시에 수학적 모델링을 기반으로 배터리 SOC의 시간에 따른 변화를 연산하여 배터리 SOC를 산출하는 단계;
를 포함하는 것을 특징으로 하는 차량용 배터리 상태 예측 방법.
As an input element, a physical and chemical property factor of the battery, a shape factor of the battery, an operation factor including an operating current and a temperature of the battery, and a reaction rate factor are respectively input to the operation unit;
Calculating a battery SOC by performing a mathematical modeling using the input element and calculating a change over time of the battery SOC based on the mathematical modeling;
Vehicle state estimation method for a vehicle comprising a.
청구항 1에 있어서,
산출된 배터리 SOC가 각종 전장품 제어 데이터로 활용되도록 차량 제어기로 전송하는 단계와;
산출된 SOC가 초기 SOC로서 피드백되어 연산부에 입력되는 단계;
를 더 포함하는 것을 특징으로 하는 차량용 배터리 상태 예측 방법.
The method according to claim 1,
Transmitting the calculated battery SOC to the vehicle controller so as to be utilized as various electrical appliance control data;
The calculated SOC is fed back as an initial SOC and input to an operation unit;
Vehicle state estimation method for a vehicle further comprising.
청구항 1에 있어서,
상기 입력요소의 물리적 성질인자는 전해액에서의 이온 확산계수와, 전해액의 전도도, 점도, 밀도를 포함하고, 화학적 성질인자는 전해액의 초기농도를 포함하는 것을 특징으로 하는 차량용 배터리 상태 예측 방법.
The method according to claim 1,
The physical property factor of the input element includes the ion diffusion coefficient in the electrolyte, the conductivity, viscosity, density of the electrolyte, and the chemical property factor comprises the initial concentration of the electrolyte.
청구항 1에 있어서,
상기 입력요소의 형태인자는 배터리의 크기, 양극과 음극의 두께 및 공극율, 극판 간의 간격, 격리판의 두께 및 공극율을 포함하는 것을 특징으로 하는 차량용 배터리 상태 예측 방법.
The method according to claim 1,
The shape factor of the input element includes a battery size, the thickness and porosity of the positive electrode and the negative electrode, the gap between the electrode plate, the thickness and porosity of the separator, characterized in that the vehicle battery state prediction method.
청구항 1에 있어서,
상기 입력요소의 작동인자는 배터리의 작동전류 및 작동온도를 포함하는 것을 특징으로 하는 차량용 배터리 상태 예측 방법.
The method according to claim 1,
The operation factor of the input element is a vehicle battery state prediction method, characterized in that including the operating current and operating temperature of the battery.
청구항 1에 있어서,
상기 배터리 SOC의 시간에 따른 변화율은 각 입력요소들이 연산부에 입력되어 고체전극의 전하량 보존방정식(
Figure pat00042
)과,
전해질의 전하량 보존방정식(
Figure pat00043
)과,
전기화학 반응속도식(
Figure pat00044
)에 각각 대입된 후,
충전상태 방정식(
Figure pat00045
)을 통하여 산출되는 것을 특징으로 하는 차량용 배터리 상태 예측 방법.
The method according to claim 1,
The rate of change over time of the battery SOC is calculated by preserving a charge amount conservation equation of a solid electrode by inputting each input element to a calculation unit.
Figure pat00042
)and,
Equation for preserving charge of electrolyte
Figure pat00043
)and,
Electrochemical kinetics (
Figure pat00044
) Respectively,
State of charge equation (
Figure pat00045
Vehicle state estimation method for a vehicle, characterized in that is calculated through.
KR1020110114973A 2011-11-07 2011-11-07 Method for estimating battery SOC of vehicle KR101282687B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110114973A KR101282687B1 (en) 2011-11-07 2011-11-07 Method for estimating battery SOC of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110114973A KR101282687B1 (en) 2011-11-07 2011-11-07 Method for estimating battery SOC of vehicle

Publications (2)

Publication Number Publication Date
KR20130049920A true KR20130049920A (en) 2013-05-15
KR101282687B1 KR101282687B1 (en) 2013-07-05

Family

ID=48660476

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110114973A KR101282687B1 (en) 2011-11-07 2011-11-07 Method for estimating battery SOC of vehicle

Country Status (1)

Country Link
KR (1) KR101282687B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014191794A1 (en) * 2013-05-29 2014-12-04 Freescale Semiconductor, Inc. Cell monitoring apparatus, battery monitoring apparatus, integrated circuit and method of monitoring a rechargeable cell
KR20190042850A (en) * 2017-10-17 2019-04-25 에스케이이노베이션 주식회사 Lithium secondary battery
WO2021096087A1 (en) * 2019-11-15 2021-05-20 주식회사 엘지화학 Battery management device, battery management method, and battery pack
US11035905B1 (en) 2018-01-09 2021-06-15 Lg Chem, Ltd. Apparatus and method for testing performance of battery cell
JP2021520178A (en) * 2018-04-23 2021-08-12 三星エスディアイ株式会社Samsung SDI Co., Ltd. Battery status estimation method
WO2022071652A1 (en) * 2020-09-29 2022-04-07 주식회사 엘지에너지솔루션 Apparatus and method for predicting performance of secondary cell according to electrode structure
US11644508B2 (en) 2017-10-26 2023-05-09 Samsung Electronics Co., Ltd. Method and apparatus for measuring state of battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102553031B1 (en) 2016-01-14 2023-07-06 삼성전자주식회사 Method and apparatus for estimating state of battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10301823A1 (en) * 2003-01-20 2004-07-29 Robert Bosch Gmbh Battery available charge determination method, in which the charge remaining up to a defined limit is determined using a mathematical model of the battery, the inputs to which are determined from battery operating values
FR2929410B1 (en) * 2008-03-28 2010-04-09 Inst Francais Du Petrole METHOD FOR ESTIMATING NON-MEASURABLE CHARACTERISTICS OF AN ELECTROCHEMICAL SYSTEM
KR101113639B1 (en) * 2009-09-01 2012-02-15 기아자동차주식회사 SOC band Strategy for HEV
FR2949565B1 (en) 2009-09-02 2012-12-21 Inst Francais Du Petrole IMPROVED METHOD FOR ESTIMATING NON-MEASURABLE CHARACTERISTICS OF AN ELECTROCHEMICAL SYSTEM

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014191794A1 (en) * 2013-05-29 2014-12-04 Freescale Semiconductor, Inc. Cell monitoring apparatus, battery monitoring apparatus, integrated circuit and method of monitoring a rechargeable cell
US9927492B2 (en) 2013-05-29 2018-03-27 Nxp Usa, Inc. Cell monitoring apparatus, battery monitoring apparatus, integrated circuit and method of monitoring a rechargeable cell
KR20190042850A (en) * 2017-10-17 2019-04-25 에스케이이노베이션 주식회사 Lithium secondary battery
US11644508B2 (en) 2017-10-26 2023-05-09 Samsung Electronics Co., Ltd. Method and apparatus for measuring state of battery
US11035905B1 (en) 2018-01-09 2021-06-15 Lg Chem, Ltd. Apparatus and method for testing performance of battery cell
JP2021520178A (en) * 2018-04-23 2021-08-12 三星エスディアイ株式会社Samsung SDI Co., Ltd. Battery status estimation method
US11366171B2 (en) 2018-04-23 2022-06-21 Samsung Sdi Co., Ltd. Battery state estimation method
WO2021096087A1 (en) * 2019-11-15 2021-05-20 주식회사 엘지화학 Battery management device, battery management method, and battery pack
WO2022071652A1 (en) * 2020-09-29 2022-04-07 주식회사 엘지에너지솔루션 Apparatus and method for predicting performance of secondary cell according to electrode structure

Also Published As

Publication number Publication date
KR101282687B1 (en) 2013-07-05

Similar Documents

Publication Publication Date Title
Jafari et al. Deterministic models of Li-ion battery aging: It is a matter of scale
Lyu et al. A lead-acid battery's remaining useful life prediction by using electrochemical model in the Particle Filtering framework
KR101282687B1 (en) Method for estimating battery SOC of vehicle
CN104991980B (en) The electrochemical mechanism modeling method of lithium ion battery
Zheng et al. Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model
Yang et al. State of charge estimation for pulse discharge of a LiFePO4 battery by a revised Ah counting
Merla et al. An easy-to-parameterise physics-informed battery model and its application towards lithium-ion battery cell design, diagnosis, and degradation
CN102239597B (en) Method for determining charge state of secondary intercalation cell of rechargeable battery
Eddahech et al. Determination of lithium-ion battery state-of-health based on constant-voltage charge phase
Smith Electrochemical control of lithium-ion batteries [applications of control]
EP2762908B1 (en) Battery cell performance estimation method and battery cell performance estimation apparatus
US10288691B2 (en) Method and system for estimating battery model parameters to update battery models used for controls
US10686321B2 (en) Secondary battery management
Leng et al. A practical framework of electrical based online state-of-charge estimation of lithium ion batteries
CN105319508B (en) Method and system for battery state of charge estimation
Hussein Adaptive artificial neural network-based models for instantaneous power estimation enhancement in electric vehicles’ Li-ion batteries
KR101619634B1 (en) System for estimating state of health using battery moedel parameter and method thereof
CN112464571B (en) Lithium battery pack parameter identification method based on multi-constraint-condition particle swarm optimization algorithm
De Jongh et al. Effect of current pulses on lithium intercalation batteries
EP3475712A1 (en) Method and device for estimating a voltage of a battery
Pozzi et al. Film growth minimization in a li-ion cell: a pseudo two dimensional model-based optimal charging approach
KR20180057266A (en) Method and apparatus for estimating state of battery
Baek et al. Capacity fade modeling of a lithium-ion battery for electric vehicles
CN113779794A (en) Lithium ion battery SOP estimation method and system considering microcosmic constraint
CN103782442A (en) Lead storage cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160630

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180628

Year of fee payment: 6