KR20130027622A - Activated cabon including cationic polymer for removing anionic contaminant and method for water treatment using the same - Google Patents

Activated cabon including cationic polymer for removing anionic contaminant and method for water treatment using the same Download PDF

Info

Publication number
KR20130027622A
KR20130027622A KR1020110053812A KR20110053812A KR20130027622A KR 20130027622 A KR20130027622 A KR 20130027622A KR 1020110053812 A KR1020110053812 A KR 1020110053812A KR 20110053812 A KR20110053812 A KR 20110053812A KR 20130027622 A KR20130027622 A KR 20130027622A
Authority
KR
South Korea
Prior art keywords
activated carbon
cationic polymer
water
adsorbent
adsorption
Prior art date
Application number
KR1020110053812A
Other languages
Korean (ko)
Other versions
KR101334864B1 (en
Inventor
조동완
송호철
전병훈
김용제
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR1020110053812A priority Critical patent/KR101334864B1/en
Publication of KR20130027622A publication Critical patent/KR20130027622A/en
Application granted granted Critical
Publication of KR101334864B1 publication Critical patent/KR101334864B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate

Abstract

PURPOSE: An activated carbon is provided to have high absorption capacity to anionic contaminants and to have high absorption removing rate to contaminant. CONSTITUTION: An activated carbon for removing anionic contaminants comprises an activated carbon and a cationic polymer supported by the activated carbon. The cationic polymer is [3-(methacryloylamino)propyl]-trimethyl ammonium chloride(H2C=C(CH3)CONH(CH2)3N(CH3)3Cl). The cationic polymer is (Ar-vinylbenzyl) trimethyl ammonium chloride or 2-(acryloyloxy)ethyltrimethyl ammonium methyl sulfate. The cationic polymer is supported by the activated carbon. A water treatment method comprises a step of absorbing the anionic contaminants by allowing the water with the anionic contaminants through an absorbent which comprises the cationic polymer supported by the activated carbon.

Description

음이온성 오염물 제거를 위한 양이온성 폴리머를 담지한 활성탄 흡착제 및 이를 이용한 수처리방법{Activated cabon including cationic polymer for removing anionic contaminant and Method for water treatment using the same}Activated cabon including cationic polymer for removing anionic contaminant and Method for water treatment using the same}

본 발명은 환경분야 기술 중 물에서 오염물질을 제거하기 위한 수처리 기술에 관한 것으로서, 특히 질산성 질소 등과 같은 수중의 음이온성 오염물질을 제거하기 위한 활성탄 및 수처리방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment technology for removing contaminants from water, and more particularly, to activated carbon and water treatment methods for removing anionic contaminants in water such as nitrate nitrogen.

전세계적으로 지하수에 널리 퍼져 있는 질산성질소는 부영양화의 원인으로 작용하는 대표적인 오염물질이다. 또한 질산성질소로 오염된 음용수를 섭취시 어른의 경우에는 신장을 통해 쉽게 배설되기 때문에 유해성이 작지만, 생후 6개월 미만의 유아에게는 10 mg NO3 --N/L 이상의 질산성질소가 피부와 입술이 푸른색을 띠게 되는 청색증(Methemoglobinemia)을 유발시켜 치명적일 수 있다. Nitrogen nitrate, which is widespread in groundwater around the world, is a representative pollutant that causes eutrophication. In addition, ingestion of drinking water contaminated with nitrate nitrogen is less harmful because it is easily excreted through the kidneys in adults, but in infants under 6 months of age, 10 mg NO 3 -- N / L or more nitric acid is more than skin and lips. It can be fatal, causing methemoglobinemia, which becomes bluish.

이에 따라 세계 각국에서는 질산성질소 농도를 규제하고 있는데, 미국 환경청(US EPA)에서는 10 mg NO3 --N/L, 유럽 연합(EU)은 11.3 mg NO3 --N/L, 세계보건기구(WHO)는 10 mg NO3 --N/L 이하 기준을 채택하고 있다. As a result, countries around the world regulate nitrous oxide concentrations, 10 mg NO 3 -- N / L in the US EPA, 11.3 mg NO 3 -- N / L in the EU, and WHO (WHO) adopts a standard below 10 mg NO 3 -- N / L.

또한 크롬도 산업 폐기물로부터 유입된 지하수에 존재하는 대표적인 오염물질이다. 크롬은 자연환경에 존재하는 형태는 3가 크롬과 6가 크롬이 있다. 6가 크롬은 수중에서 산소와 결합하여 Cr2O7 2 -의 착이온을 형성하여 존재하는데, 독성이 강하며 발암물질로 알려져 있어 수처리가 필요하다. Chromium is also a representative contaminant in groundwater from industrial wastes. Chromium exists in the natural environment as trivalent chromium and hexavalent chromium. Hexavalent chromium is combined with the oxygen in the water Cr 2 O 7 2 - to present to form the complex ion of, toxic, and it is known as a carcinogen need treatment.

본 발명은 상기한 문제점을 해결하기 위한 것으로서, 수중에 존재하는 음이온성 오염물질을 효과적으로 제거할 수 있도록 흡착제거능이 개선된 양이온성 폴리머를 담지한 활성탄 흡착제와 이를 이용한 수처리방법을 제공하는데 그 목적이 있다. The present invention is to solve the above problems, to provide an activated carbon adsorbent carrying a cationic polymer with improved adsorption and removal ability to effectively remove the anionic contaminants present in the water and to provide a water treatment method using the same. have.

상기 목적을 달성하기 위한 본 발명에 따른 흡착제는 음이온성 오염물질을 제거하기 위한 것으로서, 활성탄과, 상기 활성탄에 담지되는 양이온성 폴리머를 포함하는 것에 특징이 있다. The adsorbent according to the present invention for achieving the above object is to remove anionic contaminants, and is characterized in that it comprises activated carbon and a cationic polymer supported on the activated carbon.

본 발명에서 상기 양이온성 폴리머는 [3-(Methacryloylamino)propyl]-trimethylammonium chloride가 사용된다. In the present invention, the cationic polymer is [3- (Methacryloylamino) propyl] -trimethylammonium chloride.

또한 본 발명의 일 실시예에서, 상기 양이온성 폴리머 용액에 상기 활성탄을 침지시킨 상태에서, 일정 시간 가열하여 상기 양이온성 폴리머가 상기 활성탄 내에 담지되도록 한다. In addition, in one embodiment of the present invention, in a state in which the activated carbon is immersed in the cationic polymer solution, by heating for a predetermined time so that the cationic polymer is supported in the activated carbon.

