KR20130042262A - Desorbent for continuous adsorptive removal process of sulfur-oxidated compounds, and removal methods of sulfur-oxidated compounds from hydrocarbon stream using the same - Google Patents

Desorbent for continuous adsorptive removal process of sulfur-oxidated compounds, and removal methods of sulfur-oxidated compounds from hydrocarbon stream using the same Download PDF

Info

Publication number
KR20130042262A
KR20130042262A KR1020110106447A KR20110106447A KR20130042262A KR 20130042262 A KR20130042262 A KR 20130042262A KR 1020110106447 A KR1020110106447 A KR 1020110106447A KR 20110106447 A KR20110106447 A KR 20110106447A KR 20130042262 A KR20130042262 A KR 20130042262A
Authority
KR
South Korea
Prior art keywords
sulfur
sulfur oxide
adsorption
desorbent
desorption
Prior art date
Application number
KR1020110106447A
Other languages
Korean (ko)
Other versions
KR101285124B1 (en
Inventor
김종남
고창현
한상섭
박종호
범희태
정태성
김경록
유재욱
김용운
노명한
Original Assignee
한국에너지기술연구원
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원, 에스케이이노베이션 주식회사 filed Critical 한국에너지기술연구원
Priority to KR1020110106447A priority Critical patent/KR101285124B1/en
Publication of KR20130042262A publication Critical patent/KR20130042262A/en
Application granted granted Critical
Publication of KR101285124B1 publication Critical patent/KR101285124B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/265Adsorption chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/20Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the conditioning of the sorbent material
    • B01D15/203Equilibration or regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE: A desorption material for a continuous sulfur oxide adsorption removal process and a method consecutively removing a sulfur oxide from a hydrocarbon stream using the same are provided to efficiently remove a sulfide from a hydrocarbon stream by maintaining the sulfur oxide adsorption quantity of an adsorption material highly in a continuous process repeating the adsorption and desorption of the sulfur oxide. CONSTITUTION: A desorption material for a continuous sulfur oxide adsorption removal process includes any one selected from a DME (dimethyl ether), a DMC (dimethyl carbonate), and a MTBE (methyl tertiary butyl ether), and a mixture thereof. The desorption material additionally includes hexane or benzene. The desorption is performed at 40~90>=, 1~20barg. The vaporization latent heat of the desorption material is below 500 kJ/kg. The boiling point is 120>= or less which is a sulfide oxidation temperature. A method consecutively removing a sulfur oxide from a hydrocarbon stream includes following steps. A step for absorbing the sulfur oxide from a hydrocarbon stream by using an adsorption material selectively adsorbing the sulfur oxide; a step for reproducing the adsorption material by detaching the adsorbed sulfur oxide with the desorption material; and a step for reusing by separating a desorption material from the detached sulfur oxide and the mixture of the desorption material.

Description

연속적 황산화물 흡착 제거 공정용 탈착제 및 이를 이용하여 탄화수소 스트림으로부터 황산화물을 제거하는 방법 {DESORBENT FOR CONTINUOUS ADSORPTIVE REMOVAL PROCESS OF SULFUR-OXIDATED COMPOUNDS, AND REMOVAL METHODS OF SULFUR-OXIDATED COMPOUNDS FROM HYDROCARBON STREAM USING THE SAME}Desorption agent for continuous sulfur oxide adsorption removal process and method for removing sulfur oxides from hydrocarbon stream using the same.

본 발명은 연속적 황산화물 흡착 제거 공정용 탈착제 및 이를 이용하여 탄화수소 스트림으로부터 황산화물을 제거하는 방법에 관한 것으로서, 자세하게는 탄화수소 스트림으로부터 황산화물을 제거하여 저유황 경유를 생산하는 연속적 황산화물 흡착 제거 공정에 있어서, 황산화물의 동적 흡착량을 증가시킬 수 있는 탈착제 및 이를 이용한 황산화물 제거 방법에 대한 것이다.
The present invention relates to a desorbent for a continuous sulfur oxide adsorption removal process and a method for removing sulfur oxides from a hydrocarbon stream using the same. Specifically, the removal of sulfur oxides from a hydrocarbon stream to remove sulfur oxides from a hydrocarbon stream produces continuous sulfur oxide adsorption. In the process, the present invention relates to a desorbent capable of increasing the dynamic adsorption amount of sulfur oxides and a method for removing sulfur oxides using the same.

도시의 대기오염은 자동차 배기가스가 주원인으로 알려져 있으며, 이에 따라 전 세계적으로 대기 환경 개선을 위하여 경유의 황 함량 규제가 강화되고 있고 우리나라를 포함한 몇 개국에서는 경유의 황 함량을 10ppm 이하로 제한하고 있다. The city's air pollution is known as the main cause of automobile exhaust gas. Accordingly, globally, the regulation of sulfur content of diesel is tightened to improve the air environment, and some countries including Korea limit the sulfur content of diesel to less than 10ppm. .

원유를 정제하는 정유공장에는 상압증류공정(CDU), 감압증류공정(VDU), 중질유접촉분해공정(RFCC), 중질유수첨분해공정 (HCR) 등 다양한 공정들에서 탄화수소의 성상에 따라 여러 종류의 스트림을 생산하며, 이들 스트림에는 100~20,000 ppm의 황화합물이 포함되어 있다. 수송용 연료인 휘발유, 경유, 제트유 등은 상기 여러 종류의 스트림으로부터 황화합물을 제거한 후 이들을 용도에 맞게 혼합하여 생산된다.Refineries that refine crude oil have different streams depending on the nature of the hydrocarbons in a variety of processes including atmospheric distillation (CDU), vacuum distillation (VDU), heavy oil catalytic cracking (RFCC) and heavy hydrocracking (HCR). These streams contain between 100 and 20,000 ppm of sulfur compounds. Gasoline, diesel, jet oil, and the like, which are transport fuels, are produced by removing sulfur compounds from the various types of streams and mixing them according to the purpose.

