KR20130028823A - Methods for preparing biodiesel using animal cell culture waste - Google Patents

Methods for preparing biodiesel using animal cell culture waste Download PDF

Info

Publication number
KR20130028823A
KR20130028823A KR1020110091818A KR20110091818A KR20130028823A KR 20130028823 A KR20130028823 A KR 20130028823A KR 1020110091818 A KR1020110091818 A KR 1020110091818A KR 20110091818 A KR20110091818 A KR 20110091818A KR 20130028823 A KR20130028823 A KR 20130028823A
Authority
KR
South Korea
Prior art keywords
animal cell
methanol
acid
biodiesel
solution
Prior art date
Application number
KR1020110091818A
Other languages
Korean (ko)
Other versions
KR101385941B1 (en
Inventor
이철균
성동호
임상민
류영진
홍한마루
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020110091818A priority Critical patent/KR101385941B1/en
Publication of KR20130028823A publication Critical patent/KR20130028823A/en
Application granted granted Critical
Publication of KR101385941B1 publication Critical patent/KR101385941B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/40Thermal non-catalytic treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Thermal Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Fats And Perfumes (AREA)

Abstract

PURPOSE: A method of manufacturing biodiesel is provided to manufacture biodiesel using cultured animal cell waste without a separate waste treatment process. CONSTITUTION: A method of manufacturing biodiesel from cultured animal cell salvage comprises a first extracting step of adding a polar organic solvent to the collected wet cultured animal cell salvage and stirring to extract lipid; a crude lipid yielding step of layer separating the supernatant and cell pellets and concentrating the supernatant to manufacture concentrate; a second extracting step of adding acid/alcohol solution to yielded crude lipid, refluxing and extracting with a non-polar organic solvent; and a separating step of collecting the non-polar solvent layer and concentrating under the reduced pressure to separating biodiesel. The animal cell is the CHO (Chinese hamster ovary) cell, the BHK (baby hamster kidney) cell, the HEK (human embryonic kidney) cell, and the NS 0 (myeloma cell line) cell. The animal cell is the CHO cell. The polar organic solvent is methanol, ethanol, isopropyl alcohol, acetone or methanol/chloroform solvent mixture. The polar organic solvent is applied at 1-10 times of volume to the volume of the cultured animal cell salvage. The mixing ratio of the methanol/chloroform mixed solution is 1:4 to 4:1. The acid/alcohol solution in the second extracting step is sulfuric acid/methanol solution, sulfuric acid/ethanol solution, anhydrous hydrochloride/methanol solution, anhydrous hydrochloride/ethanol solution, acetyl chloride/methanol, and acetyl chloride/ethanol solution. The acid/alcohol solution in the second extracting step has 1-5 % (w/v) of concentration. The acid/alcohol solution in the second extracting step is applied to 0.2-20 times of volume (v/w) to the crude lipid.

Description

배양 동물세포 폐기물을 이용한 바이오디젤의 제조방법{Methods for preparing biodiesel using animal cell culture waste}Method for preparing biodiesel using cultured animal cell waste {Methods for preparing biodiesel using animal cell culture waste}

본 발명은 바이오디젤의 제조방법에 관한 것으로서, 더 상세하게는 배양 동물세포 폐기물을 이용한 바이오디젤의 제조방법에 관한 것이다.The present invention relates to a method for producing biodiesel, and more particularly, to a method for producing biodiesel using culture animal cell waste.

일반적으로, 중요한 지속생산 가능한 에너지의 하나인 바이오디젤은 지방산의 알킬에스터로서 지방산 글리세롤에스터를 사용하여 제조하고 있으며 대부분의 지방산 글리세롤에스터는 식용으로 사용 가능한 기름으로서 인류생존에 가장 중요한 식량자원이기 때문에 바이오디젤의 원료로 사용할 때 식량자원의 부족과 식량자원 가격의 급격한 상승을 유발할 수 있다.In general, biodiesel, which is one of the important sustainable production energy, is produced using fatty acid glycerol ester as alkyl ester of fatty acid, and most fatty acid glycerol ester is an edible oil which is the most important food resource for human survival. When used as a raw material of diesel, it can cause a shortage of food resources and a sharp increase in the price of food resources.

인류의 생산 활동 결과 발생하는 폐기물들은 환경을 파괴하는 주요 원인이기 때문에, 폐기물의 활용은 인류의 지속적 생존을 위하여 필요하다. 특히 이들 폐기물에서 에너지를 생산하여 다시 사용하는 기술은 상술한 식량자원을 이용한 바이오디젤 생산시 문제점을 해소하고 환경파괴를 방지할 수 있다는 점에서 주목 받고 있다.Since the wastes generated by human production are the main cause of the destruction of the environment, the utilization of wastes is necessary for the continued survival of humankind. In particular, the technology for producing and reusing energy from these wastes is attracting attention because it can solve the problems of the production of biodiesel using the food resources described above and prevent environmental destruction.

한편, CHO 세포와 같은 동물세포는 치료용 항체 등 고가의 의약품 생산에 많이 사용되고 있으며 생산제품의 품질이 우수하여 의약품 생산에 사용이 점점 증가하는 단백질 생산원이나 단백질 생산 후 폐기물로 남는 대량의 동물세포 폐기물은 유기물의 함량이 높아 폐기 시에 생물학적 산소 요구량을 급격히 상승시키고, 폐기를 위해 소각처리를 할 경우에는 많은 에너지를 소모하기 때문에, 처리 시 주의를 요하는 폐기물로서 현재 고비용의 폐기물 처리공정을 통하여 폐기되고 있다. 따라서, 단백질 생산에 사용하고 남은 세포 폐기물을 재활용할 수 있는 방법의 개발이 필요하다. On the other hand, animal cells such as CHO cells are widely used for the production of expensive pharmaceuticals such as therapeutic antibodies, and the quality of the products is excellent. As waste has a high organic content, it rapidly raises the demand for biological oxygen at disposal and consumes a lot of energy when incinerated for disposal. It is being discarded. Therefore, there is a need for the development of a method for recycling the remaining cell waste used for protein production.

그러나, 배양 동물세포 폐기물은 젖은 상태로 회수되는 생세포로서 지질, 탄수화물, 단백질, 핵산, 기타 미량원소 및 다량의 물로 구성되어 세포 구성성분 자체의 이용을 통하여 재활용이 가능할 것으로 여겨지나 세포성분의 효과적인 분리방법과 이용방법의 개발이 이루어지지 않아 재활용이 되지 않고 전량 폐기되고 있는 실정이다. However, cultured animal cell waste is a living cell that is recovered wet, and is composed of lipids, carbohydrates, proteins, nucleic acids, other trace elements, and large amounts of water, and is thought to be recyclable through the use of the cellular components themselves. Since the development of the method and the method of use is not made, it is not recycled and is disposed of entirely.

