KR20120130658A - Bispecific antibody fused peptide and use thereof - Google Patents

Bispecific antibody fused peptide and use thereof Download PDF

Info

Publication number
KR20120130658A
KR20120130658A KR1020110048756A KR20110048756A KR20120130658A KR 20120130658 A KR20120130658 A KR 20120130658A KR 1020110048756 A KR1020110048756 A KR 1020110048756A KR 20110048756 A KR20110048756 A KR 20110048756A KR 20120130658 A KR20120130658 A KR 20120130658A
Authority
KR
South Korea
Prior art keywords
cancer
antibody
gly
val
thr
Prior art date
Application number
KR1020110048756A
Other languages
Korean (ko)
Inventor
유진산
이상훈
이원섭
김성우
심상렬
유진상
김연주
신희영
김중규
남주령
정종근
이혁준
윤지현
주혜경
정보영
김도윤
이은진
변상순
염주희
남경희
남도현
Original Assignee
주식회사 파멥신
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 파멥신, 사회복지법인 삼성생명공익재단 filed Critical 주식회사 파멥신
Priority to KR1020110048756A priority Critical patent/KR20120130658A/en
Priority to PCT/KR2011/005079 priority patent/WO2012161372A1/en
Publication of KR20120130658A publication Critical patent/KR20120130658A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE: A human monoclonal antibody-derived bispecific antibody and a composition containing the same are provided to simultaneously neutralize VEGFR-2 and c-Met and to effectively suppress signal transduction mechanism of angiogenesis and cancer cell proliferation. CONSTITUTION: A bispecific antibody with binding specificity to VEGFR-2(vasicular endothelial growth factor receptor-2) and c-Met(mesenchymal-epithelial transition factor) contains water soluble peptides of sequence numbers 21 or 22, which is linked with the N-terminal of a light chain of an endothelial growth factor receptor neutralizing antibody. The antibody contains a light chain variable region of sequence numbers 1-19 and a heavy chain variable region of sequence number 20. The antibody is scFv(single chain fragment variable) or IgG(immunoglobulin g). The linker contains a base sequence of sequence number 23.

Description

펩타이드가 융합된 이중표적항체 및 그 용도{Bispecific antibody fused peptide and use thereof} Bispecific antibody fused peptide and use according to the present invention

본 발명은 VEGFR-2에 결합하는 항체의 N-말단에 c-Met에 결합하는 수용성 펩타이드가 융합된 이중표적항체 및 그의 용도에 관한 것이다. 보다 구체적으로, 본 발명은 VEGFR-2에 결합하는 중화 항체의 경쇄 N-말단에 c-Met에 결합하는 수용성 길항 펩타이드가 융합된, VEGFR-2 및 c-Met를 동시에 중화할 수 있는 이중표적항체, 상기 이중표적항체를 코딩하는 DNA, 상기 DNA를 포함하는 재조합 발현 벡터, 상기 재조합 발현 벡터로 형질전환된 숙주세포 및 상기 숙주세포를 배양하여 이중표적항체를 제조하는 방법 및 상기 이중표적항체를 포함하는 약제학적 조성물에 관한 것이다.
The present invention relates to a dual target antibody in which the water-soluble peptide that binds to c-Met is fused to the N-terminus of an antibody that binds to VEGFR-2, and its use. More specifically, the present invention provides a dual target antibody capable of simultaneously neutralizing VEGFR-2 and c-Met, in which a water-soluble antagonist peptide that binds to c-Met is fused to the light chain N-terminus of a neutralizing antibody that binds to VEGFR-2. And a DNA encoding the dual target antibody, a recombinant expression vector comprising the DNA, a host cell transformed with the recombinant expression vector, and a method for producing a dual target antibody by culturing the host cell, and the dual target antibody. It relates to a pharmaceutical composition.

고형 종양형성에 중요한 요인으로 알려진 혈관신생(angiogenesis)은 내피세포의 성장, 분열, 이동 등에 의하여 기존의 혈관으로부터 새로운 혈관이 생성되는 기작으로, 상처의 치유나 여성의 생리주기를 포함하는 정상적인 성장과정에서 중요한 역할을 담당하고 있으며 (Risau, Nature, 386:671, 1997), 뿐만 아니라 비정상적으로 과도한 혈관신생은 종양의 성장과 전이(metastasis), 연령관련 황반변성(age-related macular degeneration, ARMD), 당뇨병성 망막병증(diabetic retinopathy), 건선(psoriasis), 류마티스성 관절염(rheumatoid arthritis), 만성염증(chronic inflammation)과 같은 질환에 결정적인 역할을 하는 것으로 알려져 있다(Carmeliet and Jain, Nature, 407:249, 2000).Angiogenesis, known as an important factor for solid tumor formation, is a mechanism in which new blood vessels are formed from existing blood vessels by the growth, division, and migration of endothelial cells, and is a normal growth process including healing of a wound and a woman's menstrual cycle. Play an important role in (Risau, Nature , 386: 671, 1997), as well as abnormally excessive angiogenesis, tumor growth and metastasis, age-related macular degeneration (ARMD), It is known to play a decisive role in diseases such as diabetic retinopathy, psoriasis, rheumatoid arthritis, and chronic inflammation (Carmeliet and Jain, Nature , 407: 249, 2000).