지금까지 황화합물 제거 기술은 탄화수소 스트림에 수소를 첨가한 후, 고온, 고압에서 촉매를 이용하여 황화합물 중에 있는 황과 수소를 반응시켜 황화수소(H2S)로 전환함으로써 황을 제거하는 수첨탈황 공정(hydrodesulfurization)이 주로 사용되어 왔다. Until now, sulfur removal technology has been a hydrodesulfurization process that removes sulfur by adding hydrogen to a hydrocarbon stream and then converting it to hydrogen sulfide (H2S) by reacting sulfur and hydrogen in sulfur compounds using a catalyst at high temperature and pressure. Mainly used.

그러나, 이 기술은 4,6-DMDBT(4,6-dimethyldibenzothiophene)과 같이 황 주변에 메틸기 등이 있어 입체 장해가 있는 황화합물의 경우에는 고심도 탈황이 어렵다는 문제점이 있다. 따라서, 이에 대한 대안으로 황화합물을 산화하여 술폰이나 술폭사이드와 같은 황산화물로 전환한 후, 상기 황산화물을 흡착 또는 추출로 제거하는 산화탈황공정(oxidative desulfurization)이 개발되었다. However, this technique has a problem that high-level desulfurization is difficult in the case of sulfur compounds having steric hindrance due to methyl groups around sulfur such as 4,6-DMDBT (4,6-dimethyldibenzothiophene). Therefore, as an alternative, an oxidative desulfurization has been developed in which a sulfur compound is converted to a sulfur oxide such as sulfone or sulfoxide, and then the sulfur oxide is removed by adsorption or extraction.

미국 특허 제 7,186,328 B1(UOP LLC)와 미국 특허 제 7,452,459 B2(UOP LLC)에서는 황산화물이 들어 있는 탄화수소 스트림을 황산화물 선택적 흡착제가 충전된 흡착탑으로 도입하여 황산화물을 흡착시킴으로써 황산화물 함량을 감소시킨 탄화수소 스트림을 생산하는 기술이 개시되어 있다. 이때 탈착제를 상기 황산화물을 흡착한 흡착제에 도입하여 흡착된 황산화물을 탈착시킴과 동시에 흡착제를 재생하게 된다. U.S. Pat.No. 7,186,328 B1 (UOP LLC) and U.S. Pat.No. 7,452,459 B2 (UOP LLC) introduce a hydrocarbon stream containing sulfur oxides into an adsorption tower filled with a sulfur oxide selective adsorbent to reduce sulfur oxide content by adsorbing sulfur oxides. Techniques for producing hydrocarbon streams are disclosed. At this time, the desorbent is introduced into the adsorbent adsorbing the sulfur oxide to desorb the adsorbed sulfur oxide and regenerate the adsorbent.

상기 특허에서는 황산화물 흡착제로 활성탄(activated charcoal), 하이드로탈사이트, 이온교환수지, 제올라이트, 실리카 알루미나, 실리카 겔이나 이들의 혼합물 등이 개시되어 있으며, 탈착제로는 펜탄, 헥산, 벤젠, 톨루엔, 자일렌, 또는 이들 혼합물이 개시되어 있다. The patent discloses activated charcoal, hydrotalcite, ion exchange resin, zeolite, silica alumina, silica gel or a mixture thereof as a sulfur oxide adsorbent, and as a desorbent, pentane, hexane, benzene, toluene, xyl Lene, or mixtures thereof.

그러나, 상기 흡/탈착제를 이용한 황산화물 제거 공정은 흡, 탈착이 연속적으로 이루어지면서 흡착제의 황산화물 흡착량을 계속하여 높게 유지하는 데에 어려움이 있었다.
However, the sulfur oxide removal process using the adsorption / desorption agent has difficulty in maintaining the sulfur oxide adsorption amount of the adsorbent continuously while the adsorption / desorption is continuously performed.

본 발명의 목적은 종래에 사용되는 탈착제들과는 달리 흡착, 탈착이 반복되는 연속공정에서 흡착제의 황산화물 흡착량을 높게 유지할 수 있는 연속적 황산화물 흡착 제거 공정용 탈착제 및 이를 이용한 황산화물 제거 방법을 제공하는 것이다.
It is an object of the present invention to provide a desulfurizing agent for a continuous sulfur oxide adsorption removal process and a method for removing sulfur oxides using the same, which can maintain a high sulfur oxide adsorption amount of the adsorbent in a continuous process in which adsorption and desorption are repeated, unlike desorbents conventionally used. To provide.

상술한 바와 같은 목적 달성을 위한 본 발명은, 탄화수소 스트림으로부터 황산화물을 연속적으로 흡/탈착하는 연속적 황산화물 흡착 제거 공정에 사용되는 탈착제로서, DME(dimethyl ether), DMC(dimethyl carbonate), MTBE(methyl tertiary butyl ether)로부터 선택되는 어느 하나 또는 이들의 혼합물을 사용하는 것을 기술적 요지로 한다. The present invention for achieving the above object is a desorption agent used in the continuous sulfur oxide adsorption removal process for the continuous adsorption / desorption of sulfur oxides from a hydrocarbon stream, DME (dimethyl ether), DMC (dimethyl carbonate), MTBE It is a technical point to use any one or a mixture thereof selected from (methyl tertiary butyl ether).

