KR20130030397A - New surfactant-coated enzyme and the use thereof - Google Patents

New surfactant-coated enzyme and the use thereof Download PDF

Info

Publication number
KR20130030397A
KR20130030397A KR1020110093830A KR20110093830A KR20130030397A KR 20130030397 A KR20130030397 A KR 20130030397A KR 1020110093830 A KR1020110093830 A KR 1020110093830A KR 20110093830 A KR20110093830 A KR 20110093830A KR 20130030397 A KR20130030397 A KR 20130030397A
Authority
KR
South Korea
Prior art keywords
enzyme
surfactant
lipase
coated
ethoxy
Prior art date
Application number
KR1020110093830A
Other languages
Korean (ko)
Other versions
KR101886427B1 (en
Inventor
김만주
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020110093830A priority Critical patent/KR101886427B1/en
Publication of KR20130030397A publication Critical patent/KR20130030397A/en
Application granted granted Critical
Publication of KR101886427B1 publication Critical patent/KR101886427B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE: A method for preparing a surfactant-coated enzyme is provided to obtain an enzyme with wide range of substrates. CONSTITUTION: A method for preparing a surfactant-coated enzyme comprises a step of suing an enzyme coated with a surfactant in dynamic kinetic resolution. The enzyme is selected among a purely isolated enzyme, a cell in which the enzyme is expressed, and a crushed cell product. The enzyme is lipase or protease. The surfactant-coated enzyme further contains saccharides and/or amino acid compounds.

Description

신규한 계면활성제 코팅 효소 및 그 용도{NEW SURFACTANT-COATED ENZYME AND THE USE THEREOF}New Surfactant Coating Enzymes and Their Uses {NEW SURFACTANT-COATED ENZYME AND THE USE THEREOF}

본 발명은 활성이 우수한 효소를 제조하고, 이 효소와 금속 촉매를 함께 사용한 동적속도론적 분할 반응을 통해 이차알코올로부터 광학활성을 갖는 에스테르를 합성하는 방법에 관한 것이다.The present invention relates to a method for preparing an enzyme having excellent activity and synthesizing an ester having optical activity from secondary alcohol through a kinetic kinetics splitting reaction using the enzyme and a metal catalyst.

효소를 촉매로 사용하여 광학활성을 갖는 분자 합성 방법들이 잘 알려져 있다 [1) Hydrolases in Organic Synthesis, 2nd ed. (Eds: U. T. Borncheuer, R. J. Kazlauskas), WILEY-VCH, Weinheim, 2006; 2) Asymmetric Organic Synthesis with Enzymes, (Eds: V. Gotor, I. Alfonso, E. Garcia-Urdiales), WILEY-VCH, Weinheim, 2008]. 특히, 지질가수분해효소를 촉매로 이용하면 이차 알코올로부터 광학활성을 갖는 에스테르를 합성할 수 있다. 이러한 효소를 이용한 에스테르 합성법은 속도론적 분할 방법과 동적 속도론적 분할 방법으로 나눌 수 있다. 속도론적 분할방법은 합성 수율이 이론적으로 50% 이상을 넘을 수 없다는 단점이 있는 반면, 동적 속도론적 분할 방법은 수율을 100%까지 높일 수 있다 [H. Pellissier, Tetrahedron 2008, 64, 1563-1601; Tetrahedron 2011, 67, 3769-3802; Adv. Synth. Catal. 2011, 353, 659-676]. 동적 속도론적 분할 방법은 효소에 추가하여 라세미화 촉매가 필요하다. Molecular synthesis methods with optical activity using enzymes as catalysts are well known [1) Hydrolases in Organic Synthesis , 2nd ed. (Eds: UT Borncheuer, RJ Kazlauskas), WILEY-VCH, Weinheim, 2006 ; 2) Asymmetric Organic Synthesis with Enzymes , (Eds: V. Gotor, I. Alfonso, E. Garcia-Urdiales), WILEY-VCH, Weinheim, 2008 ]. In particular, when a lipohydrolase is used as a catalyst, an ester having optical activity can be synthesized from a secondary alcohol. The ester synthesis using these enzymes can be divided into kinematic and dynamic kinetics. The kinematic splitting method has the disadvantage that the synthetic yield cannot theoretically exceed 50%, while the dynamic kinematic splitting method can increase the yield to 100% [H. Pellissier, Tetrahedron 2008 , 64 , 1563-1601; Tetrahedron 2011 , 67 , 3769-3802; Adv. Synth. Catal. 2011 , 353 , 659-676. Dynamic kinetic cleavage methods require racemization catalysts in addition to enzymes.

또한, 지난 10여년 간의 많은 연구 결과 여러 종류의 금속화합물이 라세화촉매로 개발되었다 [1) J. H. Lee, K. Han, M.-J. Kim, J. Park, Eur. J. Org. Chem. 2010, 999-1015]. 대표적인 예가 루테늄 화합물이다.(대한민국 특허 제455662호, 제644165호, 제904149호)In addition, many researches over the past decade have developed various kinds of metal compounds as racemization catalysts [1) JH Lee, K. Han, M.-J. Kim, J. Park, Eur. J. Org. Chem . 2010 , 999-1015]. Representative examples are ruthenium compounds. (Korean Patent Nos. 455662, 644165, 904149)

또한, 대한민국 특허 공개 공보 10-2003-0061517호에서는 이온성 액체로 코팅된 효소를 이용하여 입체 선택성과 안정성이 향상시키고, 이를 이용하여 키랄 농약, 의약, 천연 화합물 등의 합성에 필요한 키랄 중간체의 제조를 위한 촉매로 사용하는 방안들이 개시되어 있다. In addition, Korean Patent Laid-Open Publication No. 10-2003-0061517 improves stereoselectivity and stability by using an enzyme coated with an ionic liquid, and by using the preparation of chiral intermediates required for the synthesis of chiral pesticides, medicines, natural compounds, etc. Disclosed are methods for use as catalysts for the process.

상업적으로 동적 속도론적 분할 반응에 주로 사용된 효소는 Candida antarctica lipase (상품명 Novozym 435)이다. 이 효소는 활성, 선택성, 열적 안정성이 좋으나, 적용 가능한 기질의 범위가 좁다는 단점을 갖는다. The enzyme used commercially in the dynamic kinematic splitting reaction is Candida antarctica lipase (trade name Novozym 435). This enzyme has good activity, selectivity, and thermal stability, but has the disadvantage of a narrow range of applicable substrates.

따라서, 활성도 좋으면서 기질의 범위가 넓은 효소의 개발이 필요하다. 특히, 효소 활성을 획기적으로 높일 수 있는 새로운 기술에 대한 요구가 계속되고 있다. Therefore, there is a need for the development of enzymes with good activity and a broad range of substrates. In particular, there is a continuing need for new technologies that can dramatically increase enzyme activity.

본 발명에서 해결하고자 하는 과제는 활성이 좋고 기질의 범위가 넓은 효소를 제공하는 것이다. The problem to be solved in the present invention is to provide an enzyme having a good activity and a wide range of substrates.

본 발명에서 해결하고자 하는 과제는 활성이 좋고 기질의 범위가 넓은 새로운 효소를 제조하는 방법을 제공하는 것이다. The problem to be solved in the present invention is to provide a method for producing a new enzyme having a good activity and a wide range of substrates.

본 발명에서 해결하고자 하는 다른 과제는 활성이 좋고 기질의 범위가 넓은 새로운 효소를 이용한 다양한 반응 공정, 바람직하게는 동적 속도론적 광학 분할 공정을 제공하는 것이다. Another problem to be solved in the present invention is to provide a variety of reaction processes, preferably dynamic kinetic optical splitting process using a new enzyme having a high activity and a wide range of substrates.

본 발명에서 해결하고자 하는 다른 과제는 활성이 좋고 기질의 범위가 넓은 새로운 효소에 사용되는 새로운 계면활성제를 제공하는 것이다. Another problem to be solved in the present invention is to provide a new surfactant used for a new enzyme having a good activity and a wide range of substrates.