1971년 Dr. J. Folkman에 의해, 종양의 성장과 전이는 혈관신생 의존적이고, 따라서 항 혈관신생에 초점을 맞춘 치료법은 고형암에 대한 새로운 치료제가 될 수 있을 것이라는 가설이 제기된 이후, 과도한 혈관신생 기작의 억제와 관련된 연구는 다수 연구진들의 관심을 끌어왔다(Ferrara and Kerbel, Nature, 435:967, 2005). 혈관신생 과정의 진행양상은 혈관신생 유발 인자들과 혈관신생 저해 인자들의 종합적인 밸런스에 의해서 결정되어지며, 여러 단계의 복잡하고 순차적인 과정에 의해서 진행된다. 그 과정을 살펴보면, 우선 종양이나 상처 난 조직에서 분비되는 혈관내피성장인자(Vasicular Endothelial Growth Factor, 이하 VEGF라 함)를 비롯한 다양한 혈관신생 유발 인자들이 주변에 있는 기존 혈관내피세포의 해당 수용체에 결합함으로써, 혈관내피세포들을 활성화시켜 혈관내피세포들의 투과성을 증가시키게 되고, 기저막 단백분해효소(matrix metalloproteinase, MMP)와 같은 단백질 분해효소를 분비함으로써, 혈관내피세포 주변의 기저막과 세포외기질을 분해시켜, 혈관내피세포들이 기존의 모세혈관으로부터 벗어나 혈관신생 유발인자를 분비하는 조직을 향해 이동?증식하게 된다 이동?증식한 혈관내피세포들은 혈관 내 튜브 구조를 이루고, 마지막으로 혈관내피세포의 구조적 지지대인 혈관주위세포(pericyte)가 유입되면서 안정하고 성숙한 혈관형성이 이루어지게 된다. 1971 Since J. Folkman has hypothesized that tumor growth and metastasis is angiogenesis-dependent, and therefore, anti-angiogenesis-focused therapies may be new therapies for solid cancer, Related work has drawn the attention of many researchers (Ferrara and Kerbel, Nature , 435: 967, 2005). The process of angiogenesis is determined by the overall balance of angiogenic factors and angiogenesis inhibitors, and is a complex, sequential process. Looking at the process, first, various angiogenic factors, including Vasicular Endothelial Growth Factor (VEGF) secreted from tumors or wounded tissues, bind to the corresponding receptors of existing vascular endothelial cells. By activating vascular endothelial cells to increase the permeability of vascular endothelial cells, by secreting proteolytic enzymes such as matrix metalloproteinase (MMP), by decomposing the basement membrane and extracellular matrix around the vascular endothelial cells, Endothelial cells move away from existing capillaries and proliferate toward tissues that secrete angiogenic factors. The migrated and proliferated vascular endothelial cells form a vascular tube structure, and finally, blood vessels, which are structural supports of vascular endothelial cells. As pericyte enters, stable and mature angiogenesis occurs It becomes.

본 발명에서는 항암 치료용 항체 개발을 위하여 종양으로부터 유래한 혈관신생의 억제 이외에, 종양의 증식 및 전이를 동시에 저해하기 위해서 VEGF/VEGFR 및 HGF/c-Met 신호전달 기작을 유력한 표적으로서 주시하였다. 혈관신생 과정의 대부분의 단계에서 커다란 영향을 미치는 것으로 알려져 있는 VEGF는 종양조직 부위의 저산소(hypoxia) 지역에서 광범위하게 분비된다. VEGF는 1989년 제넨텍(Genentech)사의 Dr. N. Ferrara 그룹에 의해서 단백질의 분리, 정제 및 cDNA 클로닝이 이루어졌다(Leung et al., Science, 246:1306, 1989). VEGF-A라고도 불리는 VEGF는 현재까지 4개의 이소형(VEGF121, VEGF165, VEGF189, VEGF206)이 존재하는 것으로 알려져 있으며, 그 가운데 VEGF165는 태반을 제외한 모든 인간조직에서 가장 풍부한 것으로 보고된 바 있다(Tisher et al., J. Biol . Chem ., 266:11947, 1991). In the present invention, VEGF / VEGFR and HGF / c-Met signaling mechanisms were considered as potential targets in order to simultaneously inhibit tumor proliferation and metastasis in addition to suppression of angiogenesis derived from tumors for the development of antibodies for anticancer treatment. VEGF, which is known to have a significant effect on most stages of angiogenesis, is widely secreted in the hypoxia region of the tumor tissue area. VEGF was founded in 1989 by Dr. Genentech. Protein isolation, purification and cDNA cloning were performed by the N. Ferrara group (Leung et. al ., Science , 246: 1306, 1989). VEGF, also called VEGF-A, is known to have four isotypes (VEGF 121 , VEGF 165 , VEGF 189 , VEGF 206 ) to date, and VEGF 165 is reported to be the most abundant in all human tissues except the placenta. (Tisher et al ., J. Biol . Chem . , 266: 11947, 1991).