또한, 본 발명은 상기 탈착제를 사용하여 탄화수소 스트림으로부터 황산화물을 연속적으로 제거하는 방법으로서, ⅰ) 황산화물을 선택적으로 흡착하는 흡착제를 이용하여 탄화수소 스트림으로부터 황산화물을 흡착하는 단계, ⅱ) 상기 흡착된 황산화물을 DME(dimethyl ether), DMC(dimethyl carbonate), MTBE(methyl tertiary butyl ether)로부터 선택되는 어느 하나 또는 이들의 혼합물로 이루어진 탈착제로 탈착하여 흡착제를 재생하는 단계, 및 ⅲ) 상기 탈착된 황산화물과 탈착제의 혼합물로부터 탈착제를 분리하여 재사용하는 단계를 포함하며, 상기 각 단계가 반복되는 것을 특징으로 하는 황산화물을 제거 방법을 제공한다. In addition, the present invention provides a method for continuously removing sulfur oxides from a hydrocarbon stream using the desorbent, i) adsorbing sulfur oxides from a hydrocarbon stream using an adsorbent to selectively adsorb sulfur oxides, ii) said Desorbing the adsorbed sulfur oxide with a desorbent consisting of any one or a mixture thereof selected from dimethyl ether (DME), dimethyl carbonate (DMC) and methyl tertiary butyl ether (MTBE), and regenerating the adsorbent; and iii) the desorption. It provides a method for removing sulfur oxides, comprising the step of separating and reusing the desorbent from the mixture of the sulfur oxide and the desorbent.

이때, 상기 탈착제는 헥산 또는 벤젠을 추가로 포함할 수 있으며, 상기 탈착이 40~90℃, 1~20 barg에서 이루어질 수 있다. 또한, 증류탑에서 분리 에너지가 작아질 수 있도록 증발잠열이 500 kJ/kg 이하이고, 비점이 황화합물 산화반응온도인 120℃ 이하인 것이 바람직하다.
At this time, the desorbent may further include hexane or benzene, the desorption may be made at 40 ~ 90 ℃, 1 ~ 20 barg. In addition, it is preferable that the latent heat of evaporation is 500 kJ / kg or less, and the boiling point is 120 ° C. or less, which is a sulfur compound oxidation temperature, so that the separation energy in the distillation column may be reduced.

본 발명의 연속적 황산화물 흡착 제거 공정용 탈착제를 사용함으로써, 황산화물의 흡착과 탈착이 반복되는 연속공정에서도 흡착제의 황산화물 흡착량을 높게 유지할 수 있어 탄화수소 스트림으로부터 황화합물을 효율적이고 제거할 수 있다.
By using the desorbent for the continuous sulfur oxide adsorption removal process of the present invention, the sulfur oxide adsorption amount of the adsorbent can be kept high even in a continuous process in which the sulfur oxide adsorption and desorption are repeated, thereby efficiently and efficiently removing sulfur compounds from the hydrocarbon stream. .

도 1 - 일반적인 황산화물 흡착 제거 공정도
도 2 - 아세톤(acetone)을 탈착제로 사용하는 경우의 파과 흡착량 변화를 보여주는 그래프
도 3 - 노말 부탄을 탈착제로 사용하는 경우의 파과 흡착량 변화를 보여주는 그래프
도 4 - 노말 펜탄을 탈착제로 사용하는 경우의 파과 흡착량 변화를 보여주는 그래프
도 5 - DCM(dichloromethane)를 탈착제로 사용하는 경우의 파과 흡착량 변화를 보여주는 그래프
도 6 - DME(dimethyl ether)를 탈착제로 사용하는 경우의 파과 흡착량 변화를 보여주는 그래프
도 7 - DMC(dimethyl carbonate)를 탈착제로 사용하는 경우의 파과 흡착량 변화를 보여주는 그래프
도 8 - MTBE(methyl tertiary butyl ether)를 탈착제로 사용하는 경우의 파과 흡착량 변화를 보여주는 그래프
Figure 1-general sulfur oxide adsorption removal process
Figure 2-Graph showing the change of breakthrough adsorption when using acetone as a desorbent
3-Graph showing changes in breakthrough adsorption when normal butane is used as a desorbent
4-Graph showing changes in breakthrough adsorption when using normal pentane as a desorbent
Figure 5-Graph showing the change in breakthrough adsorption when using dichloromethane (DCM) as a desorbent
Figure 6-Graph showing the change of breakthrough adsorption when using DME (dimethyl ether) as a desorbent
7-Graph showing changes in breakthrough adsorption when dimethyl carbonate (DMC) is used as a desorbent
8-Graph showing changes in breakthrough adsorption when using methyl tertiary butyl ether (MTBE) as a desorbent

본 발명에 따른 연속적 황산화물 흡착 제거 공정용 탈착제 및 이를 이용한 황산화물 제거 방법을 도면을 참조하여 이하 상세하게 설명하기로 한다.The desorbent for the continuous sulfur oxide adsorption removal process according to the present invention and the sulfur oxide removal method using the same will be described in detail below with reference to the drawings.

일반적인 황산화물 함유 탄화수소 스트림으로부터 황산화물을 제거하는 공정은 도 1과 같이 먼저 황산화물 함유 탄화수소를 황산화물을 선택적으로 흡착하는 흡착제(실리카 겔 등)가 충전된 흡착탑으로 도입하여 황산화물을 흡착하고 황산화물 함량이 감소한 저유황 탄화수소 스트림을 탑 출구로 배출하여 제품으로 생산한다. In the process of removing sulfur oxides from a general sulfur oxide-containing hydrocarbon stream, first, sulfur oxide-containing hydrocarbons are introduced into an adsorption tower filled with an adsorbent (silica gel, etc.) that selectively adsorbs sulfur oxides to adsorb sulfur oxides and sulfuric acid. A low sulfur hydrocarbon stream with reduced cargo content is discharged to the tower outlet to produce a product.

