KR20130044967A - A method for preparing nano-tube of titanium dioxide and a photoelectrode for dye-sensitized solar cell comprising the nano-tube - Google Patents

A method for preparing nano-tube of titanium dioxide and a photoelectrode for dye-sensitized solar cell comprising the nano-tube Download PDF

Info

Publication number
KR20130044967A
KR20130044967A KR1020110109359A KR20110109359A KR20130044967A KR 20130044967 A KR20130044967 A KR 20130044967A KR 1020110109359 A KR1020110109359 A KR 1020110109359A KR 20110109359 A KR20110109359 A KR 20110109359A KR 20130044967 A KR20130044967 A KR 20130044967A
Authority
KR
South Korea
Prior art keywords
titanium dioxide
photoelectrode
hollow rod
dye
sensitized solar
Prior art date
Application number
KR1020110109359A
Other languages
Korean (ko)
Other versions
KR101326659B1 (en
Inventor
김신경
이익모
권오성
한재호
송준호
김호섭
이미현
장재호
최민식
Original Assignee
주식회사 포톤와트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포톤와트 filed Critical 주식회사 포톤와트
Priority to KR1020110109359A priority Critical patent/KR101326659B1/en
Publication of KR20130044967A publication Critical patent/KR20130044967A/en
Application granted granted Critical
Publication of KR101326659B1 publication Critical patent/KR101326659B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: A manufacturing method of titanium dioxide nanotubes and a photoelectrode for high efficiency dye-sensitized solar cells including the titanium dioxide nanotubes are provided to mass produce hollow rod shaped titanium dioxide nanotubes with wide surfaces and a large dye adsorption amount by using a microwave reactor. CONSTITUTION: A manufacturing method of hollow rod shaped titanium dioxide nanotubes comprises the following steps: mixing titanium precursors with base additives in an alcohol solvent with a molar ratio of 1:5-10 moles; and performing a reaction for the obtained solution from the first step in a high pressure microwave reactor. The base additive is TBAH(tetrabutylammonium hydroxide). The hollow rod shaped titanium dioxide nanotube is comprised of titanium dioxide nanoparticles with an average particle diameter of 20-35 nanometers. The hollow stick has a width of 500-1000 nanometers and a length of 10-20 micrometers. The reaction is performed at 150-250 deg. Celsius for 2-6 hours in the high pressure microwave reactor with an output of 150-500W.

Description

이산화티타늄 나노튜브의 제조방법 및 상기 이산화티타늄 나노튜브를 포함하는 고효율 염료감응 태양전지용 광전극{A METHOD FOR PREPARING NANO-TUBE OF TITANIUM DIOXIDE AND A PHOTOELECTRODE FOR DYE-SENSITIZED SOLAR CELL COMPRISING THE NANO-TUBE} A manufacturing method of titanium dioxide nanotubes and a high-efficiency dye-sensitized solar cell photoelectrode comprising the titanium dioxide nanotubes TECHNICAL FIELD

본 발명은 이산화티타늄 나노튜브의 제조방법 및 상기 산화티타늄 나노튜브를 포함하는 고효율 염료감응 태양전지용 광전극에 관한 것으로서, 좀더 상세하게는 알코올 용매에 티타늄 전구체와 염기 첨가제를 혼합하고, 이 용액을 고압 마이크로웨이브 반응기에서 반응시켜 제조되는 것을 특징으로 하는 이산화티타늄 나노튜브의 제조방법 및 상기 산화티타늄 나노튜브를 포함하는 고효율 염료감응 태양전지용 광전극에 관한 것이다.The present invention relates to a method for producing titanium dioxide nanotubes and to a photoelectrode for a high efficiency dye-sensitized solar cell comprising the titanium oxide nanotubes, and more particularly to mixing a titanium precursor and a base additive in an alcohol solvent, The present invention relates to a method for producing titanium dioxide nanotubes and to a highly efficient dye-sensitized photovoltaic photoelectrode comprising the titanium oxide nanotubes.

최근 산유국을 중심으로 원유가격 급등과 온실가스 배출 관련 교토협약으로 인해 에너지 수입의존도가 높은 나라들은 미래의 에너지와 환경문제를 극복할 수 있는 신재생에너지 개발 및 상용화가 절실한 상황이다.In recent years, countries with high energy dependence on oil imports and the Kyoto Convention on Greenhouse Gas Emissions, especially in oil producing countries, need to develop and commercialize renewable energy to overcome future energy and environmental problems.

미래 신재생에너지 중 무한한 태양빛을 에너지원으로 하는 환경 친화적인 태양전지의 중요성이 부각되고 있다. 현재 이러한 태양전지의 종류로는 실리콘 태양전지, 염료감응 태양전지, 유기반도체 태양전지가 있다.The importance of environmentally friendly solar cells that use infinite solar light as an energy source among future renewable energy is emerging. Currently, such solar cells include silicon solar cells, dye-sensitized solar cells, and organic semiconductor solar cells.

광전기화학형 염료감응 태양전지(dye-sensitized solar cell : DSSC)는 1991년 스위스 그라첼(Gratzel) 교수가 TiO2 반도체 박막에 광감응 염료인 루테늄(Ru(Ⅱ)) 계열의 착화합물을 흡착시켜 개발하였고, 실리콘 태양전지를 대체할 태양전지로서 상용화에 가장 근접한 염료감응형 태양전지는 기존의 태양전지에 비해 광전효율이 약 10%로 다소 낮은 수준이나, 저가의 제조 설비 및 공정 기술로 인해 발전 단가를 실리콘계의 1/5까지 낮출 수 있고, 유연(flexible) 기판에 투명 태양전지로 응용 가능한 장점으로 인해 세계적으로 집중적인 연구가 행해지고 있다.Photoelectric chemistry dye-sensitized solar cells (DSSC) were developed in 1991 by Professor Gratzel, Switzerland, by adsorbing ruthenium (Ru (Ⅱ))-based complexes on TiO 2 semiconductor thin films. Dye-sensitized solar cell, which is the closest to commercialization as a solar cell to replace silicon solar cell, is slightly lower than photovoltaic efficiency by about 10% compared to conventional solar cell, but due to low-cost manufacturing equipment and process technology Due to the advantages that can be lowered to 1/5 of silicon-based, and can be applied as a transparent solar cell to a flexible substrate, intensive research is being conducted worldwide.

염료감응 태양전지는 광전극, 상대전극 및 전해질로 구성되며, 광전극은 투명전도성 기판(FTO) 위에 넓은 밴드갭 에너지를 가지고 있는 금속산화물 나노입자(TiO2)에 감광성 염료를 흡착시켜 사용하고, 상대전극은 투명전도성 기판위에 백금(Pt)을 코팅하여 사용한다. 일반적으로 염료감응 태양전지에 있어서, 광전극의 금속산화물의 크기는 10~20nm 크기를 가진 이산화티타늄(TiO2)을 사용하며, 코팅막은 약 10㎛ 두께로 형성되어 있다. 이러한 염료감응 태양전지의 작동원리는 다음과 같다.The dye-sensitized solar cell is composed of a photoelectrode, a counter electrode and an electrolyte, and the photoelectrode is used by adsorbing a photosensitive dye on metal oxide nanoparticles (TiO 2 ) having a wide bandgap energy on a transparent conductive substrate (FTO). The counter electrode is used by coating platinum (Pt) on a transparent conductive substrate. In general, in the dye-sensitized solar cell, the size of the metal oxide of the photoelectrode uses titanium dioxide (TiO 2 ) having a size of 10 ~ 20nm, the coating film is formed to a thickness of about 10㎛. The operation principle of such dye-sensitized solar cell is as follows.