상기와 같은 과제를 해결하기 위해서, 본 발명은 계면활성제로 코팅된 효소를 제공한다. 이론적으로 한정된 것은 아니지만, 유기 용매에서 효소 활성이 낮은 이유 중의 하나는 효소가 녹지 않고, 고체 상태의 덩어리로 뭉쳐 있기 때문이며, 이러한 효소를 유기 용매에서 분산이 잘되도록 만들면 효소 활성이 증가하게 된다. 본 발명의 계면활성제는 효소를 이온성 표면활성제로 코팅하여 유기용매에서 분산이 잘 되도록 만들었으며, 그 결과 순수한 효소에 비해 3000-6000배 이상 효소 활성이 증가하였다. 그리고, 계면활성제로 코팅된 효소를 사용하여 이차알코올의 동적속도론적 분할 반응을 수행한 결과 지금까지 알려진 것 중 가장 빨리 완결되었다 [1)B. Marti-Matute, M. Edin, K. Bogar, F. B. Kaynak, J.-E. Backvall, J. Am. Chem. Soc. 2005, 127, 8817-8825; 2) J. H. Lee, N. Kim, M.-J. Kim, J. Park, ChemCatChem 2011, 3, 354-359]. 아울러, 넓은 범위의 기질에 적용할 수 있었다.In order to solve the above problems, the present invention provides an enzyme coated with a surfactant. Although not theoretically limited, one of the reasons for the low enzyme activity in organic solvents is that the enzymes are not dissolved, but are agglomerated in a solid state, and the enzyme activity increases when these enzymes are dispersed well in the organic solvent. The surfactant of the present invention was coated with an ionic surfactant to make it well dispersed in an organic solvent, and as a result, the enzyme activity was increased by 3000-6000 times more than that of a pure enzyme. In addition, the kinetic kinetics of secondary alcohol using an enzyme coated with a surfactant was completed, the fastest known to date [1) B. Marti-Matute, M. Edin, K. Bogar, FB Kaynak, J.-E. Backvall, J. Am. Chem. Soc . 2005 , 127 , 8817-8825; 2) JH Lee, N. Kim, M.-J. Kim, J. Park, Chem Cat Chem 2011 , 3 , 354-359. In addition, it could be applied to a wide range of substrates.

본 발명에 있어서, 상기 계면활성제는 하기 화학식(1)로 표현된다. In the present invention, the surfactant is represented by the following formula (1).

Figure pat00001
Figure pat00001

본 발명의 실시에 있어서, 특히 높은 반응 속도를 나타내는 바람직한 계면활성제는 하기 화학식(2) 또는 화학식(3)의 일반식으로 표현된다. In the practice of the present invention, preferred surfactants which exhibit particularly high reaction rates are represented by the general formula of the formula (2) or formula (3).

Figure pat00002
Figure pat00002

Figure pat00003
Figure pat00003

본 발명의 바람직한 실시예에서, 상기 계면활성제는 메틸 3,5-비스(2-(2-(2-에톡시에톡시)에톡시)에톡시)벤조에이트, 3,5-비스(2-(2-(2-에톡시에톡시)에톡시)에톡시)벤조산, 칼륨 3,5-비스(2-(2-(2-에톡시에톡시)에톡시)에톡시)벤조산에서 선택해서 사용할 수 있다.In a preferred embodiment of the invention, the surfactant is methyl 3,5-bis (2- (2- (2-ethoxyethoxy) ethoxy) ethoxy) benzoate, 3,5-bis (2- ( 2- (2-ethoxyethoxy) ethoxy) ethoxy) benzoic acid or potassium 3,5-bis (2- (2- (2-ethoxyethoxy) ethoxy) ethoxy) benzoic acid can be selected and used have.

본 발명의 실시에 있어서, 상기 화학식(2)의 계면활성제는 하기와 같은 반응식 1에 의해서 제조될 수 있다. In the practice of the present invention, the surfactant of formula (2) may be prepared by the reaction scheme 1 as follows.

Figure pat00004
Figure pat00004

또한, 본 발명은 일 측면에서, 효소, 계면활성제, 당류, 및 아미노산 화합물을 포함하는 효소 복합체를 제공한다. The present invention also provides, in one aspect, an enzyme complex comprising an enzyme, a surfactant, a saccharide, and an amino acid compound.

본 발명에 있어서, 상기 효소는 특별히 한정되는 것은 아니며, 지질가수분해 효소, 단백질 가수분해효소를 포함한 다수의 효소 중에서 선택할 수 있으며, 일예로 광학활성 화합물의 제조에 많이 사용되는 리파아제를 사용할 수 있다. 리파아제의 바람직한 예로는 슈도모나스 세파시아 리파아제( Pseudomonas cepacia lipase; LPS), 캔디다 안타크티카 리파아제( Candida antarctica lipase; CAL), 캔디다 루거사 리파아제( Candida rugosa lipase; CRL), 아스퍼질러스 니거 리파아제( Aspergillus niger lipase; ANL), 캔디다 실린드라시아( Candida cylindracea lipase; CCL), 무코 미헤이 리파아제( Mucor miehei lipase), 슈도모나스 플로레센스 리파아제(Pseudomonas fluorecens lipase; LAK), 리조퍼스 아리주스 리파아제( Rhizopus arrhizus lipase), 리조퍼스 니베우스 리파아제( Rhizopus niveus lipase), 허그 판그레스 리파아제(Hog pancreas lipase), 캔디다 리폴리티카 리파아제( Candida lipolytica lipase), 무코 자바니쿠스 리파아제( Mucor javanicus lipase), 페니실리움 로퀘포티 리파아제( Penicillium roqueforti lipase), 또는 리조무코 미헤이 리파아제( Rhizomucor miehei lipase)가 있다. In the present invention, the enzyme is not particularly limited, and may be selected from a plurality of enzymes including lipohydrolase and proteolytic enzyme. For example, a lipase that is used in the preparation of an optically active compound may be used. Preferred examples of lipases include Pseudomonas cepacia lipase (LPS), Candida antarctica lipase (CAL), Candida rugosa lipase (CRL), Aspergillus niger lipase lipase (ALN), Candida cylindracea lipase (CCL), Mucor miehei lipase, Pseudomonas fluorecens lipase (LAK), Rhizopus arrhase Rhizopus niveus lipase, Hug pancreas lipase, Candida lipolytica lipase, Mucor javanicus lipase, Penicillium locetefolia lipase roqueforti lipase, or Rhizomucor miehei lipase.

본 발명에 있어서, 상기 효소는 상업적으로 구입해서 이용할 수 있으며, 상업용 효소 또는 상업용 효소의 수용성 추출물을 사용할 수 있다. In the present invention, the enzyme may be commercially available and used, and commercial enzymes or water soluble extracts of commercial enzymes may be used.

본 발명에 있어서, 상기 계면활성제는 반응계에 효소를 분산시킬 수 있도록 음이온성 계면활성제, 양이온성 계면활성제, 비이온성 계면활성제, 음이온과 양이온을 동시에 가지는 계면활성제와 같이 다양한 계면활성제를 사용할 수 있으며, 바람직하게는 음이온성 계면활성제이다. In the present invention, the surfactant may use various surfactants such as anionic surfactants, cationic surfactants, nonionic surfactants, surfactants having an anion and a cation at the same time to disperse the enzyme in the reaction system, Preferably anionic surfactants.

본 발명에서 상기 계면활성제는 효소 복합체가 동적 속도론적 반응에 최적화되도록하기 화학식 (I)의 일반적인 구조를 가질 수 있다. In the present invention, the surfactant may have a general structure of formula (I) so that the enzyme complex is optimized for dynamic kinetic reactions.

Figure pat00005
Figure pat00005

본 발명에 있어서, 상기 효소 복합체에 포함된 당류는 아미노산 화합물 및 계면활성제와 함께 효소 복합체의 활성을 높이기 위해서 사용된다. 본 발명에 있어서, 상기 당류는 단당류 또는 다당류를 사용할 수 있으며, 바람직하게는 다당류를 사용하는 것이 좋다. 본 발명의 실시에 있어서, 상기 당류는 전분, 글리코겐(glycogen), 셀룰로스(cellulose), 덱스트린(dextrin), 이룰린(inulin), 키틴(chitin) 등의 헥소산(hexosan)과 아라비난(arabinan), 자일란(xylan) 등의 펜토산(pentosan) 글루코만난(glucomannan), 펙틴(pectin), 아르긴산(alginic acid), 무코다당류(mucopolysaccharide), 일 예로 콘드로이틴황산(chondroitin sulfate), 히야루론산(hyaluronic acid) 등을 사용할 수 있다. 본 발명의 바람직한 실시에 있어서, 상기 다당류는 덱스트린이다. In the present invention, the saccharides contained in the enzyme complex are used together with the amino acid compound and the surfactant to increase the activity of the enzyme complex. In the present invention, the sugars may be monosaccharides or polysaccharides, preferably polysaccharides. In the practice of the present invention, the sugars are hexosan and arabinan, such as starch, glycogen, cellulose, dextrin, inulin, chitin, and the like. Pentosan glucomannan, pectin, alginic acid, mucopolysaccharides, for example chondroitin sulfate, hyaluronic acid, such as xylan ) Can be used. In a preferred embodiment of the invention, the polysaccharide is dextrin.

