KR20120138606A - 지면데이터의 연속성 검색을 이용하여 도로 레이어를 취득하는 시스템 - Google Patents

지면데이터의 연속성 검색을 이용하여 도로 레이어를 취득하는 시스템 Download PDF

Info

Publication number
KR20120138606A
KR20120138606A KR1020110122617A KR20110122617A KR20120138606A KR 20120138606 A KR20120138606 A KR 20120138606A KR 1020110122617 A KR1020110122617 A KR 1020110122617A KR 20110122617 A KR20110122617 A KR 20110122617A KR 20120138606 A KR20120138606 A KR 20120138606A
Authority
KR
South Korea
Prior art keywords
data
ground
variable
unit
road
Prior art date
Application number
KR1020110122617A
Other languages
English (en)
Inventor
우성진
오정환
김정욱
김수기
Original Assignee
(주)에스지원정보기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에스지원정보기술 filed Critical (주)에스지원정보기술
Priority to KR1020110122617A priority Critical patent/KR20120138606A/ko
Publication of KR20120138606A publication Critical patent/KR20120138606A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/005Measuring inclination, e.g. by clinometers, by levels specially adapted for use in aircraft
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Remote Sensing (AREA)
  • Algebra (AREA)
  • Operations Research (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Processing Or Creating Images (AREA)

Abstract

본 발명은, 웹 서버를 통해 수신된 항공 레이저 측량 데이터에 대해 필터링 과정을 수행하여 지면 데이터와 비지면 데이터로 분류하되, 상기 필터링 과정은 다음 수학식들( Rij - Rl _ min > T, 여기서, Rij은 특정 영역 내의 임의의 셀을 가리키고, Rl _ min은 반복회수 l번째에서의 특정 영역 내의 최소 높이값을 가리키며, T는 제1임계값을 나타냄. 상기 제1임계값은 수학식 T = sMl 에 의해서 결정되며, 여기서, s는 대상 영역의 최대 경사를 나타내고, Ml 은 반복회수 l번째의 윈도우 크기를 나타냄.)에 의해 수행되는 필터링부; 상기 분류된 지면 데이터로부터 상기 지면 데이터의 연속성 검색을 위한 변수를 산출하되, 상기 변수는 다음 수학식
Figure pat00020
(H는 지면 데이터의 연속성 검색을 위한 변수, Max(h)는 격자 내 가장 높은 점의 높이값, Min(h)는 가장 낮은 점의 높이값, L은 격자의 크기를 나타냄)에 의해 산출되는 변수 산출부; 상기 산출된 변수가 기설정된 제2임계값보다 크면 해당 격자의 데이터는 부적합한 지면 데이터로 판단되어 경사도 판별부로 전송되고, 상기 산출된 변수가 상기 기설정된 제2임계값보다 작거나 같으면 적합한 지면 데이터로 판단되어 데이터 결정부로 전송하는 임계값 비교부; 상기 전송된 부적합한 지면 데이터의 경사도를 계산하여 다시 상기 변수 산출부로 전송하는 경사도 판별부; 상기 경사도 판별부로부터 수신한 경사도를 반영하여 다음 수학식
Figure pat00021
(mod_H는 수정된 변수, H는 기획득된 변수, θ는 경사 각도, C는 경사도 팩터를 나타냄)에 의해 수정된 변수를 산출하는 상기 변수 산출부; 상기 수정된 변수가 상기 기설정된 제2임계값보다 크면 다시 부적합한 지면 데이터로 판단하여 상기의 과정을 반복하게 되고, 상기 수정된 변수가 상기 기설정된 제2임계값보다 작거나 같으면 적합한 지면 데이터로 판단하여 데이터 결정부로 전송하는 상기 임계값 비교부; 상기 임계값 비교부로부터 수신된 데이터를 최종 지면 데이터로 결정하는 데이터 결정부; 및 데이터 베이스부에 저장되어 있는 수치지도 데이터로부터 도로 경계 정보를 추출하고, 상기 도로 경계 정보에 기초하여 상기 최종 지면 데이터로부터 도로 경계 내의 점들을 추출하여 표면 영역들을 생성하고, 상기 표면 영역들 사이의 에지 길이와 높이 차이에 기초하여 상기 표면 영역들을 하나의 도로 표면 집단으로 그룹핑하고, 상기 그룹핑된 도로 표면 집단을 이루는 점들과 상기 도로 경계 정보를 이용하여 3차원 도로 데이터를 생성하는 3차원 공간정보 생성부를 포함하되, 상기 필터링 과정은 특정 영역 내에 있는 점의 높이값 중 최소값을 획득하고 상기 최소값보다 큰 높이값을 가진 점들만을 비교 대상값으로 설정한 후, 상기 비교 대상값이 기설정된 제1임계값보다 큰 경우 비지면 데이터로 분류하고, 상기 비교 대상값이 상기 기설정된 제1 임계값보다 작거나 같으면 지면 데이터로 분류되는 것을 특징으로 하는 지면데이터의 연속성 검색을 이용하여 도로 레이어를 취득하는 시스템을 제공한다.

