KR20130003848A - 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템 및 그 방법 - Google Patents

열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템 및 그 방법 Download PDF

Info

Publication number
KR20130003848A
KR20130003848A KR1020110065457A KR20110065457A KR20130003848A KR 20130003848 A KR20130003848 A KR 20130003848A KR 1020110065457 A KR1020110065457 A KR 1020110065457A KR 20110065457 A KR20110065457 A KR 20110065457A KR 20130003848 A KR20130003848 A KR 20130003848A
Authority
KR
South Korea
Prior art keywords
heat stress
module
probability distribution
heat
remind
Prior art date
Application number
KR1020110065457A
Other languages
English (en)
Other versions
KR101288386B1 (ko
Inventor
변희룡
이지선
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Priority to KR1020110065457A priority Critical patent/KR101288386B1/ko
Publication of KR20130003848A publication Critical patent/KR20130003848A/ko
Application granted granted Critical
Publication of KR101288386B1 publication Critical patent/KR101288386B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/22Social work or social welfare, e.g. community support activities or counselling services
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/40ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H15/00ICT specially adapted for medical reports, e.g. generation or transmission thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Primary Health Care (AREA)
  • Medical Informatics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Public Health (AREA)
  • Computational Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Business, Economics & Management (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Tourism & Hospitality (AREA)
  • General Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • Probability & Statistics with Applications (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

본 발명은 폭염 모니터링 시스템에 대한 것으로서, 매 시간 기온과 상대습도 데이터를 자동 수집하여 열 스트레스를 계산하고 이를 시간가중함수로 누적하여 AHI를 계산하고, 그 결과의 시 공간적 분포를 웹에 표출함으로써 폭염의 위험을 누구나 쉽게 실시간으로 진단하며 과거 폭염의 피해사례와의 비교도 쉽게 할 수 있는 전산시스템인 폭염 모니터링 시스템에 관한 것이다. 본 발명은 시간가중함수를 이용하여 열 스트레스를 누적하고 표준화함으로써, 폭염 지속 일에 따른 위험성 증가를 정량적으로 산출할 수 있고, 기존 지수들 보다 객관적이고 정밀하게 폭염을 진단할 수 있다. 따라서 이 시스템을 기상청에서 이용하여 폭염특보를 발표하면 폭염으로부터 국민 건강을 더 많이 더 효과적으로 보호하게 된다. 군 작전, 공동 작업장, 단체 운동, 집단행사 등이 진행 될 때, 본 발명을 이용하면 소속원들의 건강을 더욱 신속 정확하게 지킬 수 있게 된다. 그리고 기존에 개발된 폭염지수들은 절대적인 위험기준을 사용하여 해당지역의 기후에 따라 위험기준이 달리 적용되었는데 (예를 들면 한국은 섭씨 35도를 넘어야 위험 단계로 보지만, 열대 사막지방에서는 섭씨 40도를 넘어야 위험 수준이 된다.), AHI는 표준화 과정을 거쳐 상대적인 값이 산출되기 때문에 한국의 섭씨 35도와 열대 사막의 섭씨 40도가 같이 위험정도 1.5로 표시해 줄 수도 있다. 따라서 전 지구상에서 고온의 분포가 아닌, 열파 위험성의 분포를 한꺼번에 파악할 수 있게 된다. 이는 폭염 대비에서 뿐 아니라 기후변화를 탐지하는데 유리하다. 또한, 웹페이지를 통해 폭염의 장기간 시공간적 분포를 제공함으로써, 과거에 폭염이 언제 어디서 발생하였으며, 현재 폭염 상황이 한반도 내에서 어떻게 확대되어 가는지를 누구나 쉽게 탐지할 수 있다. 이는 폭염 연구자가 과거의 폭염사례를 파악하기 용의하게 하며, 보건복지 관계자들과 무더위 쉼터 등을 운영하는 행정관계자들이 조기에 폭염 발생을 확인하여 신속한 대책을 마련할 수 있도록 하며, 이를 통해 폭염 피해 경감 효과도 기대할 수 있다. 그 밖에도 본 발명은 폭염지수들의 장기간 시계열을 제공함으로써 연구자들이 지수를 계산하고 가시화하는 단계를 생략할 수 있게 하여, 여기에 소비되는 시간과 수고를 절약하게 한다.

