KR20130003300A - High velocity oxygen fuel (hvof) spray coating of cobalt alloy powder for durability improvement of high speed spindle operating without lubricant - Google Patents

High velocity oxygen fuel (hvof) spray coating of cobalt alloy powder for durability improvement of high speed spindle operating without lubricant Download PDF

Info

Publication number
KR20130003300A
KR20130003300A KR1020110064554A KR20110064554A KR20130003300A KR 20130003300 A KR20130003300 A KR 20130003300A KR 1020110064554 A KR1020110064554 A KR 1020110064554A KR 20110064554 A KR20110064554 A KR 20110064554A KR 20130003300 A KR20130003300 A KR 20130003300A
Authority
KR
South Korea
Prior art keywords
coating
hvof
alloy powder
cobalt alloy
powder
Prior art date
Application number
KR1020110064554A
Other languages
Korean (ko)
Inventor
조동율
주윤곤
윤재홍
Original Assignee
창원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단 filed Critical 창원대학교 산학협력단
Priority to KR1020110064554A priority Critical patent/KR20130003300A/en
Publication of KR20130003300A publication Critical patent/KR20130003300A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE: A HVOF coating with a cobalt powder for improving the durability of a non-lubricated high velocity rotary body is provided to coat the surface of the high velocity rotary body with a cobalt alloy powder by using the HVOF, thereby improving the eco-unfriendly problem of an EHC coating. CONSTITUTION: An HVOF coating with a cobalt alloy powder is a method for coating the surface of a high velocity rotary body with the cobalt alloy powder using the HVOF. The coating is implemented at 38 to 42 FMR(Flow Meter Reading)( 3.59X10-3 to 3.96X10-3m3 per second) of oxygen flow rate, 60 to 75 FMR(5.66X10-3 to 7.08X10-3m3 per second) of hydrogen flow rate, 30 grams per minute of powder supply velocity, and at a spray distance of 5 inches. The high velocity rotary body is formed with an Inconel series or a titanium alloy. The velocity of a spray gun is set to 3 millimeters per second. A manufactured coating material is air cooled by using 180 psi(pound per square inch) of argon gas as powder carrier gas.

Description

무윤활 고속 회전체의 내구성 향상을 위한 코발트 분말의 초고속화염용사법 코팅{High Velocity Oxygen Fuel (HVOF) Spray Coating of Cobalt Alloy Powder for Durability Improvement of High Speed Spindle Operating Without Lubricant}High Velocity Oxygen Fuel (HVOF) Spray Coating of Cobalt Alloy Powder for Durability Improvement of High Speed Spindle Operating Without Lubricant}

본 발명은 무윤활 고속 회전체의 내구성 향상을 위한, 초고속화염용사법(HVOF)을 이용한 코발트 분말의 코팅방법에 관한 것이다.
The present invention relates to a coating method of cobalt powder using an ultra-high speed flame spraying method (HVOF) for improving durability of a non-lubricating high speed rotating body.

지난 60년 동안, 전해처리 경질 크롬 도금(EHC)은 경질 표면 코팅물을 제조하여 내마모, 내열, 내식성 등을 필요로 하는 곳에서 폭넓게 사용되어 왔다. 그러나, 최근 연구들에 따르면 EHC 공정은 잘 알려진 발암원인 Cr6 + 이온 미스트를 발생시키기 때문에 건강 및 환경적인 측면에서 문제가 제기되어 왔다.For the past 60 years, electrolytic hard chromium plating (EHC) has been widely used in the manufacture of hard surface coatings where they require abrasion, heat and corrosion resistance. However, according to recent studies EHC process has been a problem in terms of health and the environment posed due to produce a well-known cause of cancer Cr 6 + ion mist.

한편, EHC를 대체할 수 있는 코팅법에 대한 연구들이 활발하며, 초고속화염용사법(high-velocity oxy-fuel thermal spraying; HVOF), 레이저 증착, 방전 플라즈마 소결 및 진공 또는 원자 플라즈마 용사 등과 같은 증착기술이 알려져 있다.On the other hand, studies on coating methods that can replace EHCs are active, and deposition techniques such as high-velocity oxy-fuel thermal spraying (HVOF), laser deposition, discharge plasma sintering and vacuum or atomic plasma spraying Known.

그러나, 아직까지 HVOF를 사용한 코발트 코팅과 관련하여 무윤활 고속 회전체의 내구성 향상을 위한 코발트 코팅물을 얻기 위한 구체적인 코팅법의 개발이 전무한 실정이다.
However, there is no development of a specific coating method for obtaining a cobalt coating for improving the durability of the non-lubricated high-speed rotating body in relation to the cobalt coating using HVOF.