본 발명에 있어서, 상기 아미노산 화합물은 아미노산 단량체, 아미노산 다이머, 아미노산 올리고머, 또는 단백질을 포함하며, 바람직하게는 글리신, 알라닌, 발린, 류신, 이소류신, 트레오닌, 세린, 시스테인, 시스틴, 메티오닌, 아스파르트산, 아스파라긴, 글루탐산, 디요드티로신, 리신, 아르기닌, 히스티딘, 페닐알라닌, 티로신, 트립토판, 프롤린, 옥시프롤린을 사용할 수 있으며, 바람직하게는 글리신이다. In the present invention, the amino acid compound comprises an amino acid monomer, amino acid dimer, amino acid oligomer, or protein, preferably glycine, alanine, valine, leucine, isoleucine, threonine, serine, cysteine, cystine, methionine, aspartic acid, Asparagine, glutamic acid, diyotyrosine, lysine, arginine, histidine, phenylalanine, tyrosine, tryptophan, proline, oxyproline can be used, preferably glycine.

본 발명에 상기 효소 복합체는 효소가 계면활성제, 아미노산 화합물, 및 당류 혼합물과 함께 용매에 분산될 수 있는 한 다양한 형태를 가질 수 있으며, 바람직하게는 효소가 계면활성제, 아미노산 화합물, 및 당류로 코팅된 형태를 이루는 것이 바람직하다. In the present invention, the enzyme complex may have various forms as long as the enzyme can be dispersed in a solvent together with a surfactant, an amino acid compound, and a saccharide mixture, and preferably, the enzyme is coated with a surfactant, an amino acid compound, and a saccharide. It is desirable to form.

본 발명의 실시에 있어서, 상기 효소 복합체에서 상기 효소는 최적의 반응 활성을 가질 수 있도록 1-50 중량%, 바람직하게는 5-40 중량%, 보다 바람직하게는 10-30 중량%를 이루는 것이 좋다. 상기 효소의 함량이 지나치게 적거나 많으면 반응 활성이 저하될 수 있다. In the practice of the present invention, the enzyme in the enzyme complex is preferably made 1-50% by weight, preferably 5-40% by weight, more preferably 10-30% by weight in order to have the optimum reaction activity . If the amount of the enzyme is too small or too high, the reaction activity may be reduced.

본 발명의 실시에 있어서, 상기 효소 복합체에서 상기 계면활성제는 효소가 최적의 분산성을 가지면서 반응 활성을 가질 수 있도록 1-50 중량%, 바람직하게는 5-45 중량%, 보다 바람직하게는 10-40 중량%를 이루는 것이 좋다.In the practice of the present invention, the surfactant in the enzyme complex is 1-50% by weight, preferably 5-45% by weight, more preferably 10 so that the enzyme can have the reaction activity while having the optimum dispersibility. It is good to achieve -40 wt%.

본 발명의 실시에 있어서, 상기 효소 복합체에서 상기 당류는 높은 반응 활성을 가질 수 있도록 1-80 중량%, 보다 바람직하게는 10-75 중량%, 보다 더 바람직하게는 30-70 중량%의 범위에서 사용하는 것이 바람직하다. In the practice of the present invention, the saccharide in the enzyme complex in the range of 1-80% by weight, more preferably 10-75% by weight, even more preferably 30-70% by weight to have a high reaction activity It is preferable to use.

본 발명의 실시에 있어서, 상기 효소 복합체에서 상기 아미노산 화합물은 높은 반응 활성을 가질 수 있도록 0.1-30 중량%, 바람직하게는 0.5-25 중량%, 보다 더 바람직하게는 1-10 중량%의 범위에서 사용하는 것이 좋다. In the practice of the present invention, the amino acid compound in the enzyme complex in the range of 0.1-30% by weight, preferably 0.5-25% by weight, even more preferably 1-10% by weight so as to have a high reaction activity It is good to use.

본 발명에 있어서, 상기 효소 복합체는 효소와 계면활성제, 다당류, 및 아미노산 화합물을 매질에 용해 또는 분산시킨 후 이를 동결 건조하여 제조될 수 있다. 상기 동결 건조는 질소 냉각 후 24시간 이상 건조하는 방식으로 이루어질 수 있다. In the present invention, the enzyme complex may be prepared by dissolving or dispersing an enzyme, a surfactant, a polysaccharide, and an amino acid compound in a medium and then freeze-drying it. The freeze drying may be performed by drying at least 24 hours after cooling with nitrogen.

또한, 본 발명은 다른 일 측면에 있어서, 동적 속도론적 광학 분할 반응에서 기질의 다양성으로 확보하고 반응속도를 높이기 위해서 계면활성제로 코팅된 효소 또는 효소 복합체를 이용하는 것을 특징으로 한다. In another aspect, the present invention is characterized by using an enzyme or enzyme complex coated with a surfactant in order to secure the diversity of the substrate in the dynamic kinetics optical splitting reaction and to increase the reaction rate.

본 발명에 있어서, 상기 동적 속도론적 분할 반응은 기질을 계면활성제로 코팅된 효소 또는 효소 복합체 및 금속 촉매로 반응시키는 것을 특징으로 한다. 본 발명의 실시에 있어서, 상기 기질은 라세미 혼합물 혹은 광학적 이성질체이며, 상기 동적 속도론적 분할 반응은 일 예로 다양한 이차알코올을 키랄 에스테르로 합성하는 반응이다. In the present invention, the kinematic kinetic splitting reaction is characterized in that the substrate is reacted with an enzyme or enzyme complex and metal catalyst coated with a surfactant. In the practice of the present invention, the substrate is a racemic mixture or an optical isomer, and the dynamic kinetic cleavage reaction is, for example, a synthesis of various secondary alcohols into chiral esters.

본 발명의 실시에 있어서, 상기 기질은 하기 화학식(4), 상기 키랄에스테르는 화학식 (5)로 표현된다. In the practice of the present invention, the substrate is represented by the following formula (4), and the chiral ester is represented by the formula (5).

Figure pat00006
Figure pat00006

Figure pat00007

Figure pat00007

본 발명의 실시에 있어서, 효소는 대표적으로 지질가수분해효소를 택하였으며, 효소가 20-100% 함유되어 있는 것을 사용하였다. 효소를 계면활성제 및 선택적으로 다당류 및/또는 아미노산 화합물과 일정한 무게비로 섞어 수용액을 만든 후, 이 용액을 동결 건조시켜 계면활성제로 코팅된 효소를 제조하였다.In the practice of the present invention, an enzyme is typically selected from a hydrolytic enzyme, and the one containing 20-100% of the enzyme was used. The enzyme was mixed with a surfactant and optionally a polysaccharide and / or amino acid compound at a constant weight ratio to form an aqueous solution, and then the solution was lyophilized to prepare an enzyme coated with a surfactant.

다음에, 계면활성제로 코팅된 효소의 활성을 하기 반응식 2에 제시된 반응에서 측정하였다. 1-페닐에틸알코올(5)과 이소프로페닐아세테이트(IPA)가 들어 있는 톨루엔 용액에 효소를 가하고, 25도에서 생성물(6)이 생기는 속도를 HPLC로 분석하였다. 활성 비교를 위해 코팅하기 전의 효소뿐만 아니라 시판되는 다른 효소의 활성도 같은 방법으로 측정하였다.Next, the activity of the enzyme coated with the surfactant was measured in the reaction shown in Scheme 2 below. The enzyme was added to a toluene solution containing 1-phenylethyl alcohol ( 5 ) and isopropenyl acetate (IPA), and the rate of product ( 6 ) formation at 25 degrees was analyzed by HPLC. For activity comparison, the activity of the enzyme before coating as well as other commercially available enzymes was measured in the same way.

Figure pat00008
Figure pat00008

효소 20%, 계면활성제 25%, 다당류 50%, 글리신 5%을 섞어서 만든 효소의 경우 코팅하지 않은 효소에 비해 6000배이상 활성이 증가하였을 뿐만 아니라, 시판되는 효소 중 가장 활성이 좋은 Novozym 435보다도 활성이 우수하였다.Enzymes made by mixing 20% enzyme, 25% surfactant, 50% polysaccharide and 5% glycine not only increased the activity more than 6000 times compared to the uncoated enzyme, but were also more active than Novozym 435, which is the most active among commercial enzymes. Was excellent.