Description

열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템 및 그 방법{SYSTEM AND METHOD FOR HEAT WAVE MONITORING USING TIME DEPENDENT FUNCTION ON HEAT STRESS}
본 발명은 폭염 모니터링 시스템 및 그 방법에 대한 것으로서, 매 시간 기온과 상대습도 데이터를 자동 수집하여 열 스트레스를 계산하고 이를 시간가중함수로 누적하여 AHI를 계산하고, 그 결과의 시 공간적 분포를 웹에 표출함으로써 폭염의 위험을 누구나 쉽게 실시간으로 진단하며 과거 폭염의 피해사례와의 비교도 쉽게 할 수 있는 전산시스템인 폭염 모니터링 시스템 및 그 방법에 관한 것이다.
최근 지구온난화와 함께 폭염피해 문제들이 전 세계적으로 대두되면서, 폭염 특보 시스템을 운영하고 이를 감시하는 국가들이 증가하고 있다. 미국은 NOAA(National Oceanic and Atmospheric Administration)의 NWS(National Weather Service)와 WFO(Weather Forecast Office)에서 폭염 상황의 공간분포를 제공하고 있으며, 폭염의 강도는 기온과 상대습도로 계산되는 Heat Index를 통하여 정량적으로 나타낸다. 한국 기상청도 6 ~ 9월동안 Heat Index를 이용하여 폭염의 강도를 산출하고, 공간분포를 웹페이지에서 제공하고 있다. 영국 기상청은 일 최고기온과 밤 최저기온을 이용한 Heat-Health Watch system을 구축하여 폭염 발생지역을 경보하고 있다. 그 밖에 일본과 호주, 캐나다 기상청등은 폭염의 공간 분포를 보여주는 모니터링 시스템은 아직 구축되어 있지 않지만, 여름동안 Wet Bulb Globe Temperature (WBGT), Humidex와 같은 폭염지수를 산출하여 기상 관측 값과 함께 웹페이지에 공시하고 있다.
하지만 현재 운영되고 있는 폭염 모니터링 시스템들은 다음과 같은 한계점을 가지고 있다. 첫째, 열 스트레스의 누적영향을 반영하지 못하는 비 누적 폭염지수들을 사용한다. 폭염은 지속일이 길어질수록 열 스트레스가 체내에 누적되어, 신체기능을 약화시키고 열사병이나 심혈관질환 등으로 인한 사망자 수를 급격히 증가시킨다. 하지만 Heat Index, Humidex, WBGT와 같은 비 누적 지수들은 한 시점의 대기 상태만으로 폭염을 진단하기 때문에, 유사한 고온 환경이 이틀이상 지속되면 둘째 날의 위험성이 커지는 점을 고려하지 못한다. 그리고 첫째 날과 둘째 날의 폭염의 강도 차이도 구별하지 못한다.
둘째, 폭염의 시간 경과에 따라 열 스트레스가 변하는 점을 고려하지 못한다. Heat Stress Index (Watts and Kalkstein, 2004)와 같이 간혹 열 스트레스를 누적하는 지수가 있기는 하지만, 누적 방법에서 문제가 생긴다. 한 시간 전의 열 스트레스와 10시간 전의 열 스트레스를 같은 비중으로 누적하는 것이다. 인체는 고온이나 저온에 순화하는 기능이 있어 열 스트레스를 받았더라도 수 시간이 지나면 회복되기 마련인데, 그 점을 고려해 주시 못하는 것이다.
셋째, 지역별로 다른 위험기준을 설정해야 한다. 저위도에 사는 사람들은 고위도보다 높은 온도에 노출되어 있는 시간이 길기 때문에 인체의 순환계 및 발한기능이 향상되어있어 고온에 대한 면역력이 높다. 따라서 지역별 기후특성 및 거주민의 기후 적응도를 반영한 상대적인 폭염강도를 나타내는 지수가 필요하나, 현 시스템에 사용되고 있는 폭염지수들은 이를 고려하지 않은 절대 값을 사용하기 때문에 지역별로 다른 위험기준이 사용되고 있다.
넷째, 실시간 현황만 표출하고 과거자료는 제공하지 않는다. 한국의 폭염특보는 2008년부터 정식으로 시행되어 한국 기후에 대한 이 기준의 적합성이 아직 증명되지 않았다. 따라서 이에 대한 많은 연구와 검증결과가 필요하다. 이를 위해선, 과거의 폭염지수 값도 함께 제공되어야 폭염사례를 살펴보기에 편리하나 현 시스템은 연구자들이 개별로 폭염지수를 계산해야하는 번거로움이 있다.
다섯째, 지점별 폭염강도의 시간변동을 알 수 없다. 대부분의 폭염모니터링 시스템들은 폭염의 공간분포만을 표출하며, 지점별 폭염강도변화를 나타낸 시계열은 제공하지 않는다. 따라서 폭염의 시(始)·종(終)과 변동성을 정확하게 분석하기가 어렵다.
본 발명은 여름동안 매시간 자동으로 기온과 상대습도 자료를 수집하여, 새롭게 누적되는 열 스트레스 량을 계산하고, 시간가중함수를 이용하여 과거 72시간동안의 열 스트레스 량을 누적한 뒤 표준화하여, 열 스트레스 누적지수 (AHI)로 나타낸다. 그리고 실시간으로 산출되는 AHI의 분포뿐만 아니라 과거의 시공간적 분포도 웹 페이지에 표출함으로써, 누구나 쉽게 폭염현황을 파악하고 과거에는 언제 어디에서 폭염이 발생했는지도 즉각 탐지할 수 있는 시스템 및 그 방법을 제공하는데 그 목적이 있다.
상술한 목적을 달성하기 위해 본 발명은 매시간 기온과 상대습도 데이터를 수집하는 데이터 수집 모듈과, 상기 매시간 기온과 상대습도 데이터로 매시간 발생하는 열 스트레스 량을 계산하는 열 스트레스 연산 모듈과, 상기 열 스트레스 량의 시간경과에 따른 가중치가 로그적으로 감소하도록 시간 가중함수로 열 스트레스 량을 누적하는 열 스트레스 누적 모듈과, 상기 열 스트레스 누적 량의 확률분포 모형을 구축하는 확률분포 모형 구축 모듈과, 상기 열 스트레스 누적 량을 등가확률 변환(equiprobability transformation) 방법으로 표준화하는 열 스트레스 누적량 표준화 모듈, 및 상기 열 스트레스 누적량 표준화 모듈에 의해 표준화된 열 스트레스 누적량의 공간분포 및 시계열을 그래픽으로 표출하는 그래픽 출력 모듈을 포함하는 것을 특징으로 하는 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템을 제공한다.
상기 열 스트레스 연산 모듈은
Figure pat00001
로 열 스트레스(
Figure pat00002
)를 연산하며, 상기
Figure pat00003
는 단위 mb인 수증기압으로서,
Figure pat00004
이고, 상기
Figure pat00005
는 단위 K인 이슬점온도로서,
Figure pat00006
이며, 상기
Figure pat00007
는 단위 ℃인 매시간 기온이고, 상기
Figure pat00008
Figure pat00009
이며, 상기
Figure pat00010
는 단위 %인 상대습도이다. 상기 열 스트레스 누적 모듈은 72시간동안 누적된 열 스트레스 량을 연산하며, 상기 열 스트레스 누적 모듈에서 72시간동안 누적된 열 스트레스 량(
Figure pat00011
)은,
Figure pat00012
이며, 상기
Figure pat00013
Figure pat00014
시간 전에 발생한 열 스트레스 값이다. 상기 확률분포 모형 구축 모듈은 일정 년도 동안, 특정 월의 일 최고 72시간동안 누적된 열 스트레스 량을, 3-파라미터 와이불(3-parameter Weibull) 누적확률분포 함수를 이용하여 열 스트레스 누적량의 확률분포 모형을 구축할 수 있다. 상기 3-파라미터 와이불(3-parameter Weibull) 확률분포 함수의 누적확률 값(