이때, 황산화물 흡착을 완료한 흡착탑으로 탈착제를 도입하여 흡착된 황산화물을 탈착시키어 흡착제를 재생하며, 황산화물 탈착시 흡착탑에서 배출되는 탈착제와 황산화물의 혼합물은 증류탑으로 도입하여 황산화물과 탈착제를 분리하여 탈착제를 재사용하게 된다. 이러한 황산화물의 연속적인 흡,탈착 과정이 반복되면서 흡착제의 황산화물 흡착량이 점차적으로 감소하게 된다.At this time, the desorbent is introduced into the adsorption tower where the sulfur oxide adsorption is completed to desorb the adsorbed sulfur oxide to regenerate the adsorbent, and when the sulfur oxide desorption is carried out, the mixture of the desorbent and the sulfur oxide discharged from the adsorption tower is introduced into the distillation tower to allow sulfur oxide and The desorbent is separated to reuse the desorbent. As the successive adsorption and desorption processes of the sulfur oxides are repeated, the sulfur oxide adsorption amount of the adsorbent is gradually decreased.

이에, 본 발명은 연속적인 흡, 탈착 공정에서도 흡착제의 황산화물 흡착량을 높게 유지할 수 있도록, DME(dimethyl ether), DMC(dimethyl carbonate), MTBE(methyl tertiary butyl ether)로부터 선택되는 어느 하나 또는 이들의 혼합물을 탈착제로 사용하는 것을 특징으로 한다. 이때, 상기 탈착제는 탈착 효율을 증가시키기 위하여 헥산 또는 벤젠을 추가로 혼합할 수도 있다. Accordingly, the present invention is any one selected from DME (dimethyl ether), DMC (dimethyl carbonate), MTBE (methyl tertiary butyl ether) to maintain a high adsorption amount of sulfur oxides of the adsorbent even in a continuous adsorption, desorption process It is characterized by using a mixture of as a desorbent. At this time, the desorbent may be further mixed with hexane or benzene in order to increase the desorption efficiency.

본 발명의 탈착제를 사용하여 흡, 탈착 공정을 연속적으로 시행할 경우, 하기 실시 예들에서 볼 수 있듯이 정상상태에서의 흡착량을 높게 유지할 수 있다. When the adsorption and desorption process are continuously performed using the desorbent of the present invention, as shown in the following examples, it is possible to maintain a high adsorption amount at a steady state.

또한, 상기 탈착 반응은 사용되는 탈착제의 종류 및 혼합 정도에 따라 달라질 수 있으나, 바람직하게는 40~90℃, 1~12 barg에서 이루어질 수 있다. In addition, the desorption reaction may vary depending on the type and degree of mixing of the desorbent used, preferably, it may be made at 40 ~ 90 ℃, 1 ~ 12 barg.

더 나아가, 본 발명의 탈착제는 증류탑에서 분리 에너지가 작아질 수 있도록 증발잠열이 500 kJ/kg 이하인 것이 바람직하며, 비점이 황화합물 산화반응 온도인 120oC 이하인 것이 바람직하다.Furthermore, the desorbent of the present invention preferably has a latent heat of evaporation of 500 kJ / kg or less, and preferably has a boiling point of 120 ° C. or lower, which is a sulfur compound oxidation temperature, so that the separation energy of the distillation column may be reduced.

이하에서는 다양한 탈착제를 사용한 연속적 흡, 탈착과정에서의 파과 흡착량 비교 실험예들을 살펴본다. 여기서 파과 흡착량은 흡착탑 출구에서 배출되는 황산화물이 제거된 탄화수소 스트림의 황농도가 10 ppm을 넘어서기 전까지의 단위 흡착제당 저농도 탄화수소 스트림 생산량을 지칭한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.
Hereinafter, the comparative examples of the breakthrough adsorption amount in the continuous adsorption and desorption process using various desorbents will be described. The breakthrough adsorption here refers to the production of low concentration hydrocarbon streams per unit adsorbent until the sulfur concentration of the sulfur oxide-free hydrocarbon stream exiting the adsorption tower exceeds 10 ppm. These examples are only for illustrating the present invention more specifically, but the scope of the present invention is not limited by these examples.

[실시예 1] 탈착제 선정Example 1 Desorbent Selection

본 발명의 DME(dimethyl ether), DMC(dimethyl carbonate), MTBE(methyl tertiary butyl ether)와 흡착량 유지 효과를 비교하기 위한 탈착제들을 선정하기 위하여, 표 1과 같이 증발잠열이 작으며 비점이 황화합물 산화반응온도인 120℃보다 낮은 물질들을 선정하였다. DME (dimethyl ether), DMC (dimethyl carbonate), MTBE (methyl tertiary butyl ether) in order to select the desorbents to compare the adsorption amount retention effect, the latent heat of evaporation as shown in Table 1 and boiling point sulfur compounds Materials lower than the oxidation reaction temperature of 120 ℃ were selected.

 이 름name 증발잠열(kJ/kg)Latent heat of evaporation (kJ / kg) 비점(℃)Boiling point (℃) DME (dimethyl ether)DME (dimethyl ether) 466.9 466.9 -23.7-23.7 DMC (dimethyl carbonate)DMC (dimethyl carbonate) 369.0 369.0 80.180.1 MTBE (methyl tertiary butyl ether)MTBE (methyl tertiary butyl ether) 318.8 318.8 55.255.2 AcetoneAcetone 501.4 501.4 56.056.0 butanebutane 320.0 320.0 -0.5-0.5 pentanepentane 357.2 357.2 36.336.3 DCM (dichloromethane)DCM (dichloromethane) 363.8 363.8 39.639.6

[실시예 2] 파과 흡착량 변화 측정Example 2 Measurement of Change in Breakthrough Adsorption Amount

1. 아세톤(acetone)Acetone

실리카겔(A 또는 B)이 10~11 그램(g) 충전된 흡착탑(내경 10.9 mm)으로 황산화물 함유 탄화수소 스트림 (황농도 160 ppm, 비점 범위 190~360℃)을 0.5 ml/min로 도입하면서 흡착탑 출구에서 배출되는 스트림의 황농도를 측정하는 파과실험을 수행하였다. The adsorption tower was filled with silica gel (A or B) with 10-11 grams (g) packed adsorption tower (10.9 mm inner diameter) while introducing a sulfur oxide-containing hydrocarbon stream (sulfur concentration 160 ppm, boiling range 190-360 ° C) at 0.5 ml / min. A breakthrough experiment was performed to measure the sulfur concentration of the stream exiting the outlet.