VEGF는 그의 수용체인 VEGFR-1과 VEGFR-2에 매우 높은 친화도를 가지고 결합하지만, 주로 VEGFR-2을 통해서 그것의 신호를 전달함으로써, 혈관내피세포의 증식과 이동 등의 혈관신생과 관련된 기작을 유도하는 것으로 알려져 있다. 이러한 이유에서, VEGF 및 VEGFR-2은 VEGF에 의해 유도되는 혈관신생 기작을 억제하기 위한 주요 표적이 되어왔으며, 이와 관련해서 다수의 논문이 이들을 다루고 있다(Ellis and Hicklin, Nature Rev . Cancer, 8:579, 2008; Youssoufian et al., Clin . Cancer Res ., 13:5544s, 2007). 가령, 제넨텍사의 아바스틴(Avastin)은 VEGF-A를 표적으로 하는 인간화항체(Ferrara et al., Biochem . Biophy . Res. Comm ., 333:328, 2005)로서, 2004년에 전이성 대장암(metastatic colorectal cancer), 2006년에 비소세포성 폐암(non-small cell lung cancer), 2008년에 Her-2 negative 전이성 유방암(metastatic breast cancer), 그리고 2009년에 신장암(kidney cancer) 및 뇌암(brain tumor)에 대하여 각각 미국 FDA 승인을 얻어 시판 중에 있으며, 현재에도 적응증을 확대하기 위해 다양한 고형암종에 대해서 임상시험을 진행 중에 있다. 뿐만 아니라 같은 회사에서 출시된 루센티스(Lucentis)는 노인성 황반변성의 주 양상인 황반주위의 과도한 혈관신생을 억제하기 위해서, 망막에 주사하였을 때, 그것의 투과성을 좋도록 만들기 위해서 아바스틴으로부터 Fab 절편만을 잘라내어 제조된 항체로서(Eter et al ., Biodrgus, 20:167, 2006), 습성 연령관련 황반변성(wet-ARMD)에 대한 치료약으로서, 2006년에 미국 FDA 승인을 획득한 바 있다. VEGF를 표적으로 하는 또 다른 치료용 항체로는 리제네론(Regeneron)사의 VEGF-trap이 있다(Holash et al ., PNAS, 99:11393, 2002). 이것은 VEGFR-1의 두 번째 면역글로불린 도메인과 VEGFR-2의 세 번째 면역글로불린 도메인을 인간의 Fc에 융합한 형태의 수용성 미끼수용체(decoy receptor)로, 아직 미국 FDA 승인을 얻지 못했지만, 전이성 유방암과 전이성 폐암, 전이성 대장암 그리고 호르몬 비의존성 전립선암(hormone refractory prostate cancer) 등에 대해서 현재 Phase III 단계를 진행 중에 있다. VEGF binds to its receptors, VEGFR-1 and VEGFR-2 with very high affinity, but transmits its signals mainly through VEGFR-2, thereby regulating mechanisms related to angiogenesis such as proliferation and migration of vascular endothelial cells. It is known to induce. For this reason, VEGF and VEGFR-2 have been the main targets for inhibiting VEGF-induced angiogenesis, and a number of articles deal with them (Ellis and Hicklin, Nature). Rev. Cancer , 8: 579, 2008; Youssoufian et al ., Clin . Cancer Res . , 13: 5544 s, 2007). For example, Genentec's Avastin is a humanized antibody targeting VEGF-A (Ferrara et. al ., Biochem . Biophy . Res. Comm . , 333: 328, 2005), metastatic colorectal cancer in 2004, non-small cell lung cancer in 2006, and Her-2 negative metastatic breast cancer in 2008. In 2009, the US and US FDA approved kidney cancer and brain cancer, respectively, and is currently in clinical trials for various solid carcinomas to expand indications. In addition, Lucentis, which was released by the same company, cuts only Fab fragments from Avastin in order to prevent excessive angiogenesis around the macula, which is a major aspect of senile macular degeneration, and to improve its permeability when injected into the retina. As prepared antibody (Eter et al . , Biodrgus , 20: 167, 2006), a drug for wet age-related macular degeneration (wet-ARMD), which received US FDA approval in 2006. Another therapeutic antibody that targets VEGF is Regeneron's VEGF-trap (Holash et. al . , PNAS , 99: 11393, 2002). It is a water-soluble decoy receptor, a fusion of the second immunoglobulin domain of VEGFR-1 and the third immunoglobulin domain of VEGFR-2 to human Fc, which has not yet received US FDA approval, but has been metastatic breast cancer and metastatic. Lung cancer, metastatic colorectal cancer, and hormone refractory prostate cancer are currently in Phase III.

한편, VEGF 수용체인 VEGFR-2을 표적으로 하는 혈관신생 억제 항체에는 임클론(Imclone)사의 IMC-1121B(EP 1916001A2)와 UCB사의 CDP-791(PCT/GB02/04619), 그리고 본 연구진이 개발한 TTAC-0001(대한민국 등록특허 제10-0883430호 및 국제출원 제PCT/KR07/003077호 참조) 등이 있다. IMC-1121B는 완전 인간 Fab 라이브러리로부터 선별된 단일클론항체로서, 현재 전이성 유방암 및 위암에 대해서 Phase III 단계를 진행 중에 있다. UCB사의 CDP-791은 인간화 항체로서, PEGylated Di-Fab 형태로 비소세포성 폐암에 대해서 현재 Phase II 단계를 진행하고 있다. 이 항체는 Fc를 가지고 있지 않기 때문에 항체의존적세포독성(antibody-dependent cell-mediated cytotoxicity)이나 보체의존적독성(complement-dependent cytotoxicity)을 기대할 수 없다. 마지막으로, 본 연구진이 개발하여, 현재 전임상 단계에서 연구 중인 TTAC-0001(Tanibirumab)은 완전인간 ScFv 파아지 라이브러리로부터 선별된 단일클론항체로서, VEGFR-2을 표적으로 하면서 동시에 마우스나 렛트 유래의 flk-1(VEGFR-2 상동체)에 대해서도 반응성을 가지는 유일한 항체로서, 이것은 임클론사의 IMC-1121B와 구별이 되는 중요한 특징 가운데 하나이다(PCT/KR07/003077). 특히, 상기 TTAC-0001이 보여주는 이종간 교차반응성(cross-species cross reactivity)은 동물질환 모델에 대한 연구를 가능케 함으로써, 이행연구를 유도하고 향후 특정 암종에 대한 항암제 개발을 단계적으로 진행시켜 관련 연구를 보다 수월하게 마치도록 도움을 줄 수 있다. Angiogenesis-inhibiting antibodies targeting VEGF receptor VEGFR-2 include IMC-1121B (EP 1916001A2), UCP CDP-791 (PCT / GB02 / 04619), and TTAC developed by the researchers. -0001 (see Korean Patent No. 10-0883430 and International Application No. PCT / KR07 / 003077). IMC-1121B is a monoclonal antibody selected from a fully human Fab library and is currently in Phase III stage for metastatic breast and gastric cancer. UCB's CDP-791 is a humanized antibody, currently undergoing Phase II in the form of PEGylated Di-Fab for non-small cell lung cancer. Because the antibody does not have an Fc, antibody-dependent cell-mediated cytotoxicity or complement-dependent cytotoxicity cannot be expected. Finally, TTAC-0001 (Tanibirumab), developed by our team and currently being studied at preclinical stage, is a monoclonal antibody selected from a full human ScFv phage library, which targets VEGFR-2 and at the same time flk- from mouse or rat. It is the only antibody that is responsive to 1 (VEGFR-2 homologue), which is one of the important features that distinguishes it from IMC-1121B (PCT / KR07 / 003077). In particular, cross-species cross reactivity shown by TTAC-0001 enables the study of animal disease models, inducing transitional research and progressing the development of anticancer agents for specific cancers in the future. It can help you finish easily.