Figure pat00015
)은,
Figure pat00016
이며, 상기
Figure pat00017
는 3-파라미터 와이불(3-parameter Weibull) 누적확률분포 함수를 지점별
Figure pat00018
의 확률분포에 맞게 변형시켜주는 규모 계수로서,
Figure pat00019
이고, 상기
Figure pat00020
는 3-파라미터 와이불(3-parameter Weibull) 누적확률분포 함수를 지점별
Figure pat00021
의 확률분포에 맞게 변형시켜주는 형상 계수로서,
Figure pat00022
이며, 상기
Figure pat00023
는 3-파라미터 와이불(3-parameter Weibull) 누적확률분포 함수를 지점별
Figure pat00024
의 확률분포에 맞게 변형시켜주는 위치 계수로서,
Figure pat00025
이고, 상기
Figure pat00026
은 열 스트레스 량 자료의 총 개수, 상기
Figure pat00027
는 열 스트레스량의 평균 값, 상기
Figure pat00028
는 감마함수이다. 상기 열 스트레스 누적량 표준화 모듈은 3-파라미터 와이불(3-parameter Weibull) 확률분포 함수의 누적확률 값(
Figure pat00029
)을 역 표준정규분포(inverse standard normal distribution) 함수에 대입하여 표준화된 열 스트레스 누적량을 구할 수 있다. 상기 표준화된 열 스트레스 누적량(
Figure pat00030
)은,
Figure pat00031
이며, 상기
Figure pat00032
이다. 상기 그래픽 출력 모듈에서 표출된 그래픽을 웹 페이지를 통해 제공하는 웹 페이지 표출 모듈을 더 포함할 수 있다.
또한, 본 발명은 데이터 수집 모듈로 매시간 기온과 상대습도 데이터를 수집하는 단계와, 상기 매시간 기온과 상대습도 데이터로 매시간 발생하는 열 스트레스 량을 열 스트레스 연산 모듈로 계산하는 단계와, 상기 열 스트레스 량의 시간경과에 따른 가중치가 로그적으로 감소하도록 시간 가중함수로 열 스트레스 량을 열 스트레스 누적 모듈로 누적하는 단계와, 상기 열 스트레스 누적 량의 확률분포 모형을 확률분포 모형 구축 모듈로 구축하는 단계와, 상기 열 스트레스 누적 량을 열 스트레스 누적량 표준화 모듈에 의해 등가확률 변환(equiprobability transformation) 방법으로 표준화하는 단계, 및 상기 열 스트레스 누적량 표준화 모듈에 의해 표준화된 열 스트레스 누적량의 공간분포 및 시계열을 그래픽 출력 모듈을 통해 그래픽으로 표출하는 단계;를 포함하는 것을 특징으로 하는 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 방법을 제공한다. 상기 매시간 기온과 상대습도 데이터로 매시간 발생하는 열 스트레스 량을 열 스트레스 연산 모듈로 계산하는 단계에서, 상기 열 스트레스(
Figure pat00033
)는
Figure pat00034
이며, 상기
Figure pat00035
는 단위 mb인 수증기압으로서,
Figure pat00036
이고, 상기
Figure pat00037
는 단위 K인 이슬점온도로서,
Figure pat00038
이며, 상기
Figure pat00039
는 단위 ℃인 매시간 기온이고, 상기
Figure pat00040
Figure pat00041
이며, 상기
Figure pat00042
는 단위 %인 상대습도이다. 상기 열 스트레스 량의 시간경과에 따른 가중치가 로그적으로 감소하도록 시간 가중함수로 열 스트레스 량을 열 스트레스 누적 모듈로 누적하는 단계는, 72시간동안 누적된 열 스트레스 량을 연산하며, 상기 72시간동안 누적된 열 스트레스 량(
Figure pat00043
)은,
Figure pat00044
이며, 상기
Figure pat00045
Figure pat00046
시간 전에 발생한 열 스트레스 값이다. 상기 열 스트레스 누적 량의 확률분포 모형을 확률분포 모형 구축 모듈로 구축하는 단계는, 상기 확률분포 모형 구축 모듈은 일정 년도 동안, 특정 월의 일 최고 72시간동안 누적된 열 스트레스 량을, 3-파라미터 와이불(3-parameter Weibull) 누적확률분포 함수를 이용하여 열 스트레스 누적량의 확률분포 모형을 구축하는 단계;를 포함한다. 상기 3-파라미터 와이불(3-parameter Weibull) 확률분포 함수의 누적확률 값(
Figure pat00047
)은,
Figure pat00048
이며, 상기
Figure pat00049
는 3-파라미터 와이불(3-parameter Weibull) 누적확률분포 함수를 지점별
Figure pat00050
의 확률분포에 맞게 변형시켜주는 규모 계수로서,
Figure pat00051
이고, 상기
Figure pat00052
는 3-파라미터 와이불(3-parameter Weibull) 누적확률분포 함수를 지점별
Figure pat00053
의 확률분포에 맞게 변형시켜주는 형상 계수로서,
Figure pat00054
이며, 상기
Figure pat00055
는 3-파라미터 와이불(3-parameter Weibull) 누적확률분포 함수를 지점별
Figure pat00056
의 확률분포에 맞게 변형시켜주는 위치 계수로서,
Figure pat00057
이고, 상기
Figure pat00058
은 열 스트레스량 자료의 총 개수, 상기
Figure pat00059
는 열 스트레스 량의 평균 값, 상기
Figure pat00060
는 감마함수이다. 상기 열 스트레스 누적 량을 열 스트레스 누적량 표준화 모듈에 의해 등가확률 변환(equiprobability transformation) 방법으로 표준화하는 단계는, 상기 3-파라미터 와이불(3-parameter Weibull) 확률분포 함수의 누적확률 값(
Figure pat00061
)을 역 표준정규분포(inverse standard normal distribution) 함수에 대입하여 표준화된 열 스트레스 누적량을 구하는 단계;를 포함한다. 상기 표준화된 열 스트레스 누적량(
Figure pat00062
)은,
Figure pat00063
이며, 상기
Figure pat00064
이다. 상기 열 스트레스 누적량 표준화 모듈에 의해 표준화된 열 스트레스 누적량의 공간분포 및 시계열을 그래픽 출력 모듈을 통해 그래픽으로 표출하는 단계;에서 표출된 그래픽을 웹 페이지 표출 모듈로 웹 페이지를 통해 제공하는 단계를 더 포함할 수 있다.
본 발명은 시간가중함수를 이용하여 열 스트레스를 누적하고 표준화함으로써, 폭염 지속 일에 따른 위험성 증가를 정량적으로 산출할 수 있고, 기존 지수들 보다 객관적이고 정밀하게 폭염을 진단할 수 있다. 따라서 이 시스템을 기상청에서 이용하여 폭염특보를 발표하면 폭염으로부터 국민 건강을 더 많이 더 효과적으로 보호하게 된다. 군 작전, 공동 작업장, 단체 운동, 집단행사 등이 진행 될 때, 본 발명을 이용하면 소속원들의 건강을 더욱 신속 정확하게 지킬 수 있게 된다.