그리고, 상기 양이온성 폴리머 용액에 상기 활성탄을 침지시켜 상기 양이온성 폴리머를 상기 활성탄에 담지하며, 상기 양이온성 폴리머 용액은 0.025 ~ 2.5 질량% 농도인 것이 바람직하다. In addition, the activated carbon is immersed in the cationic polymer solution to support the cationic polymer in the activated carbon, and the cationic polymer solution is preferably in a concentration of 0.025 to 2.5% by mass.

한편, 본 발명에 따른 수처리방법은, 음이온성 오염물질이 포함되어 있는 물을 처리하기 위한 것으로서,처리대상이 되는 물이 상기한 바와 같은 구성의 흡착제를 통과하면서 상기 음이온성 오염물질이 상기 흡착제에 흡착되어 제거되는 것에 특징이 있다. On the other hand, the water treatment method according to the present invention is for treating water containing anionic contaminants, while the water to be treated passes through the adsorbent of the above-described configuration, the anionic contaminants are applied to the adsorbent. It is characterized by being adsorbed and removed.

또한 본 발명에 따른 수처리방법에서 수처리의 대상이 되는 상기 물은 지하수이며, 상기 제거대상이 되는 음이온성 오염물질은 질산성질소 또는 크롬착이온이다. In the water treatment method according to the present invention, the water to be treated is ground water, and the anionic contaminants to be removed are nitrogen nitrate or chromium complex ion.

본 발명에 따른 양이온성 폴리머가 담지된 활성탄 흡착제는 기존의 활성탄에 비하여 음이온성 오염물질에 대한 흡착용량이 클 뿐만 아니라, 오염물질에 대한 흡착제거율도 높아 효과적인 수처리가 가능하다는 이점이 있다. The activated carbon adsorbent loaded with the cationic polymer according to the present invention has the advantage that the adsorption capacity for the anionic contaminants is higher than that of the conventional activated carbon, and the adsorption and removal rate for the contaminants is high, so that effective water treatment is possible.

도 1은 농도별 양이온성 폴리머가 담지된 개질 활성탄의 BET 면적을 나타낸 표이다.
도 2는 양이온성 폴리머 담지량에 따른 음이온성 오염물질의 제거효율 및 오염물질 흡착량을 나타낸 그래프이다.
도 3a 및 도 3b는 수중에 존재하는 질산성질소(3a) 및 6가 크롬이온(3b)에 대한 개질 전후 활성탄의 제거반응속도를 나타낸 그래프이다.
도 4a 및 도 4b는 개질 전후 활성탄에 의한 수중에 존재하는 질산성질소(3a) 및 6가 크롬이온(3b)의 등온흡착공선을 나타낸 그래프이다.
도 5는 개질 후 활성탄에 의한 질산성질소와 6가 크롬이온의 흡착에 대한 Langmuir 상수값을 나타낸 표이다.
도 6은 개질 활성탄에 흡착된 음이온들의 농도에 따라 방출되는 염소 이온의 농도변화를 나타낸 그래프이다.
도 7은 수중 pH에 따른 질산성질소와 6가 크롬에 대한 개질 전후 활성탄의 흡착량 변화를 나타낸 그래프이다.
도 8a 및 도 8b는 경쟁이온(인산염,염소,황산염,탄산염)의 농도에 따른 질산성질소와 6가 크롬에 대한 개질 전후 활성탄의 제거율 변화를 나타낸 그래프이다.
도 9는 개질 활성탄의 재생실험의 결과가 나타나 있는 표이다.
1 is a table showing the BET area of the modified activated carbon loaded with the cationic polymer for each concentration.
Figure 2 is a graph showing the removal efficiency of the anionic contaminants and the amount of adsorbed contaminants according to the amount of the cationic polymer supported.
3A and 3B are graphs showing the removal reaction rate of activated carbon before and after reforming to nitric nitrate (3a) and hexavalent chromium ion (3b) present in water.
4A and 4B are graphs showing isothermal adsorption collinearity of nitrogen nitrate (3a) and hexavalent chromium ions (3b) present in activated carbon before and after reforming.
5 is a table showing the Langmuir constant value for the adsorption of nitrate nitrogen and hexavalent chromium ion by activated carbon after reforming.
6 is a graph showing a change in the concentration of chlorine ions released according to the concentration of anions adsorbed to the modified activated carbon.
7 is a graph showing the change in the adsorption amount of activated carbon before and after reforming to nitric nitrate and hexavalent chromium according to pH in water.
8A and 8B are graphs showing changes in removal rate of activated carbon before and after reforming for nitrate nitrogen and hexavalent chromium according to concentrations of competitive ions (phosphate, chlorine, sulfate, and carbonate).
9 is a table showing the results of regeneration experiments of modified activated carbon.

이하, 본 발명의 일 실시예에 따른 양이온 폴리머를 담지한 활성탄과, 이 활성탄을 이용한 수처리방법에 대하여 더욱 상세히 설명한다. Hereinafter, activated carbon carrying a cationic polymer according to an embodiment of the present invention, and a water treatment method using the activated carbon will be described in more detail.

본 발명에 따른 흡착제는 활성탄에 양이온 폴리머를 담지하는 방법으로 제조된다. The adsorbent according to the present invention is prepared by a method of supporting a cationic polymer on activated carbon.

활성탄은 목재·갈탄·이탄(泥炭) 등을 활성화제인 염화아연이나 인산과 같은 약품으로 처리하여, 건조시키거나 목탄을 수증기로 활성화시켜 만든 것으로서, 흡착성이 강한 분상 또는 입상의 다공성 물질이다. 다공성 활성탄은 내부는 1g당 500~1500㎡ 정도의 표면적을 갖고 있어 흡착능이 우수하다. 분말인 것은 각종 용액과 식품류의 탈색, 탈취, 정제용으로 사용되고 있으며, 입상인 것은 가스 정제용으로 탈진, 탈황, 정수용으로 페놀, 수은, 세제의 제거, 그외 용제회수 등 다방면으로 폭넓게 사용되고 있으며, 오폐수를 처리하는 데 응용되기도 한다.Activated carbon is made by treating wood, lignite, peat, etc. with chemicals such as zinc chloride or phosphoric acid, which are activators, and drying or activating charcoal with water vapor. Porous activated carbon has a surface area of 500 ~ 1500㎡ per 1g, so it has excellent adsorption capacity. Powders are used for decolorization, deodorization, and purification of various solutions and foods. Granular materials are widely used for gas purification for dedusting, desulfurization, water purification, phenol, mercury, detergent removal, and solvent recovery. It is also applied to deal with.