도 2에서 볼 수 있듯이, 황산화물을 흡착한 다음에 탈착제로 acetone을 사용하여 흡착제를 재생하고 다시 흡착하는 실험을 반복하였을 때에 파과 흡착량 6 g/g에서 정상상태에 도달하였다. As can be seen in Figure 2, after the adsorption of sulfur oxides, using acetone as a desorbent to regenerate the adsorbent and repeated adsorption experiments reached a steady state at the breakthrough adsorption amount of 6 g / g.

상기 황산화물 흡착은 25℃, 1 barg에서 황산화물 함유 탄화수소스트림을 0.5 ml/min로 공급하면서 수행하였고, 아세톤을 이용한 탈착은 25℃, 1 barg에서 0.5 ml/min로 5시간 동안 이루어졌다.
The sulfur oxide adsorption was performed while supplying a sulfur oxide-containing hydrocarbon stream at 0.5 ° C./min at 25 ° C. and 1 barg, and desorption using acetone was performed at 25 ° C. and 1 barg at 0.5 ml / min for 5 hours.

2. 노말 부탄(n-butane)2. n-butane

실리카겔(A 또는 B)이 10~11 그램(g) 충전된 흡착탑(내경 10.9 mm)으로 황산화물 함유 탄화수소 스트림 (황농도 160 ppm, 비점 범위 190~360℃)을 0.5 ml/min로 도입하면서 흡착탑 출구에서 배출되는 스트림의 황농도를 측정하는 파과실험을 수행하였다. The adsorption tower was filled with silica gel (A or B) with 10-11 grams (g) packed adsorption tower (10.9 mm inner diameter) while introducing a sulfur oxide-containing hydrocarbon stream (sulfur concentration 160 ppm, boiling range 190-360 ° C) at 0.5 ml / min. A breakthrough experiment was performed to measure the sulfur concentration of the stream exiting the outlet.

도 3에서 볼 수 있듯이, 황산화물을 흡착한 다음에 탈착제로 노말부탄(n-butane)을 사용하여 흡착제를 재생하고 다시 황산화물을 흡착하는 실험을 반복하였을 때에 파과 흡착량 2 g/g에서 정상상태에 도달하였다. As can be seen in Figure 3, after the adsorption of sulfur oxides, using a butane (n-butane) as a desorbent to regenerate the adsorbent and repeated adsorption of sulfur oxides in the breakthrough adsorption amount 2 g / g is normal The state has been reached.

상기 황산화물 흡착은 25℃, 1 barg에서 황산화물 함유 탄화수소스트림을 0.5 ml/min로 공급하면서 수행하였고, 노말부탄을 이용한 탈착은 160℃, 45 barg에서 1.0 ml/min로 2.5시간 동안 이루어졌다.
The sulfur oxide adsorption was performed while supplying a sulfur oxide containing hydrocarbon stream at 0.5 ° C./min at 25 ° C. and 1 barg, and desorption using normal butane was performed at 160 ° C. and 45 barg at 1.0 ml / min for 2.5 hours.

3. 노말 펜탄(n-pentane)3. n-pentane

실리카겔(A 또는 B)이 10~11 그램(g) 충전된 흡착탑(내경 10.9 mm)으로 황산화물 함유 탄화수소 스트림 (황농도 160 ppm, 비점 범위 190~360℃)을 0.5 ml/min로 도입하면서 흡착탑 출구에서 배출되는 스트림의 황농도를 측정하는 파과실험을 수행하였다. The adsorption tower was filled with silica gel (A or B) with 10-11 grams (g) packed adsorption tower (10.9 mm inner diameter) while introducing a sulfur oxide-containing hydrocarbon stream (sulfur concentration 160 ppm, boiling range 190-360 ° C) at 0.5 ml / min. A breakthrough experiment was performed to measure the sulfur concentration of the stream exiting the outlet.

도 4에서 볼 수 있듯이, 황산화물을 흡착한 다음에 탈착제로 노말 펜탄(n-pentane)을 사용하여 흡착제를 재생하고 다시 황산화물을 흡착하는 실험을 반복하였을 때에 3차 흡착에서 파과 흡착량이 4 g/g으로 감소하였다. As can be seen in Figure 4, the amount of breakthrough adsorption in the 3rd adsorption is repeated when adsorption of sulfur oxides, and then repeat the experiment to regenerate the adsorbent using n-pentane as a desorbent and adsorb the sulfur oxides again. reduced to / g.

상기 황산화물 흡착은 25℃, 1 barg에서 황산화물 함유 탄화수소스트림을 0.5 ml/min로 공급하면서 수행하였고, 노말 펜탄을 이용한 탈착은 150℃, 19 barg에서 0.5 ml/min로 5시간 동안 이루어졌다.
The sulfur oxide adsorption was performed while supplying a sulfur oxide-containing hydrocarbon stream at 0.5 ° C./min at 25 ° C. and 1 barg, and desorption using normal pentane was performed at 150 ° C. and 19 barg at 0.5 ml / min for 5 hours.

