KR20120132825A - Method for manufacturing high-strength deformed bar with low yield ratio - Google Patents

Method for manufacturing high-strength deformed bar with low yield ratio Download PDF

Info

Publication number
KR20120132825A
KR20120132825A KR1020110051184A KR20110051184A KR20120132825A KR 20120132825 A KR20120132825 A KR 20120132825A KR 1020110051184 A KR1020110051184 A KR 1020110051184A KR 20110051184 A KR20110051184 A KR 20110051184A KR 20120132825 A KR20120132825 A KR 20120132825A
Authority
KR
South Korea
Prior art keywords
less
weight
strength
yield ratio
earthquake
Prior art date
Application number
KR1020110051184A
Other languages
Korean (ko)
Inventor
홍석우
김상하
박철우
염성호
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020110051184A priority Critical patent/KR20120132825A/en
Publication of KR20120132825A publication Critical patent/KR20120132825A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/08Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires for concrete reinforcement
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: An earthquake-resistant reinforced steel with a low yield ratio and a manufacturing method thereof are provided to improve the earthquake resistance of a structure or building by securing a yield strength of 700MPa or greater and a yield ratio of 0.6 or less. CONSTITUTION: An earthquake-resistant reinforced steel comprises 0.30-0.50 weight% of C, 0.10-0.70 weight% of Si, 0.50-1.80 weight% of Mn, 0.03 weight% or less of P, 0.03 weight% or less of S, 0.20-0.30 weight% of Cu, 0.3 weight% or less of Ni, 0.7-1.80 weight% of Cr, 0.5weight% or less of Mo, 0.05 weight% or less of Al, 0.02-0.10 weight% of Zr, 0.001-0.005 weight% of B, 30ppm or less of oxygen, 80ppm or less of N, and the remaining amount of Fe and inevitable impurities. The earthquake-proof steel reinforcement has a yield strength of 700MPa or greater and a yield ratio(yield strength/tensile strength) of 60% or less.

Description

저항복비를 가지는 내진용 철근 및 그 제조방법{METHOD FOR MANUFACTURING HIGH-STRENGTH DEFORMED BAR WITH LOW YIELD RATIO}Earthquake-resistant reinforcing bars having a resistive ratio and manufacturing method thereof {METHOD FOR MANUFACTURING HIGH-STRENGTH DEFORMED BAR WITH LOW YIELD RATIO}

본 발명은 내진용 철근 및 그 제조방법에 관한 것으로, 보다 상세하게는 항복비(항복강도/인장강도)를 감소시켜 내진력을 향상시킨 내진용 철근 및 그 제조방법에 관한 것이다.
The present invention relates to a seismic reinforcing bar and a method for manufacturing the same, and more particularly, to a seismic reinforcing bar and a method for manufacturing the seismic resistance is improved by reducing the yield ratio (yield strength / tensile strength).

최근 지구환경의 변화에 따라 지진의 발생빈도가 높아지고 있다. 이에 따라 건축, 토목 구조물에도 내진설계의 개념이 도입되고 있는 실정이다.Recently, the frequency of earthquakes is increasing due to changes in the global environment. Accordingly, the concept of seismic design is being introduced into architectural and civil engineering structures.

내진설계는 구조물이 지진력을 흡수하여 구조물의 완전붕괴를 지연시키기 위한 것이다.The seismic design is to delay the complete collapse of the structure by absorbing seismic force.

콘크리트학회 및 토목학회 등의 보고에 따르면 내진설계에 사용되는 철근의 항복비가 0.80 이하일 경우 내진력을 발휘하게 된다고 한다.
According to the report of the Korea Concrete Institute and the Civil Society, seismic forces are exhibited when the yield ratio of rebars used in seismic design is 0.80 or less.

본 발명의 목적은 항복비(항복강도/인장강도)를 감소시켜 지진 발생시 구조물의 내진력을 향상시킬 수 있는 내진용 철근 및 그 제조방법을 제공함에 있다.An object of the present invention to reduce the yield ratio (yield strength / tensile strength) to provide an earthquake-resistant reinforcing steel and a method of manufacturing the same that can improve the seismic strength of the structure during an earthquake.

본 발명의 다른 목적은 700MPa 이상의 항복강도를 가지며, 항복비가 0.6 이하인 내진용 철근 및 그 제조방법을 제공함에 있다.
Another object of the present invention is to provide a seismic reinforcing steel having a yield strength of 700MPa or more and a yield ratio of 0.6 or less, and a method of manufacturing the same.

본 발명은 중량%로 탄소(C) : 0.30~0.50%, 실리콘(Si) : 0.10~0.70%, 망간(Mn) : 0.50~1.80%, 인(P) : 0.03% 이하, 황(S) : 0.03% 이하, 구리(Cu) : 0.20~0.30%, 니켈(Ni) : 0.3% 이하, 크롬(Cr) : 0.7~1.80%, 몰리브덴(Mo) : 0.5% 이하, 알루미늄(Al) : 0.05% 이하, 지르코늄(Zr) : 0.02~0.10%, 보론(B) : 0.001~0.005%, 산소(O) : 30ppm 이하, 질소(N) : 80ppm 이하, 및 나머지 Fe와 불가피한 불순물로 이루어지는 내진용 철근을 제공한다.In the present invention, carbon (C): 0.30 to 0.50%, silicon (Si): 0.10 to 0.70%, manganese (Mn): 0.50 to 1.80%, phosphorus (P): 0.03% or less, sulfur (S): 0.03% or less, Copper (Cu): 0.20 to 0.30%, Nickel (Ni): 0.3% or less, Chromium (Cr): 0.7 to 1.80%, Molybdenum (Mo): 0.5% or less, Aluminum (Al): 0.05% or less , Zirconium (Zr): 0.02 ~ 0.10%, Boron (B): 0.001 ~ 0.005%, Oxygen (O): 30ppm or less, Nitrogen (N): 80ppm or less do.

이 때, 상기 내진용 철근은 항복강도 700MPa 이상, 항복비(항복강도/인장강도) 60% 이하, 연신율 12% 이상의 물성을 나타낸다.
At this time, the seismic reinforcing bar exhibits a yield strength of 700 MPa or more, a yield ratio (yield strength / tensile strength) of 60% or less, and an elongation of 12% or more.

그리고 본 발명은, 중량%로 탄소(C) : 0.30~0.50%, 실리콘(Si) : 0.10~0.70%, 망간(Mn) : 0.50~1.80%, 인(P) : 0.03% 이하, 황(S) : 0.03% 이하, 구리(Cu) : 0.20~0.30%, 니켈(Ni) : 0.3% 이하, 크롬(Cr) : 0.7~1.80%, 몰리브덴(Mo) : 0.5% 이하, 알루미늄(Al) : 0.05% 이하, 지르코늄(Zr) : 0.02~0.10%, 보론(B) : 0.001~0.005%, 산소(O) : 30ppm 이하, 질소(N) : 80ppm 이하, 및 나머지 Fe와 불가피한 불순물로 이루어진 강재를 1000℃~1250℃의 온도범위로 가열하고, 철근압연공정을 통하여 950℃~1250℃에서의 압연종료 온도조건으로 열간압연하는 것을 특징으로 하는 내진용 철근 제조방법을 제공한다.
In the present invention, carbon (C): 0.30 to 0.50%, silicon (Si): 0.10 to 0.70%, manganese (Mn): 0.50 to 1.80%, phosphorus (P): 0.03% or less, sulfur (S) ): 0.03% or less, Copper (Cu): 0.20 to 0.30%, Nickel (Ni): 0.3% or less, Chromium (Cr): 0.7 to 1.80%, Molybdenum (Mo): 0.5% or less, Aluminum (Al): 0.05 % Or less, Zirconium (Zr): 0.02 to 0.10%, Boron (B): 0.001 to 0.005%, Oxygen (O): 30 ppm or less, Nitrogen (N): 80 ppm or less, and the rest of Fe and unavoidable impurities It provides a method for producing a seismic reinforcing bar, characterized in that the heating in the temperature range of ℃ ~ 1250 ℃, and hot rolling under the rolling end temperature conditions at 950 ℃ ~ 1250 ℃ through the reinforcing steel rolling process.

본 발명에 따른 내진용 철근은 700MPa 이상의 항복강도와 0.6 이하의 항복비를 가짐으로써, 이를 이용하여 축조되는 건축물 또는 토목 구조물의 내진성능을 향상시키는 효과를 가져온다.
Seismic reinforcing bar according to the present invention has a yield strength of 700MPa or more and a yield ratio of 0.6 or less, thereby bringing an effect of improving the seismic performance of the building or civil engineering structure built using it.

도 1의 본 발명의 실시예에 따른 내진용 철근의 비금속 개재물 SEM 사진임.SEM picture of the non-metallic inclusions of the earthquake-resistant rebar according to the embodiment of the present invention of FIG.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention, and the manner of achieving them, will be apparent from and elucidated with reference to the embodiments described hereinafter in conjunction with the accompanying drawings. It should be understood, however, that the invention is not limited to the disclosed embodiments, but is capable of many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, To fully disclose the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 저항복비를 가지는 내진용 철근 및 그 제조방법에 관하여 상세히 설명하면 다음과 같다.
Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the earthquake-resistant reinforcing bar having a resistive ratio and a method of manufacturing the same according to the preferred embodiment of the present invention.

내진용 철근Seismic rebar

본 발명에 따른 내진용 철근은 강 조성을 조절하되, 특히 Zr의 함량을 제어함으로써 고온결정립을 조대화하여 항복비를 낮추는 것을 특징으로 한다.The seismic reinforcing bar according to the present invention is characterized by lowering the yield ratio by coordinating high temperature grains by controlling the steel composition, in particular by controlling the content of Zr.

본 발명에 따른 내진용 철근은 항복강도 700MPa 이상, 항복비(항복강도/인장강도) 0.6 이하의 기계적 물성을 나타낸다.The seismic reinforcing bar according to the present invention exhibits mechanical properties of yield strength of 700 MPa or more and yield ratio (yield strength / tensile strength) of 0.6 or less.

이를 위하여, 본 발명에 따른 내진용 철근은 중량%로 탄소(C) : 0.30~0.50%, 실리콘(Si) : 0.10~0.70%, 망간(Mn) : 0.50~1.80%, 인(P) : 0.03% 이하, 황(S) : 0.03% 이하, 구리(Cu) : 0.20~0.30%, 니켈(Ni) : 0.3% 이하, 크롬(Cr) : 0.7~1.80%, 몰리브덴(Mo) : 0.5% 이하, 알루미늄(Al) : 0.05% 이하, 지르코늄(Zr) : 0.02~0.10%, 보론(B) : 0.001~0.005%, 산소(O) : 30ppm 이하, 질소(N) : 80ppm 이하, 및 나머지 Fe와 불가피한 불순물을 포함한다.
To this end, the earthquake-resistant reinforcing bar according to the present invention is carbon (C): 0.30 to 0.50%, silicon (Si): 0.10 to 0.70%, manganese (Mn): 0.50 to 1.80%, phosphorus (P): 0.03 % Or less, sulfur (S): 0.03% or less, copper (Cu): 0.20 to 0.30%, nickel (Ni): 0.3% or less, chromium (Cr): 0.7 to 1.80%, molybdenum (Mo): 0.5% or less, Aluminum (Al): 0.05% or less, Zirconium (Zr): 0.02 ~ 0.10%, Boron (B): 0.001 ~ 0.005%, Oxygen (O): 30ppm or less, Nitrogen (N): 80ppm or less and inevitable with the rest of Fe Contains impurities.

이하, 본 발명에 따른 내진용 철근에 포함되는 각 성분의 역할 및 그 함량에 대하여 설명하면 다음과 같다.
Hereinafter, the role and content of each component included in the seismic reinforcing bar according to the present invention will be described.

탄소(C)Carbon (C)

탄소(C)는 첨가시 강의 강도, 경도를 결정하는 주요원소이다. 함량이 높을 수록 강도는 증가하는 인성은 저하한다. 또한 냉간가공도의 증가에 따라 인장강도와 항복점은 증가하고 연신율은 감소한다. 따라서 본 발명에 따른 내진용 철근에서는 전체 중량의 0.3 ~ 0.5 중량%로 첨가되는 것이 바람직하다.Carbon (C) is a major element that determines the strength and hardness of steel when added. The higher the content, the lower the toughness, which increases strength. In addition, as the cold workability increases, tensile strength and yield point increase and elongation decreases. Therefore, in the seismic reinforcing bar according to the present invention, it is preferable to add 0.3 to 0.5% by weight of the total weight.

탄소의 함량이 0.3 중량% 미만일 경우 요구되는 강도를 확보할 수 없으며, 탄소의 함량이 0.5 중량%를 초과할 경우 요구되는 항복비를 만족하지 못하게 된다.
If the carbon content is less than 0.3% by weight, the required strength cannot be secured. If the carbon content is more than 0.5% by weight, the required yield ratio is not satisfied.

실리콘(Si)Silicon (Si)

실리콘은 강도 확보에 기여하며, 특히, 강 중의 산소를 제거하기 위한 탈산제 역할을 한다.Silicon contributes to strength and, in particular, serves as a deoxidizer to remove oxygen in the steel.

상기 실리콘은 고유의 탈산 효과 및 표면 품질 등을 고려할 때 본 발명에 따른 내진용 철근 전체 중량의 0.1 ~ 0.7 중량%로 첨가되는 것이 바람직하다. 실리콘의 함량이 0.1 중량% 미만일 경우 실리콘 첨가에 따른 탈산 효과가 불충분하다. 반대로, 실리콘의 함량이 0.7 중량%를 초과할 경우 인성 및 용접성을 저해한다.
The silicon is preferably added in an amount of 0.1 to 0.7% by weight of the total weight of the seismic reinforcing bar according to the present invention in consideration of inherent deoxidation effect and surface quality. If the content of silicon is less than 0.1% by weight, the deoxidation effect due to the addition of silicon is insufficient. On the contrary, when the content of silicon exceeds 0.7% by weight, toughness and weldability are inhibited.

망간(Mn)Manganese (Mn)

망간(Mn)은 강의 소입성과 강도를 향상시키며, 고온에서 소성을 증가시켜 주조성을 좋게한다. 특히 유해성분인 S와 결합하여 MnS를 형성함으로써 적열취성을 방지한다. 그러나 과량이 첨가되면 인성을 저하시키므로 0.5~1.8 중량% 로 제한하는 것이 바람직하다.
Manganese (Mn) improves the hardenability and strength of the steel, and increases the plasticity at high temperatures to improve castability. In particular, it forms a MnS in combination with the harmful component S to prevent redness brittleness. However, when the excess is added, the toughness is lowered, so it is preferable to limit the amount to 0.5 to 1.8 wt%.

인(P)Phosphorus (P)

인(P)은 시멘타이트 형성을 억제하고, 강도를 증가시키기 위해 첨가된다.Phosphorous (P) is added to inhibit cementite formation and increase strength.

또한, 인은 인성을 악화시키고 Fe3P 등 취약한 편석을 생성시킨다.In addition, phosphorus deteriorates toughness and creates fragile segregation such as Fe 3 P.

그리고, 인은 용접성과 충격인성을 저해하고, 슬라브 중심 편석(slab center segregation)에 의해 최종 재질 편차를 발생시키는 원인이 되므로, 상기 인(P)은 본 발명에 따른 내진용 철근 전체 중량의 0.03 중량% 이하의 범위 내에서 제한적으로 첨가되는 것이 바람직하다.
In addition, since phosphorus inhibits weldability and impact toughness and causes final material variation due to slab center segregation, the phosphorus (P) is 0.03 weight of the total weight of the earthquake-resistant rebar according to the present invention. It is preferable to add restrictively within the range of% or less.

황(S)Sulfur (S)

황(S)은 MnS를 형성하여 강의 피삭성을 개선하는 주요한 원이나 과량 첨가되면 열간 가공성을 저해하고, 찢어짐을 유발한다. 또한 과량 첨가되면 거대 개재물 형성에 의하여 표면처리시 결함 발생의 원인이 될 수 있다.Sulfur (S) forms a MnS and is a major circle or excessive addition that improves the machinability of the steel and inhibits hot workability and causes tearing. In addition, excessive addition may cause defects during surface treatment due to the formation of large inclusions.

따라서, 황의 첨가량은 내진용 철근 전체 중량의 0.03 중량% 이하로 제한하는 것이 바람직하다.
Therefore, the addition amount of sulfur is preferably limited to 0.03% by weight or less of the total weight of the earthquake-resistant rebar.

구리(Cu)Copper (Cu)

구리(Cu)는 고용강화 원소로서 강도를 높이지만 과하게 첨가되면 열간가공성을 저하시킨다.Copper (Cu) increases the strength as a solid solution strengthening element, but when excessively added, it degrades hot workability.

구리가 내진용 철근 전체 중량의 0.02 중량% 이상 첨가해야 강도 상승의 효과를 얻을 수 있으나, 과량 첨가되면 인성의 현저한 저하와 열간가공에 의한 열화를 초래하므로 0.30 중량% 이하로 제한하는 것이 바람직하다.
When copper is added at least 0.02% by weight of the total weight of the seismic reinforcing bar to obtain the effect of increasing the strength, it is preferable to limit it to 0.30% by weight or less because excessive addition causes a significant decrease in toughness and deterioration due to hot working.

니켈(Ni)Nickel (Ni)

니켈(Ni)은 경화능을 증대시키고, 인성을 향상시키나 부품의 제조원가를 높이며 제조성을 떨어뜨리는 원소이므로, 0.3 중량% 이하로 제한하는 것이 바람직하다.
Nickel (Ni) is an element that increases the hardenability, improves toughness but increases the manufacturing cost of parts and decreases the manufacturability, and therefore it is preferably limited to 0.3 wt% or less.

크롬(Cr)Chrome (Cr)

Mn과 더불어 강의 강도를 향상시키며 펄라이트 콜로니를 세분화하고 연성을 향상시키는 원소로 작용한다. 그러나 과량 첨가되면 인성이 저하되고 가공성과 피삭성을 떨어뜨린다. 따라서 0.7~1.8 중량% 범위로 제한하는 것이 바람직하다.
Together with Mn, it acts as an element to improve the strength of steel, to refine pearlite colonies and to improve ductility. However, excessive addition lowers toughness and degrades workability and machinability. Therefore, it is preferable to limit to 0.7 to 1.8% by weight.

몰리브덴(Mo)Molybdenum (Mo)

몰레브덴은 강도 및 인성 향상에 효과가 크지만 노말라이징(Normalizing)과 같은 열처리시 경도를 현저히 상승시키며, 제조원가를 높이고 부품 가공성을 떨어뜨린다. 따라서, 0.5 중량% 이하로 제한하는 것이 바람직하다.
Molybdenum is effective in improving strength and toughness, but it significantly increases hardness during heat treatment such as normalizing, increases manufacturing cost and decreases part workability. Therefore, it is desirable to limit it to 0.5 wt% or less.

알루미늄(Al)Aluminum (Al)

알루미늄은 강력한 탈산제로 N와 결합하여 입자미세화 원소로 이용되나 과도한 첨가는 오히려 Al2O3 와 같은 비금속개재물량을 증가시키게 되므로, 0.05 중량% 이하로 제한하는 것이 바람직하다.
Aluminum is used as a fine particle deoxidant in combination with N as a strong deoxidizer, but excessive addition increases the amount of non-metallic inclusions such as Al 2 O 3 , so it is preferable to limit it to 0.05% by weight or less.

지르코늄(Zr)Zirconium (Zr)

지르코늄은 강력한 질화물 형성 원소로 고온 결정립 조대화에 영향이 탁월하며, 결정립을 미세화하는 탄질화물 형성에 앞서 ZrN을 형성한다. 고온결정립 조대화는 항복비를 낮추는데 크게 효과가 있는 것으로 나타났다. ZrN 은 MnS 개재물의 핵생성 위치로 작용하여 개재물의 미세화 및 연신성을 저하시켜 충격이방성을 감소하는 역할을 한다. 그러나 과량 첨가시 침상형 Zr탄유화물 석출이 유발되어 물성에 악영향을 미치게 된다. 따라서, 0.02~0.10 중량% 범위로 제한하는 것이 바람직하다.
Zirconium is a strong nitride-forming element that has an excellent effect on high temperature grain coarsening and forms ZrN prior to the formation of carbonitride, which refines grains. High temperature grain coarsening was found to be highly effective in reducing yield ratio. ZrN acts as a nucleation site of the MnS inclusions, thereby reducing the microstructure and elongation of the inclusions, thereby reducing impact anisotropy. However, excessive addition of needle-like Zr carbide leads to precipitation, which adversely affects the physical properties. Therefore, it is preferable to limit the amount to 0.02 to 0.10 wt%.

보론(B)Boron (B)

보론은 강중에 고용된 B 결정립계를 안정화시켜 소량의 첨가로 경화능을 크게 개선시키는 원소로 알려져 있지만, B이 과도하게 첨가되면 입계에 편석되어 강의 인성을 저하시키는 등 물성치를 저하시키게 됨으로, 0.001~0.005 중량% 범위로 제한하는 것이 바람직하다.
Boron is known as an element that stabilizes the B grain boundary in steel and greatly improves the hardenability by addition of a small amount, but when B is excessively added, it is segregated at the grain boundary and lowers the toughness of the steel, such as lowering the physical properties. It is preferred to limit to 0.005% by weight.

산소(O)Oxygen (O)

산소는 산화물계 개재물을 형성하고, 과하게 존재하면 인성을 열화시키므로 내진용 철근 전체 중량의 30ppm 이하로 제한하는 것이 바람직하다.
Since oxygen forms an oxide-based inclusion and excessively degrades toughness, it is preferable to limit it to 30 ppm or less of the total weight of the earthquake-resistant rebar.

질소(N)Nitrogen (N)

질소는 AlN의 생성에 의해 세립화에 유효하지만, 과하게 첨가하면 인성을 열화시키므로, 내진용 철근 전체 중량의 80ppm 이하로 제한하는 것이 바람직하다.
Nitrogen is effective for finer grains by the production of AlN, but when added excessively, the toughness deteriorates, so it is preferable to limit it to 80 ppm or less of the total weight of the earthquake-resistant rebar.

저항복비 내진용 철근 제조방법Resistant Steel Ratio Seismic Rebar Manufacturing Method

본 발명은, 중량%로 탄소(C) : 0.30~0.50%, 실리콘(Si) : 0.10~0.70%, 망간(Mn) : 0.50~1.80%, 인(P) : 0.03% 이하, 황(S) : 0.03% 이하, 구리(Cu) : 0.20~0.30%, 니켈(Ni) : 0.3% 이하, 크롬(Cr) : 0.7~1.80%, 몰리브덴(Mo) : 0.5% 이하, 알루미늄(Al) : 0.05% 이하, 지르코늄(Zr) : 0.02~0.10%, 보론(B) : 0.001~0.005%, 산소(O) : 30ppm 이하, 질소(N) : 80ppm 이하, 및 나머지 Fe와 불가피한 불순물로 이루어진 강재를 1000℃~1250℃의 온도범위로 가열하고, 철근압연공정을 통하여 950℃~1250℃에서의 압연종료 온도조건으로 열간압연하는 것을 특징으로 하는 내진용 철근 제조방법을 제공한다.
According to the present invention, carbon (C): 0.30 to 0.50%, silicon (Si): 0.10 to 0.70%, manganese (Mn): 0.50 to 1.80%, phosphorus (P): 0.03% or less, sulfur (S) : 0.03% or less, Copper (Cu): 0.20 to 0.30%, Nickel (Ni): 0.3% or less, Chromium (Cr): 0.7 to 1.80%, Molybdenum (Mo): 0.5% or less, Aluminum (Al): 0.05% Below, zirconium (Zr): 0.02 ~ 0.10%, boron (B): 0.001 ~ 0.005%, oxygen (O): 30ppm or less, nitrogen (N): 80ppm or less, and the steel material consisting of the remaining Fe and unavoidable impurities 1000 ℃ It provides a method for producing a seismic reinforcing bar, characterized in that the heating in the temperature range of ~ 1250 ℃, hot rolling at the end temperature conditions of the end of rolling at 950 ℃ ~ 1250 ℃ through the reinforcing steel rolling process.

전술한 바와 같은 합금원소들이 각각의 중량비 범위 내에서 첨가되고, 나머지는 Fe 및 불가피하게 함유되는 불순물로 조성된 강재를 전기로에서 제조한 후, 연속주조에 의해 빌렛(billet)으로 만든다.Alloying elements as described above are added within the respective weight ratio ranges, and the remainder is produced in an electric furnace made of steel composed of Fe and inevitably contained impurities, and then billeted by continuous casting.

이후, 주조된 빌렛(billet)을 가열로에서 1000℃~1250℃의 온도범위로 재가열하여 추출한 후, 통상의 철근압연공정에 따라서 열간압연을 실시한다.Thereafter, the cast billet is reheated and extracted in a heating range of 1000 ° C. to 1250 ° C. in a heating furnace, followed by hot rolling in accordance with a conventional rebar rolling process.

이때, 열간압연조건은 특별히 제약조건은 없으나, 압연롤의 부하 및 생산성 등을 고려할 때, 가능한 높은 온도에서 압연을 종료하는 것이 좋으므로, 압연종료온도를 950℃ 이상의 온도조건으로 적용시키는 것이 바람직하다.At this time, the hot rolling conditions are not particularly limited, but considering the load and productivity of the rolling roll, it is preferable to finish the rolling at the highest possible temperature, so that the end rolling temperature is preferably applied at a temperature of 950 ° C. or higher. .

상기와 같이, 압연종료온도가 높으면 최종적인 철근제품의 결정립 크기는 상대적으로 조대해지며, 이는 결정립이 미세한 경우보다도 항복비를 낮추는 데에 있어서 유리하게 된다.As described above, when the end temperature of the rolling is high, the grain size of the final reinforcement product is relatively coarse, which is advantageous in lowering the yield ratio than when the grain is fine.

이후, 템프코어(Tempcore)를 이용하여 급냉하는 공정을 추가로 실시할 수 도 있다.
Thereafter, the step of quenching using Tempcore may be further performed.

실시예Example

이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다. Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. It is to be understood, however, that the same is by way of illustration and example only and is not to be construed in a limiting sense.

여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically.

1. 철근 시편의 제조1. Preparation of Reinforcing Bar Specimen

실시예 1 및 비교예 1에 따른 철근 시편에 적용되는 합금 조성은 하기의 표1과 같다.
Alloy compositions applied to the rebar specimens according to Example 1 and Comparative Example 1 are shown in Table 1 below.

주요
성분
main
ingredient
CC SiSi MnMn CrCr VV AlAl BB ZrZr NN
비교예1Comparative Example 1 0.40%0.40% 0.56%0.56% 1.45%1.45% 0.15%0.15% 0.19%0.19% 90ppm90 ppm -- -- 100ppm100 ppm 실시예1Example 1 0.32%0.32% 0.60%0.60% 1.42%1.42% 1.45%1.45% -- 60ppm60 ppm 38ppm38 ppm 200ppm200 ppm 70ppm70 ppm

표 1에 기재된 바와 같으 실시예 1 및 비교에 1의 조성을 갖는 강재를 1200℃의 온도범위로 가열하고, 철근압연공정을 통하여 1150℃에서의 압연종료 온도조건으로 열간압연하여 철근 시편을 제조하였다.As described in Table 1, steels having a composition of Example 1 and Comparative 1 were heated to a temperature range of 1200 ° C., and hot rolled to a rolling end temperature condition of 1150 ° C. through a reinforcing rolling process to prepare reinforcing bar specimens.

2. 물성평가2. Property evaluation

표 2는 실시예 1 및 비교예 1에 따른 철근 시편의 기계적 물성을 나타낸 것이다.Table 2 shows the mechanical properties of the reinforcing bar specimens according to Example 1 and Comparative Example 1.

항복강도Yield strength 인장강도The tensile strength 항복비Yield ratio 연신율Elongation 비교예 1Comparative Example 1 723MPa723 MPa 1,090MPa1,090 MPa 66.3%66.3% 10.01%10.01% 실시예 1Example 1 721MPa721 MPa 1,247MPa1,247 MPa 57.8%57.8% 13.2%13.2%

표 2를 참조하면, 실시예 1의 경우, 목표로 하는 항복강도 700MP 이상, 항복비 60% 이하를 만족하는 것을 알 수 있다. 이는 첨가된 지르코늄이 결정립을 미세화하는 탄질화물 형성에 앞서 ZrN를 형성함으로써, ZrN가 MnS 개재물의 핵생성위치로 작용하여 개재물의 미세화 및 연신성을 저하시킨 때문으로 사료된다.Referring to Table 2, it can be seen that in the case of Example 1, the target yield strength is 700 MP or more and the yield ratio is 60% or less. This may be because ZrN acts as a nucleation site of the MnS inclusions, thereby reducing the fineness and elongation of the inclusions, since the added zirconium forms ZrN prior to the formation of carbonitride, which refines the grains.

이러한 것은 도 1의 비금속 개재물 SEM 사진을 통해서도 알수 있다.This can also be seen through the SEM image of the nonmetallic inclusions of FIG. 1.

좌측 상단은 전체 비금속 개재물의 형태를 나타낸 것이고, 우측 상단은 Zr 이 차지하는 영역을 나타낸 것이고, 좌측 하단은 Mn이 차지하는 영역을 나타낸 것이고, 우측 하단은 S가 차지하는 영역을 나타낸 것이다.The upper left shows the shape of the entire nonmetallic inclusion, the upper right shows the area occupied by Zr, the lower left shows the area occupied by Mn, and the lower right shows the area occupied by S.

이로부터 ZrN가 탄질화물 형성에 앞서 생성된 후, MnS의 핵생성 위치로 작용했음을 알 수 있다.It can be seen from this that ZrN was generated prior to carbonitride formation and then served as nucleation site of MnS.

상술한 바와 같이, 본 발명에 따른 저항복비 내진용 철근의 경우 700MPa급의 항복강도와 0.6 이하의 저항복비를 동시에 달성할 수 있다.As described above, in the case of the resistance yield ratio seismic reinforcing bar according to the present invention, a yield strength of 700 MPa and a resistance yield ratio of 0.6 or less can be simultaneously achieved.

이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다. While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments. Such changes and modifications may belong to the present invention without departing from the scope of the present invention. Therefore, the scope of the present invention will be determined by the claims described below.

Claims (4)

중량%로 탄소(C) : 0.30~0.50%, 실리콘(Si) : 0.10~0.70%, 망간(Mn) : 0.50~1.80%, 인(P) : 0.03% 이하, 황(S) : 0.03% 이하, 구리(Cu) : 0.20~0.30%, 니켈(Ni) : 0.3% 이하, 크롬(Cr) : 0.7~1.80%, 몰리브덴(Mo) : 0.5% 이하, 알루미늄(Al) : 0.05% 이하, 지르코늄(Zr) : 0.02~0.10%, 보론(B) : 0.001~0.005%, 산소(O) : 30ppm 이하, 질소(N) : 80ppm 이하, 및 나머지 Fe와 불가피한 불순물로 이루어지는 내진용 철근.
By weight% Carbon (C): 0.30 ~ 0.50%, Silicon (Si): 0.10 ~ 0.70%, Manganese (Mn): 0.50 ~ 1.80%, Phosphorus (P): 0.03% or less, Sulfur (S): 0.03% or less , Copper (Cu): 0.20 to 0.30%, nickel (Ni): 0.3% or less, chromium (Cr): 0.7 to 1.80%, molybdenum (Mo): 0.5% or less, aluminum (Al): 0.05% or less, zirconium ( Zr): 0.02 to 0.10%, boron (B): 0.001 to 0.005%, oxygen (O): 30 ppm or less, nitrogen (N): 80 ppm or less, and the seismic reinforcing steel bar consisting of remaining Fe and unavoidable impurities.
제1항에 있어서,
상기 내진용 철근은
항복강도 700MPa 이상, 항복비(항복강도/인장강도) 60% 이하인 것을 특징으로 하는 내진용 철근.
The method of claim 1,
The seismic reinforcing bar is
Yield strength 700MPa or more, yield ratio (yield strength / tensile strength) 60% or less, characterized in that the rebar.
제 2 항에 있어서,
상기 내진용 철근은 연신율 12% 이상인 것을 특징으로 하는 내진용 철근.
The method of claim 2,
The seismic reinforcing bar is an earthquake-resistant reinforcement, characterized in that more than 12% elongation.
중량%로 탄소(C) : 0.30~0.50%, 실리콘(Si) : 0.10~0.70%, 망간(Mn) : 0.50~1.80%, 인(P) : 0.03% 이하, 황(S) : 0.03% 이하, 구리(Cu) : 0.20~0.30%, 니켈(Ni) : 0.3% 이하, 크롬(Cr) : 0.7~1.80%, 몰리브덴(Mo) : 0.5% 이하, 알루미늄(Al) : 0.05% 이하, 지르코늄(Zr) : 0.02~0.10%, 보론(B) : 0.001~0.005%, 산소(O) : 30ppm 이하, 질소(N) : 80ppm 이하, 및 나머지 Fe와 불가피한 불순물로 이루어진 강재를 1000℃~1250℃의 온도범위로 가열하고, 철근압연공정을 통하여 950℃~1250℃에서의 압연종료 온도조건으로 열간압연하는 것을 특징으로 하는 내진용 철근 제조방법.By weight% Carbon (C): 0.30 ~ 0.50%, Silicon (Si): 0.10 ~ 0.70%, Manganese (Mn): 0.50 ~ 1.80%, Phosphorus (P): 0.03% or less, Sulfur (S): 0.03% or less , Copper (Cu): 0.20 to 0.30%, nickel (Ni): 0.3% or less, chromium (Cr): 0.7 to 1.80%, molybdenum (Mo): 0.5% or less, aluminum (Al): 0.05% or less, zirconium ( Zr): 0.02 ~ 0.10%, Boron (B): 0.001 ~ 0.005%, Oxygen (O): 30ppm or less, Nitrogen (N): 80ppm or less, and the rest of Fe and unavoidable impurities A method of manufacturing a seismic reinforcing steel bar, characterized in that the heating is carried out at a temperature range, and the steel sheet is hot rolled at a temperature condition of end of rolling at 950 ° C to 1250 ° C through a rebar rolling process.
KR1020110051184A 2011-05-30 2011-05-30 Method for manufacturing high-strength deformed bar with low yield ratio KR20120132825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110051184A KR20120132825A (en) 2011-05-30 2011-05-30 Method for manufacturing high-strength deformed bar with low yield ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110051184A KR20120132825A (en) 2011-05-30 2011-05-30 Method for manufacturing high-strength deformed bar with low yield ratio

Publications (1)

Publication Number Publication Date
KR20120132825A true KR20120132825A (en) 2012-12-10

Family

ID=47516283

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110051184A KR20120132825A (en) 2011-05-30 2011-05-30 Method for manufacturing high-strength deformed bar with low yield ratio

Country Status (1)

Country Link
KR (1) KR20120132825A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110541108A (en) * 2019-07-26 2019-12-06 马鞍山钢铁股份有限公司 nb and V composite 700MPa grade high-strength anti-seismic steel bar steel and production method thereof
KR20210022416A (en) * 2019-08-20 2021-03-03 동국제강주식회사 Manufacturing method of seismic-resistant steel deforemed bar having yield strength of 620mpa grade or more and seismic-resistant steel deforemed bar having yield strength of 620mpa grade or more using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110541108A (en) * 2019-07-26 2019-12-06 马鞍山钢铁股份有限公司 nb and V composite 700MPa grade high-strength anti-seismic steel bar steel and production method thereof
KR20210022416A (en) * 2019-08-20 2021-03-03 동국제강주식회사 Manufacturing method of seismic-resistant steel deforemed bar having yield strength of 620mpa grade or more and seismic-resistant steel deforemed bar having yield strength of 620mpa grade or more using the same

Similar Documents

Publication Publication Date Title
KR101205144B1 (en) H-steel for building structure and method for producing the same
KR20160072099A (en) A high-hardness hot-rolled steel product, and a method of manufacturing the same
KR20170143415A (en) Steel reinforcement and method of manufacturing the same
KR101903181B1 (en) Duplex stainless steel with improved corrosion resistance and formability and method of manufacturing the same
KR101777974B1 (en) High strength steel reinforcement and method of manufacturing the same
KR102166592B1 (en) Steel reinforcement and method of manufacturing the same
KR101185320B1 (en) ultra-high strength Hot-rolled steel sheet, and method for producing the same
KR101277807B1 (en) HIGH STRENGTH STRUCTURAL STEEL OF TENSILE STRENGTH OF 700MPa GRADE WITH HIGH STRENGTH AND LOW YIELD RATIO AND METHOD OF MANUFACTURING THE SAME
KR102250322B1 (en) Steel reinforcement and method of manufacturing the same
KR20120132825A (en) Method for manufacturing high-strength deformed bar with low yield ratio
KR20200025263A (en) High strength steel reinforcement and method of manufacturing the same
KR101642696B1 (en) High manganese light weight steel with excellent wear resistance and method of manufacturing the same
KR20140042101A (en) Shape steel and method of manufacturing the same
KR101639167B1 (en) Shape steel and method of manufacturing the same
JP2022542740A (en) Reinforcing bar and its manufacturing method
KR20150027345A (en) Hot-rolled steel sheet and manufacturing method of the same
KR101467030B1 (en) Method for manufacturing high strength steel plate
KR20130002181A (en) Earthquake-proof steel and method of manufacturing the earthquake-proof steel
KR20110022308A (en) High strength steel, and method for producing the same
KR101828705B1 (en) Shape steel and method of manufacturing the same
KR20220091182A (en) Hot rolled steel sheet having excellent earthquake-resistant property and method of manufacturing the same
KR101149132B1 (en) Steel with superior impact characteristic at law temperature and the method of producing the same
KR101167389B1 (en) Steel for structure, and method for producing the same
KR101149251B1 (en) HIGH STRENGTH STRUCTURAL STEEL OF TENSILE STRENGTH OF 650MPa GRADE WITH LOW YIELD RATIO AND METHOD OF MANUFACTURING THE HIGH STRENGTH STRUCTURAL STEEL
KR20150112490A (en) Steel and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20131209

Effective date: 20140822