본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 배양 동물세포 폐기물을 이용하여 바이오디젤을 제조하는 방법을 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.The present invention is to solve a number of problems, including the above problems, it is an object of the present invention to provide a method for producing biodiesel using a culture animal cell waste. However, these problems are exemplary and do not limit the scope of the present invention.

본 발명의 일 관점에 따르면, 회수된 젖은 상태의 배양 동물세포 회수물에 극성 유기용매를 가한 후 교반하여 지질을 추출하는 1차 추출단계; 상등액과 세포침전물을 층분리한 후 상기 상등액을 농축하여 농축물을 제조하는 상등액 농축하는 조지질 수득단계; 상기 수득된 조지질에 산/알코올 용액을 가하여 가열환류한 후 비극성 유기용매로 추출하는 2차 추출단계; 및 비극성 유기용매층을 회수한 후 감압농축하여 바이오디젤을 분리하는 분리단계를 포함하는 배양 동물세포 회수물로부터 바이오디젤의 생산방법이 제공된다.According to one aspect of the invention, the first extraction step of extracting the lipid by stirring after adding a polar organic solvent to the recovered recovered cultured animal cells; After separating the supernatant and the cell precipitate, the supernatant is obtained by concentrating the supernatant to prepare a concentrate. A secondary extraction step of adding an acid / alcohol solution to the obtained crude oil and heating it under reflux to extract it with a nonpolar organic solvent; And recovering the non-polar organic solvent layer and concentrating under reduced pressure to separate the biodiesel.

이 때, 상기 배양 동물세포는 CHO(Chinese hamster ovary) 세포, BHK(baby hamster kidney) 세포, HEK(human embryo kidney) 세포, NS0(myeloma cell line) 세포가 사용될 수 있고, 바람직하게는 CHO 세포가 사용될 수 있다.At this time, the culture animal cells may be used as CHO (Chinese hamster ovary) cells, BHK (baby hamster kidney) cells, HEK (human embryo kidney) cells, NS0 (myeloma cell line) cells, preferably CHO cells Can be used.

상기 극성 유기용매는 클로로포름-메탄올 혼합용매, 이소프로필알콜, 에탄올, 메탄올 또는 아세톤일 수 있다.The polar organic solvent may be chloroform-methanol mixed solvent, isopropyl alcohol, ethanol, methanol or acetone.

상기 극성 유기용매는 배양 동물세포 회수물 부피 대비 1 내지 10배의 부피로 가할 수 있고, 더 바람직하게는 4 내지 7배로 가할 수 있다. 상기 극성 유기용매 중 메탄올/클로로포름 혼합용액의 혼합비는 1:4 내지 4:1일 수 있고, 바람직하게는 1:1 내지 3:1일 수 있다. The polar organic solvent may be added in a volume of 1 to 10 times the volume of the culture animal cell harvest, more preferably 4 to 7 times. The mixing ratio of the methanol / chloroform mixed solution in the polar organic solvent may be 1: 4 to 4: 1, preferably 1: 1 to 3: 1.

상기 조지질 수득단계에서 사용되는 극성 유기용매는 메탄올 또는 에탄올일 수 있으며, 상기 농축물 대비 1 내지 10배의 부피로 가할 수 있다.The polar organic solvent used in the crude oil obtaining step may be methanol or ethanol, and may be added in a volume of 1 to 10 times that of the concentrate.

상기 2차 추출단계의 산/알코올 용액은 황산/메탄올 용액, 황산/에탄올 용액 무수염산/메탄올, 무수염산/에탄올, 염화아세틸/메탄올 및 염화아세틸/에탄올 일 수 있고, 농도는 1 내지 5%(w/v)일 수 있고, 상기 조지질 대비 0.2 내지 20배 부피(v/w)로 가할 수 있다. 상기 2차 추출단계에서 가열환류는 50 내지 75℃의 온도조건에서 수행될 수 있고, 2시간 내지 10시간 바람직하게는 5시간 내지 8시간 동안 수행될 수 있다. 상기 2차 추출단계에서 비극성 유기용매는 노르말헥산, 노르말헵탄, 사이클로헥산, 디에틸에테르 또는 이들 중 적어도 둘 이상의 혼합용매일 수 있고, 상기 산/알코올 용액 대비 2 내지 20배 부피(v/v)로 가할 수 있다. The acid / alcohol solution of the second extraction step may be sulfuric acid / methanol solution, sulfuric acid / ethanol solution anhydrous hydrochloric acid / methanol, anhydrous hydrochloric acid / ethanol, acetyl chloride / methanol and acetyl chloride / ethanol, and the concentration is 1-5% ( w / v), and may be added in a volume of 0.2 to 20 times (v / w) relative to the crude oil. Heat reflux in the secondary extraction step may be carried out at a temperature of 50 to 75 ℃, may be carried out for 2 hours to 10 hours preferably 5 hours to 8 hours. In the second extraction step, the nonpolar organic solvent may be normal hexane, normal heptane, cyclohexane, diethyl ether, or a mixed solvent of at least two or more thereof, and may have a volume of 2 to 20 times (v / v) relative to the acid / alcohol solution. Can be added.

상기 방법에 의해 바이오디젤을 생산하고 발생하는 배양 동물세포 침전물은 건조 후 퇴비화가 용이한 건조유기물이 될 수 있다.The cultured animal cell precipitate produced and produced by biodiesel may be a dry organic matter that is easily composted after drying.