4. DCM (dichloromethane)4.dichloromethane (DCM)

실리카겔(A 또는 B)이 10~11 그램(g) 충전된 흡착탑(내경 10.9 mm)으로 황산화물 함유 탄화수소 스트림 (황농도 160 ppm, 비점 범위 190~360℃)을 0.5 ml/min로 도입하면서 흡착탑 출구에서 배출되는 스트림의 황농도를 측정하는 파과실험을 수행하였다. The adsorption tower was filled with silica gel (A or B) with 10-11 grams (g) packed adsorption tower (10.9 mm inner diameter) while introducing a sulfur oxide-containing hydrocarbon stream (sulfur concentration 160 ppm, boiling range 190-360 ° C) at 0.5 ml / min. A breakthrough experiment was performed to measure the sulfur concentration of the stream exiting the outlet.

도 5에서 볼 수 있듯이, 황산화물을 흡착한 다음에 탈착제로 DCM을 사용하여 흡착제를 재생하고 다시 황산화물을 흡착하는 실험을 반복하였을 때에 4차 흡착에서 파과 흡착량이 7 g/g으로 감소하였다. As shown in FIG. 5, the breakthrough adsorption amount decreased to 7 g / g in the fourth adsorption when the sulfur oxide was adsorbed, and then the experiment of regenerating the adsorbent using DCM as the desorbent and adsorbing the sulfur oxide again was repeated.

상기 황산화물 흡착은 25℃, 1 barg에서 황산화물 함유 탄화수소스트림을 0.5 ml/min로 공급하면서 수행하였고, DCM을 이용한 탈착은 100℃, 10 barg에서 1.0 ml/min로 2.5시간 동안 이루어졌다.
The sulfur oxide adsorption was performed while supplying a sulfur oxide-containing hydrocarbon stream at 0.5 ° C./min at 25 ° C. and 1 barg, and desorption using DCM was performed at 100 ° C. and 10 barg at 1.0 ml / min for 2.5 hours.

5. DME(dimethyl ether)5.DME (dimethyl ether)

실리카겔-B를 7.1 g 그램(g) 충전된 흡착탑(내경 10.9 mm)으로 황산화물 함유 탄화수소 스트림 (황농도 158ppm, 비점 범위 190~360℃)을 0.5 ml/min로 도입하면서 흡착탑 출구에서 배출되는 스트림의 황농도를 측정하는 파과실험을 수행하였다.  A stream exiting the adsorption tower outlet with 0.5 ml / min introduction of a sulfur oxide-containing hydrocarbon stream (sulfur concentration 158 ppm, boiling point range 190-360 ° C.) into a adsorption tower (10.9 mm inner diameter) packed with 7.1 g gram of silica gel-B. A breakthrough experiment was conducted to measure the sulfur concentration of.

도 6에서 볼 수 있듯이, 황산화물을 흡착한 다음에 탈착제로 DME을 사용하여 흡착제를 재생하고 다시 황산화물을 흡착하는 실험을 반복하였을 때에 정상상태에서 파과 흡착량이 14 g/g 정도로 매우 높았다. As can be seen in Figure 6, when the adsorption of sulfur oxides, using the DME as a desorbent to regenerate the adsorbent and repeated experiments to adsorb the sulfur oxides, the breakthrough adsorption amount was very high as about 14 g / g at steady state.

상기 황산화물 흡착은 40℃, 1 barg에서 황산화물 함유 탄화수소스트림을 0.5 ml/min로 공급하면서 수행하였고, DME을 이용한 탈착은 40℃, 12 barg에서 0.5 ml/min로 1.5시간 동안 이루어졌다.
The sulfur oxide adsorption was performed while supplying a sulfur oxide containing hydrocarbon stream at 0.5 ml / min at 40 ° C and 1 barg, and desorption using DME was performed at 40 ° C and 12 barg at 0.5 ml / min for 1.5 hours.

6. DMC(dimethyl carbonate)6. Dimethyl carbonate

실리카겔-B를 7.1 g 그램(g) 충전된 흡착탑(내경 10.9 mm)으로 황산화물 함유 탄화수소 스트림 (황농도 158ppm, 비점 범위 190~360℃)을 0.5 ml/min로 도입하면서 흡착탑 출구에서 배출되는 스트림의 황농도를 측정하는 파과실험을 수행하였다. A stream exiting the adsorption tower outlet with 0.5 ml / min introduction of a sulfur oxide-containing hydrocarbon stream (sulfur concentration 158 ppm, boiling point range 190-360 ° C.) into a adsorption tower (10.9 mm inner diameter) packed with 7.1 g gram of silica gel-B. A breakthrough experiment was conducted to measure the sulfur concentration of.

도 7에서 볼 수 있듯이, 황산화물을 흡착한 다음에 탈착제로 DMC을 사용하여 흡착제를 재생하고 다시 황산화물을 흡착하는 실험을 반복하였을 때에 정상상태에서 파과 흡착량이 14 g/g 정도로 매우 높았다. As shown in FIG. 7, the breakthrough adsorption amount was very high, about 14 g / g, at the steady state when the sulfur oxide was adsorbed, and then the experiment of regenerating the adsorbent using DMC as the desorbent and adsorbing the sulfur oxide again was repeated.

상기 황산화물 흡착은 40℃, 1 barg에서 황산화물 함유 탄화수소스트림을 0.5 ml/min로 공급하면서 수행하였고, DMC를 이용한 탈착은 40℃, 1 barg에서 0.5 ml/min로 1.5시간 동안 이루어졌다.
The sulfur oxide adsorption was performed while supplying a sulfur oxide-containing hydrocarbon stream at 0.5 ml / min at 40 ° C and 1 barg, and desorption using DMC was performed at 40 ° C and 1 barg at 0.5 ml / min for 1.5 hours.