이에, 본 발명의 목적은 종래 사용해 오던 전해처리 경질 크롬 도금(EHC)의 문제점인 환경친화적이지 못한 문제점을 개선하면서 무윤활 고속 회전체의 내구성을 향상시킬 수 있는 코발트 합금 분말의 코팅방법을 제공하는 데에 있다.
Accordingly, an object of the present invention to provide a coating method of cobalt alloy powder that can improve the durability of the non-lubricated high-speed rotating body while improving the non-friendly problem, which is a problem of the electrolytically treated hard chromium plating (EHC) used in the prior art. There is.

상기 목적을 달성하기 위하여, 본 발명은 무윤활 고속 회전체 표면 상에 초고속화염용사법(HVOF)을 이용하여 코발트 합금 분말을 코팅하는 것을 특징으로 하는, 초고속화염용사법(HVOF)을 이용한 코발트 합금 분말의 코팅방법을 제공한다.In order to achieve the above object, the present invention is characterized in that the coating of cobalt alloy powder using a super-high speed flame spraying method (HVOF) on the surface of the non-lubricated high-speed rotor, of the cobalt alloy powder using a high speed flame spraying method (HVOF) It provides a coating method.

보다 구체적으로는, 상기 코팅은 38-42 FMR(3.59X10-3 - 3.96X10-3 m3/sec)의 산소 유속, 60-75 FMR(5.66X10-3 - 7.08X10-3 m3/sec)의 수소 유속, 35 g/min의 분말 공급 속도, 및 5인치의 스프레이 거리를 갖는 코팅 조건으로 수행될 수 있다.The - (7.08X10-3 m3 / sec 5.66X10-3) - More specifically, the coating is 38-42 FMR (3.59X10 -3 3.96X10 -3 m 3 / sec) oxygen flow rate, 60-75 of FMR It can be carried out with coating conditions having a hydrogen flow rate, a powder feed rate of 35 g / min, and a spray distance of 5 inches.

본 발명의 발명자들은 코발트합금분말 코팅층은 타물체와 접촉하여 슬라이딩 할 때 발생하는 국부적인 과열로 생성된 취성이 강한 산화물이 고체윤활제 역할을 하며, 내마모성을 향상시키는 등의 특성이 있으며, 이로 인해 코발트합금분말을 초고속 회전체와 같은 마찰과 마찰열에 취약한 부분에 코팅함으로써 회전체의 내구성을 향상시킬 수 있다는 점을 착안하였고, 이러한 코발트합금분말의 코팅 방법으로 초고속화염용사코팅방법을 사용하여 최적화시킴으로서 본 발명을 완성하였다. The inventors of the present invention, the cobalt alloy powder coating layer has a characteristic that the brittle oxide produced by the local overheat generated when sliding in contact with the other object acts as a solid lubricant, and improves the wear resistance, thereby cobalt It was conceived that the durability of the rotating body could be improved by coating the alloy powder on a part that is susceptible to friction and frictional heat such as an ultra-high speed rotating body, and the coating method of such a cobalt alloy powder was optimized by using an ultra-fast flame coating method. The invention has been completed.

따라서 본 발명의 코팅방법은 윤활제를 사용하지 않는 에어베어링스핀들과 같은 고속 회전체의 내구성 향상을 위한 코팅에 적용될 수 있고, 보다 구체적으로, 상기 고속 회전체는 인코넬(Inconel) 계열 또는 티타늄 합금으로 이루어진 것일 수 있으며, 보다 구체적으로는 인코넬 718 또는 Ti64로 이루어진 것일 수 있으나, 이에 제한되는 것은 아니다.
Therefore, the coating method of the present invention can be applied to the coating for improving the durability of the high-speed rotating body, such as air bearing spindles without using a lubricant, and more specifically, the high-speed rotating body is made of Inconel series or titanium alloy It may be, and more specifically, may be made of Inconel 718 or Ti64, but is not limited thereto.

본 발명에 따른 코팅방법은 초고속화염용사법(HVOF)을 이용하여 코발트 합금 분말을 고속 회전체 표면에 코팅함으로써 종래 사용해 오던 전해처리 경질 크롬 도금(EHC)의 환경친화적이지 못한 문제점을 개선하면서 무윤활 고속 회전체의 내구성을 향상시킬 수 있다.
The coating method according to the present invention is coated with cobalt alloy powder on the surface of a high-speed rotating body by using an ultra-high speed flame spraying method (HVOF), while improving the environmentally-friendly problem of the conventional electrolytically treated hard chromium plating (EHC) without lubrication and high speed. Durability of the rotating body can be improved.