Description

지면데이터의 연속성 검색을 이용하여 도로 레이어를 취득하는 시스템{A SYSTEM FOR GENERATING ROAD LAYER USING CONTINUITY ANALYSIS OF GROUND DATA}
본 발명은 지면데이터의 연속성 검색을 이용하여 도로 레이어를 취득하는 시스템 및 그 방법에 관한 것이다.
현대 사회가 복잡화, 고도화됨에 따라 다양한 지식 정보들 중 지형 공간 정보는 국토 공간의 효율적인 활용 및 관리를 위하여 그 중요성이 날로 증대되고 있다. 공간 정보를 이용하는 분야는 전 세계적인 관심 산업으로써 인터넷 기반의 지도서비스 및 3차원 지리정보 서비스는 이미 구글, 마이크로소프트 등으로부터 제공되고 있다. 또한, 3차원 지리 정보(GI : Geographical Information) 소프트웨어 산업 시장은 기능별로 세분화되어 발전되어 왔으며, 지리 정보의 활용 분야의 다양성과 전문성은 지리 정보 시스템(GIS : Geographical Information System)기반 기술의 응용 분야를 창출하는데 기여하였다.
이러한 지리 정보의 기초 자료인 항공 사진, 항공 레이저 측량 데이터 등에 대해 보다 정확한 분석 툴들을 이용하여 보다 실감있고 정확한 지형 공간 정보를 생성하기 위하여 항공 사진을 이용한 분석 기법들이 증가하고 있는 실정이다. 또한, 항공 사진은 지표면에 대해 풍부한 텍스쳐 정보를 제공하지만, 그림자, 기복 변위 등의 단점이 있고, 항공 레이저 측량 데이터는 점 형태로서 정확도 높은 3차원 지형 좌표를 제공하지만, 풍부한 텍스쳐 정보를 제공하지 못한다. 따라서, 보다 정확하고 현실감 있는 공간 정보를 제공하기 위해서는 항공 사진 또는 항공 레이저 측량 데이터의 단점을 보완하거나 장점을 융합시킬 필요가 있다.
본 발명에서는 항공 레이저 측량 데이터를 이용하여 보다 높은 품질의 수치 지도를 제작하고자 한다.
또한, 본 발명은, 항공 레이저 측량 데이터의 필터링을 통해 지면 데이터와 비지면 데이터를 효과적으로 분류하고자 한다.
또한, 본 발명은, 지면 데이터의 경사도를 반영하여 보다 정확한 도로 데이터를 획득하고자 한다.
또한, 본 발명은, 비지면 데이터의 무게중심점을 이용하여 보다 정확한 건물 데이터를 획득하고자 한다.
또한, 본 발명은, 영상 후처리 과정을 통해 보다 선명한 영상 정보를 획득하고자 한다.
또한, 본 발명은, 항공 사진과 항공 레이저 측량 데이터의 장점을 융합할 수 있는 방법을 제공하고자 한다.
또한, 본 발명은, 항공 사진과 항공 레이저 측량 데이터를 융합하여 이용함으로써 보다 정확하고 현실감 있는 공간 정보를 제공하고자 한다.
본 발명은, 웹 서버를 통해 수신된 항공 레이저 측량 데이터에 대해 필터링 과정을 수행하여 지면 데이터와 비지면 데이터로 분류하되, 상기 필터링 과정은 다음 수학식들( Rij - Rl_min > T, 여기서, Rij은 특정 영역 내의 임의의 셀을 가리키고, Rl_min은 반복회수 l번째에서의 특정 영역 내의 최소 높이값을 가리키며, T는 제1임계값을 나타냄. 상기 제1임계값은 수학식 T = sMl 에 의해서 결정되며, 여기서, s는 대상 영역의 최대 경사를 나타내고, Ml 은 반복회수 l번째의 윈도우 크기를 나타냄.)에 의해 수행되는 필터링부; 상기 분류된 지면 데이터로부터 상기 지면 데이터의 연속성 검색을 위한 변수를 산출하되, 상기 변수는 다음 수학식
Figure pat00001
(H는 지면 데이터의 연속성 검색을 위한 변수, Max(h)는 격자 내 가장 높은 점의 높이값, Min(h)는 가장 낮은 점의 높이값, L은 격자의 크기를 나타냄)에 의해 산출되는 변수 산출부; 상기 산출된 변수가 기설정된 제2임계값보다 크면 해당 격자의 데이터는 부적합한 지면 데이터로 판단되어 경사도 판별부로 전송되고, 상기 산출된 변수가 상기 기설정된 제2임계값보다 작거나 같으면 적합한 지면 데이터로 판단되어 데이터 결정부로 전송하는 임계값 비교부; 상기 전송된 부적합한 지면 데이터의 경사도를 계산하여 다시 상기 변수 산출부로 전송하는 경사도 판별부; 상기 경사도 판별부로부터 수신한 경사도를 반영하여 다음 수학식
Figure pat00002
(mod_H는 수정된 변수, H는 기획득된 변수, θ는 경사 각도, C는 경사도 팩터를 나타냄)에 의해 수정된 변수를 산출하는 상기 변수 산출부; 상기 수정된 변수가 상기 기설정된 제2임계값보다 크면 다시 부적합한 지면 데이터로 판단하여 상기의 과정을 반복하게 되고, 상기 수정된 변수가 상기 기설정된 제2임계값보다 작거나 같으면 적합한 지면 데이터로 판단하여 데이터 결정부로 전송하는 상기 임계값 비교부; 상기 임계값 비교부로부터 수신된 데이터를 최종 지면 데이터로 결정하는 데이터 결정부; 및 데이터 베이스부에 저장되어 있는 수치지도 데이터로부터 도로 경계 정보를 추출하고, 상기 도로 경계 정보에 기초하여 상기 최종 지면 데이터로부터 도로 경계 내의 점들을 추출하여 표면 영역들을 생성하고, 상기 표면 영역들 사이의 에지 길이와 높이 차이에 기초하여 상기 표면 영역들을 하나의 도로 표면 집단으로 그룹핑하고, 상기 그룹핑된 도로 표면 집단을 이루는 점들과 상기 도로 경계 정보를 이용하여 3차원 도로 데이터를 생성하는 3차원 공간정보 생성부를 포함하되, 상기 필터링 과정은 특정 영역 내에 있는 점의 높이값 중 최소값을 획득하고 상기 최소값보다 큰 높이값을 가진 점들만을 비교 대상값으로 설정한 후, 상기 비교 대상값이 기설정된 제1임계값보다 큰 경우 비지면 데이터로 분류하고, 상기 비교 대상값이 상기 기설정된 제1 임계값보다 작거나 같으면 지면 데이터로 분류되는 것을 특징으로 하는 지면데이터의 연속성 검색을 이용하여 도로 레이어를 취득하는 시스템을 제공한다.
또한, 본 발명에서, 상기 3차원 공간정보 생성부는, 수치지도 상의 도로 경계선에 수선을 내리고 그 교점을 계산하여 새로운 도로 표면 경계점의 수평 위치를 계산하고, 상기 계산된 교점을 중심으로 수평 위치 상에서 인접한 점들로부터 평면 계수를 산출하고, 상기 수평 위치의 좌표값과 상기 평면 계수를 이용하여 높이값을 계산함으로써 상기 3차원 도로 데이터를 생성하는 것을 특징으로 한다.
또한, 본 발명에서, 상기 경사도 팩터는 0.7의 값을 갖는 것을 특징으로 한다.
본 발명의 실시예들을 통하여 2차원 또는 3차원 공간 정보를 구축하게 될 경우, 더욱 정확하고 현실감 있는 가상 환경을 제공함으로써 향상된 직관력과 의사 결정을 지원할 수 있게 된다. 기존의 도로 모델링과 관련된 선행 연구들은 모든 도로를 주행하면서 센서 데이터를 취득하는 것 때문에 수반되는 비용이 컸지만, 본 발명에서는 항공 레이저 측량 데이터의 필터링을 통하여 공간 정보를 획득함으로써 보다 정확한 3차원 공간 정보 시스템을 구축할 수 있다.
또한, 항공 사진과 항공 레이저 측량 데이터의 장점을 융합할 수 있는 방법을 제공함으로써, 높은 품질의 수치 지도를 제작할 수 있게 된다.
도 1은 본 발명이 적용되는 3차원 공간정보 구축 시스템의 개략적인 블록도를 나타낸다.
도 2는 본 발명이 적용되는 실시예로서, 항공 레이저 측량 데이터를 획득하는 항공 레이저 측량 데이터 획득부(211)의 개략적인 블록도를 나타낸다.
도 3은 본 발명이 적용되는 일실시예로서, 데이터 프로세싱부(300)의 개략적인 블록도를 나타낸다.
도 4는 본 발명이 적용되는 일실시예로서, 데이터 분류부(310)의 개략적인 블록도를 나타낸다.
도 5는 본 발명이 적용되는 일실시예로서, 지면 데이터 획득부(320)의 개략적인 블록도를 나타낸다.
도 6은 본 발명이 적용되는 실시예로서, 지면 데이터로부터 3차원 도로 모델을 생성하기 위한 방법을 설명하기 위해 나타낸 것이다.
도 7은 본 발명이 적용되는 일실시예로서, 비지면 데이터 획득부(330)의 개략적인 블록도를 나타낸다.
도 8은 본 발명이 적용되는 일실시예로서, 항공 레이저 측량 데이터로부터 지면 데이터와 비지면 데이터를 추출하는 흐름도를 나타낸다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예의 구성과 그 작용을 설명하며, 도면에 의해서 설명되는 본 발명의 구성과 작용은 하나의 실시예로서 설명되는 것이며, 이것에 의해서 본 발명의 기술적 사상과 그 핵심 구성 및 작용이 제한되지는 않는다.