일반적으로 지질을 추출할 때 원료물질을 건조된 상태로 사용하나 배양 후 정제과정에서 회수한 배양 동물세포 폐기물은 젖은 점성 액상스프 상태로 회수가 되며 건조를 위해서는 동결건조, 분무건조 등 에너지를 다량 소모하는 공정이 필요하다. 이에 본 발명자들은 지질은 유기용매에 전이되는 특징을 이용하여 유기용매를 사용하여 젖은 상태의 동물세포 폐기물에서 직접 지질을 추출하는 방법을 개발하고자 시도하였으며 추출 방법을 면밀하게 연구한 결과 배양된 동물세포 회수물에 유기용매를 직접 가하여 지질을 추출할 때 유기용매의 종류에 따라 지질을 추출할 수 있음을 확인하였다. 회수된 젖은 상태의 배양 동물세포 폐기물은 통상적으로 80 ~ 85%의 수분을 함유하고 있으며 젖은 상태의 배양 동물세포 폐기물에 유기용매를 직접 가해 교반 추출할 때 사용하는 유기용매의 종류에 따라 세포를 분말형태로 만들며 지질을 높은 수율로 추출할 수 있음을 확인하였다.Generally, when extracting lipids, raw materials are used in a dried state, but cultured animal cell wastes recovered in the purification process after cultivation are recovered in a wet, viscous liquid soup state, and for drying, it consumes a large amount of energy such as freeze drying and spray drying. It is necessary to process. Therefore, the present inventors have attempted to develop a method of directly extracting lipids from animal cell waste in a wet state using organic solvents by using a feature that lipids are transferred to organic solvents. When extracting lipids by directly adding an organic solvent to the recovered product, it was confirmed that lipids can be extracted according to the type of organic solvent. Recovered wet cultured animal cell wastes typically contain 80-85% water, and the cells are powdered according to the type of organic solvent used when stirring and extracting organic solvents directly to wet cultured animal cell wastes. It was confirmed that the lipid can be extracted in high yield.

클로로포름-메탄올 혼합용매, 이소프로필알콜, 에탄올, 메탄올 및 아세톤과 같은 극성 유기용매를 젖은 동물세포 부피의 1배 내지 10배의 부피를 가하여 추출하였을 때 젤을 형성 시키지도 않고 지질도 높은 수율로 추출되며 남은 잔사도 쉽게 고형성분으로 만들 수 있어 추출된 조지질을 바이오 디젤 제조용 원료로 사용가능하며 남은 잔사도 건조가 용이한 상태로 회수하여 2차 활용에 이용할 수 있다. 추출된 조지질은 일반적인 바이오디젤 전환 방법인 염기/메탄올 용매 하에서 가열할 때 부반응인 비누화 반응으로 다량 진행되어 바이오 디젤로 제조가 어려우며 산촉매인 황산/메탄올 방법을 사용할 때도 통상적인 방법인 0.2배 부피의 메탄올을 사용할 때 지방산으로 분해되어 극히 일부분만이 바이오디젤로 전환됨을 확인하였으며, 이를 극복하기 위해, 10배 이상의 부피의 황산/메탄올을 사용하여 가열 환류반응을 10시간 이내 수행하고, 노르말헥산, 노르말헵탄, 사이클로헥산, 디에틸에테르 또는 이들 중 어느 둘 이상의 혼합용매와 같은 추출 후 용매의 증발제거가 유리한 저온 휘발성을 갖는 비극성 유기용매로 추출하였을 때 효과적으로 바이오디젤로 전환시킬 수 있음을 확인함으로써, 본 발명을 완성하였다(도 1 및 2 참조).When polar organic solvents such as chloroform-methanol mixed solvent, isopropyl alcohol, ethanol, methanol and acetone were added at a volume of 1 to 10 times the volume of wet animal cells, no gel was formed and lipids were extracted in high yield. The residue can be easily made into a solid component so that the extracted crude oil can be used as a raw material for biodiesel production, and the remaining residue can be recovered for easy drying and used for secondary utilization. The extracted crude oil is a large amount of side reaction saponification reaction when heated under the base bio-diesel conversion method of base / methanol solvent, making it difficult to produce biodiesel, and 0.2 times volume, which is the conventional method even when using the acid catalyst sulfuric acid / methanol method. When methanol was used, it was confirmed that only a part of biodiesel was decomposed into fatty acids. To overcome this problem, heating reflux was performed within 10 hours using sulfuric acid / methanol of 10 times or more, and normal hexane and normal By confirming that evaporation of the solvent after extraction, such as heptane, cyclohexane, diethyl ether, or a mixed solvent of any two or more thereof, can be effectively converted to biodiesel when extracted with a nonpolar organic solvent having advantageous low temperature volatility. The invention has been completed (see FIGS. 1 and 2).

상기한 바와 같이 이루어진 본 발명의 일실시예에 따르면, 지금까지 폐기되어 오던 동물세포 폐기물로부터 재생가능한 에너지인 바이오디젤을 생산할 수가 있어 별도의 폐기물 처리 공정 없이 바이오디젤을 생산함으로써, 환경개선 및 에너지 획득의 효과를 얻을 수 있고, 바이오디젤을 제조하고 남은 탈지 동물세포 침전물도 건조가 용이하여 보관 및 이송이 편리한 건조분말로 만들어 재사용의 편의성을 높여서 퇴비 등으로 재활용함으로써 폐기 시 발생하는 환경오염을 막고 재사용에 따른 경제적인 효과를 거둘 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to one embodiment of the present invention made as described above, it is possible to produce biodiesel that is renewable energy from animal cell waste that has been discarded until now, by producing biodiesel without a separate waste treatment process, environmental improvement and energy acquisition The degreasing animal cell sediment remaining after the manufacture of biodiesel is also easy to dry, making it a dry powder that is easy to store and transport, which makes it easier to reuse and recycles as compost to prevent environmental pollution and reuse. Economic effects can be achieved. Of course, the scope of the present invention is not limited by these effects.

도 1은 본 발명의 일실시예에 따른 방법을 이용하여 CHO 세포 폐기물로부터 제조된 바이오디젤이 담긴 시험관을 촬영한 사진이다.
도 2는 본 발명의 일실시예에 따른 방법을 이용하여 CHO 세포 폐기물로부터 제조한 바이오디젤의 가스크로마토그램이다:
A: 미리스트산; B: 팔미트산; C: 스테아르산;
D: 올레산; E: 10-옥타데칸산 F: 노나데칸산(내부 표준물질);
G: 리놀레인산; H: 리놀렌산; 및 I: 아라키돈산.
1 is a photograph of a test tube containing biodiesel prepared from CHO cell waste using the method according to an embodiment of the present invention.
2 is a gas chromatogram of biodiesel prepared from CHO cell waste using the method according to one embodiment of the present invention:
A: myristic acid; B: palmitic acid; C: stearic acid;
D: oleic acid; E: 10-octadecanoic acid F: nonadecanoic acid (internal standard);
G: linoleic acid; H: linolenic acid; And I: arachidonic acid.

이하, 본 발명을 실시예 및 실험예에 의해 상세히 설명한다. 단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in detail with reference to Examples and Experimental Examples. However, the following Examples and Experimental Examples are merely illustrative of the present invention, and the present invention is not limited to the following Examples and Experimental Examples.