이산화티타늄 나노전극에 루테늄 계열의 염료가 흡착되어, 이 염료가 빛 에너지를 받아 들뜬 상태가 되면, 전자가 이산화티타늄 나노전극으로 주입된다. 이때 빠른 속도로 전자가 주입되며, 산화된 염료 또한 빠른 속도로 재생된다.When a ruthenium-based dye is adsorbed onto the titanium dioxide nanoelectrode and the dye is excited by receiving light energy, electrons are injected into the titanium dioxide nanoelectrode. At this time, electrons are injected at high speed, and the oxidized dye is also regenerated at high speed.

반면 전자가 표면상태를 거쳐 전해질로 손실되는 재결합 속도는 다소 느리기 때문에 대부분의 광전자는 반도체 전도 띠로 주입되어 전자전달에 참여하여 광-전기 에너지 변환효율이 우수하다.On the other hand, since the recombination rate of electrons lost to the electrolyte through the surface state is rather slow, most photoelectrons are injected into the semiconductor conduction band and participate in electron transfer, so that the photo-electric energy conversion efficiency is excellent.

고효율의 염료감응 태양전지를 제조하기 위해서는 이산화티타늄의 표면적이 넓어야 하고, 흡착된 광감응 염료의 양이 많아야 한다. 염료의 흡착량을 증가시키려면 이산화티타늄의 크기가 작아야 하지만, 이 경우 흡착된 염료에 의하여 생성된 홀과 전자의 재결합 자리를 제공하게 되는 단점을 가지고 있다.In order to manufacture high efficiency dye-sensitized solar cells, the surface area of titanium dioxide must be large and the amount of absorbed photosensitive dyes must be large. In order to increase the adsorption amount of the dye, the size of titanium dioxide should be small, but in this case, it has the disadvantage of providing a recombination site of holes and electrons generated by the adsorbed dye.

상기의 광전극은 염료가 흡착된 이산화티타늄 나노 입자로 구성되어 있는 광흡수층과 흡수하지 못한 빛을 다시 광흡수층으로 되돌려 보내는 광산란층(scattering layer)으로 구성되어 있다.The photoelectrode includes a light absorbing layer composed of titanium dioxide nanoparticles on which dye is adsorbed, and a scattering layer for returning unabsorbed light back to the light absorbing layer.

초기의 염료감응형 태양전지는 광산란층이 없어 입사되는 빛을 모두 흡수하기 위해서는 염료가 흡착된 광흡수층을 두껍게 만들어야 했다. 그러나 흡수층이 너무 두꺼워지면 저항이 증가하여 흡수층이 적절한 두께 이상에서는 에너지 변환 효율이 감소한다.Early dye-sensitized solar cells had no light scattering layer and had to thicken the dye absorbing light absorbing layer to absorb all the incident light. However, if the absorber layer is too thick, the resistance increases, and the energy conversion efficiency decreases when the absorber layer is above the appropriate thickness.

상기의 단점을 보완하기 위해 입자가 상대적으로 큰 이산화티타늄을 사용하여 광산란층을 도입하였다. 흡수층에서 흡수하지 못한 빛을 다시 산란시켜 효율을 높이는 방법이다. 그러나 광산란층으로 사용하는 입자가 큰 이산화티타늄은 광흡수층의 이산화티타늄보다 염료를 덜 흡착하는 단점을 가지고 있다. In order to compensate for the above disadvantage, a light scattering layer was introduced using titanium dioxide having relatively large particles. It is a method of increasing the efficiency by scattering again the light not absorbed in the absorber layer. However, titanium dioxide having a large particle used as a light scattering layer has a disadvantage of adsorbing less dye than titanium dioxide in the light absorption layer.

본 발명의 목적은 광전극에 있어서 주로 광산란층에 사용되는 입자가 큰 이산화티타늄 입자보다 표면적이 넓고, 염료 흡착량이 많은 속이 빈 막대형 이산화티타늄 나노튜브를 제조하여, 이를 태양전지용 광전극에 적용하므로써 광산란 역할을 하면서 광흡수를 통해 광전자를 생성하는 역할도 동시에 가능하게 하여, 고효율 염료감응 태양전지의 제조를 가능하게 하는 것이다.An object of the present invention is to produce hollow rod-type titanium dioxide nanotubes with a larger surface area and larger dye adsorption than the larger titanium dioxide particles used in the light scattering layer of the photoelectrode, and then applying the same to the photoelectrode for solar cells. At the same time, it is possible to produce photoelectrons through light absorption while acting as light scattering, thereby enabling the production of highly efficient dye-sensitized solar cells.

본 발명의 속이 빈 막대형 이산화티타늄 나노튜브의 제조방법은, 알코올 용매에 티타늄 전구체와 염기 첨가제를 혼합하고, 이 용액을 고압 마이크로웨이브 반응기에서 반응시켜 제조되는 것을 특징으로 한다.The method for producing the hollow rod-type titanium dioxide nanotubes of the present invention is characterized by being prepared by mixing a titanium precursor and a base additive in an alcohol solvent and reacting the solution in a high pressure microwave reactor.

본 발명에서 사용되는 알코올 용매로는 지방족 알코올을 사용할 수 있으며, 바람직한 예로는, 메탄올, 에탄올, 1-프로판올, 2-프로판올, 부탄올 등을 들 수 있다. As the alcohol solvent used in the present invention, an aliphatic alcohol may be used, and preferred examples thereof include methanol, ethanol, 1-propanol, 2-propanol, butanol, and the like.

본 발명에서 사용되는 티타늄 전구체로는, 티타늄 중심 원자에 에톡사이드(Ethoxide), 부톡사이드(Butoxide) 및 이소프로폭사이드(Isopropoxide) 등과 같은 산소 원자를 포함한 알콕사이드가 결합하여 있어 외부에너지에 의한 분해에 의해 이산화티타늄 입자가 생성될 수 있는 전구체인 티타늄 알콕사이드를 사용할 수 있다. 그 중에서도 특히 티타늄(IV) 이소프로폭사이드(TTIP, 97%, 앨드리치사제)가 바람직하다.As the titanium precursor used in the present invention, an alkoxide including oxygen atoms such as ethoxide, butoxide and isopropoxide is bonded to the titanium center atom to decompose by external energy. Titanium alkoxide, which is a precursor from which titanium dioxide particles can be produced, can be used. Among them, titanium (IV) isopropoxide (TTIP, 97%, manufactured by Aldrich) is particularly preferable.

본 발명에서 사용되는 염기 첨가제로는 테트라부틸암모늄 히드록사이드(TBAH : tetrabuthylammonium hydroxide)를 들 수 있다. 상기 염기 첨가제는 상기 티타늄 전구체:염기 첨가제=1:5~10의 몰비, 바람직하게는 1:8.5의 몰비로 혼합하여 사용하는 것이 바람직한데, 염기 첨가제의 사용 농도를 상기의 범위로 조절하므로써 순수한 아나타제(anatase) 결정상을 가지며, 크기가 균일한 이산화티타늄 나노튜브를 제조할 수 있다.The base additive used in the present invention includes tetrabutylammonium hydroxide (TBAH: tetrabuthylammonium hydroxide). The base additive is preferably used by mixing in a molar ratio of the titanium precursor: base additive = 1: 5 to 10, preferably 1: 8.5, by adjusting the concentration of the base additive in the above range, pure anatase Titanium dioxide nanotubes having an (anatase) crystal phase and having a uniform size can be prepared.

본 발명에 따른 이산화티타늄 나노튜브의 제조에 있어, 티타늄 전구체와 염기 첨가제의 농도가 증가할수록 속이 빈 막대형태의 길이는 길어진다.In the production of titanium dioxide nanotubes according to the present invention, as the concentration of the titanium precursor and the base additive increases, the length of the hollow rod becomes longer.

본 발명에서는 상기 티타늄 전구체와 상기 염기 첨가제를 고압 마이크로웨이브를 이용하여 반응시키는 것을 특징으로 하는데, 반응 조건은 150~250℃의 온도범위에서 2~6시간 동안 출력 150~500W으로 반응시키는 것이 바람직하다. In the present invention, the titanium precursor and the base additive is characterized in that the reaction using a high-pressure microwave, the reaction conditions are preferably reacted with an output 150 ~ 500W for 2-6 hours in the temperature range of 150 ~ 250 ℃. .