도 1은 코발트합금분말 T800의 미세조직형상에 관한 사진이다.
도 2는 T800 코팅층의 단면 사진이다.
도 3은 T800 코팅층의 XRD 그래프이다.
도 4는 스프레이 공정 조건에 따른 경도의 변화를 나타내는 그래프이다.
도 5는 스프레이 공정 조건에 따른 표면 거칠기의 변화를 나타내는 그래프이다.
도 6은 스프레이 공정 조건에 따른 표면 기공도의 변화를 나타내는 그래프이다.
도 7은 온도별 경도변화에 따른 마찰 계수의 변화를 나타내는 그래프이다.
도 8은 온도별 T800 코팅층 및 상대재의 마모흔 변화를 나타내는 그래프이다.
도 9는 파과 부위의 단면도를 나타낸다.
도 10은 각 시험군별 인장 강도에 대한 결과 그래프이다.
1 is a photograph of the microstructure of the cobalt alloy powder T800.
2 is a cross-sectional photograph of a T800 coating layer.
3 is an XRD graph of a T800 coating layer.
4 is a graph showing the change in hardness according to the spray process conditions.
5 is a graph showing a change in surface roughness according to the spray process conditions.
6 is a graph showing the change in surface porosity according to the spray process conditions.
7 is a graph showing a change in the friction coefficient according to the change in hardness for each temperature.
8 is a graph showing a change in wear traces of the T800 coating layer and the counterpart according to temperature.
9 is a sectional view of a breakthrough site.
10 is a graph of the results of the tensile strength of each test group.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the following examples. However, the following examples are intended to illustrate the contents of the present invention, but the scope of the present invention is not limited to the following examples. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.

<< 실시예Example 1>  1> T800T800 코팅 coating

JK3000 HVOF 장치를 사용하여 마이크로 크기 분말(직경 5-30㎛, Satellite Co. Inc.)을 300-350㎛ 두께로 코팅하였다. Micro size powder (5-30 μm in diameter, Satellite Co. Inc.) was coated to a 300-350 μm thickness using a JK3000 HVOF device.

코팅제조를 위한 분말소재는 표 1처럼 Satellite사의 코발트합금 T800(Co-45.7wt.%, Mo-28.4wt.% 및 Cr-17.6wt.%)상용 분말을 사용하였다.As a powder material for preparing a coating, commercial cobalt alloy T800 (Co-45.7 wt.%, Mo-28.4 wt.% And Cr-17.6 wt.%) Of Satellite was used as shown in Table 1.

T800의 화학조성비(wt.%)Chemical composition ratio of T800 (wt.%) CoCo Mo Mo Cr Cr Si Si Fe Fe Ni Ni O  O C C P  P Bal. Honey. 28.428.4 17.617.6 3.103.10 0.680.68 0.650.65 0.020.02 0.020.02 0.010.01

도 1에서 확인할 수 있는 바와 같이, 상기 코발트 합금 분말은 직경이 5 내지 30㎛인 구형 입자들의 혼합이다. As can be seen in Figure 1, the cobalt alloy powder is a mixture of spherical particles having a diameter of 5 to 30㎛.

상기 코발트 합금 분말은 253℃에서 705℃까지 탁월한 강도를 유지하며, 980℃까지 내산화성이 탁월하고 700℃에서도 높은 크리프강도를 가져 제트엔진, 펌프몸체 및 부품, 열간 압출 다이스, 고온탄성스프링 등에 사용되는 인코넬(Inconel)718 기판 상에 코팅되었다. 전처리과정에서는 기판을 아세톤용액에서 5분간 초음파세척을 한 후 60메시(Mesh)의 알루미나(Al₂O₃)로 3-5초간 블래스팅(Blasting)처리를 하여 기판과 코팅층간의 접합력을 증대시키고자 하였다. The cobalt alloy powder maintains excellent strength from 253 ° C to 705 ° C, has excellent oxidation resistance up to 980 ° C, and high creep strength at 700 ° C. Coated on an Inconel 718 substrate. In the pretreatment process, the substrate was ultrasonically cleaned in acetone solution for 5 minutes and then blasted with 60 mesh alumina (Al₂O₃) for 3-5 seconds to increase the bonding strength between the substrate and the coating layer.