실시예 1: 젖은 CHO 세포 폐기물의 제조Example 1 Preparation of Wet CHO Cell Waste

무혈청 배지 ProCHO5(Lonza사, 12-766Q)를 사용하여 동물세포 배양기에서 CHO 세포를 배양하였다. 구체적으로, ProCHO5에 4 mM 글루타민을 첨가하여 만든 배지를 무균 여과하여 3 L Applikon 연속교반형 세포배양기에 1 L(working volume)를 주입한 다음 125 ml 삼각플라스크에서 ProCHO5에 4 mM 글루타민을 첨가하여 만든 배지를 사용하여 5% CO2, 37℃ 조건에서 3일간 배양한 CHO DUKX-B11 세포를 20 ml 플라스크 6개에서 종배양한 세포를 접종하여 배양기내에서 3×105 cell/ml의 세포 농도에서 배양을 시작하였으며 100 rpm, DO 40%, 37℃에서 8일간 종배양 세포를 배양하였다. 그 결과 최대세포농도는 배양 4일차에 3.76×106 cells/ml의 농도에 이르렀다.CHO cells were cultured in an animal cell incubator using serum free medium ProCHO5 (Lonza, 12-766Q). Specifically, the medium made by adding 4 mM glutamine to ProCHO5 was sterile filtered and injected with 1 L (working volume) into a 3 L Applikon continuous agitated cell incubator, followed by adding 4 mM glutamine to ProCHO5 in a 125 ml Erlenmeyer flask. CHO DUKX-B11 cells incubated for 3 days at 37 ° C. with 5% CO 2 were inoculated with cells cultured in 6 20 ml flasks at a cell concentration of 3 × 10 5 cells / ml in the incubator. Cultivation was started and the cultured cells were cultured for 8 days at 100 rpm, DO 40%, 37 ℃. As a result, the maximum cell concentration reached 3.76 × 10 6 cells / ml on the 4th day of culture.

ProCHO5에 4 mM 글루타민을 첨가하여 만든 배지를 무균 여과하여 20 L 연속교반형 세포배양기에 14 L를 주입한 다음 종배양 CHO DUKX-B11 세포를 1 L 접종하고 100 rpm, DO 40%, 37℃에서 8일간 배양하였다. Aseptically filter medium made by adding 4 mM glutamine to ProCHO5 and inject 14 L into a 20 L continuous agitated cell culture, inoculate 1 L of the cultured CHO DUKX-B11 cells at 100 rpm, DO 40%, 37 Incubated for 8 days.

이어, 배양액을 1500 rpm에서 3분간 원심분리하여 점성 액상상태의 젖은 CHO 세포 폐기물 320 ml를 수득하였다.The culture was then centrifuged at 1500 rpm for 3 minutes to give 320 ml of wet CHO cell waste in a viscous liquid phase.

실시예 2: 지질의 추출과 탈지 CHO 세포의 제조Example 2: Extraction of Lipids and Preparation of Skim CHO Cells

각각 20 ml의 CHO 세포 폐기물에 100 ml의 노르말헥산, 클로로포름, 아세톤, 메탄올, 에탄올, 이소프로필알콜, 메탄올/클로로포름 2:1 혼합용매를 넣고 실온에서 하룻밤 동안 마그네틱 교반기를 사용하여 교반하여 지질을 추출한 다음 3,000 rpm에서 10분간 원심분리하여 상등액과 세포잔사를 분리하였다. 상등액과 세포침전물을 분리하고 상등액은 감압회전 증발장치를 사용하여 50℃ 수욕에서 농축한 다음 농축잔사 1 내지 2 g에 20 ml 메탄올을 추가하여 다시 증발시켜 조지질을 수득하였고, 세포잔사는 열풍건조기를 사용하여 40℃에서 하룻밤 건조하여 건조 CHO 세포 잔사를 수득하였다(표 1). Into each 20 ml of CHO cell waste, 100 ml of normal hexane, chloroform, acetone, methanol, ethanol, isopropyl alcohol, methanol / chloroform 2: 1 mixed solvent was added and stirred at room temperature overnight using a magnetic stirrer to extract lipids. Next, the supernatant and cell residues were separated by centrifugation at 3,000 rpm for 10 minutes. The supernatant and the cell precipitate were separated, and the supernatant was concentrated in a water bath at 50 ° C. using a reduced pressure rotary evaporator, and evaporated again by adding 20 ml methanol to 1-2 g of the concentrated residue, and the cell residue was obtained by hot air dryer. Dried overnight at 40 ° C. to obtain dry CHO cell residue (Table 1).

추출 유기용매에 따른 조지질과 건조 CHO 세포 잔사 수득량Yield of Crude and Dried CHO Cell Residues by Extracted Organic Solvents 유기용매Organic solvent 조지질(g)Crude oil (g) 탈지건조 CHO 세포 (g)Degreasing CHO Cells (g) 탈지건조
CHO 세포 상태
Degreasing
CHO Cell Status
메탄올/클로로포름
2:1(v/v)
Methanol / chloroform
2: 1 (v / v)
0.870.87 2.692.69 분말powder
이소프로필알콜Isopropyl Alcohol 0.800.80 2.842.84 분말 + 덩어리Powder + lump 에탄올ethanol 0.870.87 2.882.88 덩어리고체Lump 메탄올Methanol 0.740.74 2.652.65 덩어리고체Lump 아세톤Acetone 0.600.60 3.073.07 덩어리고체Lump 클로로포름chloroform NDND NDND NDND 노르말헥산Normal hexane NDND NDND NDND ND: 측정 불가ND: not measurable

그 결과, 메탄올/클로로포름 혼합용매, 이소프로필알콜, 에탄올, 메탄올, 아세톤과 같은 극성 유기용매를 사용한 경우에는 조지질이 분리되었고, 지질성분이 제거된 탈지 CHO 세포를 분리할 수 있었다. 반면, 비극성 유기용매인 클로로포름 또는 노르말헥산으로 추출하였을 때는 에멀전화 현상이 심화되어 상등액이 분리되지 않아 원심분리하여 추출용매의 일부인 20 ml만 분리 농축하여 바이오디젤 전환 반응에 사용하였다. As a result, when a polar organic solvent such as methanol / chloroform mixed solvent, isopropyl alcohol, ethanol, methanol, acetone was used, crude lipid was separated and degreasing CHO cells from which lipid components were removed were separated. On the other hand, when extracted with chloroform or normal hexane, which is a non-polar organic solvent, the emulsification phenomenon was intensified and the supernatant was not separated, so that only 20 ml of the extraction solvent was separated and concentrated and used for the biodiesel conversion reaction.