활성탄은 종래로부터 폐수처리 분야에서 널리 사용되어 왔지만, 본 발명에서는 흡착성능을 더욱 강화하기 위하여 양이온성 폴리머를 활성탄에 담지하였다. 이에 따라, 음이온성 오염물질에 대한 제거능이 훨씬 향상되었다. Activated carbon has been widely used in the field of wastewater treatment, but in the present invention, the cationic polymer is supported on the activated carbon in order to further enhance the adsorption performance. Accordingly, the ability to remove anionic contaminants is much improved.

양이온성 폴리머로는 다양한 물질이 사용될 수 있으며, 본 실시예에서는 [3-(Methacryloylamino)propyl]-trimethylammonium chloride를 사용하였다. 본 양이온성 폴리머의 화학식은 (H2C=C(CH3)CONH(CH2)3N(CH3)3Cl)이다. Various materials can be used as the cationic polymer, and [3- (Methacryloylamino) propyl] -trimethylammonium chloride was used in this example. The chemical formula of this cationic polymer is (H 2 C═C (CH 3 ) CONH (CH 2 ) 3 N (CH 3 ) 3 Cl).

그리고, 다른 실시예에서는 양이온성 폴리머로 [2-(acryloyloxy)ethyl] trimethylammonium chloride, (ar-vinylbenzyl) trimethylammonium chloride, [2-(acryloyloxy)ethyl] trimethylammonium methyl sulfate, and poly(4-vinyl-1-methylpyridinium) bromide 등이 사용될 수 있다.In another embodiment, a cationic polymer is [2- (acryloyloxy) ethyl] trimethylammonium chloride, ( ar -vinylbenzyl) trimethylammonium chloride, [2- (acryloyloxy) ethyl] trimethylammonium methyl sulfate, and poly (4-vinyl-1- methylpyridinium) bromide and the like can be used.

이 양이온성 폴리머들에는 염소 이온 또는 암모늄 작용기(기능기)가 결합되어 있는데, 음이온성 오염물질이 염소 이온과의 이온 교환을 하거나, 양전하를 띠는 폴리머의 암모늄 기능기에 전기적으로 흡착됨으로써, 음이온성 오염물질이 제거된다. These cationic polymers contain chlorine ions or ammonium functional groups (functional groups), which are anionic by either anionic contaminants being ion exchanged with chlorine ions or electrically adsorbed to the ammonium functional groups of the positively charged polymer. Contaminants are removed.

위와 같이, 양이온성 폴리머가 활성탄 내에 담지된 흡착제는 기존의 활성탄만으로 이루어진 흡착제에 비하여, Cr2O7 2 - 등의 크롬착이온이나 질산성질소와 같은 음이온성 오염물질을 보다 효과적으로 제거할 수 있다 질산성질소나 크롬착이온의 경우 지하수 등에서 많은 문제점을 야기하고 있는 중요 오염물질이므로 본 발명에 따른 흡착제를 이용하여 이들을 효과적으로 제거할 수 있다. As described above, the adsorbent in which the cationic polymer is supported in the activated carbon can more effectively remove anionic contaminants such as chromium complex ions such as Cr 2 O 7 2 - and nitrate nitrogen, as compared with the conventional adsorbent composed of activated carbon only. In the case of nitrate nitrogen or chromium complex ion, it is an important pollutant causing many problems in groundwater, etc., so that the adsorbent according to the present invention can be effectively removed.

이하, 본 발명에 따른 양이온성 폴리머를 담지한 활성탄 흡착제 제조 및 성능 실험에 대한 과정 및 결과에 대하여 설명한다. Hereinafter, the process and results of the preparation and performance test of the activated carbon adsorbent carrying the cationic polymer according to the present invention will be described.

우선 실험재료를 설명한다. 질산염 표준 용액 (1,000 mg/L)과 양이온성 폴리머[3-(Methacryloylamino)propyl]- trimethylammonium chloride (50중량% solution in water)를 전처리없이 구입한 상태로 사용하였고, 크롬 칼륨 고체 시약을 증류수에 녹여 저장용액(stock solution)을 조성하였다. First, the experimental material will be described. Nitrate standard solution (1,000 mg / L) and cationic polymer [3- (Methacryloylamino) propyl] -trimethylammonium chloride (50 wt% solution in water) were used without pretreatment, and chromium potassium solid reagent was dissolved in distilled water. A stock solution was prepared.

그리고 경쟁이온 영향실험을 위한 시약들인 황산나트륨, 탄산나트륨, 인산나트륨을 증류수에 녹여 목표한 농도로 조절하였다. 활성탄으로는 갈탄을 사용하였으며, 사용 전에 증류수로 여러 번 세척하였다. In addition, sodium sulfate, sodium carbonate, and sodium phosphate, which are reagents for competing ion influence experiments, were dissolved in distilled water and adjusted to target concentrations. Activated carbon was used as lignite and washed several times with distilled water before use.

또한, 0.025-2.5질량%농도의 범위 내에서 0.025질량%농도, 0.25질량%농도 및 2.5질량%농도를 비롯하여 다양한 농도의 양이온성 폴리머 용액을 각각 100mL씩 제조하였다. 이렇게 양이온성 폴리머로 조절된 100mL 용액에 5g 의 활성탄을 각각 혼합하였다. 대략 5시간 동안 온도를 70-80℃의 열을 가하면서 혼합을 한 후, 오븐에서 110℃로 보관하였으며, 별도의 세척없이 실험에 사용하였다. In addition, 100 mL of cationic polymer solutions of various concentrations, including 0.025% by mass, 0.25% by mass and 2.5% by mass, were prepared within the range of 0.025-2.5% by mass. 5 g of activated carbon were mixed in a 100 mL solution adjusted with a cationic polymer. The mixture was heated at a temperature of 70-80 ° C. for about 5 hours, and then stored at 110 ° C. in an oven, and used in the experiment without washing.

양이온성 폴리머가 담지되기 전의 활성탄은 VG, 위와 같이 양이온성 폴리머를 담지한 후의 개질한 활성탄은 CPMG로 명명하였다. Activated carbon before the cationic polymer was supported was VG, and modified activated carbon after supporting the cationic polymer was named CPMG.

이렇게 다양한 농도의 양이온성 폴리머 용액을 이용하여 개질된 활성탄 흡착제의 BET 면적이 도 1의 표에 나타나 있다. 도 1의 표를 참조하면, 0.025%에서 2.5%농도까지 양이온성 폴리머의 농도를 증가시킨 경우 BET surfac가 개질전의 1159에서 492까지 낮아지는 것으로 확인되었다.  The BET areas of the activated carbon adsorbents modified with these various concentrations of cationic polymer solutions are shown in the table of FIG. 1. Referring to the table of FIG. 1, it was confirmed that when the concentration of the cationic polymer was increased from 0.025% to 2.5%, the BET surfac was lowered from 1159 to 492 before reforming.