상기 반응 온도가 150℃ 미만인 경우에는 입자들의 크기가 고르지 않으며, 심하게 뭉치는 현상이 발생하여 바람직하지 않고, 250℃를 초과하는 경우에는 고출력 마이크로웨이브 용기가 고온으로 인해 변형이 생기며, 고압을 견디지 못해 분출하는 경우가 발생하여 바람직하지 않으며, 반응 시간이 2시간 미만인 경우에는 충분한 반응시간이 아니기 때문에 이산화티타늄 입자의 크기나 형태를 원하는대로 제어할 수 없어 바람직하지 않고, 반응 시간이 6시간을 초과하는 경우에는 실험결과 5~6시간 반응으로 우리가 원하는 이산화티타늄 입자를 얻을 수 있어 초과 반응시간은 필요없다는 결과를 얻어 바람직하지 않으며, 또한 출력이 150W 미만인 경우에는 고출력 마이크로웨이브 용기에 시간내 원하는 온도까지 높이는데 부족함이 있어 바람직하지 않고, 출력이 500W을 넘는 경우에는 고출력 마이크로웨이브 합성장치에 부담을 주기 때문에 바람직하지 않다. 단, 고출력 마이크로웨이브 용기가 2개 이상일 경우에는 500W 이상의 출력을 필요로 한다.If the reaction temperature is less than 150 ℃ the size of the particles are uneven, bad agglomeration phenomenon is not preferable, if the temperature exceeds 250 ℃ high power microwave vessel is deformed due to the high temperature, can not withstand high pressure It is not preferable that the ejection occurs, and if the reaction time is less than 2 hours, the reaction time is not sufficient, so the size or shape of the titanium dioxide particles cannot be controlled as desired, and the reaction time is more than 6 hours. In the case of the experiment, it is not preferable to obtain the desired titanium dioxide particles by the reaction of 5 to 6 hours, so that the excess reaction time is not necessary.In addition, when the output is less than 150W, the desired temperature is maintained in the high-power microwave vessel in time. There is not enough to raise and is undesirable If more than 500W this is not preferable because the burden on the high-power microwave synthesizer. However, if there are two or more high-power microwave vessels, a power of 500 W or more is required.

본 발명의 제조방법에 의해 제조되는 이산화티타늄 나노튜브는 정육면체(cube) 형태의 이산화티타늄 나노입자들이 모여서 속이 빈 막대형태를 이루고 있으며, 본 발명에 의한 속이 빈 막대형의 이산화티타늄 나노튜브를 이루는 상기 이산화티타늄 나노입자의 평균입경은 20~35nm인 것이 바람직하고, 속이 빈 막대의 폭은 500~1000nm이며, 길이는 10~20㎛인 것이 바람직하다. 상기 이산화티타늄 나노입자의 평균입경이 20nm 미만인 경우에는 입자가 너무 작아 염료 흡착이 제한되어 바람직하지 않고, 35nm를 초과하는 경우에는 표면적이 작아져 염료 흡착율이 떨어져 바람직하지 않으며, 상기 속이 빈 막대의 폭이 500nm 미만인 경우에는 빛 산란이 저하되어 바람직하지 않고, 1000nm를 초과하는 경우에는 페이스트 제조시 나노튜브 형태를 유지하기 힘들어 바람직하지 않으며, 상기 속이 빈 막대의 길이가 10㎛ 미만인 경우에는 빛 산란이 저하되어 바람직하지 않고, 20㎛를 초과하는 경우에는 페이스트 제조시 나노튜브 형태를 유지하기 힘들어 바람직하지 않다.Titanium dioxide nanotubes produced by the manufacturing method of the present invention is a cube-shaped (cube) titanium dioxide nanoparticles are formed in a hollow rod form, the hollow rod-shaped titanium dioxide nanotubes according to the present invention It is preferable that the average particle diameter of a titanium dioxide nanoparticle is 20-35 nm, the width of a hollow rod is 500-1000 nm, and it is preferable that the length is 10-20 micrometers. When the average particle diameter of the titanium dioxide nanoparticles is less than 20nm, the particles are too small to limit dye adsorption, and when the average particle diameter exceeds 35nm, the surface area becomes small and the dye adsorption rate is not preferable. If it is less than 500nm, light scattering is not preferable, and if it is more than 1000nm, it is not preferable because it is difficult to maintain a nanotube form during paste production, and if the length of the hollow rod is less than 10 μm, light scattering is reduced. In the case of exceeding 20 μm, it is difficult to maintain the shape of the nanotubes during paste production, which is not preferable.

본 발명에 의하면, 상기와 같은 본 발명의 방법으로 제조된 이산화티타늄 나노튜브를 포함하는 염료감응 태양전지용 광전극이 제공된다.According to the present invention, there is provided a photoelectrode for dye-sensitized solar cell comprising a titanium dioxide nanotube produced by the method of the present invention as described above.

본 발명의 광전극은 본 발명의 방법으로 제조되는 속이 빈 막대형 이산화티타늄 나노 튜브를 포함하는 광산란층을 포함하는 것을 특징으로 한다.The photoelectrode of the present invention is characterized in that it comprises a light scattering layer comprising hollow rod-shaped titanium dioxide nanotubes produced by the method of the present invention.

본 발명의 광전극에 있어서, 광산란층은 본 발명의 방법으로 제조되는 속이 빈 막대형 이산화티타늄 나노튜브와 바인더용 고분자 및 용매를 포함하는 페이스트를 이용하여 형성된다.In the photoelectrode of the present invention, the light scattering layer is formed using a hollow rod-shaped titanium dioxide nanotube produced by the method of the present invention, a paste containing a binder polymer and a solvent.

본 발명의 광전극의 바람직한 하나의 구체예에 의하면, 광전극 기판과, 그 위에 형성된 광흡수층 및 상기 광흡수층 위에 형성된 광산란층을 포함하여 이루어지는 광전극이 제공되며, 상기 광흡수층은 일반적인 입자형태의 이산화티타늄 나노입자와 바인더용 고분자 및 용매, 그리고 필요에 따라 분산안정제와 같은 첨가제를 포함하는 페이스트를 광전극 기판위에 도포하여 형성되고, 상기 광산란층은 본 발명에 따른 이산화티타늄 나노튜브와 바인더용 고분자 및 용매를 포함하는 페이스트를 광흡수층 위에 도포하여 형성된다.According to one preferred embodiment of the photoelectrode of the present invention, there is provided a photoelectrode comprising a photoelectrode substrate, a light absorbing layer formed thereon and a light scattering layer formed on the light absorbing layer, wherein the light absorbing layer has a general particle shape. A paste is formed by applying a paste containing an additive such as titanium dioxide nanoparticles, a polymer for a binder and a solvent, and a dispersion stabilizer, if necessary, onto the photoelectrode substrate, and the light scattering layer is formed of the titanium dioxide nanotube and the binder polymer according to the present invention. And a paste comprising a solvent is applied onto the light absorbing layer.

본 발명의 광전극의 제조에 사용되는 상기 바인더용 고분자는 그 종류에 특별히 제한이 없이 당분야에서 통상적으로 사용되는 것을 사용할 수 있으며, 바람직하게는 에틸셀룰로오스, 폴리에틸렌글리콜 등을 들 수 있고, 상기 용매로는 당분야에서 통상적으로 사용되는 것을 사용할 수 있으며, 바람직하게는 물, 알코올, 테르피네올 등을 들 수 있다.The binder polymer used in the preparation of the photoelectrode of the present invention may be used in the art without particular limitation on the kind thereof, preferably ethyl cellulose, polyethylene glycol and the like, and the solvent Furnace may be those commonly used in the art, preferably water, alcohol, terpineol and the like.