7. MTBE(methyl tertiary butyl ether)7.MTBE (methyl tertiary butyl ether)

실리카겔-B를 7.1 g 그램(g) 충전된 흡착탑(내경 10.9 mm)으로 황산화물 함유 탄화수소 스트림 (황농도 158ppm, 비점 범위 190~360℃)을 0.5 ml/min로 도입하면서 흡착탑 출구에서 배출되는 스트림의 황농도를 측정하는 파과실험을 수행하였다. A stream exiting the adsorption tower outlet with 0.5 ml / min introduction of a sulfur oxide-containing hydrocarbon stream (sulfur concentration 158 ppm, boiling point range 190-360 ° C.) into a adsorption tower (10.9 mm inner diameter) packed with 7.1 g gram of silica gel-B. A breakthrough experiment was conducted to measure the sulfur concentration of.

도 8에서 볼 수 있듯이, 황산화물을 흡착한 다음에 탈착제로 MTBE을 사용하여 흡착제를 재생하고 다시 황산화물을 흡착하는 실험을 반복하였을 때에 정상상태에서 파과 흡착량이 14 g/g 정도로 매우 높았다. As can be seen in Figure 8, when the adsorption of sulfur oxides, MTBE was used as a desorbent to regenerate the adsorbent and the experiment was repeated to adsorb the sulfur oxides again, the breakthrough adsorption amount was very high as about 14 g / g.

상기 황산화물 흡착은 40℃, 1 barg에서 황산화물 함유 탄화수소스트림을 0.5 ml/min로 공급하면서 수행하였고, MTBE를 이용한 탈착은 40℃, 1 barg에서 0.5 ml/min로 1.5시간 동안 이루어졌다.
The sulfur oxide adsorption was performed while supplying a sulfur oxide containing hydrocarbon stream at 0.5 ml / min at 40 ° C and 1 barg, and desorption using MTBE was performed at 40 ° C and 1 barg at 0.5 ml / min for 1.5 hours.

상기의 실시예들에서 볼 수 있듯이 본 발명의 DME(dimethyl ether), DMC(dimethyl carbonate), MTBE(methyl tertiary butyl ether)로부터 선택되는 어느 하나 또는 이들의 혼합물을 포함하는 연속적 황산화물 흡착 제거 공정용 탈착제를 사용함으로써, 황산화물의 흡착과 탈착이 반복되는 연속공정에서도 흡착제의 황산화물 흡착량을 높게 유지할 수 있다. As can be seen in the above embodiments for the continuous sulfur oxide adsorption removal process comprising any one or a mixture thereof selected from dimethyl ether (DME), dimethyl carbonate (DMC), methyl tertiary butyl ether (MTBE) of the present invention By using the desorbent, the sulfur oxide adsorption amount of the adsorbent can be kept high even in a continuous process in which the adsorption and desorption of the sulfur oxide is repeated.

본 발명은 상술한 특정의 실시예 및 설명에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능하며, 그와 같은 변형은 본 발명의 보호 범위 내에 있게 된다. The present invention is not limited to the above-described specific embodiments and descriptions, and various modifications can be made to those skilled in the art without departing from the gist of the present invention claimed in the claims. And such modifications are within the scope of protection of the present invention.

Claims (8)

탄화수소 스트림으로부터 황산화물을 연속적으로 흡, 탈착하는 연속적 황산화물 흡착 제거 공정에 사용되는 탈착제로서,
DME(dimethyl ether), DMC(dimethyl carbonate), MTBE(methyl tertiary butyl ether)로부터 선택되는 어느 하나 또는 이들의 혼합물을 포함하는 연속적 황산화물 흡착 제거 공정용 탈착제.
A desorbent used in a continuous sulfur oxide adsorption removal process that continuously adsorbs and desorbs sulfur oxides from a hydrocarbon stream.
Desorbent for continuous sulfur oxide adsorption removal process comprising any one or a mixture thereof selected from DME (dimethyl ether), DMC (dimethyl carbonate), MTBE (methyl tertiary butyl ether).
제1항에 있어서,
헥산 또는 벤젠을 추가로 포함하는 것을 특징으로 하는 연속적 황산화물 흡착 제거 공정용 탈착제.
The method of claim 1,
Desorbent for the continuous sulfur oxide adsorption removal process characterized in that it further comprises hexane or benzene.
제1항 또는 제2항에 있어서,
상기 탈착이 40~90℃, 1~20 barg에서 이루어지는 것을 특징으로 하는 연속적 황산화물 흡착 제거 공정용 탈착제.
The method according to claim 1 or 2,
Desorption agent for the continuous sulfur oxide adsorption removal process, characterized in that the desorption is made at 40 ~ 90 ℃, 1 ~ 20 barg.
제1항 또는 제2항에 있어서,
증발잠열이 500 kJ/kg 이하이고, 비점이 황화합물 산화반응온도인 120oC 이하인 것을 특징으로 하는 연속적 황산화물 흡착 제거 공정용 탈착제.
The method according to claim 1 or 2,
A desorbent for the continuous sulfur oxide adsorption removal process, characterized in that the latent heat of evaporation is 500 kJ / kg or less and the boiling point is 120 ° C. or less, which is a sulfur compound oxidation reaction temperature.
ⅰ) 황산화물을 선택적으로 흡착하는 흡착제를 이용하여 탄화수소 스트림으로부터 황산화물을 흡착하는 단계,
ⅱ) 상기 흡착된 황산화물을 DME(dimethyl ether), DMC(dimethyl carbonate), MTBE(methyl tertiary butyl ether)로부터 선택되는 어느 하나 또는 이들의 혼합물로 이루어진 탈착제로 탈착하여 흡착제를 재생하는 단계, 및
ⅲ) 상기 탈착된 황산화물과 탈착제의 혼합물로부터 탈착제를 분리하여 재사용하는 단계를 포함하며,
상기 각 단계가 반복되는 것을 특징으로 하는 탄화수소 스트림으로부터 황산화물을 연속적으로 제거하는 방법.
Iii) adsorbing sulfur oxides from the hydrocarbon stream using an adsorbent to selectively adsorb sulfur oxides,
Ii) regenerating the adsorbent by desorbing the adsorbed sulfur oxide with a desorbent composed of any one or a mixture thereof selected from dimethyl ether (DME), dimethyl carbonate (DMC) and methyl tertiary butyl ether (MTBE), and
Iii) separating and reusing the desorbent from the mixture of desorbed sulfur oxides and desorbents,
Wherein each step is repeated, wherein the sulfur oxides are continuously removed from the hydrocarbon stream.
제5항에 있어서,
상기 탈착제가 헥산 또는 벤젠을 추가로 포함하는 것을 특징으로 하는 탄화수소 스트림으로부터 황산화물을 연속적으로 제거하는 방법.
The method of claim 5,
And the desorbent further comprises hexane or benzene.
제5항 또는 제6항에 있어서,
상기 탈착 단계가 40~90℃, 1~20 barg에서 이루어지는 것을 특징으로 하는 탄화수소 스트림으로부터 황산화물을 연속적으로 제거하는 방법.
The method according to claim 5 or 6,
Wherein said desorption step is at 40-90 ° C., 1-20 barg.
제5항 또는 제6항에 있어서,
상기 탈착제의 증발잠열이 500 kJ/kg 이하이고, 비점이 황화합물 산화반응온도인 120oC 이하인 것을 특징으로 하는 탄화수소 스트림으로부터 황산화물을 연속적으로 제거하는 방법.
The method according to claim 5 or 6,
And a latent heat of evaporation of the desorbent is 500 kJ / kg or less and a boiling point is 120 ° C. or less, the sulfur compound oxidation reaction temperature.
KR1020110106447A 2011-10-18 2011-10-18 Desorbent for continuous adsorptive removal process of sulfur-oxidated compounds, and removal methods of sulfur-oxidated compounds from hydrocarbon stream using the same KR101285124B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110106447A KR101285124B1 (en) 2011-10-18 2011-10-18 Desorbent for continuous adsorptive removal process of sulfur-oxidated compounds, and removal methods of sulfur-oxidated compounds from hydrocarbon stream using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110106447A KR101285124B1 (en) 2011-10-18 2011-10-18 Desorbent for continuous adsorptive removal process of sulfur-oxidated compounds, and removal methods of sulfur-oxidated compounds from hydrocarbon stream using the same

