KR20130003685A - Weld metal joint having excellent low temperature toughness - Google Patents

Weld metal joint having excellent low temperature toughness Download PDF

Info

Publication number
KR20130003685A
KR20130003685A KR1020110065167A KR20110065167A KR20130003685A KR 20130003685 A KR20130003685 A KR 20130003685A KR 1020110065167 A KR1020110065167 A KR 1020110065167A KR 20110065167 A KR20110065167 A KR 20110065167A KR 20130003685 A KR20130003685 A KR 20130003685A
Authority
KR
South Korea
Prior art keywords
less
weight
welded joint
cryogenic
toughness
Prior art date
Application number
KR1020110065167A
Other languages
Korean (ko)
Other versions
KR101304657B1 (en
Inventor
이봉근
한일욱
김정길
이홍길
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020110065167A priority Critical patent/KR101304657B1/en
Publication of KR20130003685A publication Critical patent/KR20130003685A/en
Application granted granted Critical
Publication of KR101304657B1 publication Critical patent/KR101304657B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE: A welded joint having excellent cryogenic toughness is provided to maintain an austenitic phase which has excellent cryogenic toughness at a cryogenic temperature and to control an alloying constituent to prevent hot cracking during welding, thereby obtaining excellent impact cryogenic toughness. CONSTITUTION: A welded joint having excellent cryogenic toughness includes 0.02 to 0.75 wt% of C, 0.3 to 0.7 wt% of Si, 10 to 35 wt% of Mn, less than 15 wt% of Cr, less than 25 wt% of Ni, less than 1.45 wt% of Mo, 0.009 to 2.5 wt% of Al, less than 0.02 wt% of S, less than 0.02 wt% of P, remnant Fe, and other inevitable impurities. The welded joint further includes 0.30 to 0.75 wt% of N. The sum of C and N contents is 0.30 to 0.75 wt% in the welded joint. The welded joint satisfies following: Nieq(nickel equivalent)+0.34*Creq(chrome equivalent)≥28.37. [Reference numerals] (AA) Ni equivalent(30C+30N+Ni+0.5Mn); (BB) Cr equivalent(Cr+Mo+1.5Si);

Description

극저온 인성이 우수한 용접이음부{WELD METAL JOINT HAVING EXCELLENT LOW TEMPERATURE TOUGHNESS}Welding joint with excellent cryogenic toughness {WELD METAL JOINT HAVING EXCELLENT LOW TEMPERATURE TOUGHNESS}

본 발명은 해양구조물, 에너지, 조선, 건축, 교량 및 압력용기 등에 사용되는 극저온용 고망간강을 서브머지드 아크 용접(SUBMERGED ARC WELDING, SAW) 또는 플럭스 코어드 아크 용접(FLUX CORED ARC WELDING, FCAW)하여 생성되는 극저온 인성이 우수한 용접이음부에 관한 것이다.The present invention is a submerged arc welding (SUBMERGED ARC WELDING, SAW) or flux cored arc welding (FCAW) for cryogenic high manganese steel used in offshore structures, energy, shipbuilding, construction, bridges and pressure vessels The present invention relates to a welded joint having excellent cryogenic toughness.

최근들어 LNG 수요가 폭발적으로 증가하여, 극저온의 LNG 수송과 보관용 수송설비 및 저장 탱크의 수요가 크게 증가하고 있다. 또한, 이러한 수송설비와 저장탱크를 하나로 만든 설비인 FPSO(Floating production storage and offloading) 시장이 급속도로 증가되고 있는 추세에 있다.
In recent years, the demand for LNG has exploded, and the demand for cryogenic LNG transportation and storage facilities and storage tanks has greatly increased. In addition, the FPSO (Floating Production Storage and Offloading) market, a facility that combines such transportation equipment and storage tanks, is rapidly increasing.

더불어, LNG 수송선의 경우 이산화탄소의 배출이 낮은 LNG를 연료로 사용하는 선박이 증가하고 있는 추세에 있다. 액화천연 가스의 이러한 설비의 대형화 등으로 인해 극저온용 소재의 사용량이 증가되고 있는 실정이다. LNG를 수송하거나 저장하는 탱크는 필연적으로 LNG 온도인 -162℃ 이하의 온도에서도 충격에 충분히 견딜 수 있는 구조로 이루어져야 한다. 극저온 온도에서의 충격인성이 높은 소재가 사용되고 있으며, 대표적으로 사용되는 소재로는 9%Ni강, 스테인리스스틸(이하 STS), 알루미늄 등이 있다.
In addition, in the case of LNG carriers, the number of vessels using LNG as a fuel with low carbon dioxide emission is increasing. The use of cryogenic materials is increasing due to the enlargement of such facilities of liquefied natural gas. Tanks that transport or store LNG must be constructed to withstand shock even at temperatures below -162 ° C, which is essentially LNG. Materials with high impact toughness at cryogenic temperatures are used. Typical materials used are 9% Ni steel, stainless steel (hereinafter referred to as STS), and aluminum.

그러나, 9%Ni강 및 STS304강은 고가의 니켈이 많이 포함되어 있기 때문에, 비용적인 문제가 크다. 또한, 알루미늄의 경우 낮은 인장강도로 인해 두꺼운 후판을 사용해야 하는 문제점이 있다
However, since 9% Ni steel and STS304 steel contain a lot of expensive nickel, the cost is large. In addition, aluminum has a problem that a thick plate should be used due to low tensile strength.

이러한 문제로 인해, 극저온용 강인 9%Ni강을 대체할 목적으로 새로운 강재 개발이 추진되고 있으며, 그 대안으로 고망간강이 부각되고 있다. 극저온용 고망간강은 LNG 저장 탱크용으로 사용되는 9%Ni강, STS 304강 등을 대체하기 위해 망간을 높은 함량으로 첨가시킨 강으로서 극저온에서도 안정한 오스테나이트 조직을 형성해 추가 열처리 등이 실시하지 않아도 용접시 용접열영향부(HAZ)에서 인성 열화가 없는 특성을 보유하고 있는 것으로 알려져 있다.
Due to these problems, new steel materials are being developed to replace 9% Ni steel, which is a cryogenic steel, and high manganese steel is emerging as an alternative. Cryogenic high manganese steel is a steel with high content of manganese to replace 9% Ni steel and STS 304 steel used for LNG storage tank, and it forms stable austenite structure even at cryogenic temperature without additional heat treatment. It is known to have the property of no deterioration of toughness in the welding heat affected zone (HAZ).