실시예 3: 바이오 디젤의 전환Example 3: Conversion of Biodiesel

실시예 2에서 추출한 각각의 조지질에 10배 부피(v/w)의 3%(W/v) 황산/메탄올 용액을 넣고 밀봉상태에서 65℃에서 5시간 가열 반응한 다음 사용한 3%(W/v) 황산/메탄올 용액의 10배 부피의 0.3 mg 나프탈렌/노르말 헵탄용액을 가하여 1분간 볼텍스믹서로 강하게 교반한 다음 상층을 취하여서 가스크로마토그래피로 분석하여 생성된 지방산메틸의 양을 구하였다(표 2). 나프탈렌은 가스크로마토그래피 분석시 내부표준이고, 노르말헵탄은 용매로 사용하였다.10% volume (v / w) of 3% (W / v) sulfuric acid / methanol solution was added to each crude oil extracted in Example 2, and the reaction was performed by heating at 65 ° C. for 5 hours in a sealed state, and then using 3% (W / v) 10 mg of sulfuric acid / methanol solution, 0.3 mg naphthalene / normal heptane solution was added, vigorously stirred with a vortex mixer for 1 minute, and the upper layer was taken and analyzed by gas chromatography to determine the amount of fatty acid methyl produced. 2). Naphthalene is an internal standard in gas chromatography analysis, and normal heptane was used as a solvent.

추출용매에 따른 바이오디젤의 생산량Production of Biodiesel by Extraction Solvents 유기용매Organic solvent 지방산메틸
(바이오디젤)의 생성량(g)
Fatty acid methyl
Production amount (g) of biodiesel
건조세포당 바이오디젤 전환량(%)Biodiesel conversion per dry cell (%)
메탄올/클로로포름
2:1(v/v)
Methanol / chloroform
2: 1 (v / v)
0.260.26 7.27.2
이소프로필알콜Isopropyl Alcohol 0.160.16 4.44.4 에탄올ethanol 0.140.14 3.93.9 메탄올Methanol 0.090.09 2.52.5 아세톤Acetone 0.100.10 2.82.8 클로로포름chloroform 0.041* 0.04 1 * 1.31.3 노르말헥산Normal hexane 0.012* 0.01 2 * 0.30.3 1*, 2*: 추출액을 20 ml만 분리하여 농축 반응 후 정량한 값에 5배 1 *, 2 * : Extracts only 20 ml of extract, 5 times the value after concentration

그 결과, 메탄올/클로로포름 혼합용매, 이소프로필알콜 및 에탄올의 경우 지방산메틸의 생성량이 높았고, 건조세포당 바이오디젤 전환량도 우수함을 알 수 있었다. 메탄올과 아세톤의 경우에도 상기 세 종류의 극성 유기용매보다는 수율이 약간 떨어졌으나, 지방산메틸이 생성되었다. 반면, 조지질의 추출에 실패한 비극성 유기용매인 클로로포름과 노르말헥산의 경우에는 지방산메틸의 생성량이 극히 저조함을 알 수 있었다.As a result, it was found that the methanol / chloroform mixed solvent, isopropyl alcohol and ethanol produced high amounts of fatty acid methyl, and the biodiesel conversion per dry cell was also excellent. In the case of methanol and acetone, the yield was slightly lower than those of the three polar organic solvents, but fatty acid methyl was produced. On the other hand, in the case of non-polar organic solvents, chloroform and normal hexane, which failed to extract crude oil, the amount of fatty acid methyl produced was extremely low.

지방산메틸의 함량은 하기 실험예에 기재된 방법을 통해 계산하였다.The fatty acid methyl content was calculated by the method described in the following experimental example.

실험예 1: 바이오 디젤의 함량 분석Experimental Example 1: Content analysis of biodiesel

영린 M600D 가스크로마토그라피 기기를 사용하여 5% 페닐폴리디메틸실록산이 교차연결된(DH-5HT) 충진제가 0.1 μm 두께로 코팅된 0.32 mm 내경의 15 m 모세관 컬럼을 사용하였으며 오븐온도는 50℃에서 1분 180℃까지 분당 15℃씩 상승 후 다음 230℃까지 분당 7℃로 상승시킨 후 380℃까지 분당 30℃로 상승시킨 다음 380℃에서 10분간 유지하여 분석하였다. 이동상으로 헬륨가스를 분당 3 ml씩 흘렸으며 주입구 온도는 300℃, 검출기는 불꽃이온화검출기(FID)를 사용하여 380℃를 사용하였으며 샘플은 1 μl를 주입하였다.A 0.3 m mm inner diameter 15 m capillary column coated with 5% phenylpolydimethylsiloxane crosslinked (DH-5HT) filler 0.1 μm thick was used on a Younglin M600D gas chromatography instrument. After raising 15 ℃ per minute to 180 ℃ and then to 7 ℃ per minute to 230 ℃ and then to 30 ℃ per minute to 380 ℃ and then maintained at 380 ℃ for 10 minutes. Helium gas was flowed into the mobile phase by 3 ml per minute, the inlet temperature was 300 ° C, the detector was used a flame ionization detector (FID) and 380 ° C. The sample was injected with 1 μl.

내부 표준물질로 나프탈렌을 0.3 mg/ml로 노르말헵탄에 용해하여 사용하였고 대조 표준물질로 대두유로 자가 제조한 바이오디젤 (순도 99.5% KS M 2413 방법)을 사용하였으며 내부 표준물질인 나프탈렌 피크의 면적과 바이오디젤의 검출 시간대인 7분에서 12분 사이의 피크의 면적 합으로 바이오디젤의 양을 정량하였으며 정량에 사용한 계산식은 아래와 같다.Naphthalene was dissolved in normal heptane at 0.3 mg / ml as an internal standard and biodiesel (purity 99.5% KS M 2413 method) prepared by soybean oil was used as a reference standard. The amount of biodiesel was quantified by the sum of the area of peaks between 7 minutes and 12 minutes, which is the detection time of biodiesel, and the formula used for the quantification is as follows.