그리고 기존에 개발된 폭염지수들은 절대적인 위험기준을 사용하여 해당지역의 기후에 따라 위험기준이 달리 적용되었는데 (예를 들면 한국은 섭씨 35도를 넘어야 위험 단계로 보지만, 열대 사막지방에서는 섭씨 40도를 넘어야 위험 수준이 된다.), AHI는 표준화 과정을 거쳐 상대적인 값이 산출되기 때문에 한국의 섭씨 35도와 열대 사막의 섭씨 40도가 같이 위험정도 1.5로 표시해 줄 수도 있다. 따라서 전 지구상에서 고온의 분포가 아닌, 열파 위험성의 분포를 한꺼번에 파악할 수 있게 된다. 이는 폭염 대비에서 뿐 아니라 기후변화를 탐지하는데 유리하다.
또한, 웹페이지를 통해 폭염의 장기간 시공간적 분포를 제공함으로써, 과거에 폭염이 언제 어디서 발생하였으며, 현재 폭염 상황이 한반도 내에서 어떻게 확대되어 가는지를 누구나 쉽게 탐지할 수 있다. 이는 폭염 연구자가 과거의 폭염사례를 파악하기 용의하게 하며, 보건복지 관계자들과 무더위 쉼터 등을 운영하는 행정관계자들이 조기에 폭염 발생을 확인하여 신속한 대책을 마련할 수 있도록 하며, 이를 통해 폭염 피해 경감 효과도 기대할 수 있다.
그 밖에도 본 발명은 폭염지수들의 장기간 시계열을 제공함으로써 연구자들이 지수를 계산하고 가시화하는 단계를 생략할 수 있게 하여, 여기에 소비되는 시간과 수고를 절약하게 한다.
도 1은 본 발명에 따른 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템의 개념도.
도 2는 본 발명에 따른 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템을 이용한 AHI의 공간 분포 표출 예시도.
도 3은 본 발명에 따른 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템을 이용한 AHI의 시계열 표출 예시도.
도 4는 본 발명에 따른 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 방법의 순서도.
이하, 도면을 참조하여 본 발명의 실시예를 상세히 설명하기로 한다.
그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면상의 동일 부호는 동일한 요소를 지칭한다.
도 1은 본 발명에 따른 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템의 개념도이다.
본 발명에 따른 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템은 도 1에 도시된 바와 같이, 데이터 수집 모듈(100)과, 열 스트레스 연산 모듈(200), 열 스트레스 누적 모듈(300), 확률분포 모형 구축 모듈(400), 열 스트레스 누적량 표준화 모듈(500), 그래픽 출력 모듈(600), 및 웹 페이지 표출 모듈(700)을 포함한다.
데이터 수집 모듈(100)은 관측소의 매시간 기온과 상대습도 데이터를 수집한다. 이는 대한민국의 경우 71개 관측소에서 수집할 수 있다. 국내에서는 1979년부터 1982년까지 6시간 간격, 1998년까지는 3시간 간격, 1999년 이후부터 1시간 간격으로 관측이 이루어졌으며, 이에 따라 본 발명은 매시 관측자료가 존재하는 1999년부터 국내 71개 지점의 기온과 상대습도를 수집하였다.
열 스트레스 연산 모듈(200)은 데이터 수집 모듈(100)에서 수집된 기온과 상대습도 데이터를 이용하여 매시간 새롭게 발생하는 열 스트레스 량을 계산한다. 현재, 폭염강도를 정량화한 지수에는 Humidex, Heat Index, WBGT 등이 있지만, 본 시스템에서는 열 스트레스를 정량화하는 지수로 Humidex를 사용한다. Humidex는 아래의 수학식1과 같이 기온과 수증기압으로 계산된다.
Figure pat00065
수학식1에서,
Figure pat00066
는 단위 ℃인 기온이다.
여기서, 수증기압 데이터는 기상청에서 제공하지 않으므로, 이슬점온도를 이용한 수증기압 변환식인 수학식2와 상대습도를 이용한 이슬점온도 변환식인 수학식3을 함께 이용하여 지수를 산출한다.
Figure pat00067
수학식2에서,
Figure pat00068
는 단위 mb인 수증기압이다.
Figure pat00069
수학식3에서,
Figure pat00070
는 단위 K인 이슬점온도이고,
Figure pat00071
는 단위 %인 상대습도이다.
열 스트레스 누적 모듈(300)은 시간 가중함수를 이용하여 열 스트레스 량을 누적한다. 열 스트레스 누적량 AH는 과거 72시간동안 계산된 Humidex 값에 시간경과에 따른 가중치가 로그적으로 감소하도록 아래의 수학식4와 같이 누적하여 연산한다. 여기서, 72시간은 단기 열 순응에 의해 발한기능이 향상되어 열 스트레스가 완화되는데 걸리는 시간이다.
Figure pat00072
수학식4에서,
Figure pat00073
는 지난 72시간동안 누적된 열 스트레스 양이고,
Figure pat00074
Figure pat00075
시간 전에 발생한 열 스트레스 값이다.
확률분포 모형 구축 모듈(400)은 지점 별 열 스트레스 누적량의 이론적 확률분포 모형을 구축한다. 이산적으로 관측되는 값으로 계산되는 열 스트레스 누적량의 확률분포를 연속적인 자연현상에 가깝게 모의하기 위해, 각 지점의 일정 년도 동안의 특정 월, 예를 들어, 최근 10년간 6~9월의 일 최고 AH값을 모아 지역별 AH의 이론적 확률분포 모형을 구축한다. 본 발명에서는 이론적 확률분포들 중 아래의 수학식5와 같이 3-파라미터 와이불(3-parameter Weibull) 누적확률분포를 이용한다.
Figure pat00076
Figure pat00077
Figure pat00078
Figure pat00079
수학식5에서
Figure pat00080
는 3-파라미터 와이불(3-parameter Weibull) 누적확률분포 함수의 확률 값이고,
Figure pat00081
,
Figure pat00082
,
Figure pat00083
는 각각이 3-파라미터 와이불(3-parameter Weibull) 누적확률분포 함수를 지점별 AH의 확률분포에 맞게 변형시켜주는 규모, 형상, 위치 계수이다. 또한,
Figure pat00084
은 열 스트레스량 자료의 총 개수,
Figure pat00085
는 열 스트레스량의 평균 값,
Figure pat00086
는 감마함수를 의미한다.
열 스트레스 누적량 표준화 모듈(500)은 각 지점별 기후순응도를 반영하기 위해 등가확률 변환(equiprobability transformation) 방법을 이용하여 AH를 표준화한다. 등가확률 변환은 관측 값(AH)을 이론적 확률분포 함수에 대입하여 확률 값을 구한 뒤, 구해진 값을 역 표준정규분포(inverse standard normal distribution) 함수에 대입하여 표준화된 값을 구하는 방법이다. 즉, AH를 대입한
Figure pat00087
값은 아래의 수학식6의 역 표준정규누적확률분포 함수에 대입하여, 표준화된 AH 값인 AHI를 구할 수 있다. 여기서 아래의 수학식6은 전산 프로그래밍을 위해 사용된 Abramowitz and Stegun(1964)의 근사식이다.
Figure pat00088
Figure pat00089
수학식6에서,
Figure pat00090
는 열 스트레스량을 3-파라미터 와이불(3-parameter Weibull) 확률분포 함수에 대입하여 구한 누적확률 값이다.
그래픽 출력 모듈(600)은 AHI의 공간분포 및 시계열을 그래픽으로 표출한다. 공간분포 분석을 위한 툴에는 GrADS(Grid Analysis and Display System)를 사용한다. 이때, 사용되는 함수는 oacres로서, 지점 자료를 격자화 하는데 유용한 방법이다. 또한, 이때 사용되는 보간법(interpolation)은 크레스만 스킴(Cressman scheme)으로서, 각 격자 값은 격자와 관측 지점이 떨어진 거리에 따라 관측 지점 값에 가중치를 준 뒤 이를 평균한 값이다.
이상의 방법을 통해 한반도 내에서 고르지 않게 분포된 지점들로부터 격자화된 공간 분포를 얻고, 이를 그래픽으로 표출한다. 또한, GrADS를 이용하여 각 지점의 시계열도 그래픽으로 표출한다.
도 2는 본 발명에 따른 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템을 이용한 AHI의 공간 분포 표출 예시도로서, 2005년 7월 22일의 한반도 폭염상황 공간분포도이다. 이 날 서울특별시, 경기도 의정부시, 전남 영암군, 경북 경산시, 경북 의성군에서 폭염으로 인한 열사병 사망자가 발생하였고, AHI는 이 지역들을 포함한 대부분의 지역에서 폭염이 발생한 것을 감지하였다.
도 3은 본 발명에 따른 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템을 이용한 AHI의 시계열 표출 예시도로서, 매시 관측 자료가 존재하는 1999년부터 2008년까지 서울의 폭염지수 시계열이다. 이를 통해 어느 해에 폭염이 가장 심했고 약했는지 한눈에 확인할 수 있다.
웹 페이지 표출 모듈(700)은 그래픽 출력 모듈(600)에서 표출된 그래픽을 웹 페이지를 통해 제공한다. 웹 페이지 구축에는 HTML, PHP, Java Script등의 웹 프로그래밍 언어를 이용한다. 공간분포는 원하는 날짜를 선택하면 즉시 확인 할 수 있다. 시계열의 경우, 원하는 지점을 선택한 뒤 표출하고자하는 기간을 선택하면, 최고 1999년부터 AHI의 시계열을 표출한다. 각 지점의 지수 값은 기온, 상대습도 데이터와 함께 텍스트 파일로도 제공하여 이용자들이 다양한 방법으로 연구할 수 있도록 편의를 제공한다.
다음은 본 발명에 따른 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 방법에 대해 도면을 참조하여 설명하고자 한다. 후술할 내용 중 전술된 본 발명에 따른 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템의 설명과 중복되는 내용은 생략하거나 간략히 설명하기로 한다.
도 4는 본 발명에 따른 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 방법의 순서도이다.
본 발명에 따른 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 방법은 도 4에 도시된 바와 같이, 데이터를 수집하는 단계(S1)와, 열 스트레스를 연산하는 단계(S2)와, 열 스트레스를 누적하는 단계(S3)와, 확률분포 모형을 구축하는 단계(S4)와, 열 스트레스 누적량을 표준화하는 단계(S5)와, 그래픽으로 출력하는 단계(S6), 및 웹 페이지로 표출하는 단계(S7)를 포함한다.
데이터를 수집하는 단계(S1)는 데이터 수집 모듈을 이용하여 관측소의 매시간 기온과 상대습도 데이터를 수집한다. 이는 전술된 바와 같이, 대한민국의 경우 매시 관측자료가 존재하는 1999년부터 국내 71개 지점의 기온과 상대습도를 수집할 수 있다.
열 스트레스를 연산하는 단계(S2)는 데이터를 수집하는 단계(S1)에서 수집된 기온과 상대습도 데이터를 기반으로 열 스트레스 연산 모듈을 이용하여 매시간 새롭게 발생하는 열 스트레스 량을 계산한다. 이때, 본 실시에서 열 스트레스 량의 계산은 Humidex를 사용하며, Humidex는 전술된 수학식1과 같다.
열 스트레스를 누적하는 단계(S3)는 시간 가중함수를 이용하는 열 스트레스 누적 모듈로 열 스트레스 량을 누적한다. 열 스트레스 누적량 AH는 과거 72시간동안 계산된 Humidex 값에 시간경과에 따른 가중치가 로그적으로 감소하도록 전술된 수학식4와 같이 누적하여 연산한다.
확률분포 모형을 구축하는 단계(S4)는 확률분포 모형 구축 모듈을 이용하여 지점 별 열 스트레스 누적량의 이론적 확률분포 모형을 구축한다. 이때, 열 스트레스 누적량의 확률분포를 연속적인 자연현상에 가깝게 모의하기 위해 각 지점의 일정 년도 동안의 특정 월에 대한 일 최고 AH값을 모아서 지역별 AH의 이론적 확률분포 모형을 구축할 수 있다. 또한, 본 실시예에서는 전술된 수학식5와 같이 3-파라미터 와이불(3-parameter Weibull) 누적확률분포를 이용할 수 있다.
열 스트레스 누적량을 표준화하는 단계(S5)는 각 지점별 기후순응도를 반영하기 위해 열 스트레스 누적량 표준화 모듈로 등가확률 변환(equiprobability transformation) 방법을 이용하여 AH를 표준화한다. 이는 전술된 수학식6과 같이, AH를 대입한
Figure pat00091
값을 역 표준정규누적확률분포 함수에 대입하여, 표준화된 AH 값인 AHI를 구할 수 있다.
그래픽으로 출력하는 단계(S6)는 그래픽 출력 모듈로 AHI의 공간분포 및 시계열을 그래픽으로 표출한다. 공간분포 분석을 위해서 GrADS(Grid Analysis and Display System)를 사용하며, 이때 사용되는 함수는 oacres, 보간법(interpolation)은 크레스만 스킴(Cressman scheme)이다.
웹 페이지로 표출하는 단계(S7)는 웹 페이지 표출 모듈로 그래픽으로 출력하는 단계(S6)에서 출력된 그래픽을 웹 페이지를 통해 제공한다. 이때, 웹 페이지 구축은 웹 프로그래밍 언어를 사용할 수 있으며, 원하는 날짜의 선택에 의해 공간분포를 확인할 수 있다. 또한, 원하는 지점과 표출하고자 하는 기간을 선택하여 AHI의 시계열을 표출할 수 있으며, 텍스트 파일로도 제공될 수 있다.
이상에서는 도면 및 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허청구범위에 기재된 본 발명의 기술적 사상으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
100: 데이터 수집 모듈 200: 열 스트레스 연산 모듈
300: 열 스트레스 누적 모듈 400: 확률분포 모형 구축 모듈
500: 열 스트레스 누적량 표준화 모듈
600: 그래픽 출력 모듈 700: 웹 페이지 표출 모듈

Claims (16)

  1. 매시간 기온과 상대습도 데이터를 수집하는 데이터 수집 모듈과,
    상기 매시간 기온과 상대습도 데이터로 매시간 발생하는 열 스트레스 량을 계산하는 열 스트레스 연산 모듈과,
    상기 열 스트레스 량의 시간경과에 따른 가중치가 로그적으로 감소하도록 시간 가중함수로 열 스트레스 량을 누적하는 열 스트레스 누적 모듈과,
    상기 열 스트레스 누적 량의 확률분포 모형을 구축하는 확률분포 모형 구축 모듈과,
    상기 열 스트레스 누적 량을 등가확률 변환(equiprobability transformation) 방법으로 표준화하는 열 스트레스 누적량 표준화 모듈, 및
    상기 열 스트레스 누적량 표준화 모듈에 의해 표준화된 열 스트레스 누적량의 공간분포 및 시계열을 그래픽으로 표출하는 그래픽 출력 모듈을 포함하는 것을 특징으로 하는 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템.
  2. 청구항 1에 있어서,
    상기 열 스트레스 연산 모듈은
    Figure pat00092
    로 열 스트레스(
    Figure pat00093
    )를 연산하며,
    상기
    Figure pat00094
    는 단위 mb인 수증기압으로서,
    Figure pat00095
    이고,
    상기
    Figure pat00096
    는 단위 K인 이슬점온도로서,
    Figure pat00097
    이며,
    상기
    Figure pat00098
    는 단위 ℃인 매시간 기온이고,
    상기
    Figure pat00099
    Figure pat00100
    이며,
    상기
    Figure pat00101
    는 단위 %인 상대습도인 것을 특징으로 하는 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템.
  3. 청구항 2에 있어서,
    상기 열 스트레스 누적 모듈은 72시간동안 누적된 열 스트레스 량을 연산하며,
    상기 열 스트레스 누적 모듈에서 72시간동안 누적된 열 스트레스 량(
    Figure pat00102
    )은,
    Figure pat00103
    이며,
    상기
    Figure pat00104
    Figure pat00105
    시간 전에 발생한 열 스트레스 값인 것을 특징으로 하는 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템.
  4. 청구항 3에 있어서,
    상기 확률분포 모형 구축 모듈은 일정 년도 동안, 특정 월의 일 최고 72시간동안 누적된 열 스트레스 량을, 3-파라미터 와이불(3-parameter Weibull) 누적확률분포 함수를 이용하여 열 스트레스 누적량의 확률분포 모형을 구축하는 것을 특징으로 하는 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템.
  5. 청구항 4에 있어서,
    상기 3-파라미터 와이불(3-parameter Weibull) 누적확률분포 함수의 확률 값(
    Figure pat00106
    )은,
    Figure pat00107
    이며,
    상기
    Figure pat00108
    는 3-파라미터 와이불(3-parameter Weibull) 누적확률분포 함수를 지점별
    Figure pat00109
    의 확률분포에 맞게 변형시켜주는 규모 계수로서,
    Figure pat00110
    이고,
    상기
    Figure pat00111
    는 3-파라미터 와이불(3-parameter Weibull) 누적확률분포 함수를 지점별
    Figure pat00112
    의 확률분포에 맞게 변형시켜주는 형상 계수로서,
    Figure pat00113
    이며,
    상기
    Figure pat00114
    는 3-파라미터 와이불(3-parameter Weibull) 누적확률분포 함수를 지점별
    Figure pat00115
    의 확률분포에 맞게 변형시켜주는 위치 계수로서,
    Figure pat00116
    이고,
    상기
    Figure pat00117
    은 AH의 총 개수,
    상기
    Figure pat00118
    는 AH의 평균 값,
    상기
    Figure pat00119
    는 감마함수인 것을 특징으로 하는 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템.
  6. 청구항 5에 있어서,
    상기 열 스트레스 누적량 표준화 모듈은 3-파라미터 와이불(3-parameter Weibull) 확률분포 함수의 누적확률 값(
    Figure pat00120
    )을 역 표준정규분포(inverse standard normal distribution) 함수에 대입하여 표준화된 열 스트레스 누적량을 구하는 것을 특징으로 하는 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템.
  7. 청구항 6에 있어서,
    상기 표준화된 열 스트레스 누적량(
    Figure pat00121
    )은,
    Figure pat00122