Publications (2)

Publication Number Publication Date
KR20130042262A true KR20130042262A (en) 2013-04-26
KR101285124B1 KR101285124B1 (en) 2013-07-18

Family

ID=48441008

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110106447A KR101285124B1 (en) 2011-10-18 2011-10-18 Desorbent for continuous adsorptive removal process of sulfur-oxidated compounds, and removal methods of sulfur-oxidated compounds from hydrocarbon stream using the same

Country Status (1)

Country Link
KR (1) KR101285124B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101868811B1 (en) * 2017-01-24 2018-06-19 (주)원익머트리얼즈 Method for purifying boron trifluoride
KR102398989B1 (en) 2020-04-01 2022-05-18 한국기초과학지원연구원 Method of removing the sulfur compounds from hydrocarbonaceousoil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482316B1 (en) 1999-06-11 2002-11-19 Exxonmobil Research And Engineering Company Adsorption process for producing ultra low hydrocarbon streams
KR100651356B1 (en) * 2002-03-29 2006-11-28 에스케이 주식회사 Method for removing impurities from heavy hydrocarbon and deasphalt oil
US7186328B1 (en) * 2004-09-29 2007-03-06 Uop Llc Process for the regeneration of an adsorbent bed containing sulfur oxidated compounds
KR101222719B1 (en) * 2007-08-24 2013-01-15 에스케이이노베이션 주식회사 Process for the removal of sulfur and nitrogen from petrolic streams

Also Published As

Publication number Publication date
KR101285124B1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
US10960343B2 (en) Methods and systems for performing chemical separations
EP2158020B1 (en) Process for producing purified natural gas from natural gas comprising water and carbon dioxide
US8282707B2 (en) Natural gas purification system
US7306651B2 (en) Method for treatment of a gaseous mixture comprising hydrogen and hydrogen sulphide
CA2059703C (en) Simultaneous removal of residual impurities and moisture from a gas
WO2017006724A1 (en) Source gas purification apparatus and purification method
US20180272269A1 (en) Acid gas removal with an absorption liquid that separates in two liquid phases
US6521020B2 (en) Claus feed gas hydrocarbon removal
RU2613914C9 (en) Method for processing natural hydrocarbon gas
US20060131217A1 (en) Process for desulphurizing a hydrocarbon cut in a simulated moving bed
CN1717274A (en) Process for removing sulphur compounds including hydrogen sulphide and mercaptans from gas streams
CA2374660A1 (en) Adsorption process for producing ultra low sulfur hydrocarbon streams
US4329160A (en) Suppression of COS formation in molecular sieve purification of hydrocarbon gas streams
KR101285124B1 (en) Desorbent for continuous adsorptive removal process of sulfur-oxidated compounds, and removal methods of sulfur-oxidated compounds from hydrocarbon stream using the same
CA3102348A1 (en) Multi-stage psa process to remove contaminant gases from raw methane streams
WO2003031329A2 (en) Claus feed gas hydrocarbon removal
US9012712B1 (en) Adsorption of acid gases
EP3808431A1 (en) Process and plant for deacidifying a fluid stream comprising sulfur compounds, including organic sulfur compounds
KR100849987B1 (en) Enrichment of ethylene from fcc off-gas
JPH0361715B2 (en)
Fayzullaev et al. Cleaning of natural gas from sulphur preservative compounds
CA2165378A1 (en) Purification of natural gas
WO2022132602A1 (en) Hydrocarbon recovery unit with recycle loop for adsorbent bed regeneration
KR20130072581A (en) Sulfone separation process using methanol solvent and 2-step adsorption
US20140060325A1 (en) Process stream desulfurization

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160705

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170704

Year of fee payment: 5