아울러, 본 발명에서 사용되는 용어는 가능한 한 현재 널리 사용되는 일반적
인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어를 사용하여 설명한다. 그러한 경우에는 해당 부분의 상세 설명에서 그 의미를 명확히 기재하므로, 본 발명의 설명에서 사용된 용어의 명칭만으로 단순 해석되어서는 안 될 것이며 그 해당 용어의 의미까지 파악하여 해석되어야 함을 밝혀두고자 한다. 특히, 본 명세서에서 데이터(data) 또는 정보(information)란, 값(values), 파라미터(parameters), 계수(coefficients), 성분(elements) 등을 모두 아우르는 용어로서, 경우에 따라 그 의미는 달리 해석될 수 있다.
공간 정보 시스템(Spatial Information System)은 공간상 위치를 점유하는 지리 자료와 이에 관련된 속성 자료를 통합하여 처리하는 정보 시스템으로서 다양한 형태의 공간 정보를 효율적으로 수집, 저장, 갱신, 처리, 분석, 출력하기 위해 이용되는 하드웨어, 소프트웨어, 지리자료, 인적자원의 총체적 조직체라고 정의할 수 있다. 상기 공간 정보 시스템의 이용에 따라 공간 정보의 다양한 활용이 용이해졌다. 그리고, 기존에 구축된 일정 수준의 시설물에 대한 정보와 항공 사진 및 수치 지형도를 이용하여 대상 지역에 대한 3차원 공간 정보를 생성할 수 있게 되었고, 그에 따라 기존의 평면적인 분석에서 3차원적 분석이 가능하게 되었다. 따라서, 보다 효율적인 3차원 공간 정보를 생성하기 위한 실시예들을 살펴보도록 한다.
도 1은 본 발명이 적용되는 3차원 공간정보 구축 시스템의 개략적인 블록도를 나타낸다.
도 1을 참조하면, 3차원 공간정보 구축 시스템(100)은 데이터 수신부(200), 데이터 프로세싱부(300), 데이터 베이스부(400) 및 영상 표시부(500)를 포함한다.
상기 데이터 수신부(200)는 항공 레이저 측량 데이터 수신부(210)와 항공 사진 데이터 수신부(220)를 포함한다. 여기서, 항공 레이저 측량 데이터라 함은, 항공 레이저 측량 시스템을 항공기에 장착하여 레이저 펄스를 지표면에 주사하고, 반사된 레이저파의 도달 시간을 이용하여 반사되는 지점과 관련된 정보를 의미한다. 예를 들어, 레이저 측량에 의한 위치 좌표값, 항공 레이저 측량시 발생하는 X축 또는 Y축의 회전량 오차 정보, 항공 레이저 측량 데이터의 진입점의 좌표값과 건물 최외곽 지상 측량 좌표값의 거리 정보, 스케일 보정 팩터, 지상기준점과 항공 레이저 측량 데이터와의 일정한 높이 차이 정보 등이 있을 수 있다. 그리고, 항공 사진 데이터라 함은, 항공 사진으로부터 획득될 수 있는 2차원 좌표 정보 및 속성 정보를 의미한다. 예를 들어, 항공 사진의 픽셀 좌표계에서 카메라의 물리적인 좌표계를 산출할 때 사용되는 변수인 내부 표정 측점 정보, 입체 모델 생성시 사용되는 변수인 상호 표정 정보, 항공 사진 상의 위치에 대해 지상 좌표를 산출할 경우 사용되는 변수인 절대 표정 정보, 상호 표정 및 절대 표정 작업이 완료되면 항공 사진 상에 임의의 위치에 해당하는 지상 좌표값을 산출할 때 사용되는 수학식의 상수인 외부 표정 요소를 포함할 수 있다.
상기 항공 레이저 측량 데이터 수신부(210)는 항공 레이저 측량 데이터 획득부(211)로부터 항공 레이저 측량 데이터를 수신하고, 상기 항공 사진 데이터 수신부(220)는 항공사진 데이터와 사용자 입력값 등을 수신한다. 이때, 상기 데이터들은 웹 서버나 이동통신망을 통하여 전송될 수 있다. 상기 항공 레이저 측량 데이터 획득부(211)는 상기 도 1에서는 도시되지 않았지만, 본 발명이 적용되는 3차원 공간정보 구축 시스템(100)에 포함될 수도 있다. 상기 항공 레이저 측량 데이터 획득부(211)에 대해서는 도 2에서 보다 상세히 설명하도록 한다.
상기 데이터 프로세싱부(300)는 상기 데이터 수신부(200)로부터 항공 사진 데이터 또는 항공 레이저 측량 데이터 중 적어도 하나의 데이터를 입력받아 보다 정확하고 효율적인 공간 정보를 생성하기 위해 상기 입력된 데이터를 지면 데이터와 비지면 데이터로 분류하고, 상기 분류된 지면 데이터와 비지면 데이터에 대한 영상 처리를 통하여 3차원 공간정보를 생성하게 된다. 도 3을 참조하면, 상기 데이터 프로세싱부(300)는 데이터 분류부(310), 지면 데이터 획득부(320), 비지면 데이터 획득부(330) 및 3차원 공간정보 생성부(340)를 포함한다.
본 발명의 일실시예로, 상기 데이터 프로세싱부(300)의 데이터 분류부(310)는 입력받은 데이터의 특성에 따라 이를 분류하여 이용할 경우 각 데이터 특성에 따른 영상 처리를 수행할 수 있으므로 보다 정확한 데이터를 획득할 수 있게 된다. 예를 들어, 상기 입력받은 데이터들은 지면 데이터와 비지면 데이터로 분류될 수 있고, 이는 수치지도 제작을 위해 이용될 수 있다. 여기서, 상기 지면 데이터는 도로 데이터 등을 포함할 수 있고, 상기 비지면 데이터는 건물 데이터, 식물군 데이터 등을 포함할 수 있다.
상기 데이터 수신부(200)로부터 항공 레이저 측량 데이터가 입력된 경우, 상기 데이터 프로세싱부(300)는 상기 항공 레이저 측량 데이터들을 0.4m 간격의 정규 격자의 래스트 자료로 변환한 후 필터링 과정을 적용할 수 있다. 이때, 우선적으로 대상 지역의 평균 표고와 정규 격자 간격을 고려하여 탐색 영역을 설정한 후, 주변의 점들과 비교하여 과대하게 높거나 낮은 점들을 검색하여 오차를 제거함으로써 데이터 분류시 그 정확도를 향상시킬 수 있다. 여기서, 과대하게 높거나 낮은 점들은 기설정된 기준값에 의해 결정될 수 있다. 이렇게 오차가 제거된 항공 레이저 측량 데이터들에 대해 필터링 과정을 적용시킴으로써 지면 데이터와 비지면 데이터롤 분류할 수 있게 된다. 이에 대한 구체적인 설명은 도 4에서 하기로 한다.
본 발명의 다른 일실시예로, 상기 데이터 프로세싱부(300)의 지면 데이터 획득부(320)는 본 발명에 의해 제안된 산출 방식을 이용하여 평평한 지역의 지면 데이터와 경사진 지역의 지면 데이터를 구별함으로써 보다 정확한 지면 데이터를 획득할 수 있다. 그리고 상기 지면 데이터로부터 도로 데이터를 생성할 수 있다. 이는 도 5에서 보다 상세히 설명하기로 한다.
본 발명의 다른 일실시예로, 상기 데이터 프로세싱부(300)의 비지면 데이터 획득부(330)는 분류된 비지면 데이터로부터 건물 데이터를 생성할 수 있다. 예를 들어, 상기 비지면 데이터로부터 등고선을 추출하여 건물의 경계 데이터로 선택할 수 있다. 그리고 상기 선택된 경계 데이터를 선형화하고, 폴리곤 형태로 변환함으로써 대상 건물에 대한 건물 데이터를 획득할 수 있게 된다. 본 발명에 의해 제안된 산출 방식을 이용함으로써 보다 정확한 건물 데이터를 획득할 수 있다. 이는 도 6에서 보다 상세히 설명하기로 한다.
상기 3차원 공간정보 생성부(340)는 상기 데이터 프로세싱부(300)로부터 획득된 도로 데이터와 건물 데이터를 이용하여 보다 정확한 3차원 공간정보를 생성할 수 있게 된다.
상기 데이터 베이스부(140)는 항공 레이저 측량 데이터 및 항공 사진 데이터를 저장하고, 상기 데이터 프로세싱부(300)가 2차원 또는 3차원 공간정보를 생성할 때 필요한 정보를 제공한다. 그리고, 상기 데이터 프로세싱부(300)로부터 생성된 2차원 또는 3차원 공간정보를 저장한다.
그리고, 상기 영상 표시부(500)는 상기 데이터 프로세싱부(300)로부터 획득된 2차원 또는 3차원 공간정보를 출력한다. 예를 들어, 상기 영상 표시부(500)는 2차원 또는 3차원 수치도화의 결과물을 출력하여 사용자에 제공할 수 있다.
본 발명에 있어서, 수치도화란 측량용 항공사진 또는 위성 영상의 지형 지물을 해석식 도화 시스템에 의하여 수치 데이터로 측정하여 컴퓨터에 수록하는 작업을 말하며, 항공사진 도화 시스템는 공간정보시스템에 이용되는 수치사진 측량장비를 이용하여 촬영한 항공사진을 판독하는 장치를 말한다. 또한, 수치지도란 종이지도가 가지고 있는 정보를 점, 선 및 면 형태의 기하학적 도형 요소나 화소들의 집합으로 디지털화한 도면 또는 수치지도(Digital Map)를 의미한다. 본 발명에 의해 획득된 2차원 또는 3차원 공간정보는 수치도화를 위해 이용될 수 있다.
도 2는 본 발명이 적용되는 실시예로서, 항공 레이저 측량 데이터를 획득하는 항공 레이저 측량 데이터 획득부(211)의 개략적인 블록도를 나타낸다.
상기 항공 레이저 측량 데이터 획득부(211)는 레이저 스캐닝부(212), 기준 위치 획득부(213), 가변 데이터 획득부(214) 및 데이터 보정부(215)를 포함할 수 있다. 그리고, 상기 데이터 보정부(215)는 회전량 보정부(215-1), 스케일 보정부(215-2) 및 높이 보정부(215-3)를 포함할 수 있다.
상기 레이저 스캐닝부(212)에서는 지상의 공간 객체와 항공기 간의 거리를 획득할 수 있다. 즉, 레이저파의 발사 지점에서부터 반사된 지상의 지형, 지물까지의 거리를 측정할 수 있다. 예를 들어, 레이저 펄스를 일정한 고도에서 지상으로 주사하여 반사되어 오는 시간을 기록하여 반사 지점의 3차원 위치를 결정할 수 있게 된다. 상기 레이저 스캐닝부(212)는, 예를 들어, 스캔각이 0도인 고정된 레이저 스캐너를 포함할 수 있고, 또는 높은 점밀도를 갖는 레이저 스캐너를 포함할 수 있다. 상기 기준 위치 획득부(213)에서는 이동체의 절대적인 위치 정보를 획득할 수 있다. 예를 들어, GPS(Global Positioning System) 수신기를 이용하여 레이저 센서의 기준 위치 정보를 획득할 수 있다. 여기서, 상기 레이저 센서는 상기 레이저 스캐닝부(212)에 포함될 수 있다. 상기 가변 데이터 획득부(214)에서는 이동체의 회전 요소와 속도 및 위치 정보를 획득할 수 있다. 예를 들어, 매순간 변화하는 이동체의 회전량과 측정된 가속도를 이용하여 상기 이동체의 위치 정보를 획득할 수 있다.
상기 레이저 스캐닝부(212), 상기 기준 위치 획득부(213) 및 상기 가변 데이터 획득부(214)로부터 획득된 데이터들은 수치 지도를 제작하기 위하여 이용될 수 있다. 이때, 상기 획득된 데이터들은 보다 정확하고 효율적인 수치 지도를 제작하기 위해 상기 도 1의 상기 데이터 분류부(310)에서 데이터 특성에 따라 분류되어 이용될 수 있다. 이는 상기 데이터 분류부(350)에서 수행될 수 있다. 예를 들어, 상기 데이터들은 수치 지도 제작을 위한 지면 데이터와 비지면 데이터로 분류되어 이용될 수 있다.
한편, 상기 획득된 데이터들은 기계적인 오차, 또는 확률적인 오차를 포함하고 있기 때문에 이를 보정할 필요가 있다. 따라서, 상기 데이터 보정부(215)에서는 상기 획득된 데이터들의 정확성, 효율성 및 최신성을 위해 상기 데이터들을 보정할 수 있다. 상기 데이터 보정부(215)는 회전량 보정부(215-1), 스케일 보정부(215-2) 및 높이 보정부(215-3)를 포함할 수 있다.
상기 회전량 보정부(215-1)는 항공 레이저 측량시 발생하는 Y축의 회전량 오차를 보정할 수 있다. 예를 들어, 항공 레이저 측량 데이터의 진입점의 좌표값과 건물 최외곽 지상 측량 좌표값의 거리를 측정하여 상기 Y축 회전량의 오차값을 보정할 수 있다. 이때, 회전량 오차값의 보정량의 부호는 비행 방향에 따라 다를 수 있다. 예를 들어, 비행 방향과 동일한 방향으로 항공 레이저 측량 데이터가 건물의 외곽선보다 위쪽에 위치한 경우에는 상기 보정량은 양수의 값을 가질 수 있다.
상기 레이저 스캐닝부(212)의 X축 방향은 비행기의 진행 방향과 동일할 수 있다. 따라서, 건물과 같이 높이값의 기복 변위가 지형과 경계면에서는 크고 일정한 구간에서는 평평한 면이 존재하는 건물 지붕면을 기준면으로 설정하여 보정을 수행할 수 있다. 예를 들어, 비행 방향으로 건물에 대하여 실제 측량한 건물의 외곽점과 레이저 측량을 통해 얻어진 점들과의 높이 차이를 산출하여 보정할 수 있다.
또한, 상기 회전량 보정부(215-1)는 항공 레이저 측량시 발생하는 X축의 회전량 오차를 보정할 수 있다. 레이저 펄스가 일정한 주사폭으로 비행 방향에 직교하게 좌우로 주사되는 경우에는 X축의 회전량 변화에 따라 위치 정보가 크게 달라질 수 있다. 따라서, 본 발명에서는 상기 X축의 회전량 변화를 보정하기 위하여 빌딩의 옥상면이 모두 측량 가능하도록 빌딩의 횡방향을 따라 항공 레이저 측량을 실시할 수 있다.
또한, 상기 스케일 보정부(215-2)에서는 항공 레이저 측량시 발생하는 거리 측정의 스케일을 보정할 수 있다. 본 발명에서는 지상기준점 배치와 직교하는 형태로 스케일 보정을 수행할 수 있다. 이를 위해서는 넓고 평평한 지면에 항공 레이저 측량의 주사폭 만큼의 범위 안에 지상기준점을 미리 현지 측량할 필요가 있다.
또한, 높이 보정부(215-3)에서는 지상기준점과 항공 레이저 측량 데이터와의 일정한 높이값의 차이를 보정할 수 있다. 본 발명에서는 상기 항공 레이저 측량 데이터가 상기 지상 기준점과 동일한 높이 값을 갖도록 보정할 수 있다. 예를 들어, Z축으로 일정한 변위를 조사하기 위해 상기 지상기준점 배치를 따라 비행할 수 있다. 이러한 경우, 보다 정확한 높이값의 차이를 측정할 수 있다.
이렇게 보정된 데이터들은 3차원 공간정보 구축을 위해 보다 정확한 입력 데이터를 구성할 수 있으며, 이를 통해 보다 정교하고 높은 품질의 수치 지도를 제작할 수 있게 된다.
도 3은 본 발명이 적용되는 일실시예로서, 데이터 프로세싱부(300)의 개략적인 블록도를 나타낸다.
상기 도 3을 참조하면, 상기 데이터 프로세싱부(300)는 데이터 분류부(310), 지면 데이터 획득부(320), 비지면 데이터 획득부(330) 및 3차원 공간정보 생성부(340)를 포함한다.
상기 데이터 분류부(310)는 상기 항공 레이저 측량 데이터 수신부(210) 또는 상기 항공 사진 데이터 수신부(220)로부터 입력받은 데이터로부터 오차를 제거하고 필터링 과정을 적용함으로써 지면 데이터와 비지면 데이터로 분류할 수 있다.
상기 지면 데이터 획득부(320)는 평평한 지역의 지면 데이터와 경사진 지역의 지면 데이터를 구별하고, 경사진 지역의 경사도를 반영하여 지면 데이터의 연속성 탐색을 위한 변수를 설정함으로써 보다 정확한 지면 데이터를 획득할 수 있다. 그리고 상기 획득된 지면 데이터로부터 도로 데이터를 생성할 수 있다.
상기 비지면 데이터 획득부(330)는 분류된 비지면 데이터로부터 건물 데이터를 생성할 수 있다. 예를 들어, 상기 비지면 데이터로부터 등고선을 추출하여 건물의 경계 데이터로 선택할 수 있다. 그리고 상기 선택된 경계 데이터를 선형화하고, 폴리곤 형태로 변환함으로써 대상 건물에 대한 건물 데이터를 획득할 수 있게 된다.
상기 3차원 공간정보 생성부(340)는 상기 획득된 도로 데이터와 건물 데이터를 이용하여 3차원 공간정보를 생성할 수 있게 된다.
상기 데이터 분류부(310), 상기 지면 데이터 획득부(320) 및 상기 비지면 데이터 획득부(330)에 대해서는 이하 도 4 내지 도 6에서 보다 상세히 설명하도록 한다.
도 4는 본 발명이 적용되는 일실시예로서, 데이터 분류부(310)의 개략적인 블록도를 나타낸다.
상기 데이터 분류부(310)는 오차 제거부(311), 제1필터링부(312) 및 데이터 추출부(313)를 포함하여 이루어질 수 있다.
상기 오차 제거부(311)는 우선적으로 대상 지역의 평균 표고와 정규 격자 간격을 고려하여 탐색 영역을 설정할 수 있다. 상기 탐색 영역을 설정한 후, 탐색 영역 내에서 주변의 점들과 비교하여 과대하게 높거나 낮은 점들을 검색하여 제거함으로써 오차가 큰 데이터를 제거할 수 있다. 예를 들어, 주변 점들의 좌표값을 기준으로 기설정된 오차값 범위 내를 벗어나는 좌표값을 갖는 점들은 데이터 분류시 제거될 수 있다. 이러한 과정을 통해 미리 큰 오차값을 갖는 데이터를 제거함으로써 보다 정확한 데이터를 획득할 수 있게 된다.
상기 제1필터링부(312)는 오차가 제거된 상기 데이터들에 대해 제1필터링 과정을 수행함으로써 상기 데이터들을 지면 데이터와 비지면 데이터로 분류할 수 있다. 예를 들어, 먼저 특정 영역 내에 있는 점의 높이값 중에서 최소값을 검색하여, 상기 최소값보다 큰 높이값을 가진 점들만 비교 대상값으로 설정하고, 상기 비교 대상값을 기설정된 임계값과 비교하는 방법이 이용될 수 있다. 상기 비교 대상값이 임계값보다 큰 점들은 비지면 데이터로 분류될 수 있고, 상기 비교 대상값이 임계값보다 작거나 같은 점들은 지면 데이터로 분류될 수 있다. 이때, 다음 수학식 1이 이용될 수 있다.
Figure pat00003
여기서, Rij은 특정 영역 내의 임의의 셀을 가리키고, Rl _ min은 반복회수 l번째에서의 특정 영역 내의 최소 높이값을 가리킨다. 또한, T는 임계값을 나타내며, 여기서 상기 임계값은 실험에 의해 측정된 값일 수 있고, 또는 상기 최소값을 의미할 수 있다. 상기 임계값 T는 다음 수학식 2에 의해서 결정될 수 있다.
Figure pat00004
여기서, s는 대상 영역의 최대 경사를 나타내고, Ml 은 반복회수 l번째의 윈도우 크기를 나타낸다.
이와 같은 과정을 통해 반복연산을 수행함으로써 상기 데이터 추출부(313)에서는 지면 데이터와 비지면 데이터를 점차적으로 분류하여 추출할 수 있게 된다.
도 5는 본 발명이 적용되는 일실시예로서, 지면 데이터 획득부(320)의 개략적인 블록도를 나타낸다.
상기 지면 데이터 획득부(320)는 변수 산출부(321), 임계값 비교부(322), 경사도 판별부(323) 및 데이터 결정부(324)를 포함하여 이루어질 수 있다.
상기 변수 산출부(321)는 상기 데이터 분류부(310)로부터 분류된 지면 데이터 중 지면을 이루는 점들의 연속성을 위반하는 영역을 검색하기 위해 이용되는 변수를 산출한다. 예를 들어, 기설정된 크기의 격자들로 나누어진 영역 내에서 지면을 이루는 데이터들은 격자 내의 다른 데이터들에 비해 높이값 차이가 유사한 분포를 갖는다. 본 발명에서는 평평한 지역에서 허용 가능한 높이값 차이를 결정하기 위해 실제 데이터를 이용하여 실험하였고, 실험 결과 최소 8% 이내의 높이값 차이를 갖는 데이터들로 지면 데이터를 구성할 경우 가장 바람직한 결과값을 얻을 수 있었다. 따라서, 높이변수(H)은 아래 수학식 3과 같이 한 격자 내에서 가장 높은 점의 높이값과 가장 낮은 점의 높이값의 차이를 격자 크기로 나눔으로써 획득될 수 있다.
Figure pat00005
여기서, H는 높이변수를 나타내고, Max(h)는 격자 내의 가장 높은 점의 높이값을, Min(h)는 가장 낮은 점의 높이값을 나타내며, L은 격자의 크기를 나타낸다.
상기 임계값 비교부(322)는 상기 획득된 높이변수(H)와 기설정된 임계값을 비교함으로써 보다 정교한 지면 데이터를 획득할 수 있게 된다. 예를 들어, 실험 결과에 따른 최적 임계값인 8%를 적용할 경우, 상기 수학식 3에서 H > 0.08 이면 해당 격자는 지면 데이터로 분류하기에 부적합하다고 판단하고, H ≤ 0.08 이면 해당 격자는 지면 데이터로 분류하기에 적합하다고 판단할 수 있다. 해당 격자 내 데이터가 지면 데이터로 분류하기에 적합하다고 판단되면, 상기 임계값 비교부(322)는 적합하다고 판단된 데이터들을 데이터 결정부(324)로 전송하게 된다. 반면, 해당 격자 내 데이터가 지면 데이터로 분류하기에 부적합하다고 판단되면, 상기 해당 격자 내 데이터는 상기 경사도 판별부(323)로 전송하게 된다.
상기 경사도 판별부(323)는 부적합하다고 판단된 데이터들의 경사도를 계산하고, 계산된 경사도를 상기 변수 산출부(321)로 전송한다. 상기 변수 산출부(321)는, 상기 경사도 판별부(323)로부터 입력된 경사도를 반영하여 수정된 높이 변수(mod_H)를 다시 계산하게 된다. 상기 수정된 높이 변수(mod_H)는 아래 수학식 4에 의해 획득될 수 있다.
Figure pat00006
여기서, mod_H는 수정된 높이 변수를 나타내고, H는 이미 획득된 높이 변수를 나타내고, θ는 경사 각도를 나타내며, C는 경사도 팩터를 나타낸다. 이때, 상기 경사도 팩터(C)는 일반적인 실제 경사지형의 경사도를 고려한 값이 될 수 있고, 예를 들어, 본 실험에 따르면 0.7의 값을 가질 수 있다. 상기 수학식 4에 의해 경사지형의 경사도를 반영함으로써 수정된 변수(mod_H)를 획득할 수 있게 된다. 이렇게 획득된 수정된 변수(mod_H)는 다시 상기 임계값 비교부(322)로 전송되고, 상기 임계값 비교부(322)의 비교 결과에 따라 다시 이전 과정의 루프를 돌거나 또는 최종적으로 데이터 결정부(324)로 전송된다.
상기 데이터 결정부(324)는 상기 임계값 비교부(322)를 통해 지면 데이터로써 적합하다고 판정된 데이터만을 수신함으로써 최종적으로 수신된 데이터를 지면 데이터로 결정하게 된다. 이렇게 결정된 지면 데이터는 3차원 공간정보 생성부(340)로 전송되어 보다 정확한 3차원 도로 모델을 생성하게 된다.
도 6은 본 발명이 적용되는 실시예로서, 지면 데이터로부터 3차원 도로 모델을 생성하기 위한 방법을 설명하기 위해 나타낸 것이다.
먼저, 데이터 베이스부(400)에 저장되어 있는 수치지도 데이터로부터 도로 경계 정보를 추출할 수 있다. 상기 도로 경계 정보에 기초하여, 상기 분류된 지면 데이터로부터 도로의 경계 내에 해당되는 점들을 추출할 수 있다. 예를 들어, 임의의 다각형을 볼록 다각형으로 분할한 후, 도로 영역 내의 점이 분할된 볼록다각형 중 하나의 내부에 존재하는지 여부를 판단할 수 있다. 상기 판단 결과에 따라 추출된 도로 영역 내의 각 점들에 대하여 주변 점들에 대한 인접성을 설정하고, 이를 기반으로 초기 영역들을 생성할 수 있다. 생성된 초기 영역들 중 실제 의미 있는 평면일 가능성이 높은 영역부터 주변의 점들을 포함하면서 영역을 확장할 수 있다. 이렇게 확장이 끝난 영역은 평면 방정식의 계수와 영역에 포함된 점, 그리고 그 경계 정보를 포함할 수 있다.
이처럼, 상기 도로 경계 내의 각 점들에 대하여 표면 영역들을 생성하고, 상기 표면 영역들 사이의 에지 길이와 높이 차이에 기초하여, 상기 표면 영역들을 하나의 도로 표면 집단으로 그룹핑할 수 있다. 예를 들어, 상기 도로 표면 집단으로 그룹화하는 기준은 서로 인접한 2개의 표면 영역 사이의 연결성과 상대적인 돌출성으로 설정될 수 있다. 여기서, 상기 연결성은 두 영역에서 서로 인접하는 에지(edge)들을 찾아내고, 이들 간의 연결성 정도를 계산하는 것으로써 에지 간의 거리가 가깝고, 각각의 에지의 길이가 길수록, 그리고 에지를 포함하는 영역의 점 밀도가 조밀할수록 연결성은 높게 정의될 수 있다. 상기 연결성은 아래 수학식 5와 같이 정의될 수 있다.
Figure pat00007
여기서, θ c (S1,S2)은 S1과 S2 사이의 연결성을 나타내고, S1,S2 는 각각 표면 영역을 나타낸다. θ c (S1/S2)는 S2 표면 영역을 기준으로 S1 표면 영역과의 연결 정도를 나타낸다.
그리고, 상기 돌출성은 수평적으로 인접한 영역 간의 수직적인 높이 차이에 대한 정도를 계산하는 것으로, 두 영역의 인접하는 에지들을 찾아내고 이들의 수직적인 높이 차이를 기반으로 설정될 수 있다. 상기 돌출성은 아래 수학식 6과 같이 정의될 수 있다.
Figure pat00008
상기 수학식 6에서처럼, 돌출성은 인접한 주위의 모든 영역 Sk와의 돌출성 합으로 정의될 수 있고, 이는 해당 영역에서 가장 가까운 에지의 길이와, 상기 해당 영역과 다른 영역 사이의 높이 차이를 고려하여 계산될 수 있다. 여기서, θ elev 는 모든 영역과의 돌출성을 나타내고, L (ei)는 해당 영역에서 가장 가까운 에지의 길이를 나타내고, D (ei ,1 ,ej ,k ,z) 는 상기 해당 영역과 다른 영역 사이의 높이 차이를 나타낸다.
이렇게 그룹핑된 도로 표면 집단을 이루는 점들과 상기 도로 경계 정보를 이용하여 3차원 도로 모델을 생성할 수 있다. 이때, 실제 도로 표면 집단의 경계는 불규칙적이기 때문에 수치 지도의 도로 경계선을 이용하여 경계점 데이터들을 부드럽게 보정할 수 있다.
도 6을 참조하면, 도 6의 검은 색 점들은 항공 레이저 측량 데이터의 도로 표면 점들을 나타낸다. 이들 중 굵은 점선으로 연결된 최외곽 점들을 항공 레이저 측량 데이터로부터 알 수 있는 도로경계점(401)이라 할 수 있다. 그리고, 상기 항공 레이저 측량 데이터 도로경계점(401)으로부터 수치 지도 상의 도로 경계선(402)에 수선을 내린다. 이때, 생기는 교점을 신규로 생성된 도로경계점(403)이라 할 수 있다. 그리고, 상기 신규로 생성된 도로경계점의 위치를 계산하여 새로운 도로 표면 경계점의 수평 위치를 계산할 수 있다. 계산된 교점을 중심으로 수평 위치 상에서 일정 거리 이내에 존재하는 항공 레이저 측량 데이터 점들을 검색하고(404), 이로부터 평면 계수를 산출할 수 있다. 그리고, 상기 교점의 수평 좌표값을 평면 방정식에 대입하여 높이값을 산출함으로써 새로운 3차원 도로 경계점 데이터를 생성할 수 있다. 이때, 상기 생성된 3차원 도로 경계점 데이터는 DEM(Digital Elevation Model), TIN(Triangulated Irregular Network), 등고 데이터 표현 방법 등에 의해서 3차원 도로 모델의 생성에 이용될 수 있다.
도 7은 본 발명이 적용되는 일실시예로서, 비지면 데이터 획득부(330)의 개략적인 블록도를 나타낸다.
상기 비지면 데이터 획득부(330)는 제2필터링부(331), 폴리곤 생성부(332) 및 무게중심 획득부(333)를 포함하여 이루어질 수 있다.
상기 제2필터링부(331)는 상기 데이터 분류부(310)로부터 수신된 비지면 데이터부터 건물 데이터를 추출해낼 수 있다. 예를 들어, 상기 제2필터링 과정으로 로컬 맥시멈 필터링(Local Maximum Filtering) 방법이 적용될 수 있다. 상기 로컬 맥시멈 필터링(Local Maximum Filtering) 방법이란, 벡터 도메인에서 건물 데이터를 분할하는 방법으로, 원 자료의 형식이 점 형태인 항공 레이저 측량 데이터를 보간할 필요없이 그대로 사용할 수 있다.
또한, 상기 폴리곤 생성부(332)는 불규칙 삼각망(TIN) 모델을 이용하여 상기 추출된 건물 데이터들로부터 단위 폴리곤을 생성할 수 있다. 그리고, 면적 조건을 이용하여 보다 정확한 건물 데이터를 분리해낼 수 있다. 예를 들어, 대상 지역 내의 최소 건물 면적을 선정하여 그보다 더 작은 폴리곤을 제거함으로써 보다 정확한 건물 데이터만을 획득할 수 있다. 이때, 상기 최소 건물 면적은 1/1000 수치 지도상의 최소 면적 건물을 기준으로 할 수 있다.
상기 무게중심 획득부(333)는 획득된 건물 데이터 중 점 데이터들로 구성된 폴리곤을 대표하는 점인 무게중심점을 이용하여 항공 사진의 외부 표정 요소를 획득할 수 있다. 예를 들어, 임의의 폴리곤이 있고, 상기 임의의 폴리곤의 외곽선을 (x(t),y(t)) 라는 함수로 표현한다면, 상기 외곽선으로 둘러싸인 폴리곤의 면적(A)은 다음 수학식 7과 같다.
Figure pat00009
이 때, x(t)를 0.5(x(t+1) + x(t))로, y(t)를 0.5(y(t+1) + y(t))로 근사시키고, x'(t)를 (x(t+1) - x(t))로, y'(t)를 (y(t+1) - y(t))로 근사시키면, 좌표 함수에 대한 상기 수학식 5는 이산적인 좌표쌍에 의한 아래 수학식 8과 같이 쓸 수 있다.
Figure pat00010
이때, 폴리곤의 무게중심의 좌표는 다음 수학식 9에 의해 획득될 수 있다.
Figure pat00011
상기 수학식 9를 다시 좌표쌍에 의한 형식으로 정리하면, 무게중심점의 좌표는 다음 수학식 10과 같다.
Figure pat00012
Figure pat00013
한편, 항공 사진은 텍스쳐 정보가 풍부하기 때문에 건물 지붕면에 대한 육안 판별이 용이하다. 따라서 건물 모서리점에 대한 영상 좌표를 수동으로 취득한 후, 면적을 계산하여 무게중심점을 획득할 수 있다. 그리고, 항공 레이저 측량 데이터로부터 획득된 건물 정보의 무게중심점에 대한 높이값은 건물을 구성하는 점 데이터들의 높이값을 불규칙 삼각망 모델로부터 보간하여 획득할 수 있다.
상기에서 설명한 바와 같이, 상기 비지면 데이터 획득부(330)는 항공 사진과 항공 레이저 측량 데이터 간의 공통 객체를 찾기 위해 무게 중심점을 이용할 수 있다. 그리고, 상기 무게 중심점을 기준 정보로 하여 항공 사진의 외부 표정 요소를 산출하여 수치지도 생성부(미도시) 또는 3차원 공간정보 생성부(340)로 전송하고, 상기 수치지도 생성부에서는 상기 외부 표정 요소에 기초하여 수치지도를 생성하고, 상기 3차원 공간정보 생성부(340)에서는 상기 외부 표정 요소를 이용하여 3차원 건물 모델을 생성하게 된다.
본 발명이 적용되는 다른 실시예로서, 영상 표시부(500)에서는 영상 후처리 과정에서 영상 처리 함수를 적용함으로써 보다 선명한 영상을 표시할 수 있다.
영상 후처리 과정에서의 영상 처리 함수를 적용하는 실시예를 설명하도록 한다. 예를 들어, YUV 도메인에서 역필터링을 고려하여 영상 처리하는 방법을 설명하도록 한다. 각 화소에서는 모든 RGB 값을 가지고 있으므로 RGB 도메인에서 YUV 나 YCbCr 도메인으로 변환하여, 밝기(luminance) 채널에서의 영상 처리를 수행할 수 있다. 예를 들어, YUV 채널로 변환하여 영상을 처리하는 경우를 설명하도록 한다. Y 채널에서 고주파 통과 필터로 필터링하여 Y 채널의 고주파 성분을 얻을 수 있다. 관련식은 다음 수학식 11, 12와 같다.
Figure pat00014
Figure pat00015
여기서 Y'(i,j)는 Y 채널의 (i,j)위치에서 얻은 고주파 성분을 말한다. HFy(i,j)는 Y 채널에서의 고주파 성분을 나타내고, HHPF는 고주파 통과 필터이다. α,β,γ를 이용할 경우, 영역에 따라 고주파 성분을 조절할 수 있다. 이로서 보다 자연스러운 영상을 얻을 수 있고, 원치 않는 잡음에 의한 열화를 예방할 수 있다. 상기 Y 채널에서 얻은 고주파 성분을 이용하여 다음 수학식 13과 같이 영상 개선을 수행할 수 있다.
Figure pat00016
여기서
Figure pat00017
는 개선된 Y 채널 값을 나타내고, E{Y(i,j)}는 획득한 영상 Y채널 영상의 평균을 의미한다.
영상 개선은 Y 채널에서만 수행되고, U,V 채널에서는 수행되지 않는다. 개선된 Y 채널 값과, 본래의 U, V 채널 값을 RGB 도메인으로 역변환하여 최종적으로 개선된 영상을 얻을 수 있다.
도 8은 본 발명이 적용되는 일실시예로서, 항공 레이저 측량 데이터로부터 지면 데이터와 비지면 데이터를 추출하는 흐름도를 나타낸다.
먼저 항공 레이저 측량 데이터 수신부(210)에서는 웹 서버를 통하여 항공 레이저 측량 데이터를 수신한다(S810).
오차 제거부(311)는 상기 수신된 항공 레이저 측량 데이터의 탐색 영역을 설정하고 상기 탐색 영역 내에서 주변 점들의 좌표값을 기준으로 기설정된 오차값 범위를 초과하는 오차 데이터를 제거한다(S820).
제1필터링부(312)는 상기 오차 데이터가 제거된 항공 레이저 측량 데이터에 대해 제1필터링 과정을 수행하여 지면 데이터와 비지면 데이터로 분류하되, 상기 제1필터링 과정은 먼저 특정 영역 내에 있는 점의 높이값 중 최소값을 획득하고 상기 최소값보다 큰 높이값을 가진 점들만을 비교 대상값으로 설정한다(S830). 그리고, 상기 비교 대상값과 기설정된 제1임계값을 비교한다(S840). 상기 비교 대상값이 상기 기설정된 제1임계값보다 큰 경우 비지면 데이터로 분류하고(S850), 상기 비교 대상값이 상기 기설정된 제1 임계값보다 작거나 같으면 지면 데이터로 분류한다(S860). 이때, 상기 수학식1 [ Rij - Rl _ min > T](여기서, Rij은 특정 영역 내의 임의의 셀을 가리키고, Rl _ min은 반복회수 l번째에서의 특정 영역 내의 최소 높이값을 가리키며, T는 제1임계값을 나타냄. 상기 제1임계값은 상기 수학식2 [T = sMl ]에 의해서 결정되며, 여기서, s는 대상 영역의 최대 경사를 나타내고, Ml 은 반복회수 l번째의 윈도우 크기를 나타냄.)에 의해 수행될 수 있다.
데이터 추출부(313)에는 상기와 같이 분류된 지면 데이터 및 비지면 데이터를 추출하고, 상기 지면 데이터와 상기 비지면 데이터를 이용하여 3차원 공간정보를 생성하게 된다.
이상, 전술한 본 발명의 바람직한 실시예는, 예시의 목적을 위해 개시된 것으로, 당업자라면 이하 첨부된 특허청구범위에 개시된 본 발명의 기술적 사상과 그 기술적 범위 내에서, 다양한 다른 실시예들을 개량, 변경, 대체 또는 부가 등이 가능할 것이다.

Claims (3)

  1. 웹 서버를 통해 수신된 항공 레이저 측량 데이터에 대해 필터링 과정을 수행하여 지면 데이터와 비지면 데이터로 분류하되, 상기 필터링 과정은 다음 수학식들( Rij - Rl _ min > T, 여기서, Rij은 특정 영역 내의 임의의 셀을 가리키고, Rl _ min은 반복회수 l번째에서의 특정 영역 내의 최소 높이값을 가리키며, T는 제1임계값을 나타냄. 상기 제1임계값은 수학식 T = sMl 에 의해서 결정되며, 여기서, s는 대상 영역의 최대 경사를 나타내고, Ml 은 반복회수 l번째의 윈도우 크기를 나타냄.)에 의해 수행되는 필터링부;
    상기 분류된 지면 데이터로부터 상기 지면 데이터의 연속성 검색을 위한 변수를 산출하되, 상기 변수는 다음 수학식
    Figure pat00018
    (H는 지면 데이터의 연속성 검색을 위한 변수, Max(h)는 격자 내 가장 높은 점의 높이값, Min(h)는 가장 낮은 점의 높이값, L은 격자의 크기를 나타냄)에 의해 산출되는 변수 산출부;
    상기 산출된 변수가 기설정된 제2임계값보다 크면 해당 격자의 데이터는 부적합한 지면 데이터로 판단되어 경사도 판별부로 전송되고, 상기 산출된 변수가 상기 기설정된 제2임계값보다 작거나 같으면 적합한 지면 데이터로 판단되어 데이터 결정부로 전송하는 임계값 비교부;
    상기 전송된 부적합한 지면 데이터의 경사도를 계산하여 다시 상기 변수 산출부로 전송하는 경사도 판별부;
    상기 경사도 판별부로부터 수신한 경사도를 반영하여 다음 수학식
    Figure pat00019
    (mod_H는 수정된 변수, H는 기획득된 변수, θ는 경사 각도, C는 경사도 팩터를 나타냄)에 의해 수정된 변수를 산출하는 상기 변수 산출부;
    상기 수정된 변수가 상기 기설정된 제2임계값보다 크면 다시 부적합한 지면 데이터로 판단하여 상기의 과정을 반복하게 되고, 상기 수정된 변수가 상기 기설정된 제2임계값보다 작거나 같으면 적합한 지면 데이터로 판단하여 데이터 결정부로 전송하는 상기 임계값 비교부;
    상기 임계값 비교부로부터 수신된 데이터를 최종 지면 데이터로 결정하는 데이터 결정부; 및
    데이터 베이스부에 저장되어 있는 수치지도 데이터로부터 도로 경계 정보를 추출하고, 상기 도로 경계 정보에 기초하여 상기 최종 지면 데이터로부터 도로 경계 내의 점들을 추출하여 표면 영역들을 생성하고, 상기 표면 영역들 사이의 에지 길이와 높이 차이에 기초하여 상기 표면 영역들을 하나의 도로 표면 집단으로 그룹핑하고, 상기 그룹핑된 도로 표면 집단을 이루는 점들과 상기 도로 경계 정보를 이용하여 3차원 도로 데이터를 생성하는 3차원 공간정보 생성부
    를 포함하되,
    상기 필터링 과정은 특정 영역 내에 있는 점의 높이값 중 최소값을 획득하고 상기 최소값보다 큰 높이값을 가진 점들만을 비교 대상값으로 설정한 후, 상기 비교 대상값이 기설정된 제1임계값보다 큰 경우 비지면 데이터로 분류하고, 상기 비교 대상값이 상기 기설정된 제1 임계값보다 작거나 같으면 지면 데이터로 분류되는 것을 특징으로 하는 지면데이터의 연속성 검색을 이용하여 도로 레이어를 취득하는 시스템.
  2. 제1항에 있어서, 상기 3차원 공간정보 생성부는,
    수치지도 상의 도로 경계선에 수선을 내리고 그 교점을 계산하여 새로운 도로 표면 경계점의 수평 위치를 계산하고, 상기 계산된 교점을 중심으로 수평 위치 상에서 인접한 점들로부터 평면 계수를 산출하고, 상기 수평 위치의 좌표값과 상기 평면 계수를 이용하여 높이값을 계산함으로써 상기 3차원 도로 데이터를 생성하는 것을 특징으로 하는 지면데이터의 연속성 검색을 이용하여 도로 레이어를 취득하는 시스템.
  3. 제1항에 있어서,
    상기 경사도 팩터는 0.7의 값을 갖는 것을 특징으로 하는 지면데이터의 연속성 검색을 이용하여 도로 레이어를 취득하는 시스템.
KR1020110122617A 2011-11-23 2011-11-23 지면데이터의 연속성 검색을 이용하여 도로 레이어를 취득하는 시스템 KR20120138606A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110122617A KR20120138606A (ko) 2011-11-23 2011-11-23 지면데이터의 연속성 검색을 이용하여 도로 레이어를 취득하는 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110122617A KR20120138606A (ko) 2011-11-23 2011-11-23 지면데이터의 연속성 검색을 이용하여 도로 레이어를 취득하는 시스템

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020110057689A Division KR101103491B1 (ko) 2011-06-14 2011-06-14 항공 레이저 측량 데이터를 이용한 도로 레이어 취득 시스템 및 그 방법

Publications (1)

Publication Number Publication Date
KR20120138606A true KR20120138606A (ko) 2012-12-26

Family

ID=47905383

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110122617A KR20120138606A (ko) 2011-11-23 2011-11-23 지면데이터의 연속성 검색을 이용하여 도로 레이어를 취득하는 시스템

Country Status (1)

Country Link
KR (1) KR20120138606A (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210073205A (ko) 2019-12-10 2021-06-18 주식회사 라이드플럭스 3차원 포인트 클라우드 데이터로부터 지표면 데이터를 생성하는 방법, 장치 및 컴퓨터프로그램
KR20220001152A (ko) 2020-06-29 2022-01-05 주식회사 라이드플럭스 자율주행 차량을 위한 로드 네트워크 데이터 생성 방법, 장치 및 컴퓨터프로그램

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210073205A (ko) 2019-12-10 2021-06-18 주식회사 라이드플럭스 3차원 포인트 클라우드 데이터로부터 지표면 데이터를 생성하는 방법, 장치 및 컴퓨터프로그램
KR20220012972A (ko) 2019-12-10 2022-02-04 주식회사 라이드플럭스 3차원 포인트 클라우드 데이터로부터 지표면 데이터를 생성하는 방법, 장치 및 컴퓨터프로그램
KR20230079318A (ko) 2019-12-10 2023-06-07 주식회사 라이드플럭스 3차원 포인트 클라우드 데이터로부터 지표면 데이터를 생성하는 방법, 장치 및 컴퓨터프로그램
KR20220001152A (ko) 2020-06-29 2022-01-05 주식회사 라이드플럭스 자율주행 차량을 위한 로드 네트워크 데이터 생성 방법, 장치 및 컴퓨터프로그램
EP3943889A2 (en) 2020-06-29 2022-01-26 RideFlux Inc. Method, apparatus, and computer program for generating road network data for autonomous driving vehicle
KR20220126709A (ko) 2020-06-29 2022-09-16 주식회사 라이드플럭스 자율주행 차량을 위한 로드 네트워크 데이터 생성 방법, 장치 및 컴퓨터프로그램

Similar Documents

Publication Publication Date Title
US11210806B1 (en) Using satellite imagery to enhance a 3D surface model of a real world cityscape
CN110866531A (zh) 一种基于三维建模的建筑物特征提取方法、系统及存储介质
US7983474B2 (en) Geospatial modeling system and related method using multiple sources of geographic information
Dorninger et al. 3D segmentation of unstructured point clouds for building modelling
WO2018061010A1 (en) Point cloud transforming in large-scale urban modelling
CN111383335B (zh) 一种众筹照片与二维地图结合的建筑物三维建模方法
JP6534296B2 (ja) 3次元モデル生成装置、3次元モデル生成方法、及びプログラム
KR20130096432A (ko) 해저면데이터의 경사도를 이용하여 해저지형정보를 생성하는 시스템 및 그 방법
JP4058293B2 (ja) レーザスキャナデータと空中写真画像を用いた高精度都市モデルの生成方法及び高精度都市モデルの生成システム並びに高精度都市モデルの生成のプログラム
US7778808B2 (en) Geospatial modeling system providing data thinning of geospatial data points and related methods
KR100904078B1 (ko) 항공 사진의 영상정합을 이용한 3차원 공간 정보 생성 시스템 및 방법
CN113920275B (zh) 三角网格构建方法、装置、电子设备及可读存储介质
KR101079475B1 (ko) 포인트 클라우드 필터링을 이용한 3차원 도시공간정보 구축 시스템
CN111458691B (zh) 建筑物信息的提取方法、装置及计算机设备
KR20130096854A (ko) 수중음파필터링과 3차원 해저표고모델을 이용하여 3차원 해저지형정보를 생성하는 시스템
KR101021013B1 (ko) 경계강화필터링과 표고정보를 이용하여 3차원 지리정보를 생성하는 시스템
KR101079531B1 (ko) 포인트 클라우드 데이터를 이용한 도로 레이어 생성 시스템
JP6146731B2 (ja) 座標補正装置、座標補正プログラム、及び座標補正方法
Favorskaya et al. Realistic 3D-modeling of forest growth with natural effect
KR20130002244A (ko) 도시공간정보모델의 등급정보에 따라 선택된 건물데이터를 이용하는 도시공간정보 생성 시스템
KR101103491B1 (ko) 항공 레이저 측량 데이터를 이용한 도로 레이어 취득 시스템 및 그 방법
KR101083902B1 (ko) 항공 레이저 측량 데이터의 필터링을 이용한 3차원 공간정보 구축 시스템
KR101079359B1 (ko) 항공 사진과 항공 레이저 측량 데이터를 이용한 수치지도 구축 시스템
KR101114904B1 (ko) 도화원도와 항공 레이저 측량 데이터를 이용한 도시공간정보 구축 시스템 및 그 방법
KR20120138606A (ko) 지면데이터의 연속성 검색을 이용하여 도로 레이어를 취득하는 시스템

Legal Events

Date Code Title Description
A107 Divisional application of patent
WITN Withdrawal due to no request for examination