    Figure pat00123
    이며,
    상기
    Figure pat00124
    는 3-파라미터 와이불(3-parameter Weibull) 확률분포 함수의 누적확률 값인 것을 특징으로 하는 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템.
  8. 청구항 7에 있어서,
    상기 그래픽 출력 모듈에서 표출된 그래픽을 웹 페이지를 통해 제공하는 웹 페이지 표출 모듈을 더 포함하는 것을 특징으로 하는 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템.
  9. 데이터 수집 모듈로 매시간 기온과 상대습도 데이터를 수집하는 단계와,
    상기 매시간 기온과 상대습도 데이터로 매시간 발생하는 열 스트레스 량을 열 스트레스 연산 모듈로 계산하는 단계와,
    상기 열 스트레스 량의 시간경과에 따른 가중치가 로그적으로 감소하도록 시간 가중함수로 열 스트레스 량을 열 스트레스 누적 모듈로 누적하는 단계와,
    상기 열 스트레스 누적 량의 확률분포 모형을 확률분포 모형 구축 모듈로 구축하는 단계와,
    상기 열 스트레스 누적 량을 열 스트레스 누적량 표준화 모듈에 의해 등가확률 변환(equiprobability transformation) 방법으로 표준화하는 단계, 및
    상기 열 스트레스 누적량 표준화 모듈에 의해 표준화된 열 스트레스 누적량의 공간분포 및 시계열을 그래픽 출력 모듈을 통해 그래픽으로 표출하는 단계;를 포함하는 것을 특징으로 하는 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 방법.
  10. 청구항 9에 있어서,
    상기 매시간 기온과 상대습도 데이터로 매시간 발생하는 열 스트레스 량을 열 스트레스 연산 모듈로 계산하는 단계에서,
    상기 열 스트레스(
    Figure pat00125
    )는
    Figure pat00126
    이며,
    상기
    Figure pat00127
    는 단위 mb인 수증기압으로서,
    Figure pat00128
    이고,
    상기
    Figure pat00129
    는 단위 K인 이슬점온도로서,
    Figure pat00130
    이며,
    상기
    Figure pat00131
    는 단위 ℃인 매시간 기온이고,
    상기
    Figure pat00132
    Figure pat00133
    이며,
    상기
    Figure pat00134
    는 단위 %인 상대습도인 것을 특징으로 하는 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 방법.
  11. 청구항 10에 있어서,
    상기 열 스트레스 량의 시간경과에 따른 가중치가 로그적으로 감소하도록 시간 가중함수로 열 스트레스 량을 열 스트레스 누적 모듈로 누적하는 단계는, 72시간동안 누적된 열 스트레스 량을 연산하며,
    상기 72시간동안 누적된 열 스트레스 량(
    Figure pat00135
    )은,
    Figure pat00136
    이며,
    상기
    Figure pat00137
    Figure pat00138
    시간 전에 발생한 열 스트레스 값인 것을 특징으로 하는 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 방법.
  12. 청구항 11에 있어서,
    상기 열 스트레스 누적 량의 확률분포 모형을 확률분포 모형 구축 모듈로 구축하는 단계는,
    상기 확률분포 모형 구축 모듈은 일정 년도 동안, 특정 월의 일 최고 72시간동안 누적된 열 스트레스 량을, 3-파라미터 와이불(3-parameter Weibull) 누적확률분포 함수를 이용하여 열 스트레스 누적량의 확률분포 모형을 구축하는 단계;를 포함하는 것을 특징으로 하는 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 방법.
  13. 청구항 12에 있어서,
    상기 3-파라미터 와이불(3-parameter Weibull) 확률분포 함수의 누적확률 값(
    Figure pat00139
    )은,
    Figure pat00140
    이며,
    상기
    Figure pat00141
    는 3-파라미터 와이불(3-parameter Weibull) 누적확률분포 함수를 지점별
    Figure pat00142
    의 확률분포에 맞게 변형시켜주는 규모 계수로서,
    Figure pat00143
    이고,
    상기
    Figure pat00144
    는 3-파라미터 와이불(3-parameter Weibull) 누적확률분포 함수를 지점별
    Figure pat00145
    의 확률분포에 맞게 변형시켜주는 형상 계수로서,
    Figure pat00146
    이며,
    상기
    Figure pat00147
    는 3-파라미터 와이불(3-parameter Weibull) 누적확률분포 함수를 지점별
    Figure pat00148
    의 확률분포에 맞게 변형시켜주는 위치 계수로서,
    Figure pat00149
    이고,
    상기
    Figure pat00150
    은 AH의 총 개수,
    상기
    Figure pat00151
    는 AH의 평균 값,
    상기
    Figure pat00152
    는 감마함수인 것을 특징으로 하는 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 방법.
  14. 청구항 13에 있어서,
    상기 열 스트레스 누적 량을 열 스트레스 누적량 표준화 모듈에 의해 등가확률 변환(equiprobability transformation) 방법으로 표준화하는 단계는,
    상기 3-파라미터 와이불(3-parameter Weibull) 확률분포 함수의 누적확률 값(
    Figure pat00153
    )을 역 표준정규분포(inverse standard normal distribution) 함수에 대입하여 표준화된 열 스트레스 누적량을 구하는 단계;를 포함하는 것을 특징으로 하는 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 방법.
  15. 청구항 14에 있어서,
    상기 표준화된 열 스트레스 누적량(
    Figure pat00154
    )은,
    Figure pat00155

