KR20120131453A - Gas shielded arc welding titania based flux cored wire having excellent crack resistance - Google Patents

Gas shielded arc welding titania based flux cored wire having excellent crack resistance Download PDF

Info

Publication number
KR20120131453A
KR20120131453A KR1020110049629A KR20110049629A KR20120131453A KR 20120131453 A KR20120131453 A KR 20120131453A KR 1020110049629 A KR1020110049629 A KR 1020110049629A KR 20110049629 A KR20110049629 A KR 20110049629A KR 20120131453 A KR20120131453 A KR 20120131453A
Authority
KR
South Korea
Prior art keywords
content
crack resistance
comparative example
impact toughness
arc welding
Prior art date
Application number
KR1020110049629A
Other languages
Korean (ko)
Other versions
KR101264606B1 (en
Inventor
조진환
김용덕
Original Assignee
현대종합금속 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대종합금속 주식회사 filed Critical 현대종합금속 주식회사
Priority to KR1020110049629A priority Critical patent/KR101264606B1/en
Publication of KR20120131453A publication Critical patent/KR20120131453A/en
Application granted granted Critical
Publication of KR101264606B1 publication Critical patent/KR101264606B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • B23K1/203Fluxing, i.e. applying flux onto surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/365Selection of non-metallic compositions of coating materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • B23K35/406Filled tubular wire or rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE: A titania based flux cored wire for gas-shielded arc welding is provided to obtain excellent crack resistance and lower-temperature impact toughness by controlling components and the correlation of the components as well. CONSTITUTION: A titania based flux cored wire for gas-shielded arc welding with excellent crack resistance comprises 4-9weight% of TiO2, 0.01-0.07 weight% of C, 1.0-3.0weight% of Mn, 0.1-1.0weight% of Ni, 0.1-1.0weight% of Mg, 0.01-0.1weight% of F, 0.002-0.007weight% of B, 2.0-6.0 weight% of Fe, 0.03weight% or less of Nb, 0.04 weight% or less of V, 0.2-1.0weight% of Na, and the remaining amount of Fe in a metal outer sheath and inevitable impurities. [Reference numerals] (AA) -40°C Impact toughness(J); (BB) Embodiment; (CC) Comparison case

Description

내균열성이 우수한 가스실드 아크 용접용 티타니아계 플럭스 충전 와이어{GAS SHIELDED ARC WELDING TITANIA BASED FLUX CORED WIRE HAVING EXCELLENT CRACK RESISTANCE}Titania-based flux filling wire for gas shield arc welding with excellent crack resistance {GAS SHIELDED ARC WELDING TITANIA BASED FLUX CORED WIRE HAVING EXCELLENT CRACK RESISTANCE}

본 발명은 용접용 플럭스 충전 와이어에 관한 것으로, 보다 상세하게는 용접금속의 저온 충격인성 및 내균열성이 우수한 가스실드 아크 용접용 티타니아계 플럭스 충전 와이어에 관한 것이다.The present invention relates to a flux filling wire for welding, and more particularly, to a titania-based flux filling wire for gas shielded arc welding excellent in low-temperature impact toughness and crack resistance of a weld metal.

최근 선박이나 철 구조물, 해양 플랜트, 화공설비 및 저장 시설물 등 다양한 분야에서 고강도와 기능성을 갖는 강재를 요구함에 따라 용접재료도 그에 맞는 기능성 재료를 선택해 주어야 한다. 특히, 후판용접에서는 고입열의 용접조건, 용접기법에 따른 다양한 변수로 인하여 충격인성 및 내균열성이 취약해질 수 있다. 또한, 일반적인 티타니아계 타입의 플럭스 충전 와이어는 산화물로 인하여 전자세 용접성은 우수하나 상대적으로 저온 충격인성의 확보가 어려운 문제가 있다.
In recent years, various materials such as ships, steel structures, offshore plants, chemical facilities, and storage facilities require steel materials with high strength and functionality, and thus welding materials must also select functional materials accordingly. In particular, in thick plate welding, impact toughness and crack resistance may become weak due to various parameters depending on welding conditions and welding techniques of high heat input. In addition, the general titania-type flux-filled wire is excellent in the electron-weld weldability due to the oxide, but it is difficult to secure relatively low-temperature impact toughness.

상기 문제점을 해결하기 위해서 일본 특개소 58-16796호에서는 가스실드 아크용접용 티타니아계 플럭스 충전 와이어에 있어서, 와이어에 대한 중량%로, TiO2: 4~8.5%, Mg: 0.2~0.8%, Ti: 0.03~0.7%, B: 0.002~0.025%, Mn: 1.0~3.0%, Si: 0.1~1.2%, 그 밖에 금속불화물과 산화물로 이루어진 플럭스를 제공함으로서 저온에서 용접금속 충격인성을 확보한다고 기재하고 있다.
In order to solve the above problem, Japanese Patent Laid-Open No. 58-16796 discloses a Titania-based flux-filled wire for gas shield arc welding, in terms of weight% of the wire, TiO 2 : 4 to 8.5%, Mg: 0.2 to 0.8%, and Ti. : 0.03 ~ 0.7%, B: 0.002 ~ 0.025%, Mn: 1.0 ~ 3.0%, Si: 0.1 ~ 1.2%, In addition, it provides a weld metal impact toughness at low temperature by providing flux consisting of metal fluoride and oxide. have.

그러나, 상기 특허에서 첨가되는 보론(B)은 용접금속 충격인성을 확보케 할 수는 있으나, 입계편석에 의해 고온 균열을 일으키는 원인으로 작용할 수도 있어 내균열성 향상면에서는 미흡한 점이 있었다.
However, the boron (B) added in the patent can ensure the impact toughness of the weld metal, but may also act as a cause of high-temperature cracking due to the grain boundary segregation, which is insufficient in terms of improving crack resistance.