Figure pat00001
Figure pat00001

[∑A]std: 대조표준 대두유 바이오디젤 분석시 RT7에서 RT12까지 피크의 총면적[∑A] std : Total area of peak from RT7 to RT12 in the control soybean oil biodiesel assay

AIstd: 대조표준 대두유 바이오디젤 분석시 내부 표준물질 피크의 면적A Istd: Area of internal standard peak in control soybean oil biodiesel analysis

mstd: 대조 표준 대두유 바이오디젤의 취한 시료무게(g)m std: Sample weight (g) taken from control soybean oil biodiesel

Vstd: 대조 표준 대두유 바이오디젤 용해한 나프탈렌용액의 부피(ml)V std : Volume of control standard soybean oil biodiesel dissolved naphthalene solution (ml)

[∑A]sample: 분석 샘플의 RT7에서 RT12까지 피크의 총면적[∑A] sample : Total area of the peak from RT7 to RT12 of the analysis sample.

AIsample : 분석 샘플의 나프탈렌(내부표준)의 면적A Isample : area of naphthalene (internal standard) of analytical sample

Vsample : 분석 샘플의 추출한 노르말헥산 부피(ml)V sample : Volume of extracted normal hexane of analytical sample (ml)

실시예 4: 젖은 CHO 세포 폐기물로부터 바이오디젤의 제조Example 4 Preparation of Biodiesel from Wet CHO Cell Waste

150 ml의 젖은 CHO 세포 폐기물에 750 ml의 메탄올/클로로포름=2:1(v/v) 용액을 가한 후 하룻밤 실온에서 마그네틱 교반기로 교반한 다음 1500 rpm으로 10분간 원심분리한 후 상등액을 수득하였다. 한편, 침전된 세포 잔사에 100 ml의 메탄올/클로로포름=2:1(v/v) 용액을 가하여 재현탁시킨 후 1500 rpm 10분간 원심분리하여 상등액을 수득하여 상기에서 수득한 상등액과 합하여 감압 하에서 50℃ 수욕으로 가열하며 농축하였다. 농축잔사에 100 ml 메탄올을 가하여 현탁시킨 후 다시 감압농축하여 조지방 6.7g을 수득하였다. 상기에서 상등액을 분리하고 남은 침전물을 모아서 40℃ 열풍건조기에서 하룻밤 건조하여 탈지 CHO 세포 분말 20.2g을 수득하였다.After adding 750 ml of methanol / chloroform = 2: 1 (v / v) solution to 150 ml of wet CHO cell waste, the mixture was stirred overnight at room temperature with a magnetic stirrer and centrifuged at 1500 rpm for 10 minutes to obtain a supernatant. Meanwhile, 100 ml of methanol / chloroform = 2: 1 (v / v) solution was added to the precipitated cell residue, and then resuspended. The mixture was centrifuged at 1500 rpm for 10 minutes to obtain a supernatant, which was combined with the supernatant obtained above under reduced pressure. It was concentrated by heating with a water bath. 100 ml methanol was added to the concentrated residue, suspended, and concentrated under reduced pressure to obtain 6.7 g of crude fat. The supernatant was separated and the remaining precipitate was collected and dried overnight at 40 ° C. in a hot air dryer to obtain 20.2 g of degreased CHO cell powder.

수득한 조지방 6.7 g에 67 ml의 3% 황산/메탄올 용액을 가하고 가열환류하며 5시간 반응을 한 다음 670 ml 노르말헥산을 사용하여 2회 추출하고 노르말헥산층을 모아 300 ml 정제수로 세척한 다음 감압 농축하여 농축잔사를 1 ml 증류수로 세척한 후 1 mmHg 고진공 조건에서 감압농축하여 연한노란색을 띤 투명액상의 바이오디젤 1.4 g를 수득하였다(도 1).67 ml of 3% sulfuric acid / methanol solution was added to 6.7 g of the crude fat, which was heated under reflux for 5 hours, followed by extraction with 670 ml of normal hexane twice. The layers of normal hexane were collected and washed with 300 ml of purified water. The concentrated residue was washed with 1 ml distilled water, and then concentrated under reduced pressure at 1 mmHg high vacuum to obtain 1.4 g of light yellow biodiesel transparent liquid (FIG. 1).

수득한 바이오디젤을 구성하는 지방산의 비는 GC-MS 분석결과(도 2) 표 3과 같았으며 구름점은 8℃이었다. The ratio of fatty acids constituting the obtained biodiesel was as shown in Table 3 of the GC-MS analysis (Fig. 2), and the cloud point was 8 ° C.

CHO 세포 유래 바이오디젤의 지방산 분포 Fatty Acid Distribution of CHO Cell-Derived Biodiesel 지방산 메틸에스터Fatty Acid Methyl Ester 백분율(%)percentage(%) 상대분포Relative distribution 비고Remarks 미리스트산Myristic acid 1.361.36 0.090.09 포화지방산Saturated fatty acid 팔미트산Palmitic acid 14.5814.58 1One 포화지방산Saturated fatty acid 7-헥사데칸산7-hexadecanoic acid 2.202.20 0.150.15 불포화지방산Unsaturated fatty acid 팔리톨레산 Palistoleic acid 5.675.67 0.390.39 불포화지방산Unsaturated fatty acid 스테아르산Stearic acid 7.177.17 0.490.49 포화지방산Saturated fatty acid 엘라이드산Elide acid 0.980.98 0.070.07 불포화지방산Unsaturated fatty acid 올레산Oleic acid 50.4250.42 3.453.45 불포화지방산Unsaturated fatty acid 10-옥타데칸산10-octadecanoic acid 16.6016.60 1.131.13 불포화지방산Unsaturated fatty acid 리놀레인산Linoleic acid 0.480.48 0.030.03 불포화지방산Unsaturated fatty acid 리놀렌산 Linolenic acid 0.410.41 0.030.03 불포화지방산Unsaturated fatty acid 아라키돈산 Arachidonic acid 0.130.13 0.010.01 포화지방산Saturated fatty acid 총계sum 100100 포화지방산Saturated fatty acid 23.2423.24 1.591.59 단일불포화지방산Monounsaturated fatty acids 75.8675.86 5.1875.187 다중불포화지방산Polyunsaturated fatty acid 0.890.89 0.0610.061

상기 표 3에서 나타나는 바와 같이, CHO 세포에서 추출한 바이오디젤은 올레산 함량이 50%를 초과하는 등, 불포화지방산의 함량이 75%을 초과하고, 구름점이 비교적 낮아, 운송용 내연기관을 위한 연료로 적합함을 알 수 있다.As shown in Table 3, the biodiesel extracted from CHO cells has an oleic acid content of more than 50%, an unsaturated fatty acid content of more than 75%, a relatively low cloud point, and is suitable as a fuel for transportation internal combustion engines. It can be seen.

상술한 지방산 메틸에스터 함량은 하기 실험예에 따라 분석하였다.The fatty acid methyl ester content described above was analyzed according to the following experimental example.