또한, 극저온용 LNG FPSO 및 LNG 연료수송용 소재로서 현재 9%Ni강, STS 및 알루미늄이 사용되고 있다. 그러나, 9%Ni강은 고가의 Ni기 용접재료(인코넬(Inconel) 625 소재: Ni 50중량%이상, Cr 20중량%이상 함유)를 사용하여야 하고, 용접부의 낮은 항복강도 문제가 문제이다. 또한, 알루미늄의 경우 용접성이 불량하며, STS의 경우 가격이 비싸고, 열변형율 및 극저온 보증 등의 문제가 있다. 따라서, 경제적이고 우수한 용접성을 확보할 수 있는 극저온용 고Mn계 용접재료의 개발이 요구되고 있다.
In addition, cryogenic LNG FPSO and LNG fuel transport material is currently used 9% Ni steel, STS and aluminum. However, 9% Ni steel must use an expensive Ni-based welding material (Inconel 625 material: 50 wt% or more of Ni, 20 wt% or more of Cr), and the problem of low yield strength of the welded part is a problem. In addition, in the case of aluminum is poor weldability, STS is expensive, there is a problem such as thermal strain and cryogenic guarantee. Therefore, there is a demand for the development of a cryogenic high Mn-based welding material capable of securing economical and excellent weldability.

상기한 바와 같이, 극저온 영역인 -162℃ 이하에서 용접구조물의 안정성을 확보하기 위해서는 27J 이상의 충격인성을 나타내는 용접이음부 확보가 필수적이다. 따라서, 이러한 용접이음부의 개발이 요구되고 있다.As described above, in order to secure the stability of the welded structure at -162 ° C or lower, which is a cryogenic region, it is essential to secure a welded joint that exhibits impact toughness of 27 J or more. Therefore, the development of such a welded joint is required.

본 발명은 극저온에서 인성이 우수한 오스케나이트상을 유지시키고, 용접시 고온균열을 방지하기 위한 합금성분을 제어함으로써, 극저온 충격인성이 우수한 서브머지드 및 플럭스코어드 아크 용접이음부를 제공하고자 하는 것이다.The present invention is to provide a submerged and fluxcored arc welded joint having excellent cryogenic impact toughness by maintaining an austenite phase having excellent toughness at cryogenic temperature and controlling an alloy component for preventing high temperature cracking during welding. .

본 발명의 일측면은 중량%로, 탄소(C): 0.02-0.75%, 실리콘(Si): 0.3-0.7%, 망간(Mn): 10-35%, 크롬(Cr): 15% 이하, 니켈(Ni): 25% 이하, 몰리브덴(Mo): 1.45% 이하, 알루미늄(Al): 0.009-2.5%, 황(S): 0.02% 이하, 인(P): 0.02% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 극저온 인성이 우수한 용접이음부를 제공할 수 있다.
One side of the present invention is a weight%, carbon (C): 0.02-0.75%, silicon (Si): 0.3-0.7%, manganese (Mn): 10-35%, chromium (Cr): 15% or less, nickel (Ni): 25% or less, molybdenum (Mo): 1.45% or less, aluminum (Al): 0.009-2.5%, sulfur (S): 0.02% or less, phosphorus (P): 0.02% or less, balance Fe and other unavoidable It is possible to provide a welded joint having excellent cryogenic toughness including impurities.

상기 용접이음부는 질소(N): 0.30-0.75중량%를 추가로 포함하는 것이 바람직하다.
Preferably, the weld joint further includes 0.30-0.75 wt% of nitrogen (N).

상기 용접이음부는 탄소(C) 및 질소(N)의 함량의 합이 0.30-0.75중량%인 것이 바람직하다.
The weld joint is preferably a sum of the content of carbon (C) and nitrogen (N) is 0.30-0.75% by weight.

상기 용접이음부는 니켈당량(Nieq)+0.34*크롬당량(Creq)≥28.37을 만족하는 것이 바람직하다.
The weld joint preferably satisfies nickel equivalent (Ni eq ) + 0.34 * chromium equivalent (Cr eq ) ≥ 28.37.

상기 용접이음부는 크롬당량(Creq)이 14중량% 이하인 것이 바람직하다.
Preferably, the welded joint has a chromium equivalent (Cr eq ) of 14 wt% or less.

상기 용접이음부는 크롬당량(Creq)이 1중량% 이하일 때, 니켈당량(Nieq)이 28중량% 이상인 것이 바람직하다.
When the weld joint portion has a chromium equivalent (Cr eq ) of 1 wt% or less, the nickel equivalent (Ni eq ) is preferably 28 wt% or more.

상기 용접이음부의 충격인성(-196℃)은 27J 이상인 것이 바람직하다.The impact toughness (−196 ° C.) of the weld joint is preferably 27 J or more.

본 발명의 일측면에 의하면, 극저온에서도 충격인성이 매우 우수한 서브머지드 및 플럭스코어드 아크 용접이음부를 제공할 수 있다.According to one aspect of the present invention, it is possible to provide a submerged and fluxcored arc welded joint having excellent impact toughness even at cryogenic temperatures.

도 1은 본 발명 일실시예의 용접이음부의 단면도이다.
도 2는 본 발명 일실시예의 용접이음부의 미세조직사진이다.
도 3은 본 발명 일실시예의 크롬당량과 니켈당량의 상관관계를 나타낸 그래프이다.
1 is a cross-sectional view of a welded joint of an embodiment of the present invention.
Figure 2 is a microstructure photograph of a welded joint of one embodiment of the present invention.
Figure 3 is a graph showing the correlation between the chromium equivalent and the nickel equivalent of one embodiment of the present invention.

이하, 본 발명에 대하여 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명자들은 연구와 실험을 통해, 서브머지드 아크 용접 또는 플럭스 코어드 아크 용접시 생성되는 용접이음부에 대하여, 극저온에서도 충격인성이 우수한 용접이음부의 합금원소의 범위를 설정할 수 있다는 점을 착안하여, 그 결과에 기초하여 본 발명을 완성하게 되었다.
The inventors have focused on the fact that, through research and experiment, the range of alloying elements of the welded joint having excellent impact toughness even at cryogenic temperatures can be set for the welded joint generated during the submerged arc welding or the flux cored arc welding. Thus, the present invention was completed based on the results.

본 발명에서는 용접 와이어의 합금성분을 최적으로 조합하여 오스테나이트 상을 유지시키고, 용접시 고온균열을 방지할 수 있는 서브머지드 또는 플럭스 코어드 아크 용접이음부를 제공할 수 있다.
In the present invention, it is possible to provide a submerged or flux cored arc welded joint that can maintain the austenite phase by optimally combining the alloying components of the welding wire and prevent hot cracking during welding.

본 발명의 용접이음부는 다음의 조성을 포함한다.
The welded joint of the present invention includes the following composition.

탄소(C): 0.02-0.75중량%Carbon (C): 0.02-0.75 wt%

탄소는 용접금속의 강도를 확보하고, 용접금속의 극저온 충격인성을 확보할 수 있는 오스테나이트 안정화 원소로서 현존하는 가장 강력한 원소이며, 본 발명에서는 필수적인 원소이다. 탄소의 함량이 0.02중량% 미만인 경우에는 오스테나이트 안정화 원소의 함량이 낮기 때문에, 극저온 충격인성이 저하될 수 있다. 그러나, 탄소의 함량이 0.75중량%를 초과하는 경우 용접시 이산화탄소 가스 등이 발생하여 용접이음부에 결함을 유발할 수 있으며, 망간, 크롬 등의 합금원소와 결합하여 MC, M23C6 등의 카바이드를 생성하여 저온에서 충격인성이 저하되는 문제점이 있다. 따라서, 탄소의 함량은 0.02-0.75중량%로 한정하는 것이 바람직하다.
Carbon is the most powerful element existing as an austenite stabilizing element capable of securing the strength of the weld metal and securing the cryogenic impact toughness of the weld metal, and is an essential element in the present invention. If the content of carbon is less than 0.02% by weight, since the content of the austenite stabilizing element is low, the cryogenic impact toughness may be lowered. However, if the carbon content exceeds 0.75% by weight, carbon dioxide gas may be generated during welding, which may cause defects in the weld joint, and carbides such as MC, M 23 C 6 , and the like may be combined with alloying elements such as manganese and chromium. There is a problem in that impact toughness is lowered at low temperatures. Therefore, the content of carbon is preferably limited to 0.02-0.75% by weight.

실리콘(Si): 0.3-0.7중량% Silicon (Si): 0.3-0.7 wt%

실리콘의 함량은 0.3중량% 미만인 경우에는 용접금속내의 탈산효과가 불충분하고 용접금속의 유동성을 저하시킬 수 있다. 반면에, 실리콘의 함량이 0.7중량%를 초과하는 경우에는 용접금속내의 편석 등을 유발하여 저온 충격인성을 저하시키고 용접균열감수성에 악영향을 미치는 문제점이 있다. 따라서, 실리콘의 함량은 0.3-0.7중량%로 한정하는 것이 바람직하다.
If the content of silicon is less than 0.3% by weight, the deoxidation effect in the weld metal is insufficient and the fluidity of the weld metal may be reduced. On the other hand, when the content of silicon exceeds 0.7% by weight, it causes segregation in the weld metal, thereby deteriorating low-temperature impact toughness and adversely affecting weld cracking sensitivity. Therefore, the content of silicon is preferably limited to 0.3-0.7% by weight.

망간(Mn): 10-35중량%Manganese (Mn): 10-35 wt%

망간은 저온 안정상인 오스테나이트를 생성시키는 주요 원소로 본 발명에서 필수적으로 첨가되어야 하는 원소이고 니켈에 비해 매우 저렴한 원소이다. 망간의 함량이 10중량% 미만인 경우에는 충분한 오스테나이트가 생성되지 않아 극저온에서 인성이 매우 낮게 된다. 반면에, 망간의 함량이 35중량%를 초과하는 경우에는 편석이 과다하게 발생하고 고온균열이 유발되며, 유해한 흄(Fume)이 발생될 수 있다. 따라서, 망간의 함량은 10-35중량%로 한정하는 것이 바람직하다.
Manganese is the main element for producing austenite, which is a low temperature stable phase, which is an element that must be added in the present invention and is a very inexpensive element compared with nickel. If the content of manganese is less than 10% by weight, sufficient austenite is not produced, resulting in very low toughness at cryogenic temperatures. On the other hand, when the content of manganese exceeds 35% by weight, segregation is excessively generated, high temperature cracks are caused, and harmful fumes may be generated. Therefore, the content of manganese is preferably limited to 10-35% by weight.

크롬(Cr): 15중량% 이하(0은 제외)Chromium (Cr): 15 wt% or less (excluding 0)

크롬은 페라이트 안정화 원소로서 일정함량의 크롬을 통해 오스테나이트 안정화 원소의 함량을 낮출 수 있는 장점이 있다. 그러나, 크롬의 함량이 15중량%를 초과하는 경우에는 크롬계 탄화물이 과도하게 생성되어 극저온 인성이 낮아지는 문제점이 있다. 따라서, 크롬의 함량은 15중량% 이하로 한정하는 것이 바람직하다.
Chromium has the advantage of lowering the content of austenite stabilizing elements through a constant amount of chromium as a ferrite stabilizing element. However, when the content of chromium is more than 15% by weight, chromium-based carbides are excessively generated, resulting in low cryogenic toughness. Therefore, the content of chromium is preferably limited to 15% by weight or less.

니켈(Ni): 25중량% 이하(0은 제외)Nickel (Ni): 25 wt% or less (excluding 0)

니켈은 오스테나인트 안정화 원소로 본 발명에서 필수적을 첨가되어야 하는 원소이다. 다만, 니켈의 가격이 높기 때문에, 제조단가를 고려하여 25중량% 이하로 포함되는 것이 바람직하다. 따라서, 니켈의 함량은 25중량% 이하로 한정하는 것이 바람직하다.
Nickel is an austenite stabilizing element which is an essential element to be added in the present invention. However, since the price of nickel is high, it is preferable to include 25% by weight or less in consideration of the manufacturing cost. Therefore, the content of nickel is preferably limited to 25% by weight or less.

몰리브덴(Mo): 1.45중량% 이하(0은 제외)Molybdenum (Mo): 1.45 wt% or less (excluding 0)

몰리브덴은 기지의 강도를 향상시킬 수 있는 원소이다. 다만, 몰리브덴의 함량이 1.45중량%를 초과하는 경우에는 몰리브텐 탄화물이 과도하게 생성되어 극저온 인성을 저하시키는 단점이 있다. 따라서, 몰리브덴의 함량은 1.45중량% 이하로 한정하는 것이 바람직하다.
Molybdenum is an element that can improve the strength of a matrix. However, when the content of molybdenum exceeds 1.45% by weight, the molybdenum carbide is excessively generated, which has the disadvantage of lowering the cryogenic toughness. Therefore, the content of molybdenum is preferably limited to 1.45% by weight or less.

알루미늄(Al): 0.009-2.5중량% Aluminum (Al): 0.009-2.5 wt%

알루미늄은 강도를 감소시키나, 아울러, SFE(Stacking Fault Energy)를 증가시켜 저온에서의 인성을 확보할 수 있도록 하며, 본 발명에서 이러한 효과를 나타내기 위하여는 0.009중량% 이상 포함되는 것이 바람직하다. 그러나, 알루미늄의 함량이 2.5중량%를 초과하는 경우에는 용접부에 알루미늄계 산화물이 과다하게 생성되어 극저온 충격인성을 저하시키는 단점이 있다. 따라서, 알루미늄의 함량은 0.009-2.5중량%로 한정하는 것이 바람직하다.
Aluminum reduces the strength, but also increases the stacking fault energy (SFE) to ensure toughness at low temperatures, and in order to exhibit such effects in the present invention, it is preferably included at least 0.009% by weight. However, when the content of aluminum exceeds 2.5% by weight, an aluminum-based oxide is excessively generated in the weld part, thereby deteriorating the cryogenic impact toughness. Therefore, the content of aluminum is preferably limited to 0.009-2.5% by weight.

황(S): 0.02중량% 이하Sulfur (S): 0.02 wt% or less

황은 MnS 복합석출물을 석출시키는 원소이나, 그 함량이 0.02중량%를 초과하는 경우에는 FeS 등의 저융점화합물을 형성시켜 고온균열을 유발시킬 수 있기 때문에 바람직하지 못하다. 따라서, 황의 함량은 0.02중량% 이하로 한정하는 것이 바람직하다.
Sulfur is an element that precipitates the MnS composite precipitate, but when the content exceeds 0.02% by weight, it is not preferable because sulfur may form a low melting point compound such as FeS to cause high temperature cracking. Therefore, the content of sulfur is preferably limited to 0.02% by weight or less.

인(P): 0.02중량% 이하Phosphorus (P): 0.02 wt% or less

인은 저온인성에 영향을 미치는 원소로서 결정입계에 취화한 인화합물이 생성되므로, 그 상한을 0.03 중량%로 한정하는 것이 바람직하다.
Phosphorus is an element influencing low-temperature toughness, so that a phosphorus compound embrittled at the grain boundary is produced. Therefore, the upper limit is preferably limited to 0.03% by weight.

본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
The remainder of the present invention is iron (Fe). However, in the ordinary manufacturing process, impurities which are not intended from the raw material or the surrounding environment may be inevitably incorporated, so that it can not be excluded. These impurities are not specifically mentioned in this specification, as they are known to any person skilled in the art of manufacturing.

더불어, 본 발명의 용접이음부는 하기 설명하는 질소(N)를 추가적으로 첨가하는 경우 본 발명의 효과를 더욱 향상시킬 수 있다.
In addition, the welded joint of the present invention may further improve the effect of the present invention when additionally adding nitrogen (N) described below.

질소(N): 0.30-0.75중량%Nitrogen (N): 0.30-0.75 wt%

질소는 탄소와 동일한 특성을 나타내는 원소이며, 본 발명에서는 이러한 효과를 나타내기 위하여 0.30중량% 이상 포함되는 것이 바람직하다. 반면에, 질소의 함량이 0.75중량%를 초과하는 경우에는 질화물이 과다하게 생성되어 충격인성이 저하되는 단점이 있다. 따라서, 질소의 함량은 0.30-0.75중량%로 한정하는 것이 바람직하다.
Nitrogen is an element exhibiting the same properties as carbon, and in the present invention, it is preferable to contain 0.30% by weight or more in order to exhibit such an effect. On the other hand, when the content of nitrogen exceeds 0.75% by weight, an excessive amount of nitride is generated, which impairs the impact toughness. Therefore, the content of nitrogen is preferably limited to 0.30-0.75% by weight.

탄소(C) 및 질소(N)의 함량의 합이 0.30~0.75 중량%인 것이 바람직하다. 탄소와 질소는 유사하게 오스테나이트 안정화 원소로서 작용하므로, 본 발명에서는 0.30 중량% 이상으로 포함되는 것이 바람직하다. 그러나, 각각 탄화물 및 질화물의 형성이 용이한 원소이므로, 본 발명에서는 0.75중량% 이하로 포함되는 것이 바람직하다.
It is preferable that the sum of content of carbon (C) and nitrogen (N) is 0.30 to 0.75 weight%. Since carbon and nitrogen similarly act as austenite stabilizing elements, it is preferable to include 0.30% by weight or more in the present invention. However, since the formation of carbides and nitrides is an easy element, the present invention is preferably contained at 0.75% by weight or less.

또한, 니켈당량(Nieq)은 30C+30N+0.5Mn+Ni로 나타낼 수 있으며, 크롬당량(Creq)은 Cr+Mo+1.5Si로 나타낼 수 있다. 본 발명 용접이음부는 니켈당량(Nieq) + 0.34*크롬당량(Creq) ≥ 28.37을 만족하는 것이 바람직하다. 28.37보다 낮은 경우 상기 용접이음부는 -196℃에서 충격인성값이 27J 미만으로 나타날 수 있다.
In addition, nickel equivalent (Ni eq ) may be represented by 30C + 30N + 0.5Mn + Ni, chromium equivalent (Cr eq ) may be represented by Cr + Mo + 1.5Si. The welded joint of the present invention preferably satisfies nickel equivalent (Ni eq ) + 0.34 * chromium equivalent (Cr eq ) ≥ 28.37. When lower than 28.37, the welded joint may exhibit an impact toughness of less than 27J at -196 ° C.

상술한 크롬당량은 14중량% 이하로 한정하는 것이 바람직하다. 크롬, 몰리브덴과 같은 원소는 쉽게 탄화물 및 질화물로 만들어지는 원소이므로, 크롬당량이 14중량%를 초과하는 경우에는 상기 탄, 질화물의 함량이 높아져 극저온 충격인성이 저하될 수 있다.
It is preferable to limit the chromium equivalent mentioned above to 14 weight% or less. Elements such as chromium and molybdenum are easily made of carbides and nitrides, so when the chromium equivalent exceeds 14% by weight, the contents of the carbon and the nitrides may be increased, thereby reducing the cryogenic impact toughness.

더불어, 상기 용접이음부에서 크롬당량(Creq)이 1중량% 이하일 경우 니켈당량(Nieq)은 28중량% 이상을 확보하는 것이 바람직하다. 28중량% 미만인 경우 극저온인 -196℃에서 충격인성이 27J 미만으로 나타난다.
In addition, when the chromium equivalent (Cr eq ) in the welded joint is less than 1% by weight, the nickel equivalent (Ni eq ) is preferably secured to 28% by weight or more. If it is less than 28% by weight, impact toughness is shown to be less than 27J at cryogenic temperature of -196 ° C.

본 발명의 일측면인 상기 용접이음부는 -196℃에서 충격인성을 측정한 결과 27J 이상의 높은 충격인성을 확보할 수 있다.
The welded joint, which is one side of the present invention, may secure high impact toughness of 27 J or more as a result of measuring impact toughness at -196 ° C.

이하, 본 발명의 실시예에 대하여 상세히 설명한다. 하기 실시예는 본 발명의 이해를 위한 것으로, 이에 본 발명이 한정되는 것은 아니다.
Hereinafter, embodiments of the present invention will be described in detail. The following examples are provided for the understanding of the present invention, and the present invention is not limited thereto.

(실시예1)(Example 1)

100% CO2 보호가스를 적용하여 1.7KJ/mm 입열량으로 플럭스 코어드 아크 용접을 실시하였다. 상기와 같이 용접된 용접이음부의 기계적 성질을 평가하기 위한 시험편들은 용접이음부 중앙부에서 채취하였으며 인장시험편은 KS규격(KS B 0801) 4호 시험편을 이용하였으며 인장시험은 크로스 헤드 스피드(cross head speed) 10mm/mim에서 시험하였다. 충격시험편은 KS(KS B 0809) 3호 시험편에 준하여 CVN(Charphy V Notch)로 제작하였으며, -196도에서 충격시험을 실시하여 그 측정값을 하기 표1에 나타내었다. 또한 용접이음부의 성분을 분석하여, 첨가 원소, 니켈당량 및 크롬함량을 하기 표1에 나타내었으며, 추가적으로 용접유무를 판단하여 함께 나타내었다.
Flux cored arc welding was performed at a 1.7 KJ / mm heat input with 100% CO 2 protective gas. The test specimens for evaluating the mechanical properties of the welded welded joints were collected at the center of the welded joint, and the tensile test specimens were used in KS standard (KS B 0801) No. 4 test specimens. ) At 10 mm / mim. The impact test piece was made of CVN (Charphy V Notch) according to KS (KS B 0809) No. 3 test piece, the impact test was carried out at -196 degrees and the measured values are shown in Table 1 below. In addition, by analyzing the components of the welded joint, the additive elements, nickel equivalents and chromium content are shown in Table 1 below, and the presence or absence of welds are also shown together.

더불어, 니켈당량 및 크롬당량의 상관관계를 나타낸 그래프를 도1에 도시하였다. 또한, 발명예1에 대한 용접이음부 사진과 미세조직 사진을 도 2 및 도 3에 각각 나타내었다.In addition, a graph showing a correlation between nickel equivalents and chromium equivalents is shown in FIG. 1. In addition, the weld seam picture and the microstructure picture for the invention example 1 are shown in Figs.

구분division NieqNieq CreqCreq CC SiSi MnMn CrCr NiNi MoMo AlAl SS NN 용접유뮤Welding 충격인성Impact toughness 비교예1Comparative Example 1 20.420.4 1.21.2 0.230.23 0.7020.702 26.9926.99 0.020.02 0.010.01 0.090.09 0.0090.009 0.0070.007 -- 1515 비교예2Comparative Example 2 26.226.2 2.52.5 0.620.62 0.7050.705 15.1515.15 0.0270.027 0.0160.016 1.371.37 0.0170.017 0.0090.009 -- 2222 비교예3Comparative Example 3 24.924.9 4.34.3 0.550.55 0.3310.331 16.7216.72 3.843.84 0.0120.012 <0.010<0.010 0.010.01 0.0040.004 -- 1111 비교예4Comparative Example 4 14.914.9 4.84.8 0.210.21 0.4650.465 17.2517.25 4.124.12 0.0130.013 <0.010<0.010 0.0240.024 0.0070.007 -- 88 비교예5Comparative Example 5 34.234.2 1One 0.720.72 0.6760.676 18.0718.07 0.0150.015 3.583.58 <0.010<0.010 0.0150.015 0.0230.023 -- 결함flaw -- 비교예6Comparative Example 6 39.139.1 6.26.2 0.820.82 0.6230.623 21.3521.35 5.255.25 3.823.82 <0.010<0.010 0.0230.023 0.0030.003 -- 결함flaw -- 비교예7Comparative Example 7 28.228.2 17.317.3 0.630.63 0.5230.523 18.5718.57 16.516.5 0.010.01 <0.010<0.010 0.0120.012 0.0080.008 -- 2323 비교예8Comparative Example 8 32.032.0 0.90.9 0.680.68 0.6120.612 18.4218.42 0.0120.012 2.412.41 1.541.54 0.0120.012 0.0090.009 -- 2424 비교예9Comparative Example 9 38.238.2 1.01.0 0.520.52 0.6510.651 17.2517.25 0.0130.013 4.424.42 <0.010<0.010 0.0110.011 0.0110.011 0.320.32 2525 발명예1Inventory 1 43.143.1 0.70.7 0.540.54 0.4710.471 11.211.2 0.0160.016 21.3421.34 <0.010<0.010 0.0090.009 0.010.01 -- 107107 발명예2Inventive Example 2 34.234.2 1One 0.720.72 0.6760.676 18.0718.07 0.0150.015 3.583.58 <0.010<0.010 0.0150.015 0.0090.009 -- 4444 발명예3Inventory 3 32.332.3 0.60.6 0.510.51 0.4210.421 18.0818.08 0.0140.014 7.987.98 <0.010<0.010 0.0130.013 0.0130.013 -- 6565 발명예4Honorable 4 28.928.9 0.90.9 0.390.39 0.580.58 18.1318.13 0.0210.021 8.128.12 <0.010<0.010 0.0210.021 0.0080.008 -- 4242 발명예5Inventory 5 34.134.1 0.90.9 0.710.71 0.5910.591 17.3417.34 0.0250.025 4.124.12 <0.010<0.010 1.021.02 0.0080.008 -- 5252 발명예6Inventory 6 3232 0.80.8 0.620.62 0.5230.523 18.0418.04 0.0120.012 4.414.41 <0.010<0.010 1.981.98 0.0090.009 -- 6161 발명예7Honorable 7 33.933.9 0.80.8 0.630.63 0.5120.512 21.8721.87 0.0130.013 4.114.11 <0.010<0.010 0.0130.013 0.0080.008 -- 6363 발명예8Inventive Example 8 37.337.3 0.50.5 0.670.67 0.3510.351 26.5226.52 0.0110.011 3.983.98 <0.010<0.010 0.0110.011 0.0050.005 -- 7272 발명예9Proposition 9 4141 0.70.7 0.680.68 0.4310.431 33.2433.24 0.0110.011 3.983.98 <0.010<0.010 0.0110.011 0.0060.006 -- 9898 발명예10Inventory 10 29.829.8 2.22.2 0.620.62 0.5230.523 18.1218.12 0.0150.015 2.122.12 1.451.45 0.0150.015 0.0080.008 -- 4444 발명예11Exhibit 11 25.6925.69 7.17.1 0.580.58 0.5210.521 16.5616.56 6.326.32 0.010.01 <0.010<0.010 0.0110.011 0.0040.004 -- 4545 발명예12Inventory 12 2424 13.113.1 0.520.52 0.4310.431 16.7816.78 12.4112.41 0.0110.011 <0.010<0.010 0.0130.013 0.0040.004 -- 6565 발명예13Inventory 13 32.032.0 0.90.9 0.420.42 0.5720.572 18.1218.12 0.0240.024 3.413.41 <0.010<0.010 0.0110.011 0.0110.011 0.230.23 5252 발명예14Inventive Example 14 29.029.0 0.90.9 0.310.31 0.5620.562 18.4218.42 0.0640.064 6.316.31 <0.010<0.010 0.0080.008 0.0130.013 0.140.14 3232

(단, 표1에 기재된 원소들의 단위는 중량%이고, 충격인성의 단위는 J임)
(However, the unit of the elements listed in Table 1 is the weight percent, the impact toughness unit is J)

비교예1 내지 4는 상술한 니켈당량과 크롬함량의 관계식을 만족하지 못한다. 비교예5는 황의 함량이 높아서 용접시 결함이 발생하였다. 비교예6은 탄소의 함량이 높아서, 용접시 이산화탄소가 많이 발생하여 용접시 결함이 발생하였다. 비교예 7은 크롬함량이 높아서 크롬계 탄화물의 과다생성으로 인해 극저온 인성이 저하되었다. 비교예8은 몰리브덴의 함량이 높아서 몰리브덴 탄화물이 과도하게 생성되어 극저온 인성이 저하되었다. 이에 비하여, 본 발명에서 제어하는 합금원소의 함량을 만족한 발명예1 내지 14는 -196℃에서 우수한 충격인성값을 나타냄을 확인할 수 있었다.
Comparative Examples 1 to 4 do not satisfy the above-described relationship between nickel equivalents and chromium content. In Comparative Example 5, a high sulfur content caused a defect during welding. In Comparative Example 6, the carbon content was high, and a large amount of carbon dioxide was generated during welding, and defects occurred during welding. In Comparative Example 7, the cryogenic toughness was lowered due to the high chromium content due to overproduction of the chromium carbide. In Comparative Example 8, since the content of molybdenum was high, molybdenum carbide was excessively produced, and thus cryogenic toughness was lowered. On the contrary, Inventive Examples 1 to 14 satisfying the content of the alloying element controlled by the present invention showed excellent impact toughness at -196 ° C.

도1을 살펴보면, □로 나타낸 것은 비교예이고, ◇로 나타낸 것은 발명예이며, 본 발명에 의한 제어된 합금조건을 만족하는 경우 도1에 나타낸 직선 위쪽에 위치하며, 니켈당량(Nieq)+0.34*크롬당량(Creq)≥28.37을 만족하는 것을 확인할 수 있었다.
Referring to FIG. 1, denoted by □ is a comparative example, denoted by ◇ is an example of an invention, and when it satisfies the controlled alloy conditions according to the present invention, it is located above the straight line shown in FIG. 1, and nickel equivalent (Ni eq ) + 0.34 * chromium equivalent (Cr eq ) was confirmed to satisfy ≥ 28.37.

(실시예2)(Example 2)

용접입열량 4.2KJ/㎜로 서브머지드 아크 용접을 실시하였다. 상기 용접이음부의 충격인성을 평가하기 위한 시험편들은 용접이음부의 중앙부에서 채취하였으며 인장시험편은 KS규격(KS B 0801) 4호 시험편을 이용하였으며 인장시험은 크로스 헤드 스피드(cross head speed) 10mm/mim에서 시험하였다. 충격시험편은 KS(KS B 0809) 3호 시험편에 준하여 CVN(Charphy V Notch)로 제작하였으며, -196도에서 충격시험을 실시하여 그 측정값을 하기 표2에 나타내었다. 또한 용접이음부의 성분을 분석하여, 첨가 원소, 니켈당량 및 크롬함량을 하기 표2에 나타내었으며, 추가적으로 용접유무를 판단하여 함께 나타내었다.Submerged arc welding was performed at a welding heat input of 4.2 KJ / mm. The test pieces for evaluating the impact toughness of the welded joint were taken from the center of the welded joint, and the tensile test specimen was used by KS standard (KS B 0801) No. 4 test specimen. Tested in mim. The impact test piece was manufactured by CVN (Charphy V Notch) according to KS (KS B 0809) No. 3 test piece. In addition, by analyzing the components of the welded joint, the additive elements, nickel equivalents and chromium content are shown in Table 2 below, and the presence or absence of welding was also shown together.

구분division NieqNieq CreqCreq CC SiSi MnMn CrCr NiNi MoMo AlAl SS NN 용접유뮤Welding 충격인성Impact toughness 비교예10Comparative Example 10 15.315.3 0.70.7 0.240.24 0.4730.473 16.2316.23 0.0160.016 0.030.03 <0.010<0.010 0.010.01 0.010.01 -- 1818 비교예11Comparative Example 11 21.721.7 0.80.8 0.290.29 0.5230.523 18.2218.22 0.0420.042 3.893.89 <0.010<0.010 0.0120.012 0.0070.007 -- 2121 발명예15Inventive Example 15 29.329.3 2.32.3 0.610.61 0.530.53 18.0118.01 0.0130.013 2.012.01 1.431.43 0.0150.015 0.0070.007 -- 5757 발명예16Inventive Example 16 40.840.8 0.80.8 0.520.52 0.5210.521 10.2110.21 0.0210.021 20.1220.12 <0.010<0.010 0.0090.009 0.0120.012 -- 112112 발명예17Inventive Example 17 35.635.6 0.80.8 0.740.74 0.5420.542 18.2318.23 0.0130.013 4.314.31 <0.010<0.010 0.0150.015 0.0070.007 -- 8787 발명예18Inventory 18 3434 0.60.6 0.540.54 0.4230.423 18.4118.41 0.0140.014 8.628.62 <0.010<0.010 0.0130.013 0.0110.011 -- 8686 발명예19Inventive Example 19 2929 0.70.7 0.380.38 0.4410.441 18.8718.87 0.0150.015 8.148.14 <0.010<0.010 0.0210.021 0.0070.007 -- 5151 발명예20Inventory 20 34.434.4 0.90.9 0.720.72 0.5720.572 17.4117.41 0.0230.023 4.14.1 <0.010<0.010 1.011.01 0.0090.009 0.240.24 7676 발명예21Inventory 21 32.832.8 0.80.8 0.640.64 0.5130.513 18.0118.01 0.0140.014 4.564.56 <0.010<0.010 2.312.31 0.0110.011 0.120.12 6565 발명예22Inventory 22 29.829.8 0.90.9 0.210.21 0.5730.573 18.218.2 0.0450.045 7.217.21 <0.010<0.010 1.011.01 0.0030.003 3636 발명예23Inventive Example 23 28.228.2 0.90.9 0.230.23 0.5650.565 18.5218.52 0.0420.042 8.428.42 <0.010<0.010 2.312.31 0.0110.011 3535

(단, 표2에 기재된 원소들의 단위는 중량%이고, 충격인성의 단위는 J임)(However, the unit of the elements listed in Table 2 is the weight percent, the unit of impact toughness is J)

비교예10 및 11은 탄소의 함량이 본 발명에서 제어하는 범위를 벗어나 오스테나이트 안정화 원소가 부족하여 극저온 충격인성이 낮게 측정됨을 확인할 수 있다. 이에 비하여, 본 발명에서 제어하는 합금원소의 함량을 만족한 발명예15 내지 23는 -196℃에서 우수한 충격인성값을 나타냄을 확인할 수 있었다.Comparative Examples 10 and 11 can be confirmed that the cryogenic impact toughness is low due to the lack of austenite stabilizing elements outside the range of the carbon content controlled in the present invention. In contrast, Inventive Examples 15 to 23 satisfying the content of the alloying element controlled by the present invention showed excellent impact toughness values at -196 ° C.

Claims (7)

중량%로, 탄소(C): 0.02-0.75%, 실리콘(Si): 0.3-0.7%, 망간(Mn): 10-35%, 크롬(Cr): 15% 이하, 니켈(Ni): 25% 이하, 몰리브덴(Mo): 1.45% 이하, 알루미늄(Al): 0.009-2.5%, 황(S): 0.02% 이하, 인(P): 0.02% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 극저온 인성이 우수한 용접이음부.
By weight%, carbon (C): 0.02-0.75%, silicon (Si): 0.3-0.7%, manganese (Mn): 10-35%, chromium (Cr): 15% or less, nickel (Ni): 25% Or less, molybdenum (Mo): 1.45% or less, aluminum (Al): 0.009-2.5%, sulfur (S): 0.02% or less, phosphorus (P): 0.02% or less, cryogenic toughness including residual Fe and other unavoidable impurities This excellent welded seam.
청구항 1에 있어서,
상기 용접이음부는 질소(N): 0.30-0.75중량%를 추가로 포함하는 극저온 인성이 우수한 용접이음부.
The method according to claim 1,
The weld joint is nitrogen (N): a weld joint excellent in cryogenic toughness further comprising 0.30-0.75% by weight.
청구항 2에 있어서,
상기 용접이음부는 탄소(C) 및 질소(N)의 함량의 합이 0.30-0.75중량%인 극저온 인성이 우수한 용접이음부.
The method according to claim 2,
The weld joint is a weld joint excellent in cryogenic toughness of the sum of the content of carbon (C) and nitrogen (N) is 0.30-0.75% by weight.
청구항 1에 있어서,
상기 용접이음부는 니켈당량(Nieq)+0.34*크롬당량(Creq)≥28.37을 만족하는 극저온 인성이 우수한 용접이음부.
The method according to claim 1,
The weld joint is a nickel joint (Ni eq ) + 0.34 * chromium equivalent (Cr eq ) ≥ 28.37 weld joint excellent in cryogenic toughness.
청구항 1에 있어서,
상기 용접이음부는 크롬당량(Creq)이 14중량% 이하인 극저온 인성이 우수한 용접이음부.
The method according to claim 1,
The weld joint is a weld joint excellent in cryogenic toughness of chromium equivalent (Cr eq ) is 14% by weight or less.
청구항 1에 있어서,
상기 용접이음부는 크롬당량(Creq)이 1중량% 이하일 때, 니켈당량(Nieq)이 28중량% 이상인 극저온 인성이 우수한 용접이음부.
The method according to claim 1,
Wherein the welded joint is excellent in cryogenic toughness having a chromium equivalent (Cr eq ) of less than 1% by weight, nickel equivalent (Ni eq ) of 28% by weight or more.
청구항 1에 있어서,
상기 용접이음부의 충격인성(-196℃)은 27J이상인 극저온 인성이 우수한 용접이음부.
The method according to claim 1,
Impact toughness (-196 ℃) of the welded joint is a weld joint excellent in cryogenic toughness of 27J or more.
KR1020110065167A 2011-06-30 2011-06-30 Weld metal joint having excellent low temperature toughness KR101304657B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110065167A KR101304657B1 (en) 2011-06-30 2011-06-30 Weld metal joint having excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110065167A KR101304657B1 (en) 2011-06-30 2011-06-30 Weld metal joint having excellent low temperature toughness

Publications (2)

Publication Number Publication Date
KR20130003685A true KR20130003685A (en) 2013-01-09
KR101304657B1 KR101304657B1 (en) 2013-09-05

Family

ID=47835822

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110065167A KR101304657B1 (en) 2011-06-30 2011-06-30 Weld metal joint having excellent low temperature toughness

Country Status (1)

Country Link
KR (1) KR101304657B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101372599B1 (en) * 2012-07-09 2014-03-10 주식회사 포스코 WEAR RESISTANT WELD METAL JOINT CONTAINING HIGH Mn STEEL
WO2014081246A1 (en) * 2012-11-22 2014-05-30 주식회사 포스코 Welded joint of extremely low-temperature steel, and welding materials for preparing same
EP3078447A4 (en) * 2013-12-06 2016-11-30 Posco High strength welding joint having excellent impact toughness at very low temperature, and flux-cored arc welding wire therefor
KR20190143834A (en) * 2018-06-21 2019-12-31 한국조선해양 주식회사 Liquefied gas storage tank and ship having the same
EP4046743A4 (en) * 2019-10-16 2023-04-19 Posco Wire rod for welding rods and method for manufacturing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150066373A (en) * 2013-12-06 2015-06-16 주식회사 포스코 Welded joint having excellent impact resistance and abrasion resistance properties
CN109530881B (en) * 2019-01-08 2021-07-09 四川大西洋焊接材料股份有限公司 Submerged-arc welding flux and welding wire for welding ultralow-temperature high-manganese steel and preparation method
KR102578278B1 (en) 2021-11-15 2023-09-12 한국생산기술연구원 Fe-based alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE506886C2 (en) 1990-02-26 1998-02-23 Sandvik Ab Vanadium-alloyed precipitable, non-magnetic austenitic steel
KR100621564B1 (en) * 2003-03-20 2006-09-19 수미도모 메탈 인더스트리즈, 리미티드 Stainless steel for high-pressure hydrogen gas, and container and device made of same
JP4264754B2 (en) * 2003-03-20 2009-05-20 住友金属工業株式会社 Stainless steel for high-pressure hydrogen gas, containers and equipment made of that steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101372599B1 (en) * 2012-07-09 2014-03-10 주식회사 포스코 WEAR RESISTANT WELD METAL JOINT CONTAINING HIGH Mn STEEL
WO2014081246A1 (en) * 2012-11-22 2014-05-30 주식회사 포스코 Welded joint of extremely low-temperature steel, and welding materials for preparing same
US9981346B2 (en) 2012-11-22 2018-05-29 POSCO Gyeongsangbuk-Do Welded joint of extremely low-temperature steel, and welding materials for preparing same
EP3078447A4 (en) * 2013-12-06 2016-11-30 Posco High strength welding joint having excellent impact toughness at very low temperature, and flux-cored arc welding wire therefor
US10864605B2 (en) 2013-12-06 2020-12-15 Posco High strength welding joint having excellent impact toughness at very low temperature, and flux-cored arc welding wire therefor
KR20190143834A (en) * 2018-06-21 2019-12-31 한국조선해양 주식회사 Liquefied gas storage tank and ship having the same
EP4046743A4 (en) * 2019-10-16 2023-04-19 Posco Wire rod for welding rods and method for manufacturing same

Also Published As

Publication number Publication date
KR101304657B1 (en) 2013-09-05

Similar Documents

Publication Publication Date Title
KR101304657B1 (en) Weld metal joint having excellent low temperature toughness
US9981346B2 (en) Welded joint of extremely low-temperature steel, and welding materials for preparing same
KR102639099B1 (en) Method for producing high-strength welded joint for cryogenic environments and high-strength welded joint for cryogenic environments
KR101657825B1 (en) Tungsten inert gas welding material for high manganese steel
CN111805120A (en) Consumable electrode solid welding wire for welding extremely-low-temperature austenite high-manganese steel
KR20100059936A (en) Welding solid wire
JP4760299B2 (en) Welded joint and manufacturing method thereof
KR101965666B1 (en) Flux cored wire welding wire for cryogenic applications
KR101560899B1 (en) Submerged arc welding and gas metal arc welding wire having high strength and superior toughness at ultra low temperature
KR101220571B1 (en) Submerged arc weld wire having excellent low temperature toughness for high maganese steel
KR102480788B1 (en) Manufacturing method of solid wire and welded joint
KR20180123592A (en) Welded metal having excellent strength, toughness and sr cracking resistance
KR101560897B1 (en) Welded joint having high strength and superior toughness at ultra low temterature
KR101657836B1 (en) Flux cored arc weld material having excellent low temperature toughness, thermostability and crack resistance
KR20160083355A (en) Flux cored arc welding wire
US20220281038A1 (en) Stainless steel welding wire for use in lng tank manufacturing
KR101449150B1 (en) Welded joints of cryogenic steel
KR20180074860A (en) Welded joint with excellent ultra-low temperature toughness and strength
KR102022448B1 (en) Ni base flux cored wire for cryogenic Ni alloy steel
KR101351267B1 (en) 1GPa HIGH STRENGTH WELDING JOINT HAVING EXCELLENT LOW TEMPERATURE TOUGHNESS
KR101439650B1 (en) Material for submerged arc welding and gas metal arc welding
KR102365671B1 (en) Cryogenic application welded joint with improved weldability
KR101428201B1 (en) Submerged arc welded joint
KR101264606B1 (en) Gas shielded arc welding titania based flux cored wire having excellent crack resistance
US20230151465A1 (en) Fe-based alloy

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160822

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170828

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180829

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190828

Year of fee payment: 7