또한, 한국 공개특허 2002-0008681호에서는 티탄 산화물 및 비티탄 산화물 등의 비를 제어함으로써, 양호한 저온충격인성 확보 및 용접작업성의 향상을 제안하고 있으나, 내균열성 측면에서는 다소 미흡한 점이 있었다.
In addition, Korean Patent Laid-Open Publication No. 2002-0008681 proposes to secure good low-temperature impact toughness and to improve welding workability by controlling the ratio of titanium oxide and non-titanium oxide, but it has been somewhat insufficient in terms of crack resistance.

따라서, 본 발명자들은 지속적 연구를 통해 전자세 용접작업성이 우수하고 용접금속 저온 충격인성 및 내균열성이 우수한 플럭스 충전 와이어를 발명하여 이에 개시하는 바이다.Therefore, the inventors of the present invention have disclosed and disclosed a flux-filled wire which is excellent in the electric field welding workability and excellent in the weld metal low-temperature impact toughness and crack resistance through continuous research.

본 발명의 일측면은 양호한 용접작업성을 유지하면서, 내균열성 및 저온충격인성을 확보할 수 있는 가스실드 아크 용접용 티타니아계 플럭스 충전 와이어를 제공하고자 하는 것이다.One aspect of the present invention is to provide a titania-based flux-filled wire for gas shield arc welding that can ensure crack resistance and low temperature impact toughness while maintaining good welding workability.

본 발명은 금속외피내에 플럭스가 충전된 플럭스 충전 와이어에 있어서, 와이어 전중량에 대한 중량%로, TiO2: 4~9%, C: 0.01~0.07%, Si: 0.2~0.6%, Mn: 1.0~3.0%, Ni: 0.1~1.0%, Mg: 0.1~1.0%, F: 0.01~0.1%, B: 0.002~0.007%, 철분: 2.0~6.0%, Nb: 0.03%이하, V: 0.04%이하, Na: 0.2~1.0%, 잔여 금속외피 중 Fe 및 불가피한 불순물을 포함하며, The present invention provides a flux-filled wire in which a flux is filled in a metal shell, in terms of weight% of the total weight of the wire, TiO 2 : 4 to 9%, C: 0.01 to 0.07%, Si: 0.2 to 0.6%, and Mn: 1.0 -3.0%, Ni: 0.1-1.0%, Mg: 0.1-1.0%, F: 0.01-0.1%, B: 0.002-0.007%, Iron: 2.0-6.0%, Nb: 0.03% or less, V: 0.04% or less , Na: 0.2-1.0%, containing Fe and inevitable impurities in the remaining metal shell,

관계식 (C*B*104)2+(Si3*10)의 값이 1.5~6.0인 내균열성이 우수한 가스실드 아크 용접용 티타니아계 플럭스 충전 와이어를 제공한다.The present invention provides a titania-based flux-filled wire for gas-shielded arc welding having excellent crack resistance of the relation (C * B * 10 4 ) 2 + (Si 3 * 10) of 1.5 to 6.0.

본 발명에 의하면, 플럭스 충전 와이어의 조성성분을 제어함과 동시에, 이들의 성분관계를 제어함으로서, 우수한 내균열성 및 저온충격인성을 갖는 가스실드 아크 용접용 티타니아계 플럭스 충전 와이어를 제공할 수 있다.According to the present invention, by controlling the compositional components of the flux-filled wires and controlling their component relationships, it is possible to provide a titania-based flux-filled wire for gas shielded arc welding having excellent crack resistance and low temperature impact toughness. .

도 1은 실시예의 고온 균열 발생시험 모재의 측단면(a)과 평면(b)을 나타낸 것임.
도 2는 (C*B*104)2+(Si3*10)의 값에 대한 -40℃ 저온 충격인성 값을 나타낸 그래프임.
Figure 1 shows the side cross-section (a) and the plane (b) of the high temperature crack generation test base material of the embodiment.
Figure 2 is a graph showing the -40 ℃ low temperature impact toughness value for the value of (C * B * 10 4 ) 2 + (Si 3 * 10).

이하, 본 발명에 대하여 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명 플럭스 충전 와이어의 조성에 대하여 상세히 설명한다. 하기 조성은 와이어 전중량에 대한 중량%(이하, %)이다.
The composition of the flux filling wire of the present invention will be described in detail. The following composition is weight percent (hereinafter%) with respect to the total weight of the wire.

탄소(C)의 함량은 0.01~0.07%로 하는 것이 바람직하다. 상기 C의 함량이 0.01% 미만에서는 용착금속의 인성 및 인장특성이 열화되며, 0.07%를 초과해서는 펄라이트 생성이 촉진되며 균열에 대한 감수성이 증가하여 고온균열이 발생하기 쉬운 문제가 있을 뿐만 아니라, 용접작업성에 있어서도 스패터가 다량 발생하는 문제가 있기 때문에, C의 함량은 0.01~0.07%로 하는 것이 바람직하다.
It is preferable to make content of carbon (C) into 0.01 to 0.07%. If the C content is less than 0.01%, the toughness and tensile properties of the deposited metal deteriorate. If the content of C is greater than 0.07%, pearlite is promoted. Since there also exists a problem that a large amount of spatters generate | occur | produce also in workability, it is preferable to make C content into 0.01 to 0.07%.

TiO2의 함량은 4~9%로 하는 것이 바람직하다. 상기 TiO2의 함량이 4% 미만이면 슬래그량이 부족하여 용융금속을 대기로부터 충분히 보호할 수 없고, 전자세 용접시 슬래그 응고가 느려져 용접성을 저하시키는 문제가 있다. 또한, 상기 TiO2의 함량이 9%를 초과하게 되면 슬래그 형성이 과다하고 용융성 및 유동성이 떨어질 뿐만 아니라, 슬래그의 일부가 용접금속 내부에 혼입되어 용접부의 기계적 성능이 열화될 수 있기 때문에 바람직하지 않다.
The content of TiO 2 is preferably 4-9%. If the content of TiO 2 is less than 4%, the amount of slag is insufficient, so that molten metal cannot be sufficiently protected from the atmosphere, and slag solidification is slowed during the electron beam welding, thereby degrading weldability. In addition, when the content of TiO 2 exceeds 9%, it is not preferable because not only slag formation is excessive and meltability and fluidity are deteriorated, but also a part of the slag may be mixed into the weld metal to degrade the mechanical performance of the weld. not.