상기한 바와 같이 준비된 개질 활성탄 흡착제를 이용하여 흡착실험을 진행하였다. 흡착실험은 회분 방식으로 수행되었으며, 반응조는 25mL HDPE 바이알을 사용하였다. 반응속도(Kinetics) 실험은 20 mL 용액이 담긴 반응조에 0.05g의 개질 활성탄을 주입하고 240분 동안 150 rpm으로 반응시켰으며, 정해진 시간마다 샘플들을 0.45μm 필터로 여과시켰다. 등온흡착실험은 음이온들(질산성질소, 6가 크롬)의 농도를 각각 25.1 과 22.8 mg/L에서 376 과 570 mg/L까지 범위를 설정하여 Kinetics 실험과 동일한 조건으로 실험을 수행하였다. 수행된 실험에서 나온 결과들을 바탕으로 흡착제의 흡착량(qe)은 다음과 같은 식을 통해 계산하였다.Adsorption experiment was conducted using the modified activated carbon adsorbent prepared as described above. Adsorption experiments were carried out in a batch mode, and the reactor used a 25 mL HDPE vial. Kinetic experiments were performed by injecting 0.05 g of modified activated carbon into a reactor containing 20 mL of solution, reacting at 150 rpm for 240 minutes, and filtering the samples with a 0.45 μm filter at predetermined times. Isothermal adsorption experiments were performed under the same conditions as the Kinetics experiments, with the concentrations of anions (nitric acid nitrate and hexavalent chromium) ranging from 25.1 and 22.8 mg / L to 376 and 570 mg / L, respectively. Based on the results from the experiment, the adsorption amount (qe) of the adsorbent was calculated by the following equation.

(qe)(mg/g) = (Co - Ce)V/W, 여기서 C0 과 Ce 는 각각 피흡착물의 초기 농도와 평형 농도(mg/L)이며, W 는 건조된 흡착제의 무게(g), V는 용액의 부피(L)를 나타낸다. (q e ) (mg / g) = (C o -C e ) V / W, where C 0 and C e are the initial and equilibrium concentrations (mg / L) of the adsorbate, respectively, and W is the dry adsorbent Weight (g), V denotes the volume (L) of the solution.

또한 본 실험에 따른 결과의 분석방법과 관련하여, 질산성질소와 염소 이온은 이온 크로마토그래피(Dionex CX-120, USA)로 분석하였으며, 1 mM 중탄산염과 3.5 mM 탄산염 농도를 가진 유동액을 1.32 mL/min 으로 흘려주었다. 6가 크롬은 1,5-Diphenylcarbohydrazide 방법(DR4000/HACH, method 8023, USA)으로 분석하였다. 또한, 수중 pH 측정에는 Horiba 사 제품(Kyoto, Japan)을 사용하였다. In addition, in relation to the analysis method of the results according to the present experiment, nitrate and chlorine ions were analyzed by ion chromatography (Dionex CX-120, USA), and 1.32 mL of a fluid having a concentration of 1 mM bicarbonate and 3.5 mM carbonate. / min. Hexavalent chromium was analyzed by the 1,5-Diphenylcarbohydrazide method (DR4000 / HACH, method 8023, USA). In addition, Horiba company (Kyoto, Japan) was used for pH measurement in water.

각각의 실험결과에 대하여 설명한다. Each experimental result is demonstrated.

도 2에는 개질된 활성탄 흡착제의 흡착용량과 2가지 오염물질에 대한 제거율이 나타나 있다. 도 2를 참조하면, 질산성질소와 6가 크롬 착이온에 대한 흡착 용량은 양이온성 폴리머 농도를 0.25 %까지 증가시킨 경우, 각각 4.71과 5.18에서 9.16과 9.98 mg/g로 증진되는 것으로 나타났다. 또한 제거율도 약 두 배 상승하는 것으로 관찰되었다. 흡착 용량이 증가하는 것은 활성탄 표면에 붙어있는 작용기의 수가 증가한 것에 기인한 것으로 추정된다. 2.5% 농도의 양이온성 폴리머로 개질한 활성탄은 0.25 %에 비해 흡착 용량이 오히려 감소하여 7.52 과 9.18 mg/g를 나타냈다. 2.5 % CPMG 가 표면적이 크게 감소하는 것은 과량의 양이온성 폴리머가 활성탄의 기공을 막는 현상에 의해 활성탄의 표면적을 감소시켜 흡착 용량이 저감되는 것으로 추정된다. Figure 2 shows the adsorption capacity of the modified activated carbon adsorbent and the removal rates for the two contaminants. Referring to FIG. 2, the adsorption capacities for nitrogen nitrate and hexavalent chromium complex ions were increased from 4.71 and 5.18 to 9.16 and 9.98 mg / g, respectively, when the cationic polymer concentration was increased to 0.25%. In addition, the removal rate was observed to be about doubled. The increase in adsorption capacity is presumably due to an increase in the number of functional groups attached to the activated carbon surface. Activated carbon modified with 2.5% concentration of cationic polymer showed 7.52 and 9.18 mg / g adsorption capacity rather than 0.25%. The large reduction in the surface area of 2.5% CPMG is estimated to reduce the adsorption capacity by reducing the surface area of activated carbon due to excess cationic polymer blocking the pores of activated carbon.

본 실험을 통해 0.25 % 의 양이온성 폴리머 용액으로 제조한 활성탄 흡착제가 최고의 흡착능을 나타내는 것으로 확인되었다. 다만, 본 발명에서는 양이온성 폴리머 용액의 농도를 0.025 ~ 2.5 질량% 농도 범위에서 사용할 수 있다. 즉, 0.025%농도보다 낮은 경우 활성탄에 담지되는 폴리머가 너무 작아져 음이온성 오염물질의 흡착제거율이 낮아지므로 바람직하지 않고, 2.5%보다 높은 경우에는 경제성이 떨어질 뿐만 아니라 흡착효율도 저하되는 것으로 확인되어 바람직하지 못하다. This experiment confirmed that the activated carbon adsorbent prepared with 0.25% cationic polymer solution showed the best adsorption capacity. However, in the present invention, the concentration of the cationic polymer solution may be used in the concentration range of 0.025 to 2.5% by mass. In other words, if the concentration is lower than 0.025%, the polymer supported on the activated carbon is too small, and thus the adsorption removal rate of the anionic contaminants is not preferable. If the concentration is higher than 2.5%, the economic efficiency is lowered and the adsorption efficiency is lowered. Not desirable

그리고, 개질 전 활성탄(VG)과 양이온성 폴리머를 담지한 개질 활성탄(CPMG)의 음이온성 오염물질의 제거 반응속도(kinetics)에 대한 실험을 수행하였다. 본 실험에서는 오염물질의 농도가 일정한 수치에 도달할 때까지 관찰된 시간을 흡착 평형 시간으로 설정하였다. 도 3에는 질산성질소(a)와 6가 크롬(b)에 대한 개질 전 활성탄과 개질 후 활성탄의 제거 반응 속도에 대한 실험결과가 나타나 있다. In addition, experiments were conducted on the kinetics of removal of anionic contaminants of modified activated carbon (VMG) and modified activated carbon (CPMG) loaded with a cationic polymer before reforming. In this experiment, the observed time until the concentration of contaminants reached a constant value was set as the adsorption equilibrium time. Figure 3 shows the experimental results for the reaction rate of the removal of activated carbon before reforming and activated carbon for nitrogen nitrate (a) and hexavalent chromium (b).

도 3을 참조하면, 평형에 도달하는 시간은 개질 전후의 활성탄 모두에서 유사하게 나타났는데, 질산성질소는 90분, 6가 크롬은 120분이 걸리는 것으로 확인하였으며, 그 이상의 접촉 시간은 흡착되는 오염물질의 양을 증가시키지 못하였다. Referring to FIG. 3, the equilibrium time was found to be similar in both activated carbon before and after reforming. It was confirmed that nitrate nitrogen was 90 minutes and hexavalent chromium was 120 minutes, and the contact time was longer than the pollutants adsorbed. It did not increase the amount of.

반응속도면에서는 개질 전후의 활성탄이 유사하였지만, 흡착용량의 면에 ㅇ있어서는 개질 후의 활성탄(CPMG)의 흡착 용량이 질산성질소는 9.04 mg/g, 6가 크롬은 12.16 mg/g 으로 개질 전 활성탄(VG)의 흡착 용량인 3.20과 7.70 mg/g 에 비해 높은 것으로 나타났다. In terms of reaction rate, activated carbon before and after reforming was similar, but in terms of adsorption capacity, the adsorption capacity of activated carbon (CPMG) after reforming was 9.04 mg / g for nitrate nitrogen and 12.16 mg / g for hexavalent chromium. It was found to be higher than the adsorption capacities of 3.20 and 7.70 mg / g (VG).

도 4에는 개질 전 활성탄과 개질 후 활성탄에 의한 수중의 질산성질소(a)와 6가크롬(b)의 등온흡착곡선이 나타나 있으며, 도 5에는 개질 전후의 활성탄에 의한 질산성질소와 6가크롬 흡착에 대한 Langmuir 상수값이 나타나 있다. 4 shows isothermal adsorption curves of nitric nitrate (a) and hexavalent chromium (b) in water by activated carbon before reforming and activated carbon after reforming, and in FIG. 5, nitrogen nitrate and hexavalent valence by activated carbon before and after reforming are shown. Langmuir constant values for chromium adsorption are shown.

도 4의 표를 참조하면, 질산성질소와 6가 크롬의 흡착량은 초기 농도가 증가함에 따라 증진되었다. Langmuir 의 상수값을 구한 결과, 도 5의 표에 나타난 바와 같이, 질산성질소의 경우는 VG 가 14.25 mg/g, CPMG 는 27.56 mg/g 으로 나타났으며, 6가 크롬의 경우는 VG 가 55.44 mg/g, CPMG 는 80.56 mg/g 으로 나타났다. Referring to the table of FIG. 4, the adsorption amount of nitrogen nitrate and hexavalent chromium was enhanced as the initial concentration was increased. As a result of calculating the constant value of Langmuir, as shown in the table of FIG. 5, VG was 14.25 mg / g and 27.56 mg / g for CPMG and 55.44 mg for hexavalent chromium. / g, CPMG was found to be 80.56 mg / g.

상기의 결과를 보면, CPMG가 VG에 비해 흡착 용량이 크게 증진되는 것이 관찰되었다. 도 5의 표에서 RL 값은 등온흡착곡선의 형태를 보여주는 것으로 0-1 사이 값을 나타내면 등온흡착곡선이 알맞은 형태임을 나타낸다. 본 실험에서 얻은 모든 RL 값이 0-1 사이 값을 나타내었다. In view of the above results, it was observed that the adsorption capacity of CPMG is significantly improved compared to that of VG. R L value in the table of Figure 5 shows the shape of the isothermal adsorption curve to indicate a value between 0-1 indicates that the isothermal adsorption curve is the appropriate form. All R L values obtained in this experiment showed values between 0-1.

또한, 도 6에는 양이온성 폴리머가 담지된 개질 활성탄에 흡착된 음이온들의 농도에 따른 방출되는 염소 이온 농도의 변화가 그래프로 나타나 있다. 도 6의 그래프를 참조하면, 염소이온과 오염물질인 음이온들이 선형 관계(R2 = 0.867)를 갖는 것을 확인하였다. 즉, 개질 활성탄에 흡착되는 음이온들의 농도가 3.81 mM 까지 증가될 때 염소이온의 농도는 0.64에서 1.30mM 까지 증가되는 것이 관찰되었다. 이 실험 결과들을 통해 작용기에 붙어있는 염소 이온과 이온 교환을 한다는 것을 알 수 있다. In addition, Figure 6 shows a graph of the change in the chlorine ion concentration released according to the concentration of the anions adsorbed on the modified activated carbon supported on the cationic polymer. Referring to the graph of Figure 6, it was confirmed that chlorine ions and pollutants anions have a linear relationship (R 2 = 0.867). That is, it was observed that the concentration of chlorine ions increased from 0.64 to 1.30 mM when the concentration of anions adsorbed on the modified activated carbon increased to 3.81 mM. These experimental results show that they exchange ion with chlorine ions attached to the functional group.

한편, 수중의 pH에 따른 개질 후 활성탄(CPMG)의 흡착량 변화를 실험하였다. 초기 pH의 범위를 3-8 로 설정하여 오염물질들에 대한 CPMG의 흡착능에 미치는 영향을 알아보았다. 초기 질산성질소와 6가 크롬 농도를 각각 27.9 와 29.7 mg/L로 설정하였으며, 수중 pH는 0.1N HCl 이나 NaOH 용액으로 조절하였다. 접촉 24 시간 후에 여과하여 농도를 측정하였으며, 온도는 상온으로 실험을 수행하였다.On the other hand, the change in the adsorption amount of activated carbon (CPMG) after the modification according to the pH in water was tested. The initial pH range was set to 3-8 to determine the effect of CPMG adsorption on contaminants. Initial nitric acid and hexavalent chromium concentrations were set to 27.9 and 29.7 mg / L, respectively, and pH in water was adjusted with 0.1N HCl or NaOH solution. After 24 hours of contact, the concentration was measured by filtration, and the temperature was performed at room temperature.

도 7에 수중 pH 변화에 따른 질산성질소와 6가 크롬에 대한 VG 와 CPMG 의 흡착량(qe) 변화를 나타내었다. 도 7을 참조하면, 6가 크롬의 경우에는 수중 pH가 증가함에 따라 11.36에서 4.36 mg/g 까지 감소하였다. 낮은 pH에서 높은 흡착 용량을 보인 것은 과량의 수소 이온에 의해 음전하를 띄는 표면적이 감소하였기 때문인 것으로 추정된다. Figure 7 shows the change in the amount of adsorption (q e ) of VG and CPMG for nitric nitrate and hexavalent chromium according to the pH change in water. Referring to FIG. 7, the hexavalent chromium decreased from 11.36 to 4.36 mg / g with increasing pH in water. The high adsorption capacity at low pH is presumably due to the reduction of the surface area negatively charged by excess hydrogen ions.

또한, 높은 pH 에서는 높은 농도의 수산화이온(OH-)가 음이온들에 대한 경쟁 이온 역할을 하여 흡착량을 저감시킨 것으로 사료된다. 질산성질소의 경우에는 3-6까지 pH 가 증가하면서 흡착량이 소량 저감된 것이 관찰되었지만, 전반적으로 질산성질소 제거율에 큰 영향을 미치지 않았다.In addition, at high pH, high concentrations of hydroxide ions (OH ) acted as competing ions for the anions, thus reducing the adsorption amount. In the case of nitrogen nitrate, a small amount of adsorption was observed as the pH was increased to 3-6, but overall, the nitrate was not significantly affected.

그리고, 개질 후의 활성탄(CPMG)에 의한 흡착능에 미치는 경쟁 이온들의 영향을 알아보았다. 경쟁 이온의 농도를 1, 2, 5 mM 로 조절하고, 초기 질산성질소와 6가 크롬 농도는 30.1과 25.9 mg/L 로 설정하였다. 또한, 수중 pH 는 6.5로 조절하였다. In addition, the influence of competitive ions on the adsorption capacity by activated carbon (CPMG) after reforming was examined. The concentrations of competitive ions were adjusted to 1, 2 and 5 mM, and the initial nitrogen nitrate and hexavalent chromium concentrations were set to 30.1 and 25.9 mg / L. In addition, pH in water was adjusted to 6.5.

도 8에는 오염물질의 경쟁이온(인산염, 염소, 황산염, 탄산염) 농도에 따른 질산성질소와 6가 크롬에 대한 VG 와 CPMG 의 제거율(%) 변화를 나타내었다. 도 8을 참조하면, 질산성질소와 6가 크롬의 제거율에 가장 큰 영향을 미치는 이온은 황산염이고, 그 다음은 염소, 인산염, 탄산염 순으로 나타났다. 황산염이나 인산염과 같이 inner-spherically 흡착하는 이온들이 제거율에 영향을 주는 이유는 흡착이 가능한 장소에 대해서 흡착 경쟁을 하기 때문인 것으로 보인다. 높은 농도의 염소 이온은 작용기에 붙어있는 염소 이온과 음이온들이 이온 교환하는 공정을 방해하는 것으로 추정된다. 탄산염은 질산성질소와 6가 크롬 이온들의 흡착에 거의 영향을 주지 않았다.Figure 8 shows the change in removal rate (%) of VG and CPMG for nitrogen nitrate and hexavalent chromium according to the concentration of competitive ions (phosphate, chlorine, sulfate, carbonate) of pollutants. Referring to FIG. 8, the ions that have the greatest influence on the removal rates of nitrate nitrogen and hexavalent chromium are sulfate, followed by chlorine, phosphate and carbonate. The reason that inner-spherically adsorbed ions such as sulphate or phosphate affect the removal rate seems to be due to the competition of adsorption at the place where adsorption is possible. High concentrations of chlorine ions are believed to interfere with the ion exchange process between ions and ions attached to the functional groups. Carbonate had little effect on the adsorption of nitric nitrate and hexavalent chromium ions.

마지막으로 재생실험을 수행하였다. 즉, 개질 활성탄(CPMG)을 수처리에 사용한 후 다시 재생할 수 있는지에 대한 가능성을 판단하기 위하여 연속적인 흡착 - 탈착 실험을 수행하였다. 위의 흡착 실험과 동일한 조건에서 흡착실험을 수행한 후에 NaOH 용액으로 탈착하는 과정을 4번 반복하였다. 초기 질산성질소와 6가 크롬 농도는 각각 247-260 과 298-311 mg/L 로 설정하였으며, 탈착을 위한 용액은 0.05 N NaOH를 사용하였으며, 흡착제 양은 2.5 g/L를 사용하였다. 오염물질들의 탈착율(DE)은 다음과 같은 식을 사용하였다. Finally, regeneration experiments were performed. In other words, continuous adsorption-desorption experiments were performed to determine the possibility of using modified activated carbon (CPMG) in water treatment and regeneration. After performing the adsorption experiment under the same conditions as the above adsorption experiment, the process of desorption with NaOH solution was repeated four times. Initial nitric acid and hexavalent chromium concentrations were set to 247-260 and 298-311 mg / L, respectively, and 0.05 N NaOH was used as the solution for desorption, and 2.5 g / L of the adsorbent was used. The desorption rate (DE) of the pollutants was used as follows.

DE = (qe(de)/qe(ad)×100 %, 여기서 qe(ad)와 qe(de)는 각각 초기 흡착량과 탈착량이며, 탈착 실험 후에는 CPMG를 오븐으로 110℃에 건조하였다. 건조시킨 CPMG는 재흡착을 위해 사용되었다. DE = (q e (de) / q e (ad) x 100%, where q e (ad) and q e (de) are the initial adsorption and desorption amounts, respectively. The dried CPMG was used for resorption.