실험예 2: 지방산 조성분포 실험Experimental Example 2: Fatty Acid Composition Distribution Experiment

동일 SIMADZU GC-MS-QP2010 Plus 기기를 사용하여 비스시아노프로필 폴리실록센(biscyanopropyl polysiloxane) 충진제가 0.2 μm 두께로 코팅된 0.25 mm 내경의 100 m 모세관 컬럼(Rt®-2560)을 사용하였으며 오븐온도는 140℃에서 5분 240℃까지 분당 4℃씩 상승 후 240℃에서 15분간 유지하여 분석하였다. 이동상으로 헬륨가스를 분당 3 ml씩 흘렸으며 주입구 온도는 250℃, 검출기는 질량분석기(Mass spectrometer)를 사용하여 250℃에서 검출 전압은 1.5 kV를 사용하였고 샘플은 1 μl를 주입하였다.Using the same SIMADZU GC-MS-QP2010 Plus instrument, a 0.25 mm inner diameter 100 m capillary column (Rt ® -2560) coated with a 0.2 μm thick biscyanopropyl polysiloxane filler was used. After increasing 4 ℃ per minute up to 240 ℃ 5 minutes at 140 ℃ was maintained at 240 ℃ for 15 minutes. Helium gas was flowed into the mobile phase by 3 ml per minute, the inlet temperature was 250 ° C., the detector used a mass spectrometer at 250 ° C., and the detection voltage was 1.5 kV and the sample was injected with 1 μl.

내부표준 물질로 탄소 수 19개의 메틸에스터(C19:0, nonadecanoic acid)을 0.4 mg/ml로 노르말헵탄에 용해하여 사용하였고 피크상의 면적으로 내부표준물질의 농도와 지방산 메틸에스터의 농도를 비교하여 정량 하였다. 정량에 사용한 계산식은 아래와 같다.As an internal standard, methyl methyl ester of 19 carbon atoms (C19: 0, nonadecanoic acid) was used at 0.4 mg / ml in normal heptane, and it was quantified by comparing the concentration of internal standard and fatty acid methyl ester with the peak area It was. The calculation formula used for quantification is as follows.

Figure pat00002
Figure pat00002

ΣA: 지방산 메틸에스터 피크의 총면적ΣA: Total area of fatty acid methyl ester peak

AIS: Nonadecanoic acid(내부 표준물질)의 면적A IS : area of nonadecanoic acid (internal standard)

AP: 각 지방산 Methyl Ester의 피크면적A P : Peak area of each fatty acid Methyl Ester

본 발명은 상술한 실시예 및 실험예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (12)

회수된 젖은 상태의 배양 동물세포 회수물에 극성 유기용매를 가한 후 교반하여 지질을 추출하는 1차 추출단계;
상등액과 세포침전물을 층분리한 후 상기 상등액을 농축하여 농축물을 제조하는 상등액 농축하는 조지질 수득단계;
상기 수득된 조지질에 산/알코올 용액을 가하여 가열환류한 후 비극성 유기용매로 추출하는 2차 추출단계; 및
비극성 유기용매층을 회수한 후 감압농축하여 바이오디젤을 분리하는 분리단계를 포함하는 배양 동물세포 회수물로부터 바이오디젤의 생산방법.
A primary extraction step of adding lipid organic solvent to the recovered wet culture animal cell harvest and stirring to extract lipids;
After separating the supernatant and the cell precipitate, the supernatant is obtained by concentrating the supernatant to prepare a concentrate.
A secondary extraction step of adding an acid / alcohol solution to the obtained crude oil and heating it under reflux to extract it with a nonpolar organic solvent; And
A method for producing biodiesel from a cultured animal cell harvest comprising a separation step of separating the biodiesel by vacuum concentration after recovering the non-polar organic solvent layer.
제1항에 있어서,
상기 동물세포는 CHO(Chinese hamster ovary) 세포, BHK(baby hamster kidney) 세포, HEK(human embryo kidney) 세포, NS0(myeloma cell line) 세포인, 배양 동물세포 회수물로부터 바이오디젤의 생산방법.
The method of claim 1,
The animal cells are CHO (Chinese hamster ovary) cells, BHK (baby hamster kidney) cells, HEK (human embryo kidney) cells, NS0 (myeloma cell line) cells, production method of biodiesel from the culture animal cell recovery.
제2항에 있어서,
상기 동물세포는 CHO 세포인,
배양 동물세포 회수물로부터 바이오디젤의 생산방법.
The method of claim 2,
The animal cell is a CHO cell,
Method of producing biodiesel from cultured animal cell harvest.
제1항에 있어서,
상기 극성 유기용매는 메탄올, 에탄올, 이소프로필알콜, 아세톤 또는 메탄올/클로로포름 혼합용매인,
배양 동물세포 회수물로부터 바이오디젤의 생산방법.
The method of claim 1,
The polar organic solvent is methanol, ethanol, isopropyl alcohol, acetone or methanol / chloroform mixed solvent,
Method of producing biodiesel from cultured animal cell harvest.
상기 극성 유기용매는 배양 동물세포 회수물 부피 대비 1 내지 10배의 부피로 가해지는,
배양 동물세포 회수물로부터 바이오디젤의 생산방법.
The polar organic solvent is added in a volume of 1 to 10 times the volume of the culture animal cell harvest,
Method of producing biodiesel from cultured animal cell harvest.
제4항에 있어서,
상기 메탄올/클로로포름 혼합용액의 혼합비는 1:4 내지 4:1인,
배양 동물세포 회수물로부터 바이오디젤의 생산방법.
5. The method of claim 4,
The mixing ratio of the methanol / chloroform mixed solution is 1: 4 to 4: 1,
Method of producing biodiesel from cultured animal cell harvest.
제1항에 있어서,
상기 2차 추출단계의 산/알코올 용액은 황산/메탄올 용액, 황산/에탄올 용액, 무수염산/메탄올 용액, 무수염산/에탄올 용액, 염화아세틸/메탄올 및 염화아세틸/에탄올 용액인,
배양 동물세포 회수물로부터 바이오디젤의 생산방법.
The method of claim 1,
Acid / alcohol solution of the second extraction step is a sulfuric acid / methanol solution, sulfuric acid / ethanol solution, anhydrous hydrochloric acid / methanol solution, anhydrous hydrochloric acid / ethanol solution, acetyl chloride / methanol and acetyl / ethanol solution,
Method of producing biodiesel from cultured animal cell harvest.
제1항에 있어서,
상기 2차 추출단계의 산/알코올 용액은 1 내지 5%(w/v) 농도인,
배양 동물세포 회수물로부터 바이오디젤의 생산방법.
The method of claim 1,
Acid / alcohol solution of the secondary extraction step is 1 to 5% (w / v) concentration,
Method of producing biodiesel from cultured animal cell harvest.
제1항에 있어서,
상기 2차 추출단계의 산/알코올 용액은 상기 조지질 대비 0.2 내지 20배 부피(v/w)로 가해지는,
배양 동물세포 회수물로부터 바이오디젤의 생산방법.
The method of claim 1,
The acid / alcohol solution of the second extraction step is applied to 0.2 to 20 times the volume (v / w) compared to the crude oil,
Method of producing biodiesel from cultured animal cell harvest.
제1항에 있어서,
상기 2차 추출단계에서 가열환류는 50 내지 75℃의 온도조건에서 2 내지 10시간 동안 수행되는,
배양 동물세포 회수물로부터 바이오디젤의 생산방법.
The method of claim 1,
Heating reflux in the secondary extraction step is carried out for 2 to 10 hours at a temperature of 50 to 75 ℃,
Method of producing biodiesel from cultured animal cell harvest.
제1항에 있어서,
상기 비극성 유기용매는 노르말헥산, 노르말헵탄, 사이클로헥산, 디에틸에테르 또는 이들의 혼합용매인,
배양 동물세포 회수물로부터 바이오디젤의 생산방법.
The method of claim 1,
The non-polar organic solvent is normal hexane, normal heptane, cyclohexane, diethyl ether or a mixed solvent thereof,
Method of producing biodiesel from cultured animal cell harvest.
제1항에 있어서,
상기 비극성 유기용매는 산/알코올 용액 대비 2 내지 20배 부피(v/v)로 가해지는,
배양 동물세포 회수물로부터 바이오디젤의 생산방법.
The method of claim 1,
The non-polar organic solvent is added in 2 to 20 times the volume (v / v) compared to the acid / alcohol solution,
Method of producing biodiesel from cultured animal cell harvest.
KR1020110091818A 2011-09-09 2011-09-09 Methods for preparing biodiesel using animal cell culture waste KR101385941B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110091818A KR101385941B1 (en) 2011-09-09 2011-09-09 Methods for preparing biodiesel using animal cell culture waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110091818A KR101385941B1 (en) 2011-09-09 2011-09-09 Methods for preparing biodiesel using animal cell culture waste