망간(Mn)의 함량은 1.0~3.0%로 하는 것이 바람직하다. 상기 Mn은 비교적 약한 탈산제로서 S와 반응하여 FeS보다 MnS를 먼저 형성하기 때문에 S의 편석에 의한 저융점 화합물의 형성을 방지하는 역할을 한다. 상기 Mn의 함량이 1.0% 미만에서는 용접금속의 강도가 저하되고, 소입성 부족에 따라 용접금속의 조대화가 촉진되며 저온인성 열화를 가져올 수 있다. 또한, 그 함량이 3.0%를 초과하게 되면 용융성이 저하되며, 슬래그 응고가 느려지고 비드외관이 나빠질 수 있으며 고온균열 발생의 우려가 있다.
The content of manganese (Mn) is preferably 1.0 to 3.0%. The Mn reacts with S as a relatively weak deoxidizer and forms MnS before FeS, thereby preventing the formation of a low melting point compound due to segregation of S. When the Mn content is less than 1.0%, the strength of the weld metal is lowered, coarsening of the weld metal is promoted due to lack of hardenability, and deterioration at low temperature toughness can be brought about. In addition, when the content exceeds 3.0%, the meltability is lowered, slag solidification is slowed, the appearance of the bead may worsen, there is a fear of high temperature crack generation.

나트륨(Na)은 아크안정제로서, 용접시 아크의 안정화를 이루어 양호한 작업성을 나타내는 성분이다. 상기 Na의 함량은 0.2~1.0%로 하는 것이 바람직하다. 상기 Na의 함량이 0.2% 미만에서는 아크불안, 스패터의 증가 등의 현상이 있고, 1.0%를 초과하면 아크 집중이 높아지고 아크 크기가 작아지며 아크 불안을 가져오는 문제가 있으므로, 그 함량을 0.2~1.0%로 하는 것이 바람직하다.
Sodium (Na) is an arc stabilizer, which stabilizes the arc during welding and is a component showing good workability. The Na content is preferably 0.2 to 1.0%. If the content of Na is less than 0.2%, there are phenomena such as arc anxiety and an increase in spatter. If the content of Na exceeds 1.0%, there is a problem that the arc concentration is increased, the arc size is decreased, and the arc anxiety is caused. It is preferable to set it as 1.0%.

니켈(Ni)의 함량은 0.1~1.0%로 하는 것이 바람직하다. 상기 Ni는 용접금속 충격인성의 천이온도를 낮춤과 동시에 저온 충격인성의 안정화를 도모할 수 있는 원소이다. 상기 Ni의 함량이 0.1% 미만에서는 전술한 소정의 효과를 나타낼 수 없고, 1.0%를 초과하면 소입성을 과도하게 증가시켜 용접열영향부의 인성을 저하시키고 용접열영향부 및 용접금속에서 고온균열의 발생 가능성이 있기 때문에 그 함량을 0.1~1.0%로 하는 것이 바람직하다.
The content of nickel (Ni) is preferably made 0.1 to 1.0%. Ni is an element capable of lowering the transition temperature of weld metal impact toughness and stabilizing low temperature impact toughness. If the content of Ni is less than 0.1%, the above-mentioned predetermined effect cannot be exhibited. If the content of Ni is more than 1.0%, the hardenability is excessively increased to lower the toughness of the weld heat affected zone and the high temperature cracking of the weld heat affected zone and the weld metal. Since there is a possibility of occurrence, it is preferable to make the content 0.1 to 1.0%.

마그네슘(Mg)의 함량은 0.1~1.0%로 하는 것이 바람직하다. 상기 Mg는 강탈산제로서 용융금속내의 산소와 반응하여 비금속 개재물의 생성을 억제하여 용접금속의 청정도를 향상시키는 역할을 하는 성분이다. 상기 Mg의 함량이 0.1% 미만에서는 전술한 소정의 효과를 기대하기 어렵고, 1.0%를 초과하면 용접 흄 및 스패터 발생량이 증가하고, 슬래그 포피성을 열화시키므로 그 함량을 0.1~1.0%로 하는 것이 바람직하다.
The content of magnesium (Mg) is preferably 0.1 to 1.0%. The Mg is a strong deoxidizing agent that reacts with oxygen in the molten metal to suppress the formation of non-metallic inclusions, thereby improving the cleanliness of the weld metal. If the content of Mg is less than 0.1%, it is difficult to expect the above-described predetermined effects. If the content of Mg is more than 1.0%, the amount of welding fume and spatter is increased, and the slag foreskin is deteriorated, so that the content is 0.1 to 1.0%. desirable.

플루오르(F)의 함량은 0.01~0.1%로 하는 것이 바람직하다. 상기 F는 금속플루오르 화합물 형태로 첨가되며, 이러한 F는 아크 안정성을 향상하는 역할과 함께 결함발생을 억제하는 역할을 한다. 상기 F의 함량이 0.01% 미만에서는 상기 역할이 미미하고, 0.1%를 초과하게 되면 흄발생량이 증가하고 용접성도 저하하기 때문에, 그 함량은 0.01~0.1%로 하는 것이 바람직하다.
It is preferable to make content of fluorine (F) into 0.01 to 0.1%. The F is added in the form of a metal fluorine compound, and this F serves to improve the arc stability and to suppress the occurrence of defects. If the content of F is less than 0.01%, the above-mentioned role is insignificant, and if it exceeds 0.1%, the amount of fume is increased and the weldability is also lowered. Therefore, the content is preferably 0.01 to 0.1%.