계면활성제로 코팅된 효소를 사용한 이차알코올의 동적속도론적 분할 반응을 평가하기 위해 반응식 3의 반응을 수행하였다. 계면활성제로 코팅된 효소(ISCBCL), 루테늄 금속 촉매 (7-9), 1-페닐에틸알코올 (5), 이소프로페닐아세테이트 (IPA)을 톨루엔에 가하고, 실온에서 반응을 진행시켰다. 반응은 1-2시간에 완결되었다.The reaction of Scheme 3 was performed to evaluate the kinetic splitting reaction of secondary alcohol using an enzyme coated with a surfactant. The enzyme coated with a surfactant (ISCBCL), ruthenium metal catalysts (7-9), 1-phenylethyl alcohol (5), isopropenyl acetate was added (IPA) in toluene, was allowed to proceed the reaction at room temperature. The reaction was completed in 1-2 hours.

Figure pat00009
Figure pat00009

다음에, 계면활성제로 코팅된 효소를 사용하여 화학식 (6)에 제시된 다양한 이차알코올의 동적속도론적 분할 반응을 수행하여 대응하는 키랄 에스테르를 합성하였다.
Next, using a enzyme coated with a surfactant, a kinetic kinetics cleavage reaction of various secondary alcohols shown in formula (6) was carried out to synthesize the corresponding chiral esters.

Figure pat00010
Figure pat00010

본 발명의 계면활성제가 코팅된 효소 제조방법에 의해 유기용매에서 활성이 우수한 효소를 제조할 수 있다. An enzyme having excellent activity in an organic solvent can be prepared by the method for preparing an enzyme coated with a surfactant of the present invention.

또한, 계면활성제가 코팅된 효소를 활용하여 동적 속도론적 분할 반응을 통해 다양한 키랄 에스테르를 높은 광학순도와 좋은 수율로 합성할 수 있다.In addition, various chiral esters can be synthesized with high optical purity and good yield through dynamic kinetic cleavage reaction using the enzyme coated with a surfactant.

본 발명의 제조방법에 의해 제조된 키랄 에스테르는 가수분해 반응을 통해 키랄 알코올로 쉽게 전환될 수 있으며, 다양한 키랄 의약의 소재로 유용하게 사용될 수 있다.The chiral ester prepared by the production method of the present invention can be easily converted to chiral alcohol through a hydrolysis reaction, and can be usefully used as a material for various chiral medicines.

이하, 본 발명의 바람직한 실시 예를 상세히 설명하되, 본 발명이 하기 실시 예로만 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in detail, but the present invention is not limited only to the following examples.

[계면 활성제의 합성]Synthesis of Surfactant

브로모-2-(2-(2-에톡시에톡시)에톡시)에탄의 합성Synthesis of bromo-2- (2- (2-ethoxyethoxy) ethoxy) ethane

50mL 둥근바닥 플라스크에 트리에틸렌글리콜모노에틸에테르(13.5 mmol, 1.0 eq), 트리페닐포스핀(1.3 eq) 을 넣고 진공처리 후 아르곤 기체를 충진하고 THF (20 mL)을 넣은 다음 카본테트라브로마이드 (1.3eq)를 가하여 상온에서 12시간 교반시켰다. 유기용매를 제거하고 농축하여 에틸아세테이트와 헥산 (1:4 부피비)를 이용하여 컬럼 크로마토그래피로 액체 생성물을 얻었다. (2.3 g, 71.1% 수율). Into a 50 mL round bottom flask, triethylene glycol monoethyl ether (13.5 mmol, 1.0 eq) and triphenylphosphine (1.3 eq) were put in a vacuum, filled with argon gas, THF (20 mL), and carbon tetrabromide (1.3). eq) was added and stirred at room temperature for 12 hours. The organic solvent was removed and concentrated to give a liquid product by column chromatography using ethyl acetate and hexane (1: 4 volume ratio). (2.3 g, 71.1% yield).

1H NMR(300MHz, CDCl3, ppm): δ 3.82 (t,J =6.36 Hz, 2H), 3.68-3.45 (m, 12H), 1.21 (t, J=7.00 Hz, 3H). 13C NMR(75MHz, CDCl3, ppm): 71.2, 70.7, 70.6, 70.5, 69.8, 66.6, 30.3, 15.1 1 H NMR (300 MHz, CDCl 3 , ppm): δ 3.82 (t, J = 6.36 Hz, 2H), 3.68-3.45 (m, 12H), 1.21 (t, J = 7.00 Hz, 3H). 13 C NMR (75 MHz, CDCl 3 , ppm): 71.2, 70.7, 70.6, 70.5, 69.8, 66.6, 30.3, 15.1

메틸3,5-비스(2-(2-(2-에톡시에톡시)에톡시)에톡시)벤조에이트Methyl 3,5-bis (2- (2- (2-ethoxyethoxy) ethoxy) ethoxy) benzoate 2 2 의 합성Synthesis of

250mL 둥근바닥 플라스크에 3,5-디하이드록시 벤조산메틸에스터(1.7 mmol, 1.0 eq), 탄산칼륨 (1.5 eq), 18-크라운-6-에테르 (0.1 eq) 을 넣고 진공처리 후 아르곤 기체를 충진하고 아세톤(50 mL)을 넣은 다음 1-브로모-2-(2-(2-에톡시에톡시)에톡시)에탄 (2.3 eq)을 첨가하여 밤새 환류시켰다. 유기용매를 제거하고 농축하여 에틸아세트와 헥산 (1:4 부피비)를 이용하여 컬럼 크로마토그래피로 액체 생성물을 얻었다. (638 mg, 77% 수율).Into a 250 mL round bottom flask, 3,5-dihydroxy methyl benzoate (1.7 mmol, 1.0 eq), potassium carbonate (1.5 eq), 18-crown-6-ether (0.1 eq) were added, and vacuum was filled with argon gas. Acetone (50 mL) was added and 1-bromo-2- (2- (2-ethoxyethoxy) ethoxy) ethane (2.3 eq) was added to reflux overnight. The organic solvent was removed and concentrated to give a liquid product by column chromatography using ethyl acetate and hexane (1: 4 volume ratio). (638 mg, 77% yield).

1H NMR(300MHz, CDCl3, ppm): δ7.19 (d, J =2.34 Hz, 2H), 6.69 (t,J=2.34 Hz, 1H), 4.14-4.12 (m, 4H), 3.78-3.75 (m, 4H), 3.89-3.86 (m,3H), 3.72-3.51 (m, 20H), 1.20 (t,J=7.02 Hz, 6H).13C NMR(75MHz, CDCl3, ppm): 166.9, 159.9, 132.1, 108.2, 107.1, 71.1, 70.9, 70.8, 70.0, 69.8, 67.9, 66.8, 52.4, 15.3 1 H NMR (300 MHz, CDCl 3 , ppm): δ 7.19 (d, J = 2.34 Hz, 2H), 6.69 (t, J = 2.34 Hz, 1H), 4.14-4.12 (m, 4H), 3.78-3.75 ( m, 4H), 3.89-3.86 (m, 3H), 3.72-3.51 (m, 20H), 1.20 (t, J = 7.02 Hz, 6H). 13 C NMR (75 MHz, CDCl 3 , ppm): 166.9, 159.9, 132.1, 108.2, 107.1, 71.1, 70.9, 70.8, 70.0, 69.8, 67.9, 66.8, 52.4, 15.3

3,5-비스(2-(2-(2-에톡시에톡시)에톡시)에톡시)벤조산3,5-bis (2- (2- (2-ethoxyethoxy) ethoxy) ethoxy) benzoic acid 3 3 의 합성Synthesis of

50mL 둥근바닥 플라스크에 메틸3,5-비스(2-(2-(2-에톡시에톡시)에톡시)에톡시)벤조에이트 (500 mg), THF (1 mL)을 넣고 에탄올 (7 mL) 를 가한 다음 수산화칼륨 (2.0 eq)를 첨가하여 상온에서 밤새 교반시켰다. 1노르말농도 염화수소용액( 2.5eq)을 넣어 산성화시킨 다음 용매를 제거하고 메틸렌클로라이드로 추출하여 농축시키면 별도의 분리과정 없이 순수한 생성물을 얻을 수 있었다. (474 mg, 99% 수율). To a 50 mL round bottom flask, add methyl 3,5-bis (2- (2- (2-ethoxyethoxy) ethoxy) ethoxy) benzoate (500 mg) and THF (1 mL) and ethanol (7 mL) To this was added potassium hydroxide (2.0 eq) and stirred at room temperature overnight. 1Normal concentration Hydrogen chloride solution (2.5eq) was added and acidified, the solvent was removed, extracted with methylene chloride and concentrated to obtain a pure product without separate separation process. (474 mg, 99% yield).