Publications (2)

Publication Number Publication Date
KR20130028823A true KR20130028823A (en) 2013-03-20
KR101385941B1 KR101385941B1 (en) 2014-04-22

Family

ID=48179121

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110091818A KR101385941B1 (en) 2011-09-09 2011-09-09 Methods for preparing biodiesel using animal cell culture waste

Country Status (1)

Country Link
KR (1) KR101385941B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD769853S1 (en) 2014-11-07 2016-10-25 Samsung Electronics Co., Ltd. Mobile communications device case
USD773446S1 (en) 2014-08-25 2016-12-06 Samsung Electronics Co., Ltd. Cover for electronic communications device
USD791756S1 (en) 2014-08-25 2017-07-11 Samsung Electronics Co., Ltd. Cover for an electronic communications device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148192A (en) 2007-12-20 2009-07-09 Tohoku Univ Method for producing jatropha oil by cell culture
GB0807619D0 (en) 2008-04-28 2008-06-04 Whitton Peter A Production of bio fuels from plant tissue culture sources
KR20110077723A (en) * 2009-12-30 2011-07-07 (주)엔엘피 Biodiesel and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD773446S1 (en) 2014-08-25 2016-12-06 Samsung Electronics Co., Ltd. Cover for electronic communications device
USD791756S1 (en) 2014-08-25 2017-07-11 Samsung Electronics Co., Ltd. Cover for an electronic communications device
USD769853S1 (en) 2014-11-07 2016-10-25 Samsung Electronics Co., Ltd. Mobile communications device case

Also Published As

Publication number Publication date
KR101385941B1 (en) 2014-04-22

Similar Documents

Publication Publication Date Title
Patil et al. Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions
Wahlen et al. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures
Wu et al. Enhanced extraction of lipids from microalgae with eco-friendly mixture of methanol and ethyl acetate for biodiesel production
Karmee et al. Conversion of lipid from food waste to biodiesel
Ashokkumar et al. An integrated approach for biodiesel and bioethanol production from Scenedesmus bijugatus cultivated in a vertical tubular photobioreactor
Koberg et al. Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound radiation
Dong et al. Impact of biochemical composition on susceptibility of algal biomass to acid-catalyzed pretreatment for sugar and lipid recovery
Sharma et al. A hybrid feedstock for a very efficient preparation of biodiesel
Duran et al. A review on microalgae strains, cultivation, harvesting, biodiesel conversion and engine implementation
Gude et al. Biodiesel production from low cost and renewable feedstock
KR100983023B1 (en) A method of extracting triglyceride or fatty acid methyl esters from microalgal lipid of microalgae of heterokontophyta or haptophyta, and manufacturing biodiesel using it's extracts
CN101805672B (en) Biodiesel and preparation method thereof
Tsavatopoulou et al. Biofuel conversion of Chlorococcum sp. and Scenedesmus sp. biomass by one-and two-step transesterification
CN103642579B (en) A kind of method preparing biofuel with micro-algae
KR101385941B1 (en) Methods for preparing biodiesel using animal cell culture waste
Xu et al. Optimization of methyl ricinoleate synthesis with ionic liquids as catalysts using the response surface methodology
Rahman et al. A combined fermentation and ethanol-assisted liquefaction process to produce biofuel from Nannochloropsis sp.
Shen et al. A green one-pot method for simultaneous extraction and transesterification of seed oil catalyzed by a p-toluenesulfonic acid based deep eutectic solvent
Ha et al. High-throughput integrated pretreatment strategies to convert high-solid loading microalgae into high-concentration biofuels
Tang et al. Coupling transesterifications for no-glycerol biodiesel production catalyzed by calcium oxide
Ha et al. High-density biofuels production from holistic conversion of microalgal strains through energy-saving integrated approach
CN101691519B (en) Method for preparing biodiesel by taking pupal oil as production raw material
AU2009228994A1 (en) Improved process for the production of biodiesel
US20120065416A1 (en) Methods for Production of Biodiesel
Shah et al. Analysis and Characterization of Algal Oil by Using Different Chromatographic Techniques for the Higher Production of Biodiesel from

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170223

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190408

Year of fee payment: 6