철분의 함량은 2.0~6.0%로 하는 것이 바람직하다. 상기 철분은 용접시 용접금속량을 증대시키고 산소와 결합하여 산화물을 형성하는 역할을 한다. 상기 철분의 함량이 2.0% 미만에서는 용접금속량이 충분치 않고, 아크 불안과 슬래그 유동 저하를 초래할 수 있으며, 6.0%를 초과해서는 흄, 스패터의 과다발생 및 슬래그 박리성을 저하시키므로, 그 함량은 2.0~6.0%로 하는 것이 바람직하다.
The content of iron is preferably 2.0 to 6.0%. The iron increases the amount of weld metal in welding and combines with oxygen to form an oxide. If the iron content is less than 2.0%, the amount of weld metal is insufficient, and it may cause arc anxiety and slag flow deterioration. If the content of iron is more than 6.0%, excessive occurrence of fume and spatter and slag peelability may be reduced, so that the content is 2.0. It is preferable to set it as -6.0%.

니오븀(Nb) 0.03%이하, 바나듐(V) 0.04%이하를 첨가하는 것이 바람직하다. 상기 Nb와 V는 불순물로 첨가되는 원소로서, 결정입계에 석출하여 고용강화에 의하여 용접부 강도를 증가시킬 뿐만 아니라, 경도를 증가시키지만, 과도하게 포함될 경우에는 용접금속의 인성을 저하시키므로, 그 함량을 각각 0.03%이하, 0.04%이하로 하는 것이 바람직하다.
Niobium (Nb) 0.03% or less and vanadium (V) 0.04% or less are preferably added. The Nb and V are elements added as impurities, and not only increase the strength of the welded portion by precipitation at the grain boundary, but also increase the hardness, but when excessively included, it reduces the toughness of the weld metal, so that the content It is preferable to set it as 0.03% or less and 0.04% or less, respectively.

보론(B)의 함량은 0.002~0.007%로 하는 것이 바람직하다. 상기 B는 BN을 형성하여 입계 페라이트의 생성을 억제하고 조직을 미세화시켜 용접부의 강도 및 인성을 증가시키는 역할을 한다. 상기 B의 함량이 0.002% 미만에서는 상기 역할을 기대하기 어렵고, 0.007%를 초과하는 경우에는 붕화물이 연속적인 망상으로 형성되어 경화에 의한 충격치 감소가 일어나며, 인성도 열화될 뿐만 아니라, 용융성 저하 및 균열 발생의 우려가 있기 때문에 그 함량을 0.002~0.007%로 하는 것이 바람직하다.
The content of boron (B) is preferably set to 0.002 to 0.007%. B serves to increase the strength and toughness of the weld by forming BN to suppress the formation of grain boundary ferrite and to refine the structure. If the content of B is less than 0.002%, it is difficult to expect the role, and if it exceeds 0.007%, boride is formed into a continuous network to reduce impact value due to hardening, not only to deteriorate toughness but also to lower meltability. And the content thereof is preferably 0.002% to 0.007% because of the possibility of cracking.

실리콘(Si)의 함량은 0.2~0.6%로 하는 것이 바람직하다. 상기 Si는 용접금속의 강도를 유지함과 아울러 슬래그 유동성과 비드형상을 향상시키는 역할을 한다. 상기 Si의 함량이 0.2% 미만에서는 용접금속의 인장강도 및 충격인성이 저하되며 슬래그 유동 및 비드 외관이 저하되는 문제가 있다. 그 함량이 0.6%를 초과하면 용접금속내의 도상 마르텐사이트(M-A constituent)의 변태를 촉진시켜 저온 충격인성을 저하시키고 균열이 발생할 우려가 있다. 즉, Fe-S-Si-O 화합물을 형성하여 고온균열을 조장할 수 있으며, 이러한 화합물로 인해 저온충격인성을 저하시킬 수 있다.
The content of silicon (Si) is preferably made 0.2 to 0.6%. The Si serves to maintain the strength of the weld metal and improve slag fluidity and bead shape. If the content of Si is less than 0.2%, there is a problem in that tensile strength and impact toughness of the weld metal are lowered, and slag flow and bead appearance are lowered. If the content exceeds 0.6%, the transformation of the phase martensite in the weld metal (MA constituent) is promoted to lower the low-temperature impact toughness and there is a fear of cracking. That is, by forming a Fe-S-Si-O compound to promote high-temperature cracking, it can reduce the low-temperature impact toughness due to such a compound.

상기 조성이외에 나머지는 금속외피 중 Fe 및 불가피한 불순물을 포함한다. 다만, 이로 인해 다른 조성의 첨가를 배제하는 것은 아니다.
In addition to the above composition, the rest includes Fe and inevitable impurities in the metal shell. However, this does not exclude the addition of other compositions.

본 발명의 플럭스 충전 와이어는 상기 조성 중 C, B 및 Si의 함량의 관계식, (C*B*104)2+(Si3*10)의 값이 1.5~6.0을 만족하는 것이 바람직하다. C와 B는 그 함유량이 많지는 않지만 충격인성 및 내균열성에 크게 영향을 미치는 성분이며, Si 역시 충격인성 향상에 기여하지만, 그 함량이 많으면 내균열성이 저하되는 문제가 있다. 본 발명자 등은 이 점에 착안하여, C, B 및 Si의 함량 변화에 따른 충격인성 및 내균열성 평가를 실시하였고, 그 결과, (C*B*104)2+(Si3*10)의 값이 1.5~6.0을 만족할 때 안정적인 충격인성과 내균열성을 동시에 확보할 수 있음을 확인하여 본 발명을 제안하는 것이다. 상기 값을 벗어나게 되면, 안정적인 충격인성과 내균열성을 동시에 확보하기 어렵다.
In the flux-filled wire of the present invention, it is preferable that the relationship between the contents of C, B, and Si in the composition, and the value of (C * B * 10 4 ) 2 + (Si 3 * 10) satisfy 1.5 to 6.0. Although the content of C and B is not high, it is a component that greatly affects impact toughness and crack resistance, and Si also contributes to improvement of impact toughness, but if the content is large, crack resistance is deteriorated. The present inventors, focusing on this point, and evaluated the impact toughness and crack resistance according to the change in the content of C, B and Si, as a result, (C * B * 10 4 ) 2 + (Si 3 * 10) When the value of satisfies 1.5 ~ 6.0 is to confirm the stable impact toughness and crack resistance can be secured at the same time to propose the present invention. When the value is out of the above range, it is difficult to secure stable impact toughness and crack resistance at the same time.