한편, 본 연구진이 VEGF/VEGFR-2 신호전달 기작과 함께 항암 치료용 표적으로 동시에 주시하고 있는 HGF/c-Met 신호전달 기작은 다양한 암조직과 종양세포에 과발현함으로써, 종양세포의 성장과 전이에 크게 기여하는 것으로 잘 알려져 있다. On the other hand, HGF / c-Met signaling mechanism, which is simultaneously monitored by VEGF / VEGFR-2 signaling as an anti-cancer therapeutic target, is overexpressed in various cancer tissues and tumor cells, resulting in tumor cell growth and metastasis. It is well known for its great contribution.

C-Met(mesenchymal-epithelial transition factor)은 Cooper 등에 의해 골육종(osteosarcoma) 유래의 암세포로부터 처음으로 클로닝되었으며(Cooper et al., Nature , 311:29, 1984), C-Met에 대한 유전자 서열 분석을 통해서 이 단백질이 세포 표면의 수용체이며, 타이로신(tyrosine) 카이네이즈 패밀리(receptor tyrosine kinase family)의 암 유전자(oncogene)로써, 50 kD의 세포외 도메인만으로 구성된 알파(a) 서브유닛과 세포외, 세포막 투과, 타이로신 카이네이즈 도메인(domain) 그리고 인산화와 관련된 타이로신 모티프(motif)로 구성된 총 145 kD의 베타(β) 서브유닛으로 구성되어 있음이 밝혀졌다(Dean et al., Nature , 4;318(6044):385, 1985; Park et al., PNAS, 84(18):6379, 1987, Maggiora et al., J. Cell Physiol., 173:183, 1997). Mesenchymal-epithelial transition factor (C-Met) was first cloned from cancer cells from osteosarcoma (Cooper et al., Nature , 311: 29, 1984) by Cooper et al. This protein is a cell surface receptor and is an oncogene of the tyrosine kinase family, an alpha (a) subunit consisting of only 50 kD extracellular domain, and extracellular and cell membrane permeation. , A total of 145 kD beta (β) subunits consisting of the tyrosine kinase domain and tyrosine motifs associated with phosphorylation (Dean et al., Nature , 4; 318 (6044): 385, 1985; Park et al., PNAS , 84 (18): 6379, 1987, Maggiora et al., J. Cell Physiol., 173: 183, 1997).

다수의 연구진들은 또한 상기 타이로신 카이네이즈 도메인이 활성화되기 위해서는 두 서브유닛 가운데, 베타 서브유닛에 있는 c-Met 세포외 도메인에 HGF/SF(hepatocyte growth factor/scatter factor)가 결합하여야, 신호전달 기작에 있어서 매우 중요한 c-Met의 1349번째 및 1356번째 타이로신이 인산화되어 타이로신 카이네이즈 도메인이 활성화될 수 있다고 보고했다(Bottaro et al ., Science , 15;251(4995):802, 1991; Cooper, Oncogene, 7(1):3, 1992, Maggiora et al., J. Cell Physiol , 173:183, 1997; Ponzetto et al., Cell , 77(2):261, 1994; Maina et al., Cell , 87:531, 1996). 반면, Giordano 등은 c-Met의 유일한 리간드(ligand)로서 HGF 이외에, semaphorin 4D(SEMA4D) 수용체와 plexin B1(PLXNB1)의 상호작용을 통해서, c-Met의 타이로신 카이네이즈 활성이 자극될 수 있음을 발표하였다(Giordano et al ., Nat . Cell Biol ., 4(9):720, 2002). Many researchers have also found that hepatocyte growth factor / scatter factor (HGF / SF) must bind to the c-Met extracellular domain in the beta subunit of the two subunits in order for the tyrosine kinase domain to be activated. It is reported that the 1349th and 1356th tyrosine of the c-Met, which is very important, can be phosphorylated to activate the tyrosine kinase domain (Bottaro et. al ., Science , 15; 251 (4995): 802, 1991; Cooper, Oncogene, 7 (1): 3, 1992, Maggiora et al., J. Cell Physiol , 173: 183, 1997; Ponzetto et al., Cell , 77 (2): 261 , 1994; Maina et al., Cell , 87: 531, 1996). Giordano et al., On the other hand, reported that c-Met's tyrosine kinase activity can be stimulated through the interaction of plexin B1 (PLXNB1) with semaphorin 4D (SEMA4D) receptors in addition to HGF as the only ligand of c-Met. Giordano et al . , Nat . Cell Biol ., 4 (9): 720, 2002).

C-Met의 리간드로서 알려진 HGF는 여러 기능을 가진 성장 호르몬으로써 c-Met을 통한 다양한 신호전달 경로를 자극하여 세포분열(mitogenesis)과 세포의 운동성(motility)을 증진시키고, 세포사멸을 억제하며, 혈관형성과 세포외기질(ECM, extracellular matrix)로 침윤(invasion)과 전이(metastasis)를 유도하는 등 암화과정(transformation)을 촉진시킨다(Jeffers et al ., J. Mol . Med ., 74:505, 1996; Amicone et al., EMBO J., 16:495, 1997; Matsumoto and Nakamura, Biochem . Biophys . Res . Comm ., 239:639, 1997; Corps et al., Int . J. Cancer , 73:151, 1997). C-Met 자체는 보통 다양한 상피(epithelial) 및 중배엽(mesenchymal) 유래 세포로부터 발현되지만, HGF는 중배엽 유래의 세포에서만 발현되는 것으로 알려져 있으며(Rong et al., Cancer Res ., 53(22): 5355, 1993), 암화 과정에서 c-Met은 다른 세포나 조직으로부터 유래한 HGF(paracrine) 뿐 아니라 같은 세포에서 만들어진 HGF(autocrine)에 의해 신호전달이 활성화된다고 밝혀졌다(Ferracini et al., Oncogene, 10(4):739, 1995; Tsarfaty et al., Science, 263(5143):98, 1994). 특히, 신경교종(gliomas, Koochekpour et al., Cancer Res ., 57:5391, 1997), 유방암( Nagy et al., Surg . Oncol ., 5:15,1996; Tuck et al., Am . J. Pathol ., 148:225, 1996), 췌장암(Ebert et al., Cancer Res ., 54:5775,1994), 흉막 중피종(pleural mesotheliomas, Tolpay et al., J. Cancer Res . Clin . Oncol ., 124:291, 1998); Klominek et al. Intl . J. Cancer , 76:240, 1998)등 다양한 암 조직과 세포에서 c-Met과 HGF가 동시에 과발현되는 것으로 보고되고 있지만, HGF와 상관없이 c-Met의 과발현을 통해서도 암으로의 발달이 진행되는 경우가 흔하게 관찰되고 있으며, 간암(hepatocellular carcinoma, Suzuki et al ., Hepatology , 20(5):1231, 1996)), 위암(Taniguchi et al ., Cancer , 82:2112-2122(1998), 폐암(Harvey et al ., J. Pathol ., 180:389, 1996), 신장암(Natali et al ., Intl . J. Cancer , 69:212, 1996), 난소암(Nagy et al., J. Surg . Oncol ., 60:95, 1995), 대장암(Hiscox et al ., Cancer Invest ., 15:513, 1997) 등이 그 좋은 예이다.HGF, known as a ligand of C-Met, is a growth hormone with multiple functions, stimulates various signaling pathways through c-Met to enhance cell mitogenesis and cell motility, inhibit cell death, Promote the transformation, including invasion and metastasis, by angiogenesis and extracellular matrix (ECM) (Jeffers et. al . , J. Mol . Med ., 74: 505, 1996; Amicone et al., EMBO J., 16: 495, 1997; Matsumoto and Nakamura, Biochem . Biophys . Res . Comm ., 239: 639, 1997; Corps et al., Int . J. Cancer , 73: 151, 1997). C-Met itself is usually expressed from a variety of epithelial and mesenchymal derived cells, while HGF is known to be expressed only in cells derived from mesoderm (Rong et al., Cancer Res . , 53 (22): 5355, 1993) c-Met was found to be activated by HGF (autocrine) produced in the same cell as well as by HGF (paracrine) derived from other cells or tissues (Ferracini). et al., Oncogene , 10 (4): 739, 1995; Tsarfaty et al., Science , 263 (5143): 98, 1994). In particular, glioma (gliomas, Koochekpour et al., Cancer Res ., 57: 5391, 1997), breast cancer (Nagy et al., Surg . Oncol ., 5: 15,1996; Tuck et al., Am . J. Pathol ., 148: 225, 1996), pancreatic cancer (Ebert et al., Cancer Res ., 54: 5775, 1994), pleural mesotheliomas, Tolpay et al., J. Cancer Res . Clin . Oncol ., 124: 291, 1998); Klominek et al. Intl . J. Cancer , 76: 240, 1998) c-Met and HGF are reported to be overexpressed in various cancer tissues and cells at the same time. Are commonly observed, and liver cancer (hepatocellular carcinoma, Suzuki et al ., Hepatology , 20 (5): 1231, 1996), gastric cancer (Taniguchi et. al . , Cancer , 82: 2112-2122 (1998), lung cancer (Harvey et. al . , J. Pathol ., 180: 389, 1996), kidney cancer (Natali et al . , Intl . J. Cancer , 69: 212, 1996), ovarian cancer (Nagy et al., J. Surg . Oncol ., 60:95, 1995), colon cancer (Hiscox et al . , Cancer Invest ., 15: 513, 1997).

이와 같이 c-Met이 활성화되거나 과발현할 경우 암화 과정이 촉진되므로, c-Met의 활성화를 억제하는 여러 방법들이 유망한 항암 치료 전략으로서 개발되고 있다. 그 일례로써 c-Met에 ATP(adenosine triphosphate)가 결합하는 것을 방해하도록 고안된 저분자 화합물들이 있다. 이들 저분자 화합물들에는 Fermentek biotechnology사의 K252a, Sugen사의 SU11274, Pfiza사의 PHA-665752 등이 (Morotti et al., Oncogene, 21(32):4885, 2002; Berthou et al., Oncogene, 23(31):5387, 2004; Pfizer, Christensen et al., Cancer Res ., 63(21):7345, 2003) 있으며, 이들은 c-Met의 인산화를 방해하여, 신호 전달의 하류 단백질들이 활성화되지 못하도록 고안되었다. 그러나, 이들 저분자 화합물의 단점은 c-Met에 의한 인산화만을 특이적으로 저해할 수 없다는 데 있다. As such, when c-Met is activated or overexpressed, the cancerous process is promoted, various methods of inhibiting the activation of c-Met have been developed as promising anticancer treatment strategies. One example is low molecular weight compounds designed to block the binding of ATP (adenosine triphosphate) to c-Met. These low molecular weight compounds include K252a from Fermentek biotechnology, SU11274 from Sugen, PHA-665752 from Pfiza (Morotti et al., Oncogene , 21 (32): 4885, 2002; Berthou et al., Oncogene , 23 (31): 5387, 2004; Pfizer, Christensen et al., Cancer Res ., 63 (21): 7345, 2003), they are designed to interfere with the phosphorylation of c-Met, preventing the downstream proteins of signal transduction from being activated. However, a disadvantage of these low molecular weight compounds is that they cannot specifically inhibit only phosphorylation by c-Met.

또한, HGF/c-Met 신호전달 기작을 중화하는 두 번째 방법으로서 c-Met과 그것의 리간드인 HGF의 결합을 저해하는 방법이 있다. 이러한 방법에는 손실된 HGF 단편(Matsumoto & Nakamura, Cancer Sci ., 94(4):321, 2003)이나, HGF를 중화하는 항체(Cao et al ., PNAS., 98(13):7443, 2001; Kim et al ., Clin. Cancer Res., 12:1292, 2006; Burgess et al ., Cancer Res ., 66(3):1721, 2006) 또는 원래의 HGF 보다 강한 친화력으로 c-Met에 결합하지만 c-Met을 활성화 시키지는 않는 HGF 전구체(pro-HGF, Mazzone et al ., J. Clin . Invest ., 114(10):1418, 2004)를 사용하는 방법 등이 있다. 아울러 파아지 디스플레이방법(phage display method) 및 패닝기술(panning technique)을 이용해 c-Met의 활성을 억제할 수 있는 펩타이드(peptide) 서열을 선별함으로써, 해당 펩타이드를 c-Met 활성화 방지에 이용하기도 한다 (Kim et al ., Biochem Biophys Res Commun ., 354: 115, 2007). 선별된 펩타이드는 c-Met이 과발현된 생체내 조직이나 기관을 탐색하기 위한 분자 영상에 적용되기도 한다 (Cao et al ., Clin . Cancer Res ., 13(20);6049, 2007). 이들은 오로지 HGF 의존적인 c-Met 활성화만 저해한다는 한계를 가지고 있으나, 실험실에서(in vitro) 또는 생체내(in vivo)에서 실제 항암 효과를 나타내고 있으므로, 기존의 항암치료와 병합하는 등의 응용을 통하여 유용하게 사용될 수 있을 것으로 사료된다. 현재, EGFR(epidermal growth factor receptor) 카이네이즈 억제제인 gefitinib과 erlotinib은 효과적인 암 치료제로 사용되고 있으나, 종종 약제 내성이 생기기도 하는데, 그 원인이 c-Met 수용체의 집중적인 증폭에서 기인하는 것으로 보고된 바 있으며(Engelman et al., Science , 316(5827):1039, 2007), 따라서 c-Met 억제물을 병합처리 한다면 항암 효과가 증폭될 것으로 기대한다. In addition, a second method of neutralizing HGF / c-Met signaling mechanism is a method of inhibiting the binding of c-Met and its ligand, HGF. These methods include missing HGF fragments (Matsumoto & Nakamura,Cancer Sci ., 94 (4): 321, 2003) or antibodies neutralizing HGF (Caomeat get ., PNAS., 98 (13): 7443, 2001; Kimmeat get ., Clin. Cancer Res., 12: 1292, 2006; Burgessmeat get .,Cancer Res ., 66 (3): 1721, 2006) or HGF precursors that bind c-Met with a stronger affinity than the original HGF but do not activate c-Met (pro-HGF, Mazzonemeat get .,J. Clin . Invest ., 114 (10): 1418, 2004). In addition, by using a phage display method and a panning technique (peptide) sequence that can inhibit the activity of c-Met (peptide) by selecting the peptide (peptide) may be used to prevent c-Met activation ( Kimmeat get .,Biochem Biophys Res Commun ., 354: 115, 2007). Selected peptides can also be applied to molecular imaging to detect tissues or organs in vivo that c-Met is overexpressed (Caomeat get .,Clin . Cancer Res ., 13 (20); 6049, 2007). They have the limitation of inhibiting only HGF-dependent c-Met activation, but in the laboratory (in vitro) Or in vivo (in vivo) Shows the actual anti-cancer effect, so it can be usefully used through application such as existing chemotherapy. Currently, the epidermal growth factor receptor (EGFR) kinase inhibitors gefitinib and erlotinib are used as effective cancer treatments, but drug resistance often develops, which has been reported to be due to intensive amplification of the c-Met receptor. (Engelmanmeat get.,Science ,316 (5827): 1039, 2007), therefore, anti-cancer effects would be amplified by incorporating c-Met inhibitors.

이와 같이 최근의 항체 시장동향은 단일 표적에 대해 기능성을 가지는 항체를 개발하는 것 이외에도, 두 가지 또는 그 이상의 표적을 동시에 취할 수 있는, 이른 바 이중표적항체(bispecific antibody) 또는 다중표적 항체(multi-specific antibody) 관련 연구가 활발히 진행되고 있다(Van Spriel et al ., Immunol . Today, 21:391, 2000; Kufer et al ., Trend in Biotechnol ., 22:238, 2004; Marvin and Zhu, Curr . Opin . Drug Discovery Dev ., 9:184, 2006). 아직 이 부류에 속하는 항체들 가운데 FDA 승인을 얻어서 상품화가 이루어진 사례는 없으나, 지속적인 관심과 잠재력을 바탕으로 실험실 및 임상수준에서 꾸준히 연구개발이 이루어지고 있다. 이 부류에 속하는 항체들은, 크게 1) ScFv 기반 항체, 2) Fab 기반 항체, 3) IgG 기반 항체 등으로 구분할 수 있다.As such, recent market trends in the market for antibodies, in addition to developing antibodies that are functional against a single target, are also known as bispecific or multi-target antibodies that can simultaneously take two or more targets. Specific antibodies are actively being researched (Van Spriel et. al . , Immunol . Today , 21: 391, 2000; Kufer et al . , Trend in Biotechnol . , 22: 238, 2004; Marvin and Zhu, Curr . Opin . Drug Discovery Dev . , 9: 184, 2006). None of the antibodies in this class have been commercialized with FDA approval, but research and development is ongoing at the laboratory and clinical level with continued interest and potential. Antibodies belonging to this class can be broadly classified into 1) ScFv based antibodies, 2) Fab based antibodies, 3) IgG based antibodies, and the like.

첫째, ScFv를 기반으로 하는 다중표적 항체의 경우, 상이한 ScFv들의 VL과 VH를 각기 서로 조합하여 얻은, 혼성 ScFv를 heterodimeric 형태로 만든 디아바디(diabody)가 있다(Holliger et al., Proc . Natl . Acad . Sci . U.S.A., 90:6444, 1993). 하지만, 이 형태의 항체는 heterodimer의 결합력이 약해서 안정성이 떨어지는 단점이 있다. 또한, 상이한 ScFv를 서로 연결해서 얻은 tendem ScFv(Kipriyanov et al ., J. Mol . Biol ., 293:41, 1999; Robinson et al ., Brit . J. Cancer, 99:1415, 2008), 상이한 ScFv 말단에 상호간 결합능이 있는 Jun과 Fos를 각각 발현시켜서 얻은 heterodimeric ScFv(De Kruif and Logtenberg, J. Biol . Chem ., 271:7630, 1996), Fab의 CH1과 CL을 각각의 ScFv의 말단에 발현시켜 얻은 heterodimeric 미니항체(miniantibody)(Muller et al ., FEBS lett ., 432:45, 1998), 그리고 Fc의 homodimeric 도메인인 CH3 도메인의 일부 아미노산을 치환하여 knob into hole 형태의 heterodimeric 구조로 변경시켜, 이들 변경된 CH3 도메인을 상이한 각각의 ScFv 말단에 발현시킴으로써 heterodimeric ScFv 형태의 미니바디(minibody)를 제조하는 방법 등이 보고된 바 있다(Merchant et al ., Nat . Biotechnol., 16:677, 1998). 그 가운데 Micromet사의 BiTEs (Bispecific T-cell Engagers) 기술은 Tendem ScFv 형태의 이중표적항체 제작기술로서, T-cell을 활성화시키는 anti-CD3 ScFv와 종양의 특정 항원에 대한 ScFv를 특수한 링커로 연결함으로써, 종양세포에 T-cell을 유인하여 종양세포만 선택적으로 제거하도록 하는 작용기전을 가지고 있다. 현재 5종의 BiTEs 항체가 개발되어 다양한 질환에 대해서 임상 1상 및 2상 시험이 진행되고 있다. 이외에도 ScFv를 기반으로 하는 다양한 유사체들이 학술적으로 보고된 바 있으며(Kipriyanov and Le Gall, Curr . Opin . Drug Discovery Dev ., 7:233, 2004), 트리아바디(triabody)를 이용한 삼중표적 또는 테트라바디(tetrabody)를 이용한 사중표적 ScFv도 학계에 보고된 바 있다(Hudson and Kortt, J. Immunol . Methods, 231:177, 1999).First, for multi-target antibodies based on ScFv, there is a diabody of heterodimeric forms of hybrid ScFv obtained by combining V L and V H of different ScFv's with each other (Holliger et al., Proc . ... Natl Acad Sci USA, 90: 6444, 1993). However, this type of antibody has a disadvantage of poor stability due to the weak binding force of the heterodimer. In addition, tendem ScFv (Kipriyanov et. al . , J. Mol . Biol . , 293: 41, 1999; Robinson et al . , Brit . J. Cancer , 99: 1415, 2008), heterodimeric ScFv (De Kruif and Logtenberg, J. Biol . Chem . , 271: 7630, 1996), Fab obtained by expressing Jun and Fos with mutual binding ability at different ScFv ends, respectively . Heterodimeric miniantibodies obtained by expressing C H1 and C L at the ends of each ScFv (Muller et. al . , FEBS lett . , 432: 45, 1998), and by replacing some amino acids of the C H3 domain, a homodimeric domain of Fc, to a heterodimeric structure in the form of knob into holes, expressing these modified C H3 domains at different ScFv ends by heterodimeric ScFv There have been reports on the production of minibodies in the form (Merchant et. al . , Nat . Biotechnol. , 16: 677, 1998). Among them, Micromet's BiTEs (Bispecific T-cell Engagers) technology is a technology for the production of dual target antibodies in the form of Tendem ScFv, by linking the anti-CD3 ScFv that activates T-cells with a specific linker to the tumor specific antigen, It has a mechanism of action by attracting T-cells to tumor cells to selectively remove only tumor cells. Currently, five BiTEs antibodies have been developed and are undergoing phase 1 and phase 2 trials for various diseases. In addition, and a variety of analogues based on a scientific report ScFv bar (Kipriyanov and Le Gall, Curr. Opin. Drug Discovery Dev . , 7: 233, 2004) Tritargets using triabodies or quadruple targets ScFv using tetrabodies have also been reported in the academic world (Hudson and Kortt, J. Immunol . Methods , 231: 177, 1999).