스프레이 공정에서 조건을 스프레이 거리, 산소와 수소가스 유속, 그리고 분말의 공급속도를 변수로 하였고 3개 수준을 지닌 4개의 스프레이 파라미터를 이용한 Taguchi 실험 프로그램에 의해 설계된 16가지의 공정에 따라 코팅하였다. 스프레이 건 속도는 3 mm/s로 세팅하였고, 180 psi의 아르곤 가스를 분말 캐리어 가스로서 사용하였다. 제작된 코팅물을 공냉하였다.
In the spray process, the conditions were controlled by spray distance, oxygen and hydrogen gas flow rates, and powder feed rates, and coated according to 16 processes designed by the Taguchi experimental program using four spray parameters with three levels. Spray gun speed was set to 3 mm / s and argon gas of 180 psi was used as powder carrier gas. The prepared coating was air cooled.

T800 합금 분말의 Co-Mo 및 Co-Cr 시스템의 εCo상의 녹는점은 순수 Co의 녹는점인 1495℃보다 낮다. 분사된 다양한 사이즈의 입자는 본 발명의 코팅 공정에 따른 0.1-1ms의 분사시간동안 화염으로 인한 3,500℃ 이상의 온도에서 녹거나, 부분적으로 녹거나 연성화된다. The melting point of the εCo phase of the Co-Mo and Co-Cr systems of the T800 alloy powder is lower than the melting point of pure Co, 1495 ° C. The sprayed particles of various sizes melt, partially melt or soften at temperatures above 3,500 ° C. due to the flame during the spraying time of 0.1-1 ms according to the coating process of the present invention.

다양한 크기 및 속도의 뜨거운 입자가 1,000m/s까지 가속화되고, 차가운 코팅 표면에 부딪친다. 부딪칠 때, 표면과의 결합이 형성되며, 계속되는 입자의 부딪힘은 도 2와 같이 층상 구조의 두꺼운 코팅층을 형성한다. Hot particles of various sizes and speeds are accelerated to 1,000 m / s and hit cold coating surfaces. When bumping, a bond with the surface is formed, and subsequent bumping of the particles forms a thick coating layer of a layered structure as shown in FIG. 2.

부착되어 얇아진 입자는 최대 106 K/s의 매우 높은 냉각 비율로 급랭되고, 고접착 코팅층을 형성한다. 도 3과 같이, 코팅층의 XRD에서 Co상은 결정성을 유지하고 있으나 기타 성분은 비정질 상태로 응고되어 있음을 알 수 있다.
Attached and thinned particles are quenched at a very high cooling rate of up to 10 6 K / s, forming a highly adhesive coating layer. As shown in FIG. 3, the Co phase in the XRD of the coating layer maintains crystallinity, but other components are solidified in an amorphous state.

<< 실시예Example 2> 코팅층 분석 및 마찰 및 마모 특성 분석  2> Coating layer analysis and friction and wear characteristics analysis

표면 미세구조 및 코팅층 분석은 광학현미경, SEM을 이용하여 수행되었다. 마이크로 비커스 경도측정기(Micro Vickers Hardness Tester)로 코팅층 단면의 중심부에서 9회 측정한 평균값으로 경도값을 산출하였으며, 광학현미경을 사용하여 얻은 코팅층의 조직사진을 영상 분석기(Image Analyzer)를 통해 분석하여 5회의 평균값으로 코팅층의 기공도를 나타내었다. 표면거칠기는 표면거칠기측정기(Surface Roughness Tester)를 사용하여 7회 측정값을 평균하여 표면조도를 얻었다. Surface microstructure and coating layer analysis were performed using an optical microscope, SEM. The hardness value was calculated from the average value measured 9 times at the center of the cross section of the coating layer by the Micro Vickers Hardness Tester, and the tissue photograph of the coating layer obtained using the optical microscope was analyzed by an image analyzer. The porosity of the coating layer is shown as the average of the times. Surface roughness was obtained by averaging seven measurements using a surface roughness tester to obtain surface roughness.

코팅층의 마찰과 마모특성은 윤활제 없이 25℃ 및 538℃(1000℉)에서 왕복구동방식의 마모시험기(TE77 AUTO, Plint & Partners)로 시험하였다. 상대재로는 직경 9.53mm인 스테인레스볼(SUS 304, Hv227)을 사용하였고, 이때, 왕복 슬라이딩 거리는 2.3 mm, 진동수는 35 Hz, 속도는 0.161 m/s, 하중은 10 N 및 슬라이딩 시간은 4분이었다.
The friction and wear characteristics of the coatings were tested with a reciprocating wear tester (TE77 AUTO, Plint & Partners) at 25 ° C and 538 ° C (1000 ° F) without lubricant. As a counterpart, stainless steel balls (SUS 304 and Hv227) with a diameter of 9.53 mm were used, with a reciprocating sliding distance of 2.3 mm, a frequency of 35 Hz, a speed of 0.161 m / s, a load of 10 N, and a sliding time of 4 minutes. It was.

경도, 거칠기 및 기공도는 스프레이 공정 조건에 의존적이었으며, 16개의 각기 다른 조건에 따른 결과를 도 4, 5 및 6에 나타났고, 가장 최적화된 조건은 스프레이 거리 5 inch 에서 산소와 수소유량 그리고 분말공급율이 각각 38~42FMR(3.59X10-3 - 3.96X10-3 m3/sec), 60~75FMR(5.66X10-3 - 7.08X10-3 m3/sec)과 30g/min 일 때로 나타났다. The hardness, roughness and porosity were dependent on the spray process conditions, and the results of 16 different conditions are shown in FIGS. 4, 5 and 6, and the most optimized conditions were oxygen and hydrogen flow rates and powder feed rates at 5 inch spray distance. the respective times were 38 ~ 42FMR - - (7.08X10-3 m3 / sec 5.66X10-3 ) and 30g / min days (3.59X10 -3 3.96X10 -3 m 3 / sec), 60 ~ 75FMR.

코팅층의 경도 560-640 Hv는 기판인 Inconel 718(~410 Hv) 및 경축 물질(light spindle material) Ti64 (~350 Hv)보다 높게 나타났고, 이는 초고속화염용사법으로 코팅된 Co 코팅층이 슬라이딩 기계 요소의 내구성 향상에 유용하게 사용될 수 있음을 시사한다. The hardness of the coating layer 560-640 Hv was higher than the substrate Inconel 718 (~ 410 Hv) and light spindle material Ti64 (~ 350 Hv). It can be usefully used for improving durability.

평균 표면 거칠기는 2.2-3.0 ㎛로 나타났다. 고속 입자 및 가스의 코팅 표면에의 충돌 및 급냉으로 거친 표면이 형성되었다. Average surface roughness was found to be 2.2-3.0 μm. The impact and quenching of the fast particles and gases onto the coating surface resulted in the formation of a rough surface.

평균 표면 기공도는 0.01-0.04%로 나타났다. 기공은 뜨거운 코팅이 냉각에 의해 수축되면서 생성되거나 녹은 입자 및 코팅층과의 고속 충돌 공정에서 내부에 포집되었던 가스의 방출로 생성된다.
Average surface porosity was found to be 0.01-0.04%. The pores are created as the hot coating shrinks by cooling, or as a result of the release of gases trapped therein in a high-speed collision process with molten particles and the coating layer.

도 7을 참조하면, 코팅층의 마찰계수(friction coefficient, FC)는 코팅되지 않은 Inconel 718 기판의 마찰 계수의 반 이하로 나타났다. 이는 T800 코팅이 슬라이딩 기계 요소의 내구성 향상을 위한 내마모성 코팅재로 유용하게 사용될 수 있음을 시사한다. Referring to FIG. 7, the coefficient of friction (FC) of the coating layer was found to be less than half of the coefficient of friction of the non-coated Inconel 718 substrate. This suggests that the T800 coating can be usefully used as a wear resistant coating for improving the durability of sliding machine elements.

마찰 계수와 코팅층의 경도 간에는 명백한 연관성이 관측되지 아니하였고, 이는 슬라이딩 마모 입자의 윤활제화 효과가 T800 코팅의 경도에 비해 미치는 효과가 더 크기 때문으로 판단된다. No obvious correlation was observed between the coefficient of friction and the hardness of the coating layer, which is believed to be due to the greater effect of lubrication of sliding wear particles on the hardness of the T800 coating.

도 7 및 도 8에서 볼 수 있는 바와 같이, 마찰계수 및 마모흔(wear trace)은 슬라이딩 표면 온도가 25℃에서 538℃로 증가함에 따라 감소하는데, 이는 Co 산화물의 윤활제화 효과가 고온에서 더 증가하기 때문이다. 고온에서 조강(brittle) Co 산화물, 예를들면 CoO 및 Co3O4는 슬라이딩에 의해 코팅 표면에서 빠르게 형성된다. 조강 산화물은 쉽게 슬라이딩에 의해 소모되고, 마찰계수를 감소시키는 윤활제 역할을 한다.
As can be seen in FIGS. 7 and 8, the coefficient of friction and wear traces decrease as the sliding surface temperature increases from 25 ° C. to 538 ° C., which increases the lubrication effect of Co oxide at higher temperatures. Because. At high temperatures, crude Co oxides such as CoO and Co 3 O 4 are rapidly formed on the coating surface by sliding. The crude steel oxide is easily consumed by sliding and serves as a lubricant to reduce the coefficient of friction.