이하, 본 발명의 실시예에 대하여 상세히 설명한다. 하기 실시예는 본 발명의 이해를 위한 것으로, 이에 본 발명이 한정되는 것은 아니다.
Hereinafter, embodiments of the present invention will be described in detail. The following examples are provided for the understanding of the present invention, and the present invention is not limited thereto.

(실시예)(Example)

하기 표 1의 조성을 만족하는 플럭스 충전 와이어를 준비하였다. 상기 플럭스 충전 와이어는 금속 외피에 플럭스가 10~20%의 충전율로 충전되었고, 직경이 1.2㎜인 티타니아계 플럭스 충전 와이어이다. 한편, 상기 금속 외피는 C: 0.02%, Si: 0.002%, Mn: 0.2%, P: 0.02%, S: 0.009%를 포함하는 연강재를 이용하였다. 하기 표 1에서 나머지는 외피 중의 Fe 및 불가피한 불순물이다.
To prepare a flux filling wire that satisfies the composition of Table 1. The flux filling wire is a titania-based flux filling wire in which a metal shell is filled with a flux of 10 to 20% with a flux of 1.2 mm in diameter. On the other hand, the metal shell was used as a mild steel containing C: 0.02%, Si: 0.002%, Mn: 0.2%, P: 0.02%, S: 0.009%. The remainder in Table 1 below is Fe and inevitable impurities in the skin.

상기 플럭스 충전 와이어를 사용하여 ASTM E36 강재의 용접을 실시하였으며, AWS A5.20에 따라 충격인성 및 인장강도를 측정하여 그 결과를 표 2에 나타내었다. 이때, 항복강도 390MPa 이상, 인장강도 490~670MPa, 연신율 22%이상, 충격인성 -40℃에서 47J 이상인 경우를 합격으로 평가하였다. 상기 표 2의 결과에 대해서, (C*B*104)2+(Si3*10)의 값에 대한 저온 충격인성 값의 그래프를 도 2에 나타내었다.
The flux-filled wire was used to weld ASTM E36 steel, and the impact toughness and tensile strength were measured according to AWS A5.20, and the results are shown in Table 2. At this time, the case of yield strength of 390 MPa or more, tensile strength of 490-670 MPa, elongation of 22% or more, and impact toughness of 47 J or more at -40 ° C was evaluated as pass. For the results of Table 2, a graph of the low temperature impact toughness value with respect to the value of (C * B * 10 4 ) 2 + (Si 3 * 10) is shown in FIG.

한편, 내균열성에 대한 평가를 위한 고온 균열 발생시험은 두께 25㎜, 길이 500㎜의 EH36 모재를 도 1과 같이 준비하여 고입열 용접조건(250A/32V)으로 초층용접을 실시하였으며, 그 용접에 따른 고온균열 발생 정도를 측정하여 하기 표 4에 나타내었다. 상기 도 1(a)는 모재의 측단면을 나타낸 것이고, 도 1(b)는 평면을 나타낸 것이다.
On the other hand, the high temperature crack generation test for the evaluation of the crack resistance was prepared by the EH36 base material having a thickness of 25mm, 500mm in length as shown in Figure 1 and subjected to the first layer welding under high heat input welding conditions (250A / 32V). It was shown in Table 4 by measuring the degree of high temperature crack generation according to. Figure 1 (a) shows a side cross-section of the base material, Figure 1 (b) shows a plane.

본 실시예에서는 고온균열 발생 판정방법으로 먼저 하기 표 3과 같은 용접조건으로 도 1과 같이 세라믹백킹제를 이용하여 용접모재에 편면 초층용접을 실시하고, 그 이후 용접비드 표면에 발생한 균열의 길이를 전체 용접길이(500㎜)에 대한 백분율로 계산하였다.
In the present embodiment, first, the first crack welding on the surface of the weld bead is performed using the ceramic backing agent as shown in Table 1 using the welding conditions shown in Table 3 as a high temperature crack generation determination method. It was calculated as a percentage of the total weld length (500 mm).

나아가, 저온균열 발생을 확인하기 위해 초층균열이 일어난 부분에는 가우징을 실시하여 재용접을 실시하였으며, 총 5Layer 7Pass로 용접을 실시하여 용접을 완료하였다. 그리고, 용접 후 72시간이 경과한 다음, 비파괴 검사를 실시하여 균열발생 여부를 검사하였다.
Further, in order to confirm the occurrence of low temperature cracks, the superficial cracks were subjected to gouging and re-welded, and the welding was completed by 5 Layer 7 Pass. Then, 72 hours after welding, a nondestructive test was carried out to check for cracks.

구분division CC SiSi MnMn BB NiNi MgMg TiO2 TiO 2 FF NaNa NbNb VV 철분iron content (C*B*104)2+(Si3*10)(C * B * 10 4 ) 2 + (Si 3 * 10) 발명예1Inventory 1 0.0310.031 0.480.48 2.22.2 0.00280.0028 0.350.35 0.450.45 6.456.45 0.0780.078 0.580.58 0.0120.012 0.0230.023 3.053.05 1.861.86 발명예2Inventive Example 2 0.0430.043 0.450.45 2.42.4 0.00330.0033 0.380.38 0.480.48 6.586.58 0.0230.023 0.440.44 0.0150.015 0.0240.024 4.284.28 2.922.92 발명예3Inventory 3 0.0290.029 0.470.47 2.12.1 0.00320.0032 0.350.35 0.440.44 7.257.25 0.0830.083 0.580.58 0.0130.013 0.0190.019 4.124.12 1.901.90 발명예4Honorable 4 0.0310.031 0.580.58 2.32.3 0.00270.0027 0.450.45 0.400.40 5.885.88 0.0980.098 0.740.74 0.0090.009 0.0250.025 3.653.65 2.652.65 발명예5Inventory 5 0.0380.038 0.210.21 2.52.5 0.00340.0034 0.480.48 0.420.42 4.994.99 0.0420.042 0.810.81 0.0120.012 0.0240.024 4.024.02 1.761.76 발명예6Inventory 6 0.0420.042 0.240.24 2.72.7 0.00290.0029 0.500.50 0.490.49 6.156.15 0.0840.084 0.520.52 0.0090.009 0.0190.019 3.883.88 1.621.62 발명예7Honorable 7 0.0410.041 0.360.36 2.32.3 0.00410.0041 0.570.57 0.500.50 7.327.32 0.0260.026 0.570.57 0.0160.016 0.0240.024 3.753.75 3.293.29 발명예8Inventive Example 8 0.0510.051 0.380.38 2.42.4 0.00430.0043 0.800.80 0.380.38 6.876.87 0.0950.095 0.680.68 0.0120.012 0.0230.023 3.943.94 5.365.36 비교예1Comparative Example 1 0.0180.018 0.350.35 2.22.2 0.00290.0029 0.450.45 0.400.40 8.158.15 0.0660.066 0.610.61 0.0140.014 0.0210.021 4.014.01 0.700.70 비교예2Comparative Example 2 0.0310.031 0.210.21 2.62.6 0.00200.0020 0.420.42 0.410.41 7.857.85 0.0710.071 0.580.58 0.0130.013 0.0240.024 4.084.08 0.480.48 비교예3Comparative Example 3 0.0680.068 0.350.35 2.12.1 0.00510.0051 0.390.39 0.540.54 6.326.32 0.0580.058 0.340.34 0.0110.011 0.0210.021 4.384.38 12.4612.46 비교예4Comparative Example 4 0.0420.042 0.580.58 2.82.8 0.00690.0069 0.470.47 0.380.38 6.116.11 0.0420.042 0.650.65 0.0140.014 0.0320.032 5.255.25 10.3510.35 비교예5Comparative Example 5 0.1300.130 0.420.42 2.32.3 0.00250.0025 0.310.31 0.440.44 5.855.85 0.0680.068 0.740.74 0.0110.011 0.0220.022 4.554.55 11.3011.30 비교예6Comparative Example 6 0.0320.032 0.450.45 2.22.2 0.00090.0009 0.430.43 0.480.48 5.975.97 0.0850.085 0.800.80 0.0090.009 0.0190.019 4.324.32 0.990.99 비교예7Comparative Example 7 0.0310.031 0.400.40 2.62.6 0.01220.0122 0.380.38 0.470.47 6.886.88 0.0480.048 0.840.84 0.0080.008 0.0240.024 3.983.98 14.9414.94 비교예8Comparative Example 8 0.0190.019 0.180.18 2.42.4 0.00330.0033 0.330.33 0.500.50 5.815.81 0.0560.056 0.810.81 0.0140.014 0.0210.021 4.254.25 0.450.45 비교예9Comparative Example 9 0.0300.030 0.200.20 3.03.0 0.00180.0018 0.750.75 0.430.43 7.127.12 0.0210.021 0.850.85 0.0090.009 0.0200.020 3.863.86 0.370.37 비교예10Comparative Example 10 0.0290.029 0.840.84 2.92.9 0.00280.0028 0.800.80 0.510.51 8.088.08 0.0940.094 0.450.45 0.0130.013 0.0210.021 4.154.15 6.596.59 비교예11Comparative Example 11 0.0900.090 0.830.83 2.52.5 0.00130.0013 0.420.42 0.480.48 7.457.45 0.0190.019 0.560.56 0.0140.014 0.0230.023 3.253.25 7.097.09 비교예12Comparative Example 12 0.0330.033 1.11.1 2.42.4 0.00350.0035 0.390.39 0.370.37 6.556.55 0.0710.071 0.310.31 0.0110.011 0.0190.019 4.224.22 14.6414.64

구분
division
인장강도(MPa)
Tensile Strength (MPa)
충격인성(Joule)Impact toughness 평가
evaluation
-30℃-30 ℃ -40℃-40 ° C 발명예1Inventory 1 601601 105105 6161 합격pass 발명예2Inventive Example 2 611611 122122 8585 합격pass 발명예3Inventory 3 603603 118118 8282 합격pass 발명예4Honorable 4 625625 9292 6363 합격pass 발명예5Inventory 5 598598 135135 108108 합격pass 발명예6Inventory 6 615615 121121 102102 합격pass 발명예7Honorable 7 624624 152152 113113 합격pass 발명예8Inventive Example 8 620620 155155 128128 합격pass 비교예1Comparative Example 1 580580 7878 3535 불합격fail 비교예2Comparative Example 2 558558 3838 1818 불합격fail 비교예3Comparative Example 3 604604 164164 115115 합격pass 비교예4Comparative Example 4 620620 105105 5555 합격pass 비교예5Comparative Example 5 645645 9595 4343 불합격fail 비교예6Comparative Example 6 635635 7878 2929 불합격fail 비교예7Comparative Example 7 620620 182182 158158 합격pass 비교예8Comparative Example 8 565565 8585 3636 불합격fail 비교예9Comparative Example 9 578578 5151 1717 불합격fail 비교예10Comparative Example 10 630630 6565 2525 불합격fail 비교예11Comparative Example 11 642642 4848 1818 불합격fail 비교예12Comparative Example 12 660660 105105 7373 합격pass

보호가스 및 유량Protective gas and flow rate 극성polarity 용접자세Welding position 용접전류/전압Welding current / voltage 용접속도Welding speed 기타Etc 100% CO2
20~25ℓ/min
100% CO 2
20 ~ 25ℓ / min
직류 역극성
(DC+)
DC reverse polarity
(DC +)
하향(1G)Downward (1G) 250A/32V250 A / 32 V 18(㎝/min)18 (cm / min) 개선각: 34°
Root Gap: 5㎜
Stick Out: 20~25㎜
용접방법: 후퇴법
Improvement angle: 34 °
Root Gap: 5mm
Stick Out: 20-25mm
Welding method: Retraction

구분division 고온균열 발생여부Whether high temperature crack occurs 고온균열 발생율(%)High Temperature Cracking Rate (%) 저온균열 발생여부Low temperature crack 평가evaluation 발명예1Inventory 1 radish -- radish 합격pass 발명예2Inventive Example 2 radish -- radish 합격pass 발명예3Inventory 3 radish -- radish 합격pass 발명예4Honorable 4 radish -- radish 합격pass 발명예5Inventory 5 radish -- radish 합격pass 발명예6Inventory 6 radish -- radish 합격pass 발명예7Honorable 7 radish -- radish 합격pass 발명예8Inventive Example 8 radish -- radish 합격pass 비교예1Comparative Example 1 radish -- radish 합격pass 비교예2Comparative Example 2 radish -- radish 합격pass 비교예3Comparative Example 3 U 3232 U 불합격fail 비교예4Comparative Example 4 U 4141 U 불합격fail 비교예5Comparative Example 5 U 7676 U 불합격fail 비교예6Comparative Example 6 radish -- radish 합격pass 비교예7Comparative Example 7 U 3939 U 불합격fail 비교예8Comparative Example 8 radish -- radish 합격pass 비교예9Comparative Example 9 radish -- radish 합격pass 비교예10Comparative Example 10 U 1212 U 불합격fail 비교예11Comparative Example 11 U 6262 U 불합격fail 비교예12Comparative Example 12 U 5858 U 불합격fail

상기 도 2, 표 2 및 4에 나타난 바와 같이, 본 발명의 범위를 만족하는 발명예 1 내지 8의 조성인 플럭스 충전 와이어는 저온 충격인성과 내균열성이 모두 우수한 것을 확인할 수 있었다.
As shown in FIG. 2, Tables 2 and 4, it was confirmed that the flux filling wire of the composition of the invention Examples 1 to 8 satisfying the scope of the present invention is excellent in both low-temperature impact toughness and crack resistance.

그러나, 비교예 1 내지 4는 성분 범위는 본 발명의 범위에 포함되나, 비교예 1 및 2는 (C*B*104)2+(Si3*10)의 값이 본 발명의 범위에 미치지 않는 경우이고, 비교예 3 및 4는 본 발명의 범위를 초과한 경우이다. 이때, 비교예 1 및 2는 저온충격인성이 만족스럽지 못하며, 비교예 3 및 4는 고온 및 저온에서 균열이 발생하는 것을 확인할 수 있었다.
However, in Comparative Examples 1 to 4, the component range is included in the scope of the present invention, while Comparative Examples 1 and 2 are less than the value of (C * B * 10 4 ) 2 + (Si 3 * 10) in the range of the present invention. The comparative examples 3 and 4 exceed the range of this invention. At this time, Comparative Examples 1 and 2 were not satisfactory low-temperature impact toughness, Comparative Examples 3 and 4 it was confirmed that the crack occurs at high and low temperatures.

비교예 5는 C의 함량이 본 발명 범위를 벗어나고, (C*B*104)2+(Si3*10)의 값이 본 발명범위를 벗어난 경우로서, 저온 충격인성이 만족스럽지 못하고, 균열이 발생하는 것을 확인할 수 있었다. 비교예 6, 8 및 9는 B 또는 Si의 함량이 본 발명에 미치지 못하고, (C*B*104)2+(Si3*10)의 값이 본 발명의 범위를 벗어난 경우로서, 저온 충격인성이 열위에 있음을 확인할 수 있었다. 한편, 비교예 7은 B의 함량이 본 발명의 범위를 초과하고, (C*B*104)2+(Si3*10)의 값이 본 발명 범위를 벗어난 경우로서, 고온균열과 저온균열이 발생하는 것을 확인할 수 있었다. 비교예 10 내지 12는 C, Si, B 중 하나 이상의 함량이 본 발명의 범위를 벗어나고, (C*B*104)2+(Si3*10)의 값이 본 발명의 범위를 초과한 경우로서, 비교예 10 및 11은 저온 충격인성과 균열저항성에 대해 모두 만족스럽지 못하였고, 비교예 12는 고온 및 저온 균열이 발생하는 것을 확인할 수 있었다. 따라서, 본 발명의 범위를 벗어난 플럭스 충전 와이어의 경우에는 후판의 초층 용접에 적절히 이용될 수 없음을 알 수 있다.Comparative Example 5 is the case where the content of C is outside the scope of the present invention, the value of (C * B * 10 4 ) 2 + (Si 3 * 10) is outside the scope of the present invention, the low-temperature impact toughness is not satisfactory, cracks It was confirmed that this occurred. In Comparative Examples 6, 8 and 9, the content of B or Si is less than the present invention, and the value of (C * B * 10 4 ) 2 + (Si 3 * 10) is outside the scope of the present invention, and thus the low temperature impact Toughness was found to be inferior. On the other hand, Comparative Example 7 is the case where the content of B exceeds the range of the present invention, the value of (C * B * 10 4 ) 2 + (Si 3 * 10) is outside the scope of the present invention, hot crack and cold crack It was confirmed that this occurred. Comparative Examples 10 to 12, the content of at least one of C, Si, B is outside the scope of the present invention, the value of (C * B * 10 4 ) 2 + (Si 3 * 10) exceeds the scope of the present invention As a comparative example, Comparative Examples 10 and 11 were not satisfactory for both low-temperature impact toughness and crack resistance, and Comparative Example 12 was confirmed that high temperature and low temperature cracking occurred. Thus, it can be seen that the flux-filled wire outside the scope of the present invention cannot be suitably used for the first layer welding of thick plates.

Claims (1)

금속외피내에 플럭스가 충전된 플럭스 충전 와이어에 있어서, 와이어 전중량에 대한 중량%로, TiO2: 4~9%, C: 0.01~0.07%, Si: 0.2~0.6%, Mn: 1.0~3.0%, Ni: 0.1~1.0%, Mg: 0.1~1.0%, F: 0.01~0.1%, B: 0.002~0.007%, 철분: 2.0~6.0%, Nb: 0.03%이하, V: 0.04%이하, Na: 0.2~1.0%, 잔여 금속외피 중 Fe 및 불가피한 불순물을 포함하며,
관계식 (C*B*104)2+(Si3*10)의 값이 1.5~6.0인 내균열성이 우수한 가스실드 아크 용접용 티타니아계 플럭스 충전 와이어.
Flux-filled wire in which the flux is filled in the metal shell, in terms of weight% of the total weight of the wire, TiO 2 : 4-9%, C: 0.01-0.07%, Si: 0.2-0.6%, Mn: 1.0-3.0% , Ni: 0.1-1.0%, Mg: 0.1-1.0%, F: 0.01-0.1%, B: 0.002-0.007%, Iron: 2.0-6.0%, Nb: 0.03% or less, V: 0.04% or less, Na: 0.2-1.0%, containing Fe and unavoidable impurities in the remaining metal shell,
Titania-based flux-filled wire for gas-shielded arc welding with excellent crack resistance of the relation (C * B * 10 4 ) 2 + (Si 3 * 10) of 1.5 to 6.0.
KR1020110049629A 2011-05-25 2011-05-25 Gas shielded arc welding titania based flux cored wire having excellent crack resistance KR101264606B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110049629A KR101264606B1 (en) 2011-05-25 2011-05-25 Gas shielded arc welding titania based flux cored wire having excellent crack resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110049629A KR101264606B1 (en) 2011-05-25 2011-05-25 Gas shielded arc welding titania based flux cored wire having excellent crack resistance

Publications (2)

Publication Number Publication Date
KR20120131453A true KR20120131453A (en) 2012-12-05
KR101264606B1 KR101264606B1 (en) 2013-05-27

Family

ID=47515269

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110049629A KR101264606B1 (en) 2011-05-25 2011-05-25 Gas shielded arc welding titania based flux cored wire having excellent crack resistance

Country Status (1)

Country Link
KR (1) KR101264606B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102112160B1 (en) * 2018-12-05 2020-05-19 현대종합금속 주식회사 Flux cored wire for gas shield

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4261647B2 (en) 1998-10-22 2009-04-30 株式会社神戸製鋼所 Flux cored wire for self-shielding welding
KR100775600B1 (en) 2007-01-25 2007-11-09 현대종합금속 주식회사 Flux cored wire for gas shield arc welding

Also Published As

Publication number Publication date
KR101264606B1 (en) 2013-05-27

Similar Documents

Publication Publication Date Title
KR101970076B1 (en) Flux-cored wire for gas-shielded arc welding
JP2010110817A (en) Low-hydrogen coated electrode
JP4209913B2 (en) Flux-cored wire for gas shielded arc welding
WO2018051823A1 (en) Wire for electroslag welding, flux for electroslag welding and welded joint
KR101568515B1 (en) Welding material for heat resistant steel
KR102208029B1 (en) Electroslag welding wire, electroslag welding flux and weld joints
CN112512742B (en) Solid welding wire and method for manufacturing welded joint
JP2014050882A (en) HIGH Ni FLUX-CORED WIRE FOR GAS SHIELD ARC WELD
KR101035723B1 (en) Flux cored wire for gas shielded arc welding of high tensile strength steel
KR101657836B1 (en) Flux cored arc weld material having excellent low temperature toughness, thermostability and crack resistance
KR101264606B1 (en) Gas shielded arc welding titania based flux cored wire having excellent crack resistance
KR20170082304A (en) Titania Based Flux Cored Wire of Gas Shielded Arc Welding for excellent hot crack resistance according to high heat input
KR102114091B1 (en) Titania Based Flux Cored Wire of Gas Shielded Arc Welding for excellent hot cracking resistance
KR102056637B1 (en) Flux cored wire for gas shield
KR101859373B1 (en) Titania Based Flux Cored Wire of Gas Shielded Arc Welding for Low Temperature Service
KR101853796B1 (en) Basic flux cored wire having good toughness at low temperature
KR101647148B1 (en) Flux cored arc weld wire for high tensile steel and weld metal joint using the same
JP2011000626A (en) Weld metal
KR102088500B1 (en) Titania Based Flux Cored Wire of Gas Shielded Arc Welding for excellent impact value in post weld heat treatment
KR102112160B1 (en) Flux cored wire for gas shield
KR102664069B1 (en) Flux cored wire for gas shielded arc welding
KR101042209B1 (en) Titania-based flux cored wire for gas shielded arc welding
KR102144297B1 (en) Titania Based Flux Cored Wire of Gas Shielded Arc Welding for excellent impact value and crack resistance according to high heat input
KR101858922B1 (en) Flux cored wire having good toughness and crack resistance at low temperature
KR20110076685A (en) Titania based flux cored wire for gas shielded arc welding

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160328

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170329

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180329

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190326

Year of fee payment: 7