1H NMR(300MHz, CDCl3, ppm): δ 7.97 (bs, 1H), 7.23 (d, J =2.31 Hz, 2H), 6.72 (t, J=2.28 Hz, 1H), 4.14 (m 4H), 3.87 (m, 4H), 3.74-3.53 (m, 20H), 1.23 (t, J=7.08 Hz, 6H). 13C NMR(75MHz, CDCl3, ppm): 170.2, 159.7, 131.5, 108.4, 107.4, 70.8, 70.7, 70.6, 69.6, 69.4, 67.7, 66.6, 15.1 1 H NMR (300 MHz, CDCl 3 , ppm): δ 7.97 (bs, 1H), 7.23 (d, J = 2.31 Hz, 2H), 6.72 (t, J = 2.28 Hz, 1H), 4.14 (m 4H), 3.87 (m, 4H), 3.74-3.53 (m, 20H), 1.23 (t, J = 7.08 Hz, 6H). 13 C NMR (75 MHz, CDCl 3 , ppm): 170.2, 159.7, 131.5, 108.4, 107.4, 70.8, 70.7, 70.6, 69.6, 69.4, 67.7, 66.6, 15.1

칼륨 3,5-비스(2-(2-(2-에톡시에톡시)에톡시)에톡시)벤조산Potassium 3,5-bis (2- (2- (2-ethoxyethoxy) ethoxy) ethoxy) benzoic acid 4 4 의 합성Synthesis of

25 mL 둥근바닥 플라스크에 3,5-비스(2-(2-(2-에톡시에톡시)에톡시)에톡시)벤조산(0.21 mmol), THF (0.5 mL)를 넣고 수산화칼륨 (0.1M, 2.3 mL)을 첨가하여 1시간 동안 상온에서 교반시킨 후 용매를 제거하고 진공처리하여 생성물을 얻었다. To a 25 mL round bottom flask was added 3,5-bis (2- (2- (2-ethoxyethoxy) ethoxy) ethoxy) benzoic acid (0.21 mmol), THF (0.5 mL) and potassium hydroxide (0.1M, 2.3 mL) was added and the mixture was stirred at room temperature for 1 hour, after which the solvent was removed and vacuumed to obtain a product.

1H NMR(300MHz, CDCl3, ppm): δ 7.12(d, J =2.31 Hz, 2H), 6.52 (t, J=2.24 Hz, 1H), 4.07-4.04 (m, 4H), 3.78-3.75 (m, 4H), 3.68-3.45 (m, 20H), 1.16 (t, J=7.01 Hz, 6H).13C NMR(75MHz, CDCl3, ppm): 171.6, 159.3, 138.5, 108.3, 104.9, 70.8, 70.7, 70.6, 69.9, 69.8, 67.6, 66.9, 15.3 1 H NMR (300 MHz, CDCl 3 , ppm): δ 7.12 (d, J = 2.31 Hz, 2H), 6.52 (t, J = 2.24 Hz, 1H), 4.07-4.04 (m, 4H), 3.78-3.75 ( m, 4H), 3.68-3.45 (m, 20H), 1.16 (t, J = 7.01 Hz, 6H). 13 C NMR (75 MHz, CDCl 3 , ppm): 171.6, 159.3, 138.5, 108.3, 104.9, 70.8, 70.7, 70.6, 69.9, 69.8, 67.6, 66.9, 15.3

(실시예2)(Example 2)

[계면활성제로 코팅된 지질가수분해효소의 제조 및 활성 측정] [Preparation and activity measurement of the lipid hydrolases coated with a surfactant;

물과 다이옥산 1 : 1 혼합 용액에 효소, 계면활성제, 그리고 기타첨가물 (다당류, 글리신 등)을 적절한 무게비로 섞고, 액체질소로 급냉시킨 뒤 1일 동안 동결건조시켜 음이온성 계면활성제가 코팅된 효소를 얻는다. 이때 효소는 상업용 효소 혹은 상업용 효소의 수용성 추출물 등을 사용한다. 상업용 효소인 Lipase PS의 수용성 추출물을 사용하는 경우 추출물과 계면활성제를 적당한 비율로 섞고, 동결 건조시켰다. Enzyme, surfactant, and other additives (polysaccharide, glycine, etc.) are mixed with water and dioxane 1: 1 mixture in an appropriate weight ratio, quenched with liquid nitrogen, and lyophilized for 1 day to prepare an enzyme coated with an anionic surfactant. Get At this time, the enzyme uses a commercial enzyme or a water-soluble extract of a commercial enzyme. In case of using the water-soluble extract of commercial enzyme Lipase PS, the extract and the surfactant were mixed in an appropriate ratio and lyophilized.

동결 건조된 효소의 활성은 다음과 같이 측정하였다.The activity of the lyophilized enzyme was measured as follows.

페닐에틸 알코올(5, 0.5M)과 이소프로페닐 아세테이트(1.5M)가 들어 있는 톨루엔 용액에 계면활성제로 코팅된 효소를 가하고, 25도에서 반응을 진행시키며, HPLC로 생성물(6)의 수율을 시간에 따라 분석하였다. Toluene solution containing phenylethyl alcohol ( 5 , 0.5M) and isopropenyl acetate (1.5M) was added to the enzyme coated with a surfactant, the reaction proceeded at 25 ° C, and the yield of product ( 6 ) was obtained by HPLC. Analysis over time.

상업용 효소인 Lipase PS, Lipase PS-C, Nobozym 435의 활성도 같은 방법으로 조사하였다. 결과는 하기 표 1과 같다.The activities of commercial enzymes Lipase PS, Lipase PS-C, and Nobozym 435 were also examined. The results are shown in Table 1 below.

순서order 효소의 종류Kind of enzyme 함량content 전체 활성 (mMmg-1h-1)Total activity (mMmg -1 h -1 ) 효소만의 활성
(mMmg-1h-1)
Enzyme only activity
(mMmg -1 h -1 )
효소 만의 상대 활성 비교 Enzyme-only Relative Activity Comparison 기타Etc
1One 상업용 효소 (Lipase PS)Commercial Enzyme (Lipase PS) 효소 1%Enzyme 1% 0.240.24 2424 6363 22 상업용 효소 (Lipase PS-C)Commercial Enzyme (Lipase PS-C) 효소 10%Enzyme 10% 1111 110110 290290 33 상업용 효소 (Novozym 435)Commercial Enzymes (Novozym 435) 효소20%Enzyme 20% 120120 600600 15801580 44 상업용 효소Commercial enzymes 효소80%,
글리신 20%
80% of enzymes,
Glycine 20%
1.21.2 1.51.5 4 4
55 계면활성제로 코팅된 효소Enzyme Coated with Surfactant 효소 18%, 계면활성제 23%Enzyme 18%, Surfactant 23% 250250 13901390 36003600 66 계면활성제로 코팅된 효소Enzyme Coated with Surfactant 효소 20%, 계면활성제 25%, 다당류 50%, 글리신 5%Enzyme 20%, Surfactant 25%, Polysaccharide 50%, Glycine 5% 500500 55005500 66006600 77 순수한 효소Pure enzyme 효소100%100% Enzyme 0.380.38 0.380.38 1 One

순서 5의 계면활성제로 코팅된 효소는 순서 1의 상업효 효소인 Lipase PS 의 수용성 추출물을 갖고 제조한 것이며, 순서 6의 계면활성제로 코팅된 효소는 순서 4의 상업용 효소를 그대로 사용해서 제조한 것이다. The enzyme coated with the surfactant of step 5 was prepared with a water-soluble extract of Lipase PS, the commercially available enzyme of step 1, and the enzyme coated with the surfactant of step 6 was prepared using the commercial enzyme of step 4 as it is. .

순서5와 순서6의 계면활성제로 코팅된 효소는 모두 상업용 효소보다 활성이 매우 뛰어 났다.특히, 상업용 효소 중 가장 활성이 좋은 순서 3의 Novozym 435보다도 활성이 우수하였다. 그리고, 순서 7의 순수한 효소와 비교하였을 경우 3000-6000배 이상 활성이 증가하였다.The enzymes coated with the surfactants of Steps 5 and 6 were much more active than commercial enzymes, especially the Novozym 435 of Step 3, which is the most active among commercial enzymes. And, when compared with the pure enzyme of step 7 activity was increased more than 3000-6000 times.