도 9에는 재생 실험을 위한 CPMG의 연속 흡착 - 탈착 실험 결과를 나타내었다. 음이온 오염물질에 대한 흡착 및 탈착을 연속적으로 4번 반복한 결과, 질산성질소와 6가 크롬의 흡착량이 각각 21.4 와 59에서 14.86 과 40.54 mg/g 까지 감소하였으며, 탈착율은 81.09 과 77.77%에서 71.35 와 71.04 %까지 감소하는 것으로 나타났다. 흡착량이 감소하는 것은 활성탄 표면에 있는 양이온성 폴리머가 서서히 탈착되면서 흡착 용량이 저감된 것으로 사료된다. 그러나 실험결과에서 알 수 있듯이, 반복적인 흡착과 탈착 과정에서도 일정한 수준에서 흡착량을 유지하고 있어 본 발명에 따른 개질 활성탄 흡착제의 재생가능성은 우수한 것으로 판단된다. 9 shows the results of continuous adsorption-desorption experiments of CPMG for regeneration experiments. The adsorption and desorption of anion contaminants four times in succession resulted in a decrease in the adsorption of nitrate and hexavalent chromium from 21.4 and 59 to 14.86 and 40.54 mg / g, respectively. It was found to decrease by 71.35 and 71.04%. The decrease in the amount of adsorption is thought to decrease the adsorption capacity as the cationic polymer on the surface of activated carbon slowly desorbs. As can be seen from the experimental results, however, the regeneration of the modified activated carbon adsorbent according to the present invention is excellent because the adsorption amount is maintained at a constant level even during repeated adsorption and desorption processes.

상기한 바와 같은 다양한 실험 결과에서 알 수 있듯이, 본 발명에 따른 양이온성 폴리머가 담지되어 있는 활성탄 흡착제는 양이온성 폴리머가 0.25질량%농도의 것을 사용하였을 때 가장 우수한 것으로 나타났으며, 개질 활성탄은 기존의 활성탄에 비하여 흡착용량과 음이온 오염물질 제거율이 현저히 향상된다는 것을 확인하였다. As can be seen from the various experimental results as described above, the activated carbon adsorbent loaded with the cationic polymer according to the present invention was found to be the best when the cationic polymer was used in a concentration of 0.25% by mass. It was confirmed that the adsorption capacity and removal rate of anion contaminants were significantly improved compared to activated carbon.

상기한 바와 같은 구성으로 이루어진 양이온성 폴리머를 담지한 활성탄 흡착제를 이용한 수처리방법은 매우 다양하게 수행될 수 있다. 즉, 본 발명에 따른 활성탄 흡착제를 분말 또는 입상으로 제조한 후, 필터로 사용할 수 있다. 지하수나 음용수의 수로 상에 이 필터를 배치하여 물이 이 필터를 통과하면서 음이온성 오염물질을 제거할 수 있다. The water treatment method using the activated carbon adsorbent carrying the cationic polymer having the above-described configuration can be performed in various ways. That is, the activated carbon adsorbent according to the present invention may be prepared in powder or granular form and then used as a filter. This filter can be placed on a groundwater or drinking water channel to remove anionic contaminants as the water passes through the filter.

또한, 폐수처리에 있어서 본 발명에 따른 활성탄 흡착제를 폐수가 저장된 수조에 투입한 후 교반하면 폐수 내의 오염물질이 흡착제에 의해 제거될 수 있으며, 처리된 물을 수조로부터 배출시킴으로써 수처리를 수행할 수도 있다. In addition, in the wastewater treatment, when the activated carbon adsorbent according to the present invention is added to a wastewater tank and stirred, contaminants in the wastewater may be removed by the adsorbent, and water treatment may be performed by discharging the treated water from the tank. .

즉, 본 발명에 따른 활성탄 흡착제와 처리대상이 되는 물을 상호 접촉시키고 일정 시간을 유지하면 수중의 오염물질이 흡착제에 흡착되어 제거될 수 있다. That is, when the activated carbon adsorbent according to the present invention and water to be treated are mutually contacted and maintained for a predetermined time, contaminants in the water may be adsorbed and removed from the adsorbent.

또한, 본 발명에 따른 활성탄 흡착제는 오염물질을 탈착시킨 후 다시 재생할 수도 있으므로 공정 조건에 따라 경제적으로 사용할 수 있다. In addition, since the activated carbon adsorbent according to the present invention may be regenerated after desorbing contaminants, it may be economically used according to process conditions.

특히, 본 발명에 따른 수처리방법에서는 지하수를 수처리 대상으로 하여, 지하수 내에서 음이온을 형성하고 있는 6가 크롬 이온과 질산성질소를 제거할 수 있다. In particular, in the water treatment method according to the present invention, it is possible to remove hexavalent chromium ions and nitrates that form anions in the groundwater as groundwater.

본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation and that those skilled in the art will recognize that various modifications and equivalent arrangements may be made therein. It will be possible. Accordingly, the true scope of protection of the present invention should be determined only by the appended claims.

Claims (8)