본 발명의 광전극에 있어서, 상기 광흡수층과 광산란층의 두께는 각각 1~50㎛, 바람직하게는 5~30㎛ 두께를 유지하는게 바람직하다. 두께가 1㎛ 미만으로 얇으면 염료 흡착량이 적어 발생전자수가 감소하여 광전변환 효율이 저하되므로 바람직하지 않고, 두께가 50㎛를 초과하면 발생전자수는 염료흡착량에 비례하여 증가하지만, 전자 이동경로인 나노 TiO2 계면이 상대적으로 많아져 임계효율 이상 증가하지 않거나 전해질과 전자가 바로 결합하는 전자의 역전 현상이 발생할 확률이 높아져 오히려 효율이 감소하는 추세를 나타내므로 바람직하지 않다.In the photoelectrode of the present invention, the light absorbing layer and the light scattering layer have a thickness of 1 to 50 µm, preferably 5 to 30 µm, respectively. If the thickness is less than 1 μm, the amount of dye adsorption is small and the number of generated electrons decreases, thereby decreasing the photoelectric conversion efficiency. If the thickness exceeds 50 μm, the number of generated electrons increases in proportion to the amount of dye adsorption, but the electron transfer path Phosphorus nano TiO 2 interface is relatively high, so it does not increase above the critical efficiency or the possibility of the reversal of the electrons directly coupled with the electrolyte and the electron is increased, which is not preferable because the efficiency tends to decrease.

본 발명의 이산화티타늄 나노튜브의 제조방법에 의하면, 가압 반응기의 단점인 장시간의 반응시간을 마이크로웨이브 반응기를 사용함으로써 제조시간을 단축시키고, 저렴한 비용과 간단한 공정으로 대량생산이 가능하다.According to the method for producing titanium dioxide nanotubes of the present invention, by using a microwave reactor for a long time reaction time, which is a disadvantage of the pressurized reactor, the production time can be shortened, and mass production is possible at a low cost and a simple process.

본 발명의 방법에 따라 제조된 이산화티타늄 나노튜브는 염료 흡착이 가능하여 광전자를 발생시킬 수 있을 뿐만 아니라 광산란 효과도 같이 가지고 있기 때문에 에너지 전환 효율을 향상시키는 장점을 가지고 있다.Titanium dioxide nanotubes prepared according to the method of the present invention have the advantage of improving the energy conversion efficiency because the dye adsorption can generate photoelectrons as well as light scattering effect.

또한, 본 발명에서 제조된 속이 빈 막대형 이산화티타늄은 광산란 효과와 더불어 광흡수도 동시에 하기 때문에 차후 염료감응 태양전지의 에너지변환 효율을 향상시키는데 이바지할 수 있다.In addition, the hollow rod-type titanium dioxide prepared in the present invention can contribute to improving the energy conversion efficiency of the dye-sensitized solar cell at the same time since the light absorbing and light absorption at the same time.

또한 본 발명의 방법으로 제조된 이산화티타늄 나노튜브를 사용하여 염료감응 태양전지용 광전극을 제조할 경우, 태양전지의 높은 효율을 기대할 수 있으며, 염료감응 태양전지의 제조 단가도 낮출 수 있다.In addition, when manufacturing a photosensitive electrode for a dye-sensitized solar cell using the titanium dioxide nanotube prepared by the method of the present invention, high efficiency of the solar cell can be expected, and the manufacturing cost of the dye-sensitized solar cell can be lowered.

도 1은 본 발명에 따라 제조된 이산화티타늄 나노튜브의 크기와 형태를 전자현미경을 통하여 관찰한 결과를 나타낸 사진이고,
도 2는 본 발명에 따라 제조된 이산화티타늄 나노튜브와 P25의 결정상 비교를 위해서 X-ray 회절 분석법(XRD)을 통하여 관찰한 결과를 나타낸 사진이고,
도 3은 본 발명에 따라 제조된 이산화티타늄 나노튜브를 이용하여 형성된 광산란층을 포함하는 광전극을 갖는 염료감응 태양전지의 구조를 간략하게 도시하여 나타낸 도면이고,
도 4는 본 발명의 실시예들 및 비교예들에서 제조한 각각의 광전극을 이용하여 제작한 염료감응 태양전지에 대한 광전류밀도의 변화를 나타낸 그래프이다.
1 is a photograph showing the results of observing the size and shape of titanium dioxide nanotubes prepared according to the present invention through an electron microscope,
Figure 2 is a photograph showing the results observed by X-ray diffraction analysis (XRD) for comparing the crystal phase of the titanium dioxide nanotubes prepared according to the present invention and P25,
3 is a view schematically showing a structure of a dye-sensitized solar cell having a photoelectrode including a light scattering layer formed using titanium dioxide nanotubes prepared according to the present invention.
Figure 4 is a graph showing the change in the photocurrent density for the dye-sensitized solar cell manufactured by using each photoelectrode prepared in Examples and Comparative Examples of the present invention.

제조예 : 속이 빈 막대형태의 이산화티타늄 나노튜브의 제조Preparation Example: Preparation of Hollow Titanium Dioxide Nanotubes

에탄올 24ml에 티타늄 이소프로폭사이드(titanium(IV) isopropoxide : TTIP, 97%, 앨드리치사제)를 첨가하여 10분 동안 교반한 후에 TBAH(tetrabutylammonium hydroxide solution, 40wt.% in H2O, 앨드리치사제)를 첨가하여 약 10분간 교반하였다. 이때 화학종 각각의 몰비는 Ti : TBAH : H2O : EtOH = 5 : 42.5 : 2 : 41.5이고, 여기서 얻어진 용액은 투명하고 침전물이 없었다.Titanium isopropoxide (TTIP, 97%, manufactured by Aldrich) was added to 24 ml of ethanol and stirred for 10 minutes, followed by TBAH (tetrabutylammonium hydroxide solution, 40 wt.% In H2O, manufactured by Aldrich) ) Was added and stirred for about 10 minutes. At this time, the molar ratio of each chemical species was Ti: TBAH: H 2 O: EtOH = 5: 42.5: 2: 41.5, and the solution obtained here was transparent and free of precipitates.

혼합용액은 마이크로 웨이브파를 조사하기 위해 고압 마이크로웨이브 전용 반응 용기(MicroSYNTH, Milestone S&T Co., Ltd)로 옮겨지고, 500W의 출력에서 30분 동안 200℃까지 승온 후 최대 3시간 또는 6시간의 수열반응을 진행시켜 TiO2 나노입자를 생성하였다. 대부분의 반응조건은 200℃, 6시간을 유지하였다. The mixed solution is transferred to a high-pressure microwave reaction vessel (MicroSYNTH, Milestone S & T Co., Ltd) to irradiate microwaves, and after heating up to 200 ° C. for 30 minutes at a power of 500 W, up to 3 or 6 hours of hydrothermal The reaction proceeded to produce TiO 2 nanoparticles. Most of the reaction conditions were maintained at 200 ℃, 6 hours.

고압 마이크로웨이브 전용 반응기의 용기는 테프론 재질로 만들어졌으며, 최대 압력 100bar, 최대 온도 300℃까지 견딜 수 있으며, 최대용량 100ml로 동시에 10개의 용기를 이용하여 합성할 수 있어, 한번의 반응으로 대량 합성도 가능하다.The reactor for the high-pressure microwave reactor is made of Teflon material, can withstand pressure up to 100bar, temperature up to 300 ℃, and can be synthesized using 10 containers at the same time with a maximum capacity of 100ml. It is possible.

증류수와 에탄올로 세척하고, 원심분리기를 이용해 침전을 모으는 과정을 수차례 반복하고, 건조시켜 최종 생성물을 얻었다.Washing with distilled water and ethanol, and repeating the process of collecting the precipitate using a centrifuge several times, and dried to obtain the final product.

모든 화학종은 정제없이 실온 및 대기압 하에서 진행하였다. 그리고 물은 탈이온화된 증류수를 사용하였다.All species were run at room temperature and atmospheric pressure without purification. And deionized distilled water was used as water.

반응 후 순수한 흰색의 이산화티타늄 아나타제 결정상을 얻었고, 도 1과 같이 나노입자(평균입경 20~35nm)로 구성된 폭 500~1000nm, 길이 10~20㎛의 이산화티타늄 나노튜브 3.56g을 얻었다.After the reaction, pure white titanium dioxide anatase crystal phase was obtained, and 3.56 g of titanium dioxide nanotubes having a width of 500 to 1000 nm and a length of 10 to 20 μm composed of nanoparticles (average particle diameter of 20 to 35 nm) were obtained as shown in FIG. 1.

<실시예 1>&Lt; Example 1 >

- 이산화티타늄 나노입자(P25)를 광흡수층, 속이 빈 막대형태 이산화티타늄 나노튜브를 광산란층으로 사용한 광전극 제조-Photoelectrode fabrication using titanium dioxide nanoparticles (P25) as light absorbing layer and hollow rod-shaped titanium dioxide nanotubes as light scattering layer

광전극 기판으로 FTO 유리기판을 준비하고, 상기 기판의 전도성면 쪽에 접착테이프를 부착하여 0.275㎠의 면적으로 마스킹하였다.An FTO glass substrate was prepared as a photoelectrode substrate, and an adhesive tape was attached to the conductive side of the substrate to mask an area of 0.275 cm 2.

테르피네올(terpineol) : 에틸셀룰로오스 : 라우르산 = 0.75 : 0.05 : 0.02의 중량비로 혼합하여 바인더를 제조하였다. 그 후 TiO2 나노입자(상품명 P25, 평균입경 20nm, Degussa사제): 바인더 = 0.18 : 0.82의 중량비로 혼합하면, TiO2/테르피네올/에틸셀룰로오스/라우르산의 중량비는 0.18/0.75/0.05/0.02가 되었다. 페이스트 믹서를 사용하여 1000rpm으로 약 30분 정도 혼합하여 TiO2 페이스트 1을 제조하였다.Terpineol (terpineol): ethyl cellulose: lauric acid = 0.75: 0.05: 0.02 by mixing in a weight ratio to prepare a binder. Thereafter, TiO 2 nanoparticles (trade name P25, average particle diameter: 20 nm, manufactured by Degussa): binder = 0.18: mixed at a weight ratio of 0.82, the weight ratio of TiO 2 / terpineol / ethylcellulose / lauric acid was 0.18 / 0.75 / 0.05 /0.02. TiO 2 paste 1 was prepared by mixing about 30 minutes at 1000 rpm using a paste mixer.

상기에서 제조한 TiO2 페이스트 1을 상기 투명전극(FTO)층 위에 닥터-블레이더(doctor-blade) 방법으로 도포하고, 투명전극 기판을 450℃에서 15분간 소성하여 다공질 막으로 이루어진 광흡수층(두께 10㎛)을 형성하였다.The TiO 2 paste 1 prepared above was coated on the transparent electrode (FTO) layer by a doctor-blade method, and the transparent electrode substrate was baked at 450 ° C. for 15 minutes to form a light absorbing layer (thickness 10). Μm) was formed.

상기 제조예에서 제조된 속이 빈 막대형태의 이산화티타늄 나노튜브와 바인더용 고분자(에틸셀룰로오즈) 및 용매(테르피네올)를 이용하여, 상기 TiO2 페이스트 1의 제조와 동일한 방법으로 TiO2 페이스트 2를 제조하여 상기 광흡수층 위에 같은 방법으로 도포하고, 450℃에서 15분간 소성하여 다공질 막으로 이루어진 광산란층(두께 10㎛)을 형성하였다.Using the hollow rod in the form of titanium oxide nanotubes and the binder polymer (ethyl cellulose) and solvent (terpineol) for prepared in Preparative Example, a TiO 2 paste 2 in the same manner as the TiO 2 produced in paste 1 It was prepared and coated on the light absorbing layer in the same manner, and baked at 450 ℃ for 15 minutes to form a light scattering layer (thickness 10㎛) consisting of a porous membrane.

그런 다음, 상기의 광산란층에 Dyesol사의 N719(cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(Ⅱ))를 에탄올 용매에 0.5mmol로 용해시켜 제조한 염료용액을 24시간 흡착시켜 광전극을 제작하였다. Then, N719 (cis-bis (isothiocyanato) bis (2,2'-bipyridyl-4,4'-dicarboxylato) -ruthenium (II)) of Dyesol was prepared by dissolving 0.5 mmol of ethanol in the light scattering layer. One dye solution was adsorbed for 24 hours to prepare a photoelectrode.

<실시예 2><Example 2>

- P25를 광흡수층, 속이 빈 막대형태 이산화티타늄 나노튜브 70중량% + P25 30중량%를 광산란층으로 사용한 광전극 제조-Photoelectrode fabrication using P25 as light absorbing layer, hollow rod-shaped titanium dioxide nanotube 70% by weight + P25 30% by weight as light scattering layer

속이 빈 막대형태의 이산화티타늄 나노튜브의 함량에 따라 광산란 효과에 대한 차이가 있는지를 알아보기 위하여, 상기 제조예에서 제조된 속이 빈 막대형태의 이산화티타늄 나노튜브 70중량%와 이산화티타늄 나노입자(P25) 30중량%로 이루어진 혼합물을 사용하여 광산란층을 형성한 것 이외에는, 실시예 1과 동일하게 하여 광전극을 제조하였다.To determine whether there is a difference in the light scattering effect according to the content of the hollow rod-type titanium dioxide nanotubes, 70% by weight of the hollow rod-shaped titanium dioxide nanotubes prepared in the preparation example and titanium dioxide nanoparticles (P25 A photoelectrode was prepared in the same manner as in Example 1 except that the light scattering layer was formed using a mixture composed of 30 wt%.

<실시예 3><Example 3>

- P25를 광흡수층, 속이 빈 막대형태 이산화티타늄 나노튜브 30중량% + P25 70중량%를 광산란층으로 사용한 광전극 제조-Photoelectrode fabrication using 30% by weight of P25 as light absorption layer and hollow rod-shaped titanium dioxide nanotube + 70% by weight of P25 as light scattering layer

속이 빈 막대형태의 이산화티타늄 나노튜브의 함량에 따라 광산란 효과에 대한 차이가 있는지를 알아보기 위하여, 상기 제조예에서 제조된 속이 빈 막대형태의 이산화티타늄 나노튜브 30중량%와 이산화티타늄 나노입자(P25) 70중량%로 이루어진 혼합물을 사용하여 광산란층을 형성한 것 이외에는, 실시예 1과 동일하게 하여 광전극을 제조하였다.In order to determine whether there is a difference in the light scattering effect according to the content of the hollow rod-type titanium dioxide nanotubes, 30% by weight of the hollow rod-shaped titanium dioxide nanotubes prepared in the preparation example and titanium dioxide nanoparticles (P25 A photoelectrode was prepared in the same manner as in Example 1 except that the light scattering layer was formed using a mixture composed of 70 wt%.

<실시예 4><Example 4>

- P90을 광흡수층, 속이 빈 막대형태 이산화티타늄 나노튜브를 광산란층으로 사용한 광전극 제조-Photoelectrode fabrication using P90 as light absorption layer and hollow rod-shaped titanium dioxide nanotubes as light scattering layer

상기 실시예 1에서 광흡수층의 형성에 사용된 이산화티타늄 나노입자로서 P25 대신 P90(상품명, 아나타제:루타일=90:10, 평균입경 10~15nm, Degussa사제)을 사용한 것 이외에는 실시예 1과 동일하게 하여 광전극을 제조하였다.Except for using P90 (trade name, anatase: rutile = 90:10, average particle diameter 10 ~ 15nm, manufactured by Degussa) instead of P25 as the titanium dioxide nanoparticles used in the formation of the light absorption layer in Example 1 A photoelectrode was prepared.

<실시예 5><Example 5>

- P90을 광흡수층, 속이 빈 막대형태 이산화티타늄 나노튜브 70중량% + P90 30중량%를 광산란층으로 사용한 광전극 제조-Photoelectrode fabrication using P90 as light absorption layer, hollow rod-shaped titanium dioxide nanotube 70% by weight + P90 30% by weight as light scattering layer

속이 빈 막대형태의 이산화티타늄 나노튜브의 함량에 따라 광산란 효과에 대한 차이가 있는지를 알아보기 위하여, 상기 제조예에서 제조된 속이 빈 막대형태의 이산화티타늄 나노튜브 70중량%와 이산화티타늄 나노입자(P90) 30중량%로 이루어진 혼합물을 사용하여 광산란층을 형성한 것 이외에는, 실시예 1과 동일하게 하여 광전극을 제조하였다.To determine whether there is a difference in the light scattering effect according to the content of the hollow rod-type titanium dioxide nanotubes, 70% by weight of the hollow rod-shaped titanium dioxide nanotubes prepared in the above preparation and titanium dioxide nanoparticles (P90 A photoelectrode was prepared in the same manner as in Example 1 except that the light scattering layer was formed using a mixture composed of 30 wt%.

<실시예 6><Example 6>

- P90을 광흡수층, 속이 빈 막대형태 이산화티타늄 나노튜브 30중량% + P90 70중량%를 광산란층으로 사용한 광전극 제조-Photoelectrode manufacturing using P90 as light absorption layer, hollow rod-shaped titanium dioxide nanotube 30% by weight + P90 70% by weight as light scattering layer

속이 빈 막대형태의 이산화티타늄 나노튜브의 함량에 따라 광산란 효과에 대한 차이가 있는지를 알아보기 위하여, 상기 제조예에서 제조된 속이 빈 막대형태의 이산화티타늄 나노튜브 30중량%와 이산화티타늄 나노입자(P90) 70중량%로 이루어진 혼합물을 사용하여 광산란층을 형성한 것 이외에는, 실시예 1과 동일하게 하여 광전극을 제조하였다.In order to determine whether there is a difference in the light scattering effect according to the content of the hollow rod-type titanium dioxide nanotubes, 30% by weight of the hollow rod-shaped titanium dioxide nanotubes prepared in the preparation example and the titanium dioxide nanoparticles (P90 A photoelectrode was prepared in the same manner as in Example 1 except that the light scattering layer was formed using a mixture composed of 70 wt%.

<비교예 1>&Lt; Comparative Example 1 &

- 광산란층 없이, P25를 광흡수층으로 사용한 광전극 제조-Photoelectrode manufacturing using P25 as light absorption layer without light scattering layer

상기 실시예 1에서 광산란층을 형성하지 않은 것 이외에는, 실시예 1과 동일하게 하여 광전극을 제조하였다.A photoelectrode was manufactured in the same manner as in Example 1 except that the light scattering layer was not formed in Example 1.

<비교예 2>Comparative Example 2

- 광산란층 없이, P90을 광흡수층으로 사용한 광전극 제조-Photoelectrode manufacturing using P90 as light absorption layer without light scattering layer

상기 실시예 4에서 광산란층을 형성하지 않은 것 이외에는, 실시예 4와 동일하게 하여 광전극을 제조하였다.A photoelectrode was manufactured in the same manner as in Example 4 except that the light scattering layer was not formed in Example 4.

<비교예 3>&Lt; Comparative Example 3 &

- 광산란층 없이, 속이 빈 막대형태의 이산화티타늄 나노튜브를 광흡수층으로 사용한 광전극 제조-Photoelectrode fabrication using hollow rod-shaped titanium dioxide nanotubes as light absorption layer without light scattering layer

속이 빈 막대형태의 이산화티타늄 나노튜브를 광흡수층에 사용하여 광전류를 발생시킬 수 있는지를 알아보기 위해 광전극을 제조하였다.A photoelectrode was fabricated to see if a hollow rod-type titanium dioxide nanotube could be used in the light absorption layer to generate a photocurrent.

상기 실시예 1에서 광흡수층의 형성에 사용된 P25 대신 상기 제조예에서 제조된 속이 빈 막대형태의 이산화티타늄 나노튜브를 사용하여 광흡수층을 형성하고, 광산란층을 형성하지 않은 것 이외에는, 실시예 1과 동일하게 하여 광전극을 제조하였다.Except for forming a light absorbing layer using a hollow rod-shaped titanium dioxide nanotubes prepared in the manufacturing example instead of P25 used in the formation of the light absorbing layer in Example 1, except that the light scattering layer is not formed, Example 1 In the same manner as in the photoelectrode was prepared.

<비교예 4>&Lt; Comparative Example 4 &

- 광산란층 없이, 속이 빈 막대형태의 이산화티타늄 나노튜브 70중량% + P25 30중량%를 광흡수층으로 사용한 광전극 제조-Photoelectrode fabrication using 70% by weight of hollow rod-type titanium dioxide nanotubes + 30% by weight of P25 as a light absorption layer without light scattering layer

속이 빈 막대형태의 이산화티타늄 나노튜브 70중량%를 광흡수층에 사용하여 광전류를 발생시킬 수 있는지를 알아보기 위해 광전극을 제조하였다.A photoelectrode was fabricated to see if 70% by weight of hollow rod-type titanium dioxide nanotubes were used in the light absorption layer to generate a photocurrent.

상기 실시예 1에서 광흡수층의 형성에 사용된 P25 대신 상기 제조예에서 제조된 속이 빈 막대형태의 이산화티타늄 나노튜브 70중량%와 P25 30중량%의 혼합물을 사용하여 광흡수층을 형성하고, 광산란층을 형성하지 않은 것 이외에는, 실시예 1과 동일하게 하여 광전극을 제조하였다.Instead of P25 used in the formation of the light absorption layer in Example 1 to form a light absorption layer by using a mixture of 70% by weight of the hollow rod-shaped titanium dioxide nanotubes and P25 30% by weight, a light scattering layer A photoelectrode was prepared in the same manner as in Example 1, except that no was formed.

<비교예 5>&Lt; Comparative Example 5 &

- 광산란층 없이, 속이 빈 막대형태의 이산화티타늄 나노튜브 30중량% + P25 70중량%를 광흡수층으로 사용한 광전극 제조-Photoelectrode fabrication using 30% by weight of hollow rod-type titanium dioxide nanotubes + 70% by weight of P25 as light absorption layer without light scattering layer

속이 빈 막대형태의 이산화티타늄 나노튜브 30중량%를 광흡수층에 사용하여 광전류를 발생시킬 수 있는지를 알아보기 위해 광전극을 제조하였다.A photoelectrode was fabricated to determine whether 30 wt% of hollow titanium dioxide nanotubes in the form of hollow rods could be used to generate a photocurrent.

상기 실시예 1에서 광흡수층의 형성에 사용된 P25 대신 상기 제조예에서 제조된 속이 빈 막대형태의 이산화티타늄 나노튜브 30중량%와 P25 70중량%의 혼합물을 사용하여 광흡수층을 형성하고, 광산란층을 형성하지 않은 것 이외에는, 실시예 1과 동일하게 하여 광전극을 제조하였다.Instead of P25 used in the formation of the light absorbing layer in Example 1 to form a light absorbing layer using a mixture of 30% by weight of the hollow rod-shaped titanium dioxide nanotubes and P25 70% by weight, a light scattering layer A photoelectrode was prepared in the same manner as in Example 1, except that no was formed.