(실시예3)Example 3

[계면활성제로 코팅된 효소를 사용한 1-페닐에틸알코올의 동적속도론적 분할 반응] [ Kinematic Kinetics of 1-phenylethyl Alcohol Using Enzyme Coated with Surfactant]

[화학식 7]에 제시된 동적속도론적 반응을 수행하였다. 계면활성제로 코팅된 효소 (10 mg), 루테늄 금속 촉매 (4.0 mol%), 페닐에틸알코올 (1.0 mmol), 이소프로페닐아세테이트 (1.5 당량)을 톨루엔 (2.0 mL)에 가하고, 실온에서 반응을 진행시켰다. 반응 결과는 하기 표와 같다. 루테늄 금속 촉매 7을 사용한 경우 반응은 1시간 만에 완결되었으며, 루테늄 금속 촉매 89를 사용한 경우 반응이 완결되는 데 2시간이 걸렸다. 기존에 알려진 가장 빠른 동적속도론적 반응의 경우 완결되는 데 3시간이 걸렸기 때문에 [1) B. Martin -Matute, M. Edin, K. Bogar, F. B. Kaynak, J.-E. Backvall, J. Am. Chem. Soc. 2005, 127, 8817-8825; 2] J. H. Lee, N. Kim, M.-J. Kim, J. Park, ChemCatChem 2011, 3, 354-359], 본 발명의 반응이 가장 빠르다는 것을 알 수 있다.The kinematic reactions shown in [Formula 7] were performed. Enzyme coated with surfactant (10 mg), ruthenium metal catalyst (4.0 mol%) , phenylethyl alcohol (1.0 mmol) and isopropenyl acetate (1.5 equiv) were added to toluene (2.0 mL) and the reaction proceeded at room temperature. I was. The reaction results are shown in the table below. When ruthenium metal catalyst 7 was used, the reaction was completed in 1 hour, and when ruthenium metal catalysts 8 and 9 were used, the reaction took 2 hours to complete. The fastest known kinematic response took three hours to complete, because [1] B. Martin-Matute, M. Edin, K. Bogar, FB Kaynak, J.-E. Backvall, J. Am. Chem. Soc . 2005 , 127 , 8817-8825; 2] JH Lee, N. Kim, M.-J. Kim, J. Park, ChemCat Chem 2011 , 3 , 354-359], it can be seen that the reaction of the present invention is the fastest.

순서order Ru 촉매Ru catalyst 시간 (h)Time (h) 수율 (%) b Yield (%) b 광학순도 (ee %) c Optical purity (ee%) c 1One 77 1 One 9595 9999 22 88 1 (2)1 (2) 75(95)75 (95) 9999 33 99 1 (2) 1 (2) 85(97)85 (97) 9999

(실시예5)(Example 5)

[계면활성제가 코팅된 효소를 이용한 감마-클로로 하이드린의 동적 속도론적 분할 반응] [Dynamic Kinetic Splitting Reaction of Gamma-Chlorohydrin Using Enzyme Coated Enzyme]

슈렝크(pear-shaped Schlenk) 플라스크에 감마 클로로 하이드린 (0.3 mmol), 루테늄 금속촉매 7 (12.5 mg, 4 mol%), 탄산칼륨 (41.5 mg), 계면활성제로 코팅된 효소(3 mg)를 넣고 진공건조시킨 후 아르곤 기체를 충진시키고 깨끗이 정제된 톨루엔 500 ㎕를 넣고 상온에서 30분 동안 교반시켰다. 30분동안 교반 시킨 다음 아실주게인 아이소프로페닐 아세테이트 49.6 ㎕ 를 넣어주고 실온에서24 h시간 교반시켰다. 반응용기를 상온으로 식히고 메틸렌클로라이드를 반응용액에 첨가하여 묽힌 다음, 반응 혼합물을 셀라이트를 깔고 필터시킨 후 농축하여 실리카젤 컬럼크로마토그래피를 통하여 키랄 감마 클로로 하이드린 아세테이트를 분리하였다.In a pear-shaped Schlenk flask, gamma chlorohydrin (0.3 mmol), ruthenium metal catalyst 7 (12.5 mg, 4 mol%), potassium carbonate (41.5 mg), and an enzyme coated with a surfactant (3 mg) After vacuum drying and filling with argon gas, 500 μl of purified toluene was added thereto, followed by stirring at room temperature for 30 minutes. After stirring for 30 minutes, 49.6 μl of acyljugaine isopropenyl acetate was added thereto, and the mixture was stirred at room temperature for 24 h. The reaction vessel was cooled to room temperature, methylene chloride was added to the reaction solution, and then diluted. The reaction mixture was filtered through celite, concentrated, and concentrated to separate chiral gamma chlorohydrin acetate through silica gel column chromatography.

생성물의 광학 순도는 키랄 컬럼이 장착된 고분해능액체크로마토그래피를 이용하여 측정하였다. 얻어진 생성물의 분리수율과 광학 분할 결과를 하기 표3에 나타내었다.The optical purity of the product was measured using high resolution liquid chromatography equipped with a chiral column. The separation yield and optical splitting result of the obtained product are shown in Table 3 below.

순서order 기질temperament 생성물product 분리수율 (%)Separation yield (%) 광학순도 (%)Optical purity (%) 1One

Figure pat00011
Figure pat00011
Figure pat00012
Figure pat00012
9696 9898 22
Figure pat00013
Figure pat00013
Figure pat00014
Figure pat00014
9898 9595
33
Figure pat00015
Figure pat00015
Figure pat00016
Figure pat00016
9494 9898
44
Figure pat00017
Figure pat00017
Figure pat00018
Figure pat00018
9090 9797
55
Figure pat00019
Figure pat00019
Figure pat00020
Figure pat00020
9898 9696
66
Figure pat00021
Figure pat00021
Figure pat00022
Figure pat00022
8585 >99> 99

(실시예6)Example 6

[계면활성제가 코팅된 효소를 이용한 호모알릴 알코올의 동적 속도론적 분할 반응] [ Kinematic Kinetic Splitting Reaction of Homoallyl Alcohol Using Enzyme Coated with Surfactant]

실시예 4의 방법은 금속 촉매로 8를 사용했다는 점을 제외하고는 실시예 3의 방법과 동일하며 얻어진 생성물의 분리수율과 광학 분할 결과를 하기 표에 나타내었다.The method of Example 4 was the same as that of Example 3, except that 8 was used as the metal catalyst, and the separation yield and optical splitting result of the obtained product are shown in the following table.

표4는 동적 속도론적 분할에 의해 합성된 생성물의 분리수율과 광학순도이다. Table 4 shows the separation yield and optical purity of the product synthesized by dynamic kinetic partitioning.

순서order 기질temperament 생성물product 분리수율 (%)Separation yield (%) 광학순도 (ee %)Optical purity (ee%) 1One

Figure pat00023
Figure pat00023
Figure pat00024
Figure pat00024
9494 >99> 99 22
Figure pat00025
Figure pat00025
Figure pat00026
Figure pat00026
9797 8282
33
Figure pat00027
Figure pat00027
Figure pat00028
Figure pat00028
9696 8282
44
Figure pat00029
Figure pat00029
Figure pat00030
Figure pat00030
9797 8181
55
Figure pat00031
Figure pat00031
Figure pat00032
Figure pat00032
9797 9696
66
Figure pat00033
Figure pat00033
Figure pat00034
Figure pat00034
9696 >99> 99
77
Figure pat00035
Figure pat00035
Figure pat00036
Figure pat00036
9393 >99> 99
88
Figure pat00037
Figure pat00037
Figure pat00038
Figure pat00038
9696 9999
99
Figure pat00039
Figure pat00039
Figure pat00040
Figure pat00040
9191 >99> 99

(실시예 7)(Example 7)

[계면활성제가 코팅된 효소를 이용한 알파-아릴-프로파질알코올의 동적 속도론적 분할 반응] [Dynamic Kinetic Splitting Reaction of Alpha-Aryl-Propazyl Alcohol Using Surfactant-coated Enzymes]

슈렝크(pear-shaped Schlenk) 플라스크에15 mg 의 루테늄 금속촉매 8, 탄산나트륨 50 mg, 2 mg의 코팅된 리파아제를 넣고 진공건조시킨 후 아르곤 기체를 충진시키고 깨끗이 정제된 톨루엔 400㎕를 넣고 상온에서 10분 동안 교반시켰다. THF용액 속에 포함되어 있는1.0 M potassium tert-butoxide 5㎕ 를 반응용기에 넣고 오렌지색에서 어두운 갈색으로 변할 때까지 교반시킨 후, 프로파아질 알코올 기질 0.1 mmol을 첨가하고 5분동안 교반시킨 다음 아실 주게인 아이소프로페닐 아세테이트 17㎕ 를 넣어주고 60℃에서 48시간 교반시켰다. 반응용기를 상온으로 식히고 메틸렌클로라이드를 반응용액에 첨가하여 묽힌 다음, 반응 혼합물을 셀라이트를 깔고 필터시킨 후 농축하여 실리카젤컬럼크로마토그래피를 통하여 키랄 프로파아질 아세테이트를 분리하였다.Into a pear-shaped Schlenk flask, 15 mg of ruthenium metal catalyst 8 , 50 mg of sodium carbonate, 2 mg of coated lipase was dried in vacuo, filled with argon gas, 400 μl of purified toluene, Stir for minutes. 5 μl of 1.0 M potassium tert -butoxide contained in THF solution was added to the reaction vessel and stirred until it changed from orange to dark brown. Then, 0.1 mmol of propazyl alcohol substrate was added and stirred for 5 minutes. 17 μl of isopropenyl acetate was added thereto, and the mixture was stirred at 60 ° C. for 48 hours. The reaction vessel was cooled to room temperature, methylene chloride was added to the reaction solution, and then diluted. The reaction mixture was filtered through celite, concentrated, and concentrated to separate chiral propargyl acetate through silica gel column chromatography.