<< 실시예Example 3>  3> Ti64Ti64 표면상의  Superficial T800T800 코팅 접착력 분석  Coating Adhesion Analysis

Ti64기판상의 코팅층(T800/Ti64)의 접착력은 ASTM C633 및 알려진 방법("Process Instruction" Sermatech Korea Ltd., control number PI-1-02 (1999) 17)에 따라 인장시험기 FM-10E를 통해 조사되었다. 크로스헤드 traveling rate는 0.05 in/min 였다.
The adhesion of the coating layer (T800 / Ti64) on the Ti64 substrate was investigated through a tensile tester FM-10E according to ASTM C633 and known methods ("Process Instruction" Sermatech Korea Ltd., control number PI-1-02 (1999) 17). . The crosshead traveling rate was 0.05 in / min.

바인더 FM1000 (에폭시 접착 결합제)의 접착강도가 10000psi 의 최소 결합력으로 설정되었고, 인장강도(Tensile bond strength, TBS)는 3개의 측정값을 평균하여 얻었다. The adhesive strength of the binder FM1000 (epoxy adhesive binder) was set to a minimum binding force of 10000 psi, and the tensile bond strength (TBS) was obtained by averaging three measured values.

T800(260㎛)/Ti64, 바인더 NiCr(110 ㎛ 두께, 80% Ni, 20% Cr)/Ti84 및 삼중 코팅 T800/NiCr/Ti64 가 T800의 결합력과 접착력 및 T800 접착력에 미치는 NiCr 바인더의 효과를 측정하기 위해 사용되었다. T800 (260 μm) / Ti64, Binder NiCr (110 μm thick, 80% Ni, 20% Cr) / Ti84 and triple coated T800 / NiCr / Ti64 to determine the effect of NiCr binder on T800's bond and adhesion and T800 adhesion It was used to

기판(Ti64)/바인더 NiCr(110 ㎛ 두께, 80% Ni, 20% Cr), Ti64/T800(260㎛) 및 Ti64/NiCr/T800가 Ti64에 대한 T800의 접착력 및 Ti64/T800의 접착력에 미치는 NiCr 바인더의 효과를 측정하기 위해 사용되었다. NiCr Effects of Substrate (Ti64) / Binder NiCr (110 μm Thickness, 80% Ni, 20% Cr), Ti64 / T800 (260 μm) and Ti64 / NiCr / T800 on the Adhesion of T800 to Ti64 and Adhesion of Ti64 / T800 It was used to measure the effect of the binder.

3중 코팅; 기판(Ti64)/바인더 NiCr(110 ㎛ 두께, 80% Ni, 20% Cr), Ti64/T800(260㎛) 및 Ti64/NiCr/T800 가 Ti64에 대한 T800의 접착력 및 Ti64/T800의 접착력에 미치는 NiCr 바인더의 효과를 측정하기 위해 사용되었다.
Triple coating; NiCr (Ti64) / Binder NiCr (110 μm thick, 80% Ni, 20% Cr), Ti64 / T800 (260 μm) and Ti64 / NiCr / T800 on the adhesion of T800 to Ti64 and the adhesion of Ti64 / T800 It was used to measure the effect of the binder.

도 9 및 도 10에서 볼 수 있는 바와 같이, Ti64/NiCr의 인장강도(tensile bond strength, TBS) 및 인장파괴위치(tensile fracture location, TFL)는 각각 11,600psi 및 NiCr의 상위 코팅층(top coat-near top)으로 나타났다. 도 9는 Ti64/NiCr 결합 코팅이 인장강도 11,600psi 에서 파과되기 시작함을 보여준다. As can be seen in FIGS. 9 and 10, the tensile bond strength (TBS) and tensile fracture location (TFL) of Ti64 / NiCr are 11,600psi and top coat-near of NiCr, respectively. top). 9 shows that the Ti64 / NiCr bond coating begins to break at a tensile strength of 11,600 psi.

Ti64/T800의 TBS 및 TFL은 각각 8,770 psi 및 T800 코팅의 중앙 가까이(near middle)로 나타났다. NiCr의 본드 코팅은 Ti64/T800의 TBS를 증가시키지 못했는데, 이는 Ti64/T800 및 Ti64/NiCr/T800의 TBS 및 TFL이 거의 동일하게 나타난 것에서 알 수 있다. TBS and TFL of Ti64 / T800 appeared to be near middle of 8,770 psi and T800 coating, respectively. Bond coating of NiCr did not increase the TBS of Ti64 / T800, which can be seen from the almost identical TBS and TFL of Ti64 / T800 and Ti64 / NiCr / T800.

Ti64/T800의 TBS는 T800 코팅(8,770 psi)의 인장 강도보다 높게 나타났는데, 이는 인장 파괴강도에서 T800 코팅의 중앙에서 명확한 파괴가 관찰되지 아니한 것에서 알 수 있다. 이는 Ti64/T800코팅을 경량 합금 Ti64 고속 회전체의 내마모성을 위한 코팅으로 유용하게 사용할 수 있음을 시사한다.
The TBS of Ti64 / T800 was higher than the tensile strength of T800 coating (8,770 psi), which can be seen from the fact that no clear fracture was observed in the center of T800 coating in tensile failure strength. This suggests that Ti64 / T800 coatings can be usefully used as a coating for wear resistance of lightweight alloy Ti64 high speed rotors.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
Having described the specific parts of the present invention in detail, it will be apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (3)

고속 회전체 표면 상에 초고속화염용사법(HVOF)을 이용하여 코발트 합금 분말을 코팅하는 것을 특징으로 하는, 초고속화염용사법(HVOF)을 이용한 코발트 합금 분말의 코팅방법.
A method of coating cobalt alloy powder using an ultra-high speed flame spraying method (HVOF), characterized by coating a cobalt alloy powder using a high speed flame spraying method (HVOF) on the surface of a high speed rotor.
제1항에 있어서,
상기 코팅은 38-42 FMR(3.59X10-3 - 3.96X10-3 m3/sec)의 산소 유속, 60-75 FMR(5.66X10-3 - 7.08X10-3 m3/sec)의 수소 유속, 30 g/min의 분말 공급 속도, 및 5인치의 스프레이 거리를 갖는 코팅 조건으로 수행하는 것을 특징으로 하는, 초고속화염용사법(HVOF)을 이용한 코발트 합금 분말의 코팅방법.
The method of claim 1,
The coating is 38-42 FMR (3.59X10 -3 - 3.96X10 -3 m 3 / sec) oxygen flow rate, 60-75 FMR of - hydrogen flow rate of (5.66X10-3 7.08X10-3 m3 / sec), 30 g A coating method of cobalt alloy powder using HVOF, characterized in that it is carried out under a coating condition having a powder feed rate of / min, and a spray distance of 5 inches.
제1항 또는 제2항에 있어서,
상기 고속 회전체는 인코넬(Inconel) 계열 또는 티타늄 합금으로 이루어진 것을 특징으로 하는, 초고속화염용사법(HVOF)을 이용한 코발트 합금 분말의 코팅방법.
The method according to claim 1 or 2,
The high-speed rotating body is made of Inconel-based or titanium alloy, characterized in that the coating method of cobalt alloy powder using ultra-high speed flame spraying method (HVOF).
KR1020110064554A 2011-06-30 2011-06-30 High velocity oxygen fuel (hvof) spray coating of cobalt alloy powder for durability improvement of high speed spindle operating without lubricant KR20130003300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110064554A KR20130003300A (en) 2011-06-30 2011-06-30 High velocity oxygen fuel (hvof) spray coating of cobalt alloy powder for durability improvement of high speed spindle operating without lubricant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110064554A KR20130003300A (en) 2011-06-30 2011-06-30 High velocity oxygen fuel (hvof) spray coating of cobalt alloy powder for durability improvement of high speed spindle operating without lubricant

Publications (1)

Publication Number Publication Date
KR20130003300A true KR20130003300A (en) 2013-01-09

Family

ID=47835564

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110064554A KR20130003300A (en) 2011-06-30 2011-06-30 High velocity oxygen fuel (hvof) spray coating of cobalt alloy powder for durability improvement of high speed spindle operating without lubricant

Country Status (1)

Country Link
KR (1) KR20130003300A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3156515A1 (en) * 2015-10-16 2017-04-19 Airbus Operations Interface for adapting the friction between two nickel or nickel alloy or chromated cobalt parts moving relative to one another at high temperature
KR102610304B1 (en) 2023-08-16 2023-12-06 주식회사 케이지피 Tungsten carbide coating layer using HVOF spraying method and its coating method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3156515A1 (en) * 2015-10-16 2017-04-19 Airbus Operations Interface for adapting the friction between two nickel or nickel alloy or chromated cobalt parts moving relative to one another at high temperature
JP2017075401A (en) * 2015-10-16 2017-04-20 エアバス オペラシオン Friction adjustment interface between two components made of nickel, nickel alloy or cobalt-chromium alloy moving relatively at high temperature
FR3042563A1 (en) * 2015-10-16 2017-04-21 Airbus Operations Sas INTERFACE OF FRICTION ADAPTATION BETWEEN TWO PIECES OF NICKEL OR ALLOY OF NICKEL OR COBALT CHROME IN RELATIVE MOTION AGAINST THE OTHER AT HIGH TEMPERATURE
CN106609348A (en) * 2015-10-16 2017-05-03 空中客车运营公司 Adjustment interface
US10113224B2 (en) 2015-10-16 2018-10-30 Airbus Operations (S.A.S.) Friction adjustment interface between two parts made of nickel or nickel or cobalt-chromium alloy that are in relative motion against one another at high temperature
KR102610304B1 (en) 2023-08-16 2023-12-06 주식회사 케이지피 Tungsten carbide coating layer using HVOF spraying method and its coating method

Similar Documents

Publication Publication Date Title
Chen et al. Wear behavior of HVOF-sprayed Al0. 6TiCrFeCoNi high entropy alloy coatings at different temperatures
Hong et al. The effect of temperature on the dry sliding wear behavior of HVOF sprayed nanostructured WC-CoCr coatings
Geng et al. Tribological behaviour at various temperatures of WC-Co coatings prepared using different thermal spraying techniques
Sun et al. Adhesion, tribological and corrosion properties of cold-sprayed CoCrMo and Ti6Al4V coatings on 6061-T651 Al alloy
Bolelli et al. HVOF-sprayed WC–CoCr coatings on Al alloy: effect of the coating thickness on the tribological properties
Bhosale et al. Tribological behaviour of atmospheric plasma and high velocity oxy-fuel sprayed WC-Cr3C2-Ni coatings at elevated temperatures
Chen et al. HVOF-sprayed adaptive low friction NiMoAl–Ag coating for tribological application from 20 to 800° C
Hajare et al. Comparative study of wear behaviour of Thermal Spray HVOF coating on 304 SS
Liu et al. Effects of temperature and atmosphere on microstructure and tribological properties of plasma sprayed FeCrBSi coatings
Du et al. Water-lubricated tribological behavior of WC-Ni coatings deposited by off-angle HVOF spraying
Kusmoko et al. A comparative study for wear resistant of Stellite 6 coatings on nickel alloy substrate produced by laser cladding, HVOF and plasma spraying techniques
Reddy et al. Effect of heat treatment on corrosion behavior of duplex coatings
Lindner et al. Boriding of HVOF-sprayed Inconel 625 coatings
Mazouzi et al. Effect of annealing temperature on the microstructure evolution, mechanical and wear behavior of NiCr–WC–Co HVOF-sprayed coatings
Si et al. Effect of HVOF–sprayed nanostructured WC–10Co–4Cr coating on sliding wear and tensile–tensile fatigue properties of TC6 titanium alloy
KR20110131687A (en) Coating method of stainless steel using high-velocity oxy-fuel thermal spraying
KR20130003300A (en) High velocity oxygen fuel (hvof) spray coating of cobalt alloy powder for durability improvement of high speed spindle operating without lubricant
Ulutan et al. Plasma transferred arc surface modification of atmospheric plasma sprayed ceramic coatings
Prasad et al. Comparison of microstructural and sliding Wear resistance of HVOF coated and microwave treated CoMoCrSi-WC+ CrC+ Ni and CoMoCrSi-WC+ 12Co composite coatings deposited on titanium substrate
Mahmud et al. Effect of heat treatment on wear performance of nanostructured WC-Ni/Cr HVOF sprayed coatings
Tao et al. High-temperature frictional wear behavior of MCrAlY-based coatings deposited by atmosphere plasma spraying
AU2014202661B2 (en) Mechanical part with a nanostructured TIO2-CR2O3 ceramic coating and method for depositing a nanostructured TIO2-CR2O3 ceramic coating on a substrate
Peng-cheng et al. High-temperature tribological properties of laser clad composite coatings on Ti6Al4V alloy
Zhang et al. Characterization of Ni-based alloy submicron WS2/CaF2 composite coatings deposited by high velocity oxy-fuel (HVOF) spray process
Zhu et al. Tribological behavior of NiCrAlY/Al2O3/h-BN metal-ceramic composite coatings at wide temperature range by detonation spraying

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application