<비교예 6>&Lt; Comparative Example 6 >

- 광흡수층과 광산란층 모두 P25를 사용한 광전극 제조-Photoelectrode fabrication using P25 for both light absorption layer and light scattering layer

P25를 광산란층으로 사용하여 광산란 역할을 할 수 있는지를 비교하기 위하여, 실시예 1에서 광산란층의 형성에 사용된 속이 빈 막대형태의 이산화티타늄 나노튜브 대신 P25를 사용한 것 이외에는, 실시예 1과 동일하게 하여 광전극을 제조하였다.To compare whether P25 can be used as a light scattering layer by using P25 as a light scattering layer, the same method as in Example 1 except that P25 was used instead of the hollow rod-shaped titanium dioxide nanotubes used in the formation of the light scattering layer. A photoelectrode was prepared.

<비교예 7>&Lt; Comparative Example 7 &

- 광흡수층과 광산란층 모두 P90을 사용한 광전극 제조-Photoelectrode fabrication using P90 for both light absorption layer and light scattering layer

P90을 광산란층으로 사용하여 광산란 역할을 할 수 있는지를 비교하기 위하여, 실시예 4에서 광산란층의 형성에 사용된 속이 빈 막대형태의 이산화티타늄 나노튜브 대신 P90을 사용한 것 이외에는, 실시예 1과 동일하게 하여 광전극을 제조하였다.In order to compare whether P90 can be used as a light scattering layer by using P90 as a light scattering layer, the same method as in Example 1 except that P90 was used instead of the hollow rod-shaped titanium dioxide nanotubes used in the formation of the light scattering layer. A photoelectrode was prepared.

<실험예 1><Experimental Example 1>

- 입자 크기와 형태 측정-Particle size and shape measurement

상기 제조예에서 제조된 이산화티타늄 나노튜브의 형태를 전자현미경으로 관찰하여 그 결과를 도 1에 나타내었고, 실시예 1에서 제조한 광전극의 단면을 SEM을 이용해서 확인하였다.The form of the titanium dioxide nanotubes prepared in Preparation Example was observed with an electron microscope, and the results are shown in FIG. 1, and the cross section of the photoelectrode prepared in Example 1 was confirmed using SEM.

<실험예 2><Experimental Example 2>

- 입자의 결정종류 조사-Investigate crystal type of particles

상기 제조예에 따라 제조된 이산화티타늄 나노튜브(HT)와 P25의 결정성을 X-ray 회절 분석기(Rigaku Multiflex diffractometer CuKa radiation(λ) = 1.5406 A)로 분석하여, 도 2에 함께 나타내었다. HT의 엑스선 회절 패턴을 보게 되면, JCPDS 21-1272 아나타제형인 이산화티타니아 피크와 일치하는 것을 확인할 수 있다.The crystallinity of titanium dioxide nanotubes (HT) and P25 prepared according to the preparation example were analyzed by an X-ray diffractometer (Rigaku Multiflex diffractometer CuKa radiation (λ) = 1.5406 A), and are shown in FIG. 2 together. When looking at the X-ray diffraction pattern of HT, it can be confirmed that it is consistent with the peak of titania dioxide, which is anatase type JCPDS 21-1272.

<실험예 3><Experimental Example 3>

- 태양 전지 제조-Solar cell manufacturing

상기 실시예들과 비교예들에서 제작된 각각의 광전극과 상대전극을 고분자 필름(Sealing material, SX1170-60)을 개재하여 샌드위치 모양으로 접합한 후, 최종적으로 전해질을 주입하여 염료감응 태양전지를 제작하였다.Each photoelectrode and the counter electrode manufactured in the above Examples and Comparative Examples were bonded to each other through a polymer film (Sealing material, SX1170-60) in the form of a sandwich, and finally an electrolyte was injected to form a dye-sensitized solar cell. Produced.

제작된 각각의 염료감응 태양전지에 대하여 개방전압, 광전류밀도, 에너지 변환효율(energy conversion efficiency) 및 충진계수(fill factor)를 측정하여 하기 표 1, 2 및 도 5에 나타내었다.Open voltage, photocurrent density, energy conversion efficiency and fill factor of each of the fabricated dye-sensitized solar cells are shown in Tables 1, 2 and 5 below.

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

상기 표의 결과로부터 알 수 있는 바와 같이, 염료감응 태양전지에서 이산화티타늄 나노튜브를 광산란층으로 사용하게 되면, 광변환 효율이 상승하는 결과를 얻을 수 있었으며(실시예 1, 4와 비교예 1, 2의 효율 차이), 또한 이산화티타늄 나노튜브 중량%에 따라 효율의 차이가 나타나는 결과를 얻을 수 있었다(실시예 1~6의 결과).As can be seen from the results of the above table, when the titanium dioxide nanotubes were used as the light scattering layer in the dye-sensitized solar cell, the light conversion efficiency was increased (Examples 1 and 4 and Comparative Examples 1 and 2). Efficiency difference), and also the difference in efficiency can be obtained depending on the weight percent of titanium dioxide nanotubes (results of Examples 1 to 6).

이산화티타늄 나노튜브가 광산란층으로 사용되기에 최적의 조건을 가지고 있다는 것은 비교실험 결과를 통해 알 수 있었다(실시예 1, 4와 비교예 6, 7의 결과).Titanium dioxide nanotubes have the optimum conditions to be used as the light scattering layer was confirmed through the comparative experiment results (results of Examples 1, 4 and Comparative Examples 6, 7).

하지만, 이산화티타늄 나노튜브를 각각 광흡수층으로 사용하게 되면 나노튜브 함량에 따라 효율의 변화가 나타나는 것을 확인할 수 있었다(비교예 3~5의 결과).
However, when titanium dioxide nanotubes were used as the light absorption layer, respectively, it was confirmed that the change in efficiency appeared depending on the nanotube content (comparative examples 3 to 5).

Claims (8)

알코올 용매에 티타늄 전구체와 염기 첨가제를 티타늄 전구체:염기 첨가제=1:5~10의 몰비로 혼합하고, 얻어진 용액을 고압 마이크로웨이브 반응기에서 반응시켜 제조하는 것을 특징으로 하는 속이 빈 막대형 이산화티타늄 나노튜브의 제조방법.A hollow rod-type titanium dioxide nanotube, which is prepared by mixing a titanium precursor and a base additive in an alcohol solvent in a molar ratio of titanium precursor: base additive = 1: 5 to 10, and reacting the obtained solution in a high pressure microwave reactor. Manufacturing method. 제 1항에 있어서, 상기 알코올 용매는 메탄올, 에탄올, 1-프로판올, 2-프로판올 및 부탄올로 이루어진 군으로부터 선택되는 것을 특징으로 하는 속이 빈 막대형 이산화티타늄 나노튜브의 제조방법.The method of claim 1, wherein the alcohol solvent is selected from the group consisting of methanol, ethanol, 1-propanol, 2-propanol and butanol. 제 1항에 있어서, 상기 염기 첨가제는 테트라부틸암모늄 히드록사이드인 것을 특징으로 하는 속이 빈 막대형 이산화티타늄 나노튜브의 제조방법.The method of claim 1, wherein the base additive is tetrabutylammonium hydroxide. 제 1항에 있어서, 상기 속이 빈 막대형 이산화티타늄 나노튜브는 평균입경 20~35nm의 이산화티타늄 나노입자들로 이루어지고, 속이 빈 막대의 폭은 500~1000nm이며, 길이는 10~20㎛인 것을 특징으로 하는 속이 빈 막대형 이산화티타늄 나노튜브의 제조방법.The hollow rod-type titanium dioxide nanotube is made of titanium dioxide nanoparticles having an average particle diameter of 20 ~ 35nm, the width of the hollow rod is 500 ~ 1000nm, the length is 10 ~ 20㎛ Method for producing hollow rod-type titanium dioxide nanotubes characterized in that. 제 1항에 있어서, 상기 고압 마이크로웨이브 반응기의 반응 조건은 150~250℃의 온도범위에서 2~6시간 동안 출력 150~500W으로 반응시키는 것을 특징으로 하는 속이 빈 막대형 이산화티타늄 나노튜브의 제조방법.The method of claim 1, wherein the reaction conditions of the high-pressure microwave reactor are hollow rod-type titanium dioxide nanotubes, characterized in that the reaction at 150 ~ 500W output for 2-6 hours in the temperature range of 150 ~ 250 ℃. . 제 1항 내지 제 5항 중 어느 한 항에 따른 제조방법으로 제조된 속이 빈 막대형 이산화티타늄 나노튜브를 이용하여 형성된 광산란층을 포함하는 염료감응 태양전지용 광전극.A photosensitive electrode for dye-sensitized solar cells comprising a light scattering layer formed by using hollow rod-type titanium dioxide nanotubes prepared by the method according to any one of claims 1 to 5. 제 6항에 있어서, 상기 광전극은 광전극 기판과, 상기 광전극 기판 위에 이산화티타늄 나노입자를 포함하는 페이스트를 도포하여 형성된 광흡수층, 및 상기 광흡수층 위에 상기 속이 빈 막대형 이산화티타늄 나노튜브를 포함하는 페이스트를 도포하여 형성된 광산란층을 포함하는 것을 특징으로 하는 염료감응 태양전지용 광전극.7. The photoelectrode of claim 6, wherein the photoelectrode comprises a photoelectrode substrate, a light absorption layer formed by applying a paste containing titanium dioxide nanoparticles on the photoelectrode substrate, and the hollow rod-shaped titanium dioxide nanotube on the photoabsorption layer. Dye-sensitized solar cell photoelectrode comprising a light scattering layer formed by applying a paste containing. 제 7항에 따른 염료감응 태양전지용 광전극을 포함하는 염료감응 태양전지.

Dye-sensitized solar cell comprising a photoelectrode for dye-sensitized solar cell according to claim 7.

KR1020110109359A 2011-10-25 2011-10-25 A method for preparing nano-tube of titanium dioxide and a photoelectrode for dye-sensitized solar cell comprising the nano-tube KR101326659B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110109359A KR101326659B1 (en) 2011-10-25 2011-10-25 A method for preparing nano-tube of titanium dioxide and a photoelectrode for dye-sensitized solar cell comprising the nano-tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110109359A KR101326659B1 (en) 2011-10-25 2011-10-25 A method for preparing nano-tube of titanium dioxide and a photoelectrode for dye-sensitized solar cell comprising the nano-tube

Publications (2)

Publication Number Publication Date
KR20130044967A true KR20130044967A (en) 2013-05-03
KR101326659B1 KR101326659B1 (en) 2013-11-07

Family

ID=48657262

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110109359A KR101326659B1 (en) 2011-10-25 2011-10-25 A method for preparing nano-tube of titanium dioxide and a photoelectrode for dye-sensitized solar cell comprising the nano-tube

Country Status (1)

Country Link
KR (1) KR101326659B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101409683B1 (en) * 2012-07-06 2014-06-19 서울대학교산학협력단 Metal decorated TiO2 nanofiber for dye snesitized solar cell : synergistic effects of light scattering and surface plasmons
CN108946804A (en) * 2018-07-25 2018-12-07 佛山腾鲤新能源科技有限公司 A kind of preparation method of titania nanotube used for solar batteries
WO2020059941A1 (en) * 2018-09-21 2020-03-26 동아대학교 산학협력단 Composition for cathode active material surface treatment, method for preparing same, and cathode active material surface-treated with same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175586A (en) * 2002-11-25 2004-06-24 Fujikura Ltd Method of manufacturing titanium oxide nanotube
KR100931134B1 (en) * 2007-08-31 2009-12-10 현대자동차주식회사 Dye-Sensitized Solar Cell Using Titanium Oxide Nanotubes and Its Manufacturing Method
EP2366667B1 (en) * 2008-11-12 2016-12-07 Nissan Chemical Industries, Ltd. Titanium oxide sol manufacturing method
KR101114708B1 (en) * 2010-02-09 2012-02-29 영남대학교 산학협력단 Method for manufacturing cubic TiO2 nano particle for dye-sensitized solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101409683B1 (en) * 2012-07-06 2014-06-19 서울대학교산학협력단 Metal decorated TiO2 nanofiber for dye snesitized solar cell : synergistic effects of light scattering and surface plasmons
CN108946804A (en) * 2018-07-25 2018-12-07 佛山腾鲤新能源科技有限公司 A kind of preparation method of titania nanotube used for solar batteries
WO2020059941A1 (en) * 2018-09-21 2020-03-26 동아대학교 산학협력단 Composition for cathode active material surface treatment, method for preparing same, and cathode active material surface-treated with same

Also Published As

Publication number Publication date
KR101326659B1 (en) 2013-11-07

Similar Documents

Publication Publication Date Title
Yang et al. Fabrication of TiO2 hollow microspheres assembly from nanosheets (TiO2-HMSs-NSs) with enhanced photoelectric conversion efficiency in DSSCs and photocatalytic activity
Umale et al. Improved efficiency of DSSC using combustion synthesized TiO2
Wu et al. Monodisperse TiO 2 hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells
US9966198B2 (en) Solar cells with perovskite-based light sensitization layers
KR100927212B1 (en) Photoelectrode for dye-sensitized solar cell containing hollow sphere metal oxide nanoparticles and method for manufacturing same
Shiu et al. Size-controlled anatase titania single crystals with octahedron-like morphology for dye-sensitized solar cells
Miao et al. Controlled synthesis of mesoporous anatase TiO 2 microspheres as a scattering layer to enhance the photoelectrical conversion efficiency
Matsuda et al. Well-aligned TiO2 nanotube arrays for energy-related applications under solar irradiation
Zhang et al. Mesocrystalline TiO 2 nanosheet arrays with exposed {001} facets: Synthesis via topotactic transformation and applications in dye-sensitized solar cells
KR100945742B1 (en) The method for producing of the photo-electrode of dye-sensitized solar cell
Makal et al. Graphitic carbon nitride (g-C3N4) incorporated TiO2–B nanowires as efficient photoanode material in dye sensitized solar cells
Arunkumar et al. Design and fabrication of novel Tb doped BaTiO3 thin film with superior light-harvesting characteristics for dye sensitized solar cells
Wang et al. Hierarchically macro–mesoporous TiO2 film via self-assembled strategy for enhanced efficiency of dye sensitized solar cells
Li et al. ZnO nanosheets derived from surfactant‐directed process: growth mechanism, and Application in Dye‐Sensitized Solar Cells
KR100913308B1 (en) Dye-sensitized solar cell using the nanoporous spherical structure for photo-electrode
Joshy et al. Recent progress in one dimensional TiO 2 nanomaterials as photoanodes in dye-sensitized solar cells
KR20140119314A (en) Electrode for photoelectrochemical cell, method of manufacturing the same and photoelectrochemical cell including the same
JP2011236104A (en) Titanium oxide structure and method for producing the same, and photoelectric conversion device using the titanium oxide structure
Padmanathan et al. Design and fabrication of hybrid carbon dots/titanium dioxide (CDs/TiO2) photoelectrodes for highly efficient dye-sensitized solar cells
KR101326659B1 (en) A method for preparing nano-tube of titanium dioxide and a photoelectrode for dye-sensitized solar cell comprising the nano-tube
Wang et al. Aqueous solution-processed multifunctional SnO2 aggregates for highly efficient dye-sensitized solar cells
Huo et al. Fabrication a thin nickel oxide layer on photoanodes for control of charge recombination in dye-sensitized solar cells
Wang et al. Dye-sensitized solar cell using a TiO2 nanocrystalline film electrode prepared by solution combustion synthesis
Liao et al. Effect of photoelectrode morphology of single-crystalline anatase nanorods on the performance of dye-sensitized solar cells
KR101114708B1 (en) Method for manufacturing cubic TiO2 nano particle for dye-sensitized solar cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161020

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171127

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181015

Year of fee payment: 6