생성물의 광학 순도는 키랄 컬럼이 장착된 고분해능액체크로마토그래피를 이용하여 측정하였다.The optical purity of the product was measured using high resolution liquid chromatography equipped with a chiral column.

얻어진 생성물의 분리수율과광학 분할 결과를 하기 표5에 나타내었다.The separation yield and optical splitting results of the obtained product are shown in Table 5 below.

표 5는 동적 속도론적 분할에 의해 합성된 생성물의 분리수율과 광학순도Table 5 shows the separation yield and optical purity of the product synthesized by dynamic kinetic partitioning.

순서order 기질temperament 생성물product 분리수율 (%)Separation yield (%) 광학순도 (ee %)Optical purity (ee%) 1One

Figure pat00041
Figure pat00041
Figure pat00042
Figure pat00042
9595 >99> 99 22
Figure pat00043
Figure pat00043
Figure pat00044
Figure pat00044
9191 9696
33
Figure pat00045
Figure pat00045
Figure pat00046
Figure pat00046
9090 9696
44
Figure pat00047
Figure pat00047
Figure pat00048
Figure pat00048
9191 9696
55
Figure pat00049
Figure pat00049
Figure pat00050
Figure pat00050
9494 >99> 99
66
Figure pat00051
Figure pat00051
Figure pat00052
Figure pat00052
9292 >99> 99
77
Figure pat00053
Figure pat00053
Figure pat00054
Figure pat00054
9090 9898
88
Figure pat00055
Figure pat00055
Figure pat00056
Figure pat00056
9191 9898
99
Figure pat00057
Figure pat00057
Figure pat00058
Figure pat00058
8989 9797

발명은 상술한 특정의 실시 예에 한정되지 아니하며, 당해 기술분야에 통상의 지식을 가진 자라면 본원 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능함은 물론이다. 따라서, 본 발명의 범위는 위의 실시 예에 국한해서 해석되어서는 안되며, 후술하는 특허 청구범위뿐만 아니라 이 특허 청구범위와 균등한 것들에 의해 정해져야 할 것이다.The invention is not limited to the specific embodiments described above, and various modifications can be made by those skilled in the art without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed as being limited to the above embodiments, but should be determined by not only the following claims but also equivalents thereof.

Claims (20)

2차 알코올을 이용하여 키랄에스테르 화합물을 제조하는 동적 속도론적 분할 반응에 있어서, 계면활성제로 코팅된 효소를 이용하는 것을 특징으로 하는 방법.In a kinematic kinetic splitting reaction for preparing a chiral ester compound using a secondary alcohol, a method characterized by using an enzyme coated with a surfactant. 제1항에 있어서, 효소는 순수 분리한 효소, 효소가 발현된 세포, 또는 효소가 발현된 세포의 파쇄물 중에서 선택되는 하나인 것을 특징으로 하는 방법.The method of claim 1, wherein the enzyme is one selected from purely isolated enzymes, cells expressing enzymes, or lysates of cells expressing enzymes. 제 1항 또는 제2항에 있어서, 상기 효소는 지질가수분해효소 혹은 단백질가수분해효소인 것을 특징으로 하는 방법.The method according to claim 1 or 2, wherein the enzyme is lipohydrolase or proteolytic enzyme. 제1항에 있어서, 상기 동적 속도론적 분할 반응은 루테늄계 촉매를 포함하는 것을 특징으로 하는 방법.The method of claim 1 wherein the kinematic kinetic splitting reaction comprises a ruthenium-based catalyst. 제3항에 있어서, 상기 지질가수분해효소는 버크홀데리아 세파시아 리파아제(Burkholderia cepacia lipase), 슈도모나스세파시아리파아제(Pseudomonas cepacia lipase; LPS), 슈도모나스 플로레센스 리파아제(Pseudomonas fluorecenslipase), 캔디다 안타크티카리파아제 A와 B (Candida Antarctica lipase A 와 B), 캔디다 루거사리파아제(Candida rugosa lipase), 아스퍼질러스니거리파아제 (Aspergillusniger lipase), 캔디다 실린드라시아(Candida cylindracea lipase), 무코미헤이 리파아제(Mucormiehei lipase), 허그판그레스 리파아제(Hog pancreas lipase), 캔디다 리폴리티카 리파아제(Candida lipolytica lipase), 무코자바니쿠스 리파아제(Mucorjavanicus lipase), 페니실리움로퀘포티 리파아제 (Penicilliumroqueforti lipase), 및 리조무코미헤이 리파아제 (Rhizomucormiehei lipase) 등으로 이루어진 군에서 선택되는 적어도 하나인 리파아제인 것을 특징으로 하는 방법.The method of claim 3, wherein the lipohydrolase is Burkholderia cepacia lipase, Pseudomonas cepacia lipase (LPS), Pseudomonas fluorecens lipase, Candida anthica Lipases A and B ( Candida Antarctica lipase A and B), Candida rugosa lipase, Aspergillusniger lipase, Candida cylindracea lipase, Mucormiehei lipase ), Hog pancreas lipase, Candida lipolytica lipase, Mucorjavanicus lipase, Penicillium roqueforti lipase, and Rizomucomihei the referents ah at least one selected from the group consisting of such as (Rhizomucormiehei lipase) Characterized in that a. 제1항에 있어서, 상기 계면활성제는 하기 화학식 1로 표현되는 것을 특징으로 하는 방법.
Figure pat00059
The method of claim 1, wherein the surfactant is represented by the following formula (1).
Figure pat00059
제1항에 있어서, 상기 계면활성제는 하기 화학식 2 또는 화학식 3으로 표현되는 것을 특징으로 하는 방법.
Figure pat00060

Figure pat00061
The method of claim 1, wherein the surfactant is represented by the following formula (2) or (3).
Figure pat00060

Figure pat00061
제1항에 있어서, 상기 2차알코올은 하기 화학식(4), 상기 키랄에스테르 화합물은 하기 화학식(5)로 표현되는 것을 특징으로 하는 방법.
Figure pat00062

Figure pat00063
The method according to claim 1, wherein the secondary alcohol is represented by the following formula (4) and the chiral ester compound is represented by the following formula (5).
Figure pat00062

Figure pat00063
제1항에 있어서, 상기 계면활성제로 코팅된 효소는 당류 및/또는 아미노산 화합물을 더 포함하는 것을 특징으로 하는 방법.The method of claim 1, wherein the enzyme coated with the surfactant further comprises a saccharide and / or an amino acid compound. 제9항에 있어서, 상기 당류는 전분, 글리코겐(glycogen), 셀룰로스(cellulose), 덱스트린(dextrin), 이룰린(inulin), 키틴(chitin) , 아라비난(arabinan), 자일란(xylan), 글루코만난(glucomannan), 펙틴(pectin), 아르긴산(alginic acid), 및 뮤코다당류(mucopolysaccharide로 이루어진 그룹에서 선택되는 것을 특징으로 하는 방법.The method of claim 9, wherein the sugars are starch, glycogen, cellulose, dextrin, inulin, chitin, arabinan, xylan, glucomannan ( glucomannan), pectin (pectin), arginic acid (alginic acid), and mucopolysaccharide (mucopolysaccharide) characterized in that it is selected from the group consisting of. 제9항에 있어서, 상기 아미노산 화합물은 아미노산, 아미노산 올리고머, 및 단백질에서 하나 이상 선택되는 것을 특징으로 하는 방법. The method of claim 9, wherein the amino acid compound is selected from one or more of amino acids, amino acid oligomers, and proteins. 하기 화학식 1로 표현되는 계면활성제로 코팅된 효소.
Figure pat00064
Enzyme coated with a surfactant represented by the formula (1).
Figure pat00064
제12항에 있어서, 상기 계면활성제는 하기 화학식 2 또는 화학식 3으로 표현되는 것을 특징으로 하는 효소.
Figure pat00065