음이온성 오염물질을 제거하기 위한 것으로서,
활성탄과, 상기 활성탄에 담지되는 양이온성 폴리머를 포함하는 것을 특징으로 하는 흡착제.
To remove anionic contaminants,
An adsorbent comprising activated carbon and a cationic polymer supported on the activated carbon.
제1항에 있어서,
상기 양이온성 폴리머에는 염소 이온 또는 암모늄 작용기와 결합되어 있는 것을 특징으로 하는 흡착제
The method of claim 1,
The cationic polymer is adsorbent, characterized in that coupled to the chlorine ion or ammonium functional group
제2항에 있어서,
상기 양이온성 폴리머는 [3-(Methacryloylamino)propyl]- trimethylammonium chloride(H2C=C(CH3)CONH(CH2)3N(CH3)3Cl)인 것을 특징으로 하는 흡착제.
The method of claim 2,
The cationic polymer is [3- (Methacryloylamino) propyl]-trimethylammonium chloride (H 2 C = C (CH 3 ) CONH (CH 2 ) 3 N (CH 3 ) 3 Cl).
제2항에 있어서,
상기 양이온성 폴리머는 (ar-vinylbenzyl) trimethylammonium chloride 또는 [2-(acryloyloxy)ethyl] trimethylammonium methyl sulfate인 것을 특징으로 하는 흡착제.
The method of claim 2,
The cationic polymer is ( ar -vinylbenzyl) trimethylammonium chloride or [2- (acryloyloxy) ethyl] trimethylammonium methyl sulfate.
제2항에 있어서,
상기 양이온성 폴리머 용액에 상기 활성탄을 침지시킨 상태에서, 일정 시간 가열하여 상기 양이온성 폴리머가 상기 활성탄 내에 담지되는 것을 특징으로 하는 흡착제.
The method of claim 2,
And the cationic polymer is supported in the activated carbon by heating for a predetermined time while the activated carbon is immersed in the cationic polymer solution.
제2항에 있어서,
상기 양이온성 폴리머 용액에 상기 활성탄을 침지시켜 상기 양이온성 폴리머를 상기 활성탄에 담지하며,
상기 양이온성 폴리머 용액은 0.025 ~ 2.5 질량% 농도인 것을 특징으로 하는 흡착제.
The method of claim 2,
Immersing the activated carbon in the cationic polymer solution to support the cationic polymer in the activated carbon,
The cationic polymer solution is an adsorbent, characterized in that the concentration of 0.025 ~ 2.5% by mass.
음이온성 오염물질이 포함되어 있는 물을 처리하기 위한 것으로서,
처리 대상이 되는 상기 물이 상기 청구항 1 내지 청구항 6 중 어느 하나에 기재된 흡착제를 통과하면서 상기 음이온성 오염물질이 상기 흡착제에 흡착되어 제거되는 것을 특징으로 하는 수처리방법.
To treat water containing anionic contaminants,
The anionic contaminants are adsorbed and removed by the adsorbent while the water to be treated passes through the adsorbent according to any one of claims 1 to 6.
제7항에 있어서,
수처리의 대상이 되는 상기 물은 지하수이며,
상기 음이온성 오염물질은 질산성질소 또는 크롬착이온인 것을 특징으로 하는 수처리방법.
The method of claim 7, wherein
The water targeted for water treatment is groundwater,
The anionic contaminants are water nitrate or chromium complex ion.
KR1020110053812A 2011-06-03 2011-06-03 Activated cabon including cationic polymer for removing anionic contaminant and Method for water treatment using the same KR101334864B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110053812A KR101334864B1 (en) 2011-06-03 2011-06-03 Activated cabon including cationic polymer for removing anionic contaminant and Method for water treatment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110053812A KR101334864B1 (en) 2011-06-03 2011-06-03 Activated cabon including cationic polymer for removing anionic contaminant and Method for water treatment using the same

Publications (2)

Publication Number Publication Date
KR20130027622A true KR20130027622A (en) 2013-03-18
KR101334864B1 KR101334864B1 (en) 2013-11-29

Family

ID=48178423

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110053812A KR101334864B1 (en) 2011-06-03 2011-06-03 Activated cabon including cationic polymer for removing anionic contaminant and Method for water treatment using the same

Country Status (1)

Country Link
KR (1) KR101334864B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210060177A (en) 2019-11-18 2021-05-26 상명대학교 천안산학협력단 Method for preparing hybrid adsorbent for removing cationic and anionic contaminants simultaneously and hybrid adsorbent prepared thereby
EP3990144A4 (en) * 2019-06-29 2023-07-12 Aquaguidance Technologies, Ltd. Filter and filter media for removing organic acid from water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881348B2 (en) * 2001-06-08 2005-04-19 The Penn State Research Foundation Method for perchlorate removal from ground water
KR100552000B1 (en) 2003-12-16 2006-02-20 한국생산기술연구원 Preparation method of the polyelectrolytes-impregnated mesoporous ceramic adsorbents for waste water treatment
US20090057228A1 (en) 2007-08-29 2009-03-05 Siemens Water Technologies Corp. System and method of filtering using stratified activated carbon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3990144A4 (en) * 2019-06-29 2023-07-12 Aquaguidance Technologies, Ltd. Filter and filter media for removing organic acid from water
KR20210060177A (en) 2019-11-18 2021-05-26 상명대학교 천안산학협력단 Method for preparing hybrid adsorbent for removing cationic and anionic contaminants simultaneously and hybrid adsorbent prepared thereby

Also Published As

Publication number Publication date
KR101334864B1 (en) 2013-11-29

Similar Documents

Publication Publication Date Title
Xu et al. Adsorption and removal of arsenic (V) from drinking water by aluminum-loaded Shirasu-zeolite
Mondal et al. Removal of fluoride by aluminum impregnated coconut fiber from synthetic fluoride solution and natural water
Namasivayam et al. Removal and recovery of nitrate from water by ZnCl 2 activated carbon from coconut coir pith, an agricultural solid waste
Manju et al. An investigation into the sorption of heavy metals from wastewaters by polyacrylamide-grafted iron (III) oxide
Huang et al. Treatment of arsenic (V)-containing water by the activated carbon process
CN105541009B (en) A kind of processing method of anionic azo dyes waste water
US20110155669A1 (en) Method for trace phosphate removal from water using composite resin
Leyva-Ramos et al. Adsorption of lead (II) from aqueous solution onto several types of activated carbon fibers
US20030062312A1 (en) Method of heat treating carbonaceous material to enhance its adsorption of taste-and-odor-causing and other organic compounds from water
CN102247799B (en) Method for removing humic acid in water by utilizing surfactant modified attapulgite
Bai et al. Magnetic Fe3O4@ chitosan carbon microbeads: removal of doxycycline from aqueous solutions through a fixed bed via sequential adsorption and heterogeneous Fenton-like regeneration
Namasivayam et al. Kinetic studies of adsorption of thiocyanate onto ZnCl2 activated carbon from coir pith, an agricultural solid waste
Li et al. Tuning the structure flexibility of metal-organic frameworks via adjusting precursor anionic species for selective removal of phosphorus
Yao et al. Preparation of cross-linked magnetic chitosan with quaternary ammonium and its application for Cr (VI) and P (V) removal
Shahmoradi et al. Removal of nitrate from ground water using activated carbon prepared from rice husk and sludge of paper industry wastewater treatment
CN105771885A (en) Preparation method of modified zeolite and application of modified zeolite in arsenic-bearing waste water
Arivoli et al. Adsorption dynamics of copper ion by low cost activated carbon
Jia et al. Effective removal of glyphosate from water by resin-supported double valent nano-sized hydroxyl iron oxide
Ansari et al. Investigation of the removal and recovery of nitrate by an amine-enriched composite under different fixed-bed column conditions
Dizge et al. Removal of thiocyanate from aqueous solutions by ion exchange
Vijaya et al. Sorptive response profile of chitosan coated silica in the defluoridation of aqueous solution
CN115041152B (en) Resin-based neodymium-loaded nanocomposite, preparation method thereof and application thereof in deep removal of phosphate in water
Li et al. Polypyrrole-modified mushroom residue activated carbon for sulfate and nitrate removal from water: Adsorption performance and mechanism
KR101334864B1 (en) Activated cabon including cationic polymer for removing anionic contaminant and Method for water treatment using the same
Lin et al. The adsorption mechanism of modified activated carbon on phenol

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161004

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170918

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 18