    Figure pat00156
    이며,
    상기
    Figure pat00157
    는 3-파라미터 와이불(3-parameter Weibull) 확률분포 함수의 누적확률 값인 것을 특징으로 하는 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 방법.
  16. 청구항 15에 있어서,
    상기 열 스트레스 누적량 표준화 모듈에 의해 표준화된 열 스트레스 누적량의 공간분포 및 시계열을 그래픽 출력 모듈을 통해 그래픽으로 표출하는 단계;에서 표출된 그래픽을 웹 페이지 표출 모듈로 웹 페이지를 통해 제공하는 단계를 더 포함하는 것을 특징으로 하는 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 방법.
KR1020110065457A 2011-07-01 2011-07-01 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템 및 그 방법 KR101288386B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110065457A KR101288386B1 (ko) 2011-07-01 2011-07-01 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템 및 그 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110065457A KR101288386B1 (ko) 2011-07-01 2011-07-01 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템 및 그 방법

Publications (2)

Publication Number Publication Date
KR20130003848A true KR20130003848A (ko) 2013-01-09
KR101288386B1 KR101288386B1 (ko) 2013-07-22

Family

ID=47835929

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110065457A KR101288386B1 (ko) 2011-07-01 2011-07-01 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템 및 그 방법

Country Status (1)

Country Link
KR (1) KR101288386B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021026810A1 (zh) * 2019-08-13 2021-02-18 南京工业大学 一种评估化工工艺过程热失控危险度的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384210B1 (ko) 2012-07-06 2014-04-10 주식회사 이쓰리 폭염예측 프로그램이 기록된 기록매체 및 이를 이용한 폭염적응 키트
KR101841217B1 (ko) 2017-10-31 2018-05-04 주식회사 주빅스 복사대류온도 및 상대습도 가중치를 적용한 도시 미소공간 폭염지수산출 시스템
KR102297183B1 (ko) 2020-12-28 2021-09-02 주식회사 주빅스 토지 피복별 군집분석에 따른 학습을 이용한 폭염 예측 시스템
KR102476332B1 (ko) 2021-07-20 2022-12-09 전북대학교산학협력단 폭염 발생 진단 방법 및 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021026810A1 (zh) * 2019-08-13 2021-02-18 南京工业大学 一种评估化工工艺过程热失控危险度的方法

Also Published As

Publication number Publication date
KR101288386B1 (ko) 2013-07-22

Similar Documents

Publication Publication Date Title
Buzan et al. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5
Kjellstrom et al. Mapping occupational heat exposure and effects in South-East Asia: ongoing time trends 1980–2011 and future estimates to 2050
Tippett et al. Climate and hazardous convective weather
Seeley et al. The effect of global warming on severe thunderstorms in the United States
Hyatt et al. Regional maps of occupational heat exposure: past, present, and potential future
KR101288386B1 (ko) 열 스트레스를 시간가중함수로 누적한 폭염 모니터링 시스템 및 그 방법
White-Newsome et al. Validating satellite-derived land surface temperature with in situ measurements: a public health perspective
Nandintsetseg et al. Assessment of drought frequency, duration, and severity and its impact on pasture production in Mongolia
Wu et al. Drought monitoring and analysis in China based on the Integrated Surface Drought Index (ISDI)
Daut et al. Combination of Hargreaves method and linear regression as a new method to estimate solar radiation in Perlis, Northern Malaysia
KR101954796B1 (ko) 국지예보모델기반 일반유형과 활동등급에 따른 인지온도 산출 방법 및 시스템
Yadav et al. Systematic exploration of heat wave impact on mortality and urban heat island: A review from 2000 to 2022
Dimiceli et al. Estimation of black globe temperature for calculation of the wet bulb globe temperature index
Li et al. A comparison of forest fire indices for predicting fire risk in contrasting climates in China
Van Der Walt et al. Extreme temperature events (ETEs) in South Africa: a review
Villafuerte II et al. ClimDatPh: An Online Platform for Philippine Climate Data Acquisition.
Santos et al. Analysis of long-range correlations of wind speed in different regions of Bahia and the Abrolhos Archipelago, Brazil
Rennie et al. Developing and validating heat exposure products using the US climate reference network
Mupepi et al. A combination of vegetation condition index, standardized precipitation index and human observation in monitoring spatio-temporal dynamics of drought. A case of Zvishavane District in Zimbabwe
Mendicino et al. Integrated drought watch system: a case study in Southern Italy
KR101170526B1 (ko) 동아시아 가뭄 모니터링 시스템 및 그 방법
Wu et al. Assessing the soil moisture drought index for agricultural drought monitoring based on green vegetation fraction retrieval methods
Kabala et al. A customizable and use friendly R package to process big data from the Tree Talker system
Oyler et al. Surface temperature interrelationships
Fastring et al. Malaria incidence in Nairobi, Kenya and dekadal trends in NDVI and climatic variables

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160701

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180702

Year of fee payment: 6