Figure pat00066
The enzyme according to claim 12, wherein the surfactant is represented by the following Chemical Formula 2.
Figure pat00065

Figure pat00066
제12항에 있어서, 상기 계면활성제는
메틸3,5-비스(2-(2-(2-에톡시에톡시)에톡시)에톡시)벤조에이트,
3,5-비스(2-(2-(2-에톡시에톡시)에톡시)에톡시)벤조산,
칼륨 3,5-비스(2-(2-(2-에톡시에톡시)에톡시)에톡시)벤조산에서 하나 이상 선택되는 것을 특징으로 하는 효소.
The method of claim 12, wherein the surfactant
Methyl 3,5-bis (2- (2- (2-ethoxyethoxy) ethoxy) ethoxy) benzoate,
3,5-bis (2- (2- (2-ethoxyethoxy) ethoxy) ethoxy) benzoic acid,
An enzyme, characterized in that at least one selected from potassium 3,5-bis (2- (2- (2-ethoxyethoxy) ethoxy) ethoxy) benzoic acid.
효소, 계면활성제, 당류, 및 아미노산 화합물을 포함하는 효소 복합체.Enzyme complexes comprising enzymes, surfactants, sugars, and amino acid compounds. 제15항에 있어서, 상기 효소는 지질가수분해 효소인 것을 특징으로 하는 효소 복합체.The enzyme complex according to claim 15, wherein the enzyme is a lipohydrolase. 제15항에 있어서, 상기 계면활성제는 음이온 계면활성제, 양이온 계면활성제, 비이온성 계면활성제에서 하나 이상 선택되는 것을 특징으로 하는 효소 복합체.The enzyme complex according to claim 15, wherein the surfactant is at least one selected from anionic surfactants, cationic surfactants, and nonionic surfactants. 제15항에 있어서, 상기 효소 복합체는 효소 1-50 중량%, 계면활성제 1-50 중량%, 당류 1-80 중량%, 및 아미노산 화합물 1-20중량%로 이루어진 것을 특징으로 하는 효소 복합체.The enzyme complex according to claim 15, wherein the enzyme complex comprises 1-50% by weight of enzyme, 1-50% by weight of surfactant, 1-80% by weight of saccharide, and 1-20% by weight of amino acid compound. 제15항에 있어서, 상기 효소 복합체는 효소와 계면활성제, 당류, 및 아미노산 화합물을 매질에 용해 또는 분산시킨 후 이를 동결 건조시킨 것을 특징으로 하는 효소 복합체.The enzyme complex according to claim 15, wherein the enzyme complex is lyophilized after dissolving or dispersing an enzyme, a surfactant, a sugar, and an amino acid compound in a medium. 제15항에 있어서, 상기 효소 복합체는 상기 효소를 계면활성제, 당류, 및 아미노산 화합물이 코팅하는 것을 특징으로 하는 효소 복합체.The enzyme complex according to claim 15, wherein the enzyme complex is coated with a surfactant, a saccharide, and an amino acid compound.
KR1020110093830A 2011-09-19 2011-09-19 New surfactant-coated enzyme and the use thereof KR101886427B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110093830A KR101886427B1 (en) 2011-09-19 2011-09-19 New surfactant-coated enzyme and the use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110093830A KR101886427B1 (en) 2011-09-19 2011-09-19 New surfactant-coated enzyme and the use thereof

Publications (2)

Publication Number Publication Date
KR20130030397A true KR20130030397A (en) 2013-03-27
KR101886427B1 KR101886427B1 (en) 2018-08-07

Family

ID=48179949

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110093830A KR101886427B1 (en) 2011-09-19 2011-09-19 New surfactant-coated enzyme and the use thereof

Country Status (1)

Country Link
KR (1) KR101886427B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107034205A (en) * 2017-06-08 2017-08-11 江南大学 A kind of method that utilization surfactant prepares high esterification active lipase
CN110438194A (en) * 2019-07-29 2019-11-12 浙江工业大学 A kind of lipase is preparing the application in D- tropic acid methyl esters

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010040121A (en) * 1999-10-18 2001-05-15 박영구 Preparing method of chiral ester
KR20030082076A (en) * 2002-04-16 2003-10-22 주식회사 엔지뱅크 Surface-active enzyme, synthetic method thereof and producing method of supported enzyme

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010040121A (en) * 1999-10-18 2001-05-15 박영구 Preparing method of chiral ester
KR20030082076A (en) * 2002-04-16 2003-10-22 주식회사 엔지뱅크 Surface-active enzyme, synthetic method thereof and producing method of supported enzyme

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Biotechnol. Prog., Vol.11, pp.270-275(1995.)* *
Journal of Bioscience and Bioengineering, Vol.94, pp.357-361(2002.)* *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107034205A (en) * 2017-06-08 2017-08-11 江南大学 A kind of method that utilization surfactant prepares high esterification active lipase
CN110438194A (en) * 2019-07-29 2019-11-12 浙江工业大学 A kind of lipase is preparing the application in D- tropic acid methyl esters
CN110438194B (en) * 2019-07-29 2021-06-08 浙江工业大学 Application of lipase in preparation of D-tropine methyl ester

Also Published As

Publication number Publication date
KR101886427B1 (en) 2018-08-07

Similar Documents

Publication Publication Date Title
Seddigi et al. Lipases in asymmetric transformations: Recent advances in classical kinetic resolution and lipase–metal combinations for dynamic processes
US6399339B1 (en) Method for the enantioselective reduction of 3,5-dioxocarboxylic acids, their salts and their esters
Chen et al. A tandem Aldol condensation/dehydration co-catalyzed by acylase and N-heterocyclic compounds in organic media
JP2011042660A (en) Method for producing optically active 1-substituted-2-methylpyrrolidine and intermediate of the same
JPH0856693A (en) Production of optically active endo-2-norborneols
da Silva et al. Characterization and catalytic activity of free and immobilized lipase from Aspergillus niger: a comparative study
Hatzakis et al. Asymmetric transesterification of secondary alcohols catalyzed by feruloyl esterase from Humicola insolens
Sakai et al. Lipase-catalyzed dynamic kinetic resolution giving optically active cyanohydrins: use of silica-supported ammonium hydroxide and porous ceramic-immobilized lipase
KR101886427B1 (en) New surfactant-coated enzyme and the use thereof
Liu et al. Chemoenzymatic synthesis of the non-tricyclic antidepressants Fluoxetine, Tomoxetine and Nisoxetine
CN101104861B (en) Method for preparing S-ibuprofen and S-ibuprofen ester by biological catalysis
CN108315365B (en) Biosynthesis method of atorvastatin intermediate
US20100261251A1 (en) Microbial kinetic resolution of ethyl-3,4-epoxybutyrate
KR100337387B1 (en) Method for preparing chiral allyl alcohol
EP2737074B1 (en) Process for producing L-carnitine from beta-lactones employing lipases
Nicolosi et al. Enzymatic access to homochiral 1-acetoxy-2-hydroxycyclohexane-3, 5-diene through lipase-assisted acetylation in organic solvent
Utczás et al. Enzymatic resolution of trans-2-hydroxycyclohexanecarbonitrile in supercritical carbon dioxide
Kim et al. Ionic-surfactant-coated subtilisin: activity, enantioselectivity, and application to dynamic kinetic resolution of secondary alcohols
Gamboa-Velázquez et al. Mechanoenzymology in the Kinetic Resolution of β-Blockers: Propranolol as a Case Study
JP2002171994A (en) Method for producing optically active tetrahydrofuran-2-carboxylic acid or its antipode ester
Wang et al. Regioselective enzymatic synthesis of non-steroidal anti-inflammatory drugs containing glucose in organic media
KR100657204B1 (en) The method of making optically active 3-hydroxy-?-butyrolactone by enzymatic method
JP3583798B2 (en) Method for producing optically active 2-methylbutanoic acid and derivatives thereof
KR100453996B1 (en) The method of making optically active ethyl 3-hydroxy-3-phenylpropionate and their esters by enzymatic method
TWI388667B (en) Enzyme dynamic segmentation method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant