KR20130010600A - Cylindrical sputtering target and manufacturing method of thin film using the same - Google Patents

Cylindrical sputtering target and manufacturing method of thin film using the same Download PDF

Info

Publication number
KR20130010600A
KR20130010600A KR1020110071325A KR20110071325A KR20130010600A KR 20130010600 A KR20130010600 A KR 20130010600A KR 1020110071325 A KR1020110071325 A KR 1020110071325A KR 20110071325 A KR20110071325 A KR 20110071325A KR 20130010600 A KR20130010600 A KR 20130010600A
Authority
KR
South Korea
Prior art keywords
cylindrical
sputtering target
target
thin film
unit
Prior art date
Application number
KR1020110071325A
Other languages
Korean (ko)
Inventor
윤한호
박주옥
김재선
박형율
박훈
Original Assignee
삼성코닝정밀소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성코닝정밀소재 주식회사 filed Critical 삼성코닝정밀소재 주식회사
Priority to KR1020110071325A priority Critical patent/KR20130010600A/en
Publication of KR20130010600A publication Critical patent/KR20130010600A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: A cylindrical sputtering target and a thin film manufacturing method using the same are provided to improve the production efficiency of a thin film by preventing the fault of stripe form generated on a base board by a connection part between unit target materials and obtain the quality of a thin film better than one big cylindrical sputtering target by a cylindrical sputtering target using a unit target material. CONSTITUTION: A cylindrical sputtering target comprises a cylindrical backing tube(100) and multiple unit target materials(200). Multiple unit target materials(210,220) are welded with each other and are adhered to the cylindrical backing tube. A connection part between unit target materials is unparallel to the heading direction of a base board. A connection part between unit target materials forms an oblique line to the heading direction of a base board. A connection part between unit target materials forms a spiral along the outer circumference surface of the cylindrical backing tube. A target material and a cylindrical backing tube are adhered by a bonding material. A bonding material includes minimum indium metal within a range in which a tin metal and an indium metal are mixed but an existing bonding process is not changed. A bonding material contains tin metal below 55-65 weight % against the total weight and is implemented below 140-160 deg. C of melting point.

Description

원통형 스퍼터링 타겟 및 이를 이용한 박막 제조방법{CYLINDRICAL SPUTTERING TARGET AND MANUFACTURING METHOD OF THIN FILM USING THE SAME}Cylindrical sputtering target and thin film manufacturing method using same {CYLINDRICAL SPUTTERING TARGET AND MANUFACTURING METHOD OF THIN FILM USING THE SAME}

본 발명은 원통형 스퍼터링 타겟 및 이를 이용한 박막 제조방법에 관한 것으로서, 더욱 상세하게는 복수의 단위 타겟재를 포함하는 원통형 스퍼터링 타겟 및 이를 이용한 박막 제조방법에 관한 것이다.
The present invention relates to a cylindrical sputtering target and a thin film manufacturing method using the same, and more particularly, to a cylindrical sputtering target including a plurality of unit target materials and a thin film manufacturing method using the same.

스퍼터링(Sputtering) 증착법은 진공 챔버 내에 아르곤(Ar) 가스와 같은 공정 가스를 투입하고 스퍼터링 타겟재를 포함하는 캐소우드(Cathode)에 직류(DC) 전력 또는 고주파(RF)전력을 공급하여 글로우(glow) 방전을 발생시켜서 기판에 증착막을 성막(成膜)하는 방법으로, 스퍼터링 증착법에 의한 성막은 부착력이 강한 박막을 용이하게 얻을 수 있고, 막두께의 제어가 용이하고, 합금의 박막화에 있어서의 재현성이 좋고, 고융점 재료의 박막화가 용이한 특징을 가지고 있어, 반도체 등의 전자ㆍ전기 부품용 재료의 성막, 예를 들면, 액정 디스플레이용 투명 도전막의 제작, 하드디스크의 기록층 제작, 반도체 메모리의 배선재료의 제작 등의 넓은 분야에서 사용되고 있다.Sputtering deposition method is a glow by introducing a process gas, such as argon (Ar) gas into the vacuum chamber and supplying direct current (DC) power or high frequency (RF) power to the cathode (Cathode) containing the sputtering target material ) A method of forming a vapor deposition film on a substrate by generating a discharge. The film formation by sputtering vapor deposition can easily obtain a thin film with strong adhesion, control of film thickness, and reproducibility in thinning of an alloy. It has good characteristics, and it is easy to thin the high melting point material, and forms the material for electronic and electronic parts such as semiconductor, for example, the production of a transparent conductive film for liquid crystal display, the production of a recording layer of a hard disk, and the It is used in a wide range of fields, such as the manufacture of wiring materials.

이와 같은 스퍼터링 증착법에 사용되는 스퍼터링 타겟은 일반적으로 증착하고자 하는 박막과 같은 조성을 갖는 재료로 구성되는 스퍼터링 타겟재와 이와 융착(Brazing)등의 방법으로 부착되고 열전도성이 좋은 티타늄(Ti) 또는 구리(Cu) 등으로 이루어지는 백킹 플레이트(Backing Plate)로 구성된다.The sputtering target used in the sputtering deposition method is generally a sputtering target material composed of a material having the same composition as the thin film to be deposited, and a thermally conductive titanium (Ti) or copper (attached) by a method such as brazing. Cu) etc., and a backing plate.

이러한 스퍼터링 타겟은 디스플레이장치의 대형화 추세에 맞추어 그 크기의 대형화가 요구되어 지나, 이러한 대형의 스퍼터링 타겟의 제조는 성형 및 소결 공정에서의 난이도가 매우 높고, 또한 생산설비의 대형화를 요구하여 새로운 설비투자를 필요로 하기 때문에, 이익률이 저하되어 스퍼터링 타겟의 제조비용 및 생산성이 악화되는 문제점이 있다.  Such sputtering targets are required to be enlarged in size in accordance with the trend of larger display devices. However, the manufacture of such large sputtering targets is very difficult in forming and sintering processes, and also requires the enlargement of production equipment, thereby investing in new equipment. Since it requires, the profitability is lowered, there is a problem that the manufacturing cost and productivity of the sputtering target is deteriorated.

이에 복수의 단위 타겟재를 이용한 스퍼터링 타겟이 제안되어 있다. 그러나, 단위 타겟재를 접합한 스퍼터링 타겟의 경우, 단위 타겟재 간 접합부위에서 플라즈마가 불안정하게 발생하게 되고, 이러한 불안정한 플라즈마로 인해 노쥴(Nodule) 및 파티클(Particle)이 발생하여 기판(Substrate)에 불량을 야기하는 문제가 있다.Accordingly, a sputtering target using a plurality of unit target materials has been proposed. However, in the case of the sputtering target in which the unit target materials are bonded, plasma is unstable at the junction between the unit target materials, and due to such unstable plasma, nodules and particles are generated and thus the substrate is defective. There is a problem that causes.

특히, 단위 타겟재 간 접합부에 의해 기판에 발생하는 줄무늬 형태의 불량은 박막의 생산성을 크게 떨어뜨린다는 문제점이 있다.
In particular, there is a problem in that the stripe shape defect generated on the substrate by the joint between the unit target materials greatly reduces the productivity of the thin film.

본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 단위 타겟재 간 접합부에 의해 기판에 발생하는 줄무늬 형태의 불량을 방지하는 원통형 스퍼터링 타겟 및 이를 이용한 박막 제조방법을 제공하는 것이다.
The present invention has been made to solve the problems of the prior art as described above, an object of the present invention is to manufacture a cylindrical sputtering target and a thin film using the same to prevent the stripe-like defects generated on the substrate by the junction between the unit target material To provide a way.

이를 위해, 본 발명은 원통형 백킹 튜브; 및 서로 접합되어 상기 원통형 백킹 튜브에 부착되는 복수의 단위 타겟재를 포함하고, 상기 단위 타겟재 간 접합부는 기판의 진행 방향에 대하여 비평행한 것을 특징으로 하는 원통형 스퍼터링 타겟을 제공한다.To this end, the present invention is a cylindrical backing tube; And a plurality of unit target materials bonded to each other and attached to the cylindrical backing tube, wherein the joint between the unit target materials provides a cylindrical sputtering target, which is non-parallel to the traveling direction of the substrate.

여기서, 상기 단위 타겟재 간 접합부는 기판의 진행 방향에 대하여 사선으로 이루어질 수 있다.Here, the bonding portion between the unit target material may be made oblique with respect to the advancing direction of the substrate.

또한, 상기 단위 타겟재 간 접합부는 상기 원통형 백킹 튜브의 외주면을 따라 나선형으로 이루어질 수 있다.In addition, the joint between the unit target material may be made in a spiral along the outer peripheral surface of the cylindrical backing tube.

또한 본 발명은 원통형 스퍼터링 타겟에 의한 박막 제조방법에 있어서, 상기 원통형 스퍼터링 타겟은 원통형 백킹 튜브; 및 서로 접합되어 상기 원통형 백킹 튜브에 부착되는 복수의 단위 타겟재를 포함하고, 상기 단위 타겟재 간 접합부는 기판의 진행 방향에 대하여 비평행한 것을 특징으로 하는 원통형 스퍼터링 타겟에 의한 박막 제조방법을 제공한다.
In another aspect, the present invention is a method for manufacturing a thin film by a cylindrical sputtering target, the cylindrical sputtering target is a cylindrical backing tube; And a plurality of unit target materials bonded to each other and attached to the cylindrical backing tube, wherein the joining portions between the unit target materials are nonparallel to the traveling direction of the substrate. .

본 발명에 따르면, 단위 타겟재 간 접합부에 의해 기판에 발생하는 줄무늬 형태의 불량이 방지되어 박막의 생산 효율이 향상된다.According to the present invention, the stripe shape defect generated on the substrate is prevented by the junction between the unit target material is improved the production efficiency of the thin film.

또한, 단위 타겟재를 이용한 원통형 스퍼터링 타겟으로도 단일의 대형 원통형 스퍼터링 타겟 못지 않은 박막 품질을 얻을 수 있다.
In addition, even a cylindrical sputtering target using a unit target material can obtain a thin film quality no less than a single large cylindrical sputtering target.

도 1은 본 발명의 일 실시예에 따른 원통형 스퍼터링 타겟의 개략적인 구성도.
도 2는 종래의 단위 타겟재를 이용한 원통형 타겟을 이용한 스퍼터링 공정의 개략적인 개념도.
1 is a schematic configuration diagram of a cylindrical sputtering target according to an embodiment of the present invention.
2 is a schematic conceptual view of a sputtering process using a cylindrical target using a conventional unit target material.

이하에서는 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 원통형 스퍼터링 타겟 및 이를 이용한 박막 제조방법에 대해 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a cylindrical sputtering target and a method for manufacturing a thin film using the same.

아울러, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다.In the following description of the present invention, detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

도 1은 본 발명의 일 실시예에 따른 원통형 스퍼터링 타겟의 개략적인 구성도이다.1 is a schematic configuration diagram of a cylindrical sputtering target according to an embodiment of the present invention.

도 1을 참조하면, 본 발명에 따른 원통형 스퍼터링 타겟은 원통형 백킹 튜브(100) 및 타겟재(200)를 포함하여 구성될 수 있다.Referring to FIG. 1, the cylindrical sputtering target according to the present invention may include a cylindrical backing tube 100 and a target material 200.

원통형 백킹 튜브(100)는 타겟재(200)를 지지하는 것으로, 그 재질로는 타겟재(200)의 열팽창율과 근사한 금속재질로 구현될 수 있다. 일례로 원통형 백킹 튜브(100)는 무산소 구리(Cu), 티타늄(Ti), 또는 스테인리스 스틸로 구현될 수 있다.The cylindrical backing tube 100 supports the target material 200, and the material may be implemented as a metal material close to the thermal expansion rate of the target material 200. In one example, the cylindrical backing tube 100 may be implemented with oxygen-free copper (Cu), titanium (Ti), or stainless steel.

타겟재(200)는 원통형 백킹 튜브(100)의 외주면과 에어갭을 두고 설치되며, 기판에 박막을 형성하는 데 사용된다. 타겟재(200)는 인듐(In), 주석(Sn), 아연(Zn), 구리(Cu), 알루미늄(Al), 탄탈륨(Ta), 나이오븀(Nb) 및 티타늄(Ti)으로 이루어진 군에서 선택되는 적어도 하나의 원소를 주성분으로 포함하는 금속물 또는 금속 산화물, 예컨대 ITO(Indium Tin Oxide), AZO(Aluminum Zinc Oxide), IZO(Indium Zinc Oxide)로 이루어질 수 있다.The target material 200 is provided with an air gap and an outer circumferential surface of the cylindrical backing tube 100, and is used to form a thin film on a substrate. The target material 200 is formed of indium (In), tin (Sn), zinc (Zn), copper (Cu), aluminum (Al), tantalum (Ta), niobium (Nb), and titanium (Ti). It may be made of a metal or metal oxide including at least one element selected as a main component, such as indium tin oxide (ITO), aluminum zinc oxide (AZO), and indium zinc oxide (IZO).

타겟재(200)와 원통형 백킹 튜브(100)는 본딩재에 의해 접착된다. 본딩재는 주석 금속과 인듐 금속이 혼합되되 기존의 본딩 공정의 변화를 주지 않는 범위 내에서 최소한의 인듐 금속을 포함하도록 구현된다. 바람직하게 본딩재는 주석 금속이 총 중량대비 55 중량% 이상, 65 중량% 이하로 함유되며, 그 녹는점이 140℃ 이상, 160℃ 이하로 구현될 수 있다.The target material 200 and the cylindrical backing tube 100 are bonded by the bonding material. The bonding material is implemented to include a minimum amount of indium metal within a range in which tin metal and indium metal are mixed but do not change the existing bonding process. Preferably, the bonding material contains 55% by weight or more and 65% by weight or less of the tin metal, and its melting point may be implemented at 140 ° C. or more and 160 ° C. or less.

본 발명에 따른 원통형 스퍼터링 타겟의 타겟재(200)는 복수개의 단위 타겟재(210, 220)가 접합되어 형성된다.The target material 200 of the cylindrical sputtering target according to the present invention is formed by bonding a plurality of unit target materials (210, 220).

여기서, 단위 타겟재 간 접합(210, 220)은 단위 타겟재 간 접합부가 스퍼터링 공정 과정에서의 기판 진행 방향에 대하여 비평행하게 되도록 이루어질 것이다.Herein, the bonding between the unit target materials 210 and 220 may be made such that the bonding between the unit target materials is non-parallel with respect to the substrate traveling direction in the sputtering process.

단위 타겟재를 접합하는 경우 단위 타겟재 간 접합부위에서 플라즈마가 불안정하게 발생하게 되고, 이러한 불안정한 플라즈마로 인해 노쥴(Nodule) 및 파티클(Particle)이 발생하여 기판(Substrate)에 불량을 야기한다.When the unit target material is bonded, the plasma is unstable at the junction between the unit target materials, and the unstable plasma generates nodules and particles, thereby causing a defect in the substrate.

이에, 도 2와 같은 종래의 원통형 스퍼터링 타겟을 이용해 스퍼터링 공정을 진행하는 경우, 즉 단위 타겟재(11, 12) 간 접합 부위(10a)가 스퍼터링 공정에서의 기판의 진행 방향과 평행한 원통형 스퍼터링 타겟을 이용하여 스퍼터링 공정을 진행하는 경우, 기판(20)과 단위 타겟재 간 접합부(10a)를 수직방향에서 보면, 단위 타겟재 간 접합부(10a)가 기판(20)의 동일 부위에 계속 대응하게 되므로, 기판(20) 상의 상기 부위에 줄무늬 형태의 불량이 발생하게 된다.Accordingly, when the sputtering process is performed using the conventional cylindrical sputtering target as shown in FIG. 2, that is, the cylindrical sputtering target in which the joining portions 10a between the unit target materials 11 and 12 are parallel to the advancing direction of the substrate in the sputtering process. When the sputtering process is performed by using, when the junction portion 10a between the substrate 20 and the unit target material is viewed in the vertical direction, the junction portion 10a between the unit target materials continues to correspond to the same portion of the substrate 20. In addition, a stripe-like defect occurs in the portion on the substrate 20.

그러나, 단위 타겟재 간 접합에 의한 접합부가 기판의 진행 방향에 대하여 비평행한 경우 단위 타겟재 간 접합 부위는 진행하는 기판의 동일 부위에 대응되는 것이 아니라, 점 또는 일정 영역을 가지며 기판에 분산되어 대응되게 되므로, 줄무늬 형태의 불량을 방지할 수 있다. 이에 의해, 단위 타겟재를 이용한 원통형 스퍼터링 타겟으로도 단일의 대형 원통형 스퍼터링 타겟 못지 않은 박막 품질을 얻을 수 있다.However, in the case where the joining portion by the joining between the unit target materials is non-parallel with respect to the advancing direction of the substrate, the joining portion between the unit target materials does not correspond to the same portion of the advancing substrate, but has a point or a predetermined area and is dispersed and corresponded to the substrate. Because of this, it is possible to prevent the defective form of the stripes. As a result, even a cylindrical sputtering target using a unit target material, thin film quality comparable to a single large cylindrical sputtering target can be obtained.

비평행은 단위 타겟재 간 접합부가 기판의 진행 방향에 대하여 일정한 각도를 갖는 사선 형태를 가짐으로써 이루어질 수 있다.Non-parallel may be made by the junction between the unit target materials having an oblique shape having a constant angle with respect to the advancing direction of the substrate.

또는, 단위 타겟재 간 접합부가 원통형 백킹 튜브의 외주면을 따라 나선형 형태를 가짐으로써 이루어질 수도 있다. 단위 타겟재 간 접합부가 나선형 형태를 이루는 경우, 단위 타겟재 간 접합부는 진행하는 기판 상에 균등하게 분산되어 대응하게 되므로 단위 타겟재 간 접합부에 의한 불량이 기판의 일정 영역에 집중되어 발생하는 것을 방지할 수 있을 것이다.Alternatively, the joint between the unit target materials may be made by having a spiral shape along the outer circumferential surface of the cylindrical backing tube. When the joints between the unit target materials form a helical shape, the joints between the unit target materials are uniformly distributed on the advancing substrate to correspond to each other, thereby preventing defects caused by the joints between the unit target materials from concentrating on a certain area of the substrate. You can do it.

또한, 본 발명에 따른 비평행은 여러 장의 타일이 어긋나게 깔리는 것과 같은 2차원적 배열의 접합부를 형성하여 이루어질 수도 있을 것이다. In addition, the non-parallel according to the present invention may be made by forming a joint in a two-dimensional array such that several tiles are alternately laid.

그러나, 본 발명에 따른 단위 타겟재 간 접합부의 형태는 상술한 형태에 구속되지 않고 단위 타겟재 간 접합부의 위치가 기판의 동일 위치에서 반복적으로 나타나지 않는 모든 형태가 포함될 수 있다.However, the shape of the joint portion between the unit target materials according to the present invention may include any shape that is not limited to the above-described form and the position of the joint portion between the unit target materials does not appear repeatedly at the same position of the substrate.

이하, 상술한 원통형 스퍼터링 타겟에 의한 박막 제조방법에 대하여 설명하기로 한다.Hereinafter, the thin film manufacturing method by the above-mentioned cylindrical sputtering target will be described.

우선, 스퍼터링 장치의 챔버(Chamber)에 원통형 스퍼터링 타겟을 배치한다. 원통형 스퍼터링 타겟은 챔버 내부의 상방에 배치되며, 기판은 원통형 스퍼터링 타겟과 대향되는 챔버 내부의 하방에서 인-라인(In-Line) 공정으로 이동될 것 이다.First, a cylindrical sputtering target is placed in a chamber of the sputtering apparatus. The cylindrical sputtering target is disposed above the interior of the chamber and the substrate will be moved in an in-line process below the interior of the chamber opposite the cylindrical sputtering target.

이후, 스퍼터링 장치의 가스공급부를 통해 공정가스를 주입한다. 공정가스는 일반적으로 아르곤(Ar) 가스 등이 사용될 수 있다.Thereafter, the process gas is injected through the gas supply unit of the sputtering apparatus. As the process gas, argon (Ar) gas or the like may be generally used.

이후, 전원 공급부를 통해 전원을 원통형 스퍼터링 타겟에 인가한다.Thereafter, power is applied to the cylindrical sputtering target through the power supply.

전원이 원통형 스퍼터링 타겟에 인가되면, 글로우 방전(Glow Discharge)에 의해 공정가스가 이온화되어 원통형 스퍼터링 타겟과 기판 사이에 플라즈마 방전(Plasma Discharge)이 발생되고, 방전영역에 존재하는 양이온(Positive Charge)들이 전기적인 힘에 의해 원통형 타겟의 타겟재를 가격하게 된다. 이 가격에 의해 원통형 스퍼터링 타겟에서 떨어져 나온 원자나 분자들은 원통형 스퍼터링 타겟에 대향되게 배치되어 인-라인(In-Line)으로 이동되는 기판에 증착됨으로써 기판에 박막이 형성되게 된다.When the power is applied to the cylindrical sputtering target, the process gas is ionized by glow discharge to generate plasma discharge between the cylindrical sputtering target and the substrate, and positive charges present in the discharge region are generated. The electrical force strikes the target material of the cylindrical target. At this price, atoms or molecules that deviate from the cylindrical sputtering target are deposited on a substrate that is disposed opposite the cylindrical sputtering target and moved in-line to form a thin film on the substrate.

이때, 단위 타겟재 간 접합에 의한 접합부가 기판 진행 방향에 대하여 비평행함으로써, 단위 타겟재 간 접합 부위가 진행하는 기판의 동일 부위에 대응되는 것이 아니라, 점 또는 일정 영역을 가지며 분산하여 대응되게 되어, 기판 상에 발생하는 줄무늬 형태의 불량을 방지할 수 있다.At this time, the junction part by the bonding between unit target materials is non-parallel with respect to the board | substrate advancing direction, Comprising: It does not correspond to the same site | part of the board | substrate to which the bonding site | part between unit target materials advances, but has the point or a certain area | region, it is distributed and respond | corresponds. It is possible to prevent a stripe shape defect occurring on the substrate.

이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.While the invention has been shown and described with reference to certain preferred embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. This is possible.

그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등한 것들에 의해 정해져야 한다.
Therefore, the scope of the present invention should not be limited by the described embodiments, but should be determined by the scope of the appended claims as well as the appended claims.

100 : 원통형 백킹 튜브 200 : 타겟재
210, 220 : 단위 타겟재
100: cylindrical backing tube 200: target material
210, 220: unit target material

Claims (4)

원통형 백킹 튜브; 및
서로 접합되어 상기 원통형 백킹 튜브에 부착되는 복수의 단위 타겟재를 포함하고,
상기 단위 타겟재 간 접합부는 기판의 진행 방향에 대하여 비평행한 것을 특징으로 하는 원통형 스퍼터링 타겟.
Cylindrical backing tube; And
A plurality of unit target materials bonded to each other and attached to the cylindrical backing tube,
The sputtering target of the cylindrical unit sputtering target, characterized in that non-parallel to the advancing direction of the substrate.
제1항에 있어서,
상기 단위 타겟재 간 접합부는 기판의 진행 방향에 대하여 사선을 이루는 것을 특징으로 하는 원통형 스퍼터링 타겟.
The method of claim 1,
Bonding portion between the unit target material is a cylindrical sputtering target, characterized in that the oblique line with respect to the advancing direction of the substrate.
제1항에 있어서,
상기 단위 타겟재 간 접합부는 상기 원통형 백킹 튜브의 외주면을 따라 나선형을 이루는 것을 특징으로 하는 원통형 스퍼터링 타겟.
The method of claim 1,
Bonding between the unit target material cylindrical sputtering target, characterized in that forming a spiral along the outer peripheral surface of the cylindrical backing tube.
원통형 스퍼터링 타겟에 의한 박막 제조방법에 있어서,
상기 원통형 스퍼터링 타겟은
원통형 백킹 튜브; 및
서로 접합되어 상기 원통형 백킹 튜브에 부착되는 복수의 단위 타겟재를 포함하고,
상기 단위 타겟재 간 접합부는 기판의 진행 방향에 대하여 비평행한 것을 특징으로 하는 원통형 스퍼터링 타겟에 의한 박막 제조방법.
In the thin film manufacturing method by a cylindrical sputtering target,
The cylindrical sputtering target
Cylindrical backing tube; And
A plurality of unit target materials bonded to each other and attached to the cylindrical backing tube,
Bonding between the unit target material is a thin film manufacturing method by a cylindrical sputtering target, characterized in that non-parallel to the traveling direction of the substrate.
KR1020110071325A 2011-07-19 2011-07-19 Cylindrical sputtering target and manufacturing method of thin film using the same KR20130010600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110071325A KR20130010600A (en) 2011-07-19 2011-07-19 Cylindrical sputtering target and manufacturing method of thin film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110071325A KR20130010600A (en) 2011-07-19 2011-07-19 Cylindrical sputtering target and manufacturing method of thin film using the same

Publications (1)

Publication Number Publication Date
KR20130010600A true KR20130010600A (en) 2013-01-29

Family

ID=47839778

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110071325A KR20130010600A (en) 2011-07-19 2011-07-19 Cylindrical sputtering target and manufacturing method of thin film using the same

Country Status (1)

Country Link
KR (1) KR20130010600A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104032275A (en) * 2014-06-12 2014-09-10 上海和辉光电有限公司 Joint type rotary target and forming method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104032275A (en) * 2014-06-12 2014-09-10 上海和辉光电有限公司 Joint type rotary target and forming method thereof

Similar Documents

Publication Publication Date Title
JP5482020B2 (en) Cylindrical sputtering target and manufacturing method thereof
US7550055B2 (en) Elastomer bonding of large area sputtering target
CN102066603B (en) Apparatus and method for uniform deposition
CN1904131A (en) Controllable target cooling
US20070289864A1 (en) Large Area Sputtering Target
EP2640865B1 (en) Soft sputtering magnetron system
JP2007016314A (en) System and method for controlling ion density and energy using modulated power signal
JP2009001902A5 (en)
CN1836307A (en) Method and design for sputter target attachment to a backing plate
CN101220460B (en) Target device for sputtering
US20070289869A1 (en) Large Area Sputtering Target
JP2015092025A (en) Sputtering method
CN102828155A (en) Separated target apparatus for sputtering and sputtering method using the same
US20110031117A1 (en) Sputtering target apparatus
KR20130010600A (en) Cylindrical sputtering target and manufacturing method of thin film using the same
US20080000768A1 (en) Electrically Coupled Target Panels
JP2008019508A (en) Cooled anode
JP6079228B2 (en) Multi-sputtering target and method for manufacturing the same
US20080296352A1 (en) Bonding method for cylindrical target
WO2023041017A1 (en) Sputtering target and method for manufacturing sputtering target
CN104968829B (en) Sputtering device
TWI615492B (en) Target assembly
JP6335386B2 (en) Cathode assembly
KR101827472B1 (en) Insulating material target
JP2008127582A (en) Composite type sputtering system and composite type sputtering method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application