둘째로, Fab을 기반으로 하는 다중표적 항체의 경우, 특정 항원에 대한 개별 Fab'을 이황화결합 또는 매개체를 이용해서 서로 조합하여 얻은 heterodimeric Fab(Brennan et al ., Science, 229:81, 1985; Kostelny et al ., J. Immunol., 148:1547, 1992)의 형태가 대부분을 차지한다. 한편, 특정 Fab의 중쇄 또는 경쇄의 말단에 상이한 항원에 대한 ScFv를 발현시킴으로써 항원 결합가(antigen valency)를 2개로 만든다거나(Schoonjans et al ., J. Immunol ., 165:7050, 2000; Lu et al ., J. Immunol . Methods, 267:213, 2002), Fab과 ScFv 사이에 경첩부위(hinge region)를 둠으로써, homodimeric 형태로 4개의 항원결합가를 가지도록 만든 이중표적항체도 보고된 바 있다(Coloma and Morrison, Nat . Biotechnol ., 15:159, 1997). 또한, Fab의 경쇄말단과 중쇄말단에 상이한 항원에 대한 ScFv를 융합시킴으로써 항원에 대한 결합가를 3개로 만든 이중표적 바이바디(bibody)와 Fab의 경쇄말단과 중쇄말단에 상이한 ScFv를 각각 융합시킴으로써, 항원에 대한 결합가를 3개로 가지도록 한 삼중표적 바이바디 또한 학계에 보고된 바 있으며(Schoonjans et al ., J. Immunol ., 165:7050, 2000), 상이한 Fab 3개를 화학적으로 접합시킴으로써 얻어진 간단한 형태의 삼중표적 항체 F(ab')3도 보고된 바 있다(Tutt et al ., J. Immunol., 147:60, 1991).Secondly, in the case of multi-target antibodies based on Fab, heterodimeric Fabs (Brennan et. Al.) Obtained by combining individual Fabs for a specific antigen with each other using disulfide bonds or mediators. al . , Science , 229: 81, 1985; Kostelny et al . , J. Immunol. 148: 1547, 1992). On the other hand, by expressing ScFv for different antigens at the ends of heavy or light chains of a specific Fab, two antigen valencys are made (Schoonjans et. al . , J. Immunol . 165: 7050, 2000; Lu et al . , J. Immunol . Methods , 267: 213, 2002), dual target antibodies have been reported that have four antigen-binding molecules in homodimeric form by placing a hinge region between Fab and ScFv (Coloma and Morrison, Nat . Biotechnol . , 15: 159, 1997). In addition, by fusing ScFv for different antigens at the light and heavy chain ends of the Fab, a double-target bibody having three binding values for the antigen and different ScFvs at the light and heavy chain ends of the Fab, respectively, Triple-target bibodies with three joining values for have been reported in academic circles (Schoonjans et al . , J. Immunol . , 165: 7050, 2000), a simple form of triple target antibody F (ab ') 3 obtained by chemical conjugation of three different Fabs has also been reported (Tutt et al. al . , J. Immunol., 147: 60, 1991).

셋째로, IgG를 기반으로 하는 다중표적 항체의 경우, 트리온파마(Trion Pharma)사가 마우스와 렛트 하이브리도마를 하이브리드함으로써, 이중표적항체를 생산하는 하이브리드 하이브리도마, 일명 쿼드로마(quadromas)를 얻었다. 이 회사의 이중표적항체 Ertumaxomab(항원: Her-2/neu, CD3)은 현재 전이성 유방암에 대해서 Phase II에 진입해 있으며(Kiewe and Thiel, Expert Opin . Investig . Drugs, 17:1553, 2008), 또 다른 이중표적항체 Catumaxomab(항원: EpCAM, CD3)은 2009년에 악성복수(malignant ascites)에 대해서 EU 승인을 취득한 바 있고, 현재 위암과 난소암에 대해서 Phase II에 진입해 있다(Shen and Zhu, Curr . Opin . Mol . Ther., 10:273, 2008). 다만, 이 항체들은 반복된 투여로 인한 HAMA(human anti-mouse antibody) 또는 HARA(human anti-rat antibody) 반응을 배제할 수 없는 것이 단점이다. 또한 CovX-body 기술을 이용해 제작된 Pfiza사의 이중표적항체 CVX-241은 혈관신생 인자인 엔지오포이에틴-2 (Angiopoietin-2, Ang-2) 및 VEGF 유래의 펩타이드를 특정한 링커를 이용하여 화학적 반응을 통해 특정 항체에 결합시킴으로써 혈관신생 관련 주요 기작인 Ang-2/Tie-2 및 VEGF/VEGFR-2 신호전달 기작을 동시에 중화하는 항체로 개발되어, 현재 고형암에 대한 Phase 1/2 dose escalation study (DES)를 진행하고 있다. CVX241의 경우 생물의약품을 생산하는 과정에서 다수의 화학적 반응을 통해 최종 산물이 회수된다는 점에서 공정 증가에 따른 생산비용 증가가 예상되며, 유효 요구량(active dose)이 30 mg/Kg 이상으로 과량 요구된다는 점에서 개선의 여지가 있는 것으로 파악되고 있다.Third, in the case of IgG-based multi-target antibodies, Trion Pharma hybridizes mice and let hybridomas to produce hybrid hybridomas, also known as quadromas, that produce double-target antibodies. Got it. The company's dual-target antibody Ertumaxomab (antigen: Her-2 / neu, CD3) is currently entering Phase II for metastatic breast cancer (Kiewe and Thiel, Expert). Opin . Investig . Drugs , 17: 1553, 2008), another dual-target antibody, Catumaxomab (antigen: EpCAM, CD3), received EU approval for malignant ascites in 2009, and is currently Phase II for gastric and ovarian cancer. (Shen and Zhu, Curr . Opin . Mol . Ther. , 10: 273, 2008). However, these antibodies are not able to rule out human anti-mouse antibody (HAMA) or human anti-rat antibody (HARA) response due to repeated administration. In addition, Pfiza's dual-target antibody CVX-241, manufactured using CovX-body technology, is capable of chemical reaction using angipoietin-2 (Ang-2) and VEGF-derived peptides using specific linkers. It was developed as an antibody that neutralizes Ang-2 / Tie-2 and VEGF / VEGFR-2 signaling mechanisms, which are the major mechanisms related to angiogenesis by binding to specific antibodies, and is currently used for phase 1/2 dose escalation study (DES). ) In the case of CVX241, production costs are expected to increase as the process is increased in that the final product is recovered through a number of chemical reactions in the production of biopharmaceuticals, and the active dose is required to be over 30 mg / Kg. In this regard, there is room for improvement.

한편, 사업화와는 거리가 있지만 학술적인 수준에서도 많은 연구가 진행되고 있는데, 가령 경쇄부분은 공유하면서, 상이한 중쇄에 대해서 Fc의 CH3 homodimeric 도메인의 일부 아미노산을 변형시켜 heterodimeric 형태로 제작한 이른 바 Holes and Knob 형태의 이중표적항체가 보고된 바 있다(Merchant et al ., Nat . Biotechnol., 16:677, 1998). Heterodimeric 형태의 이중표적항체 이외에, 상이한 2종의 ScFv를 IgG의 경쇄와 중쇄의 variable 도메인 대신 constant 도메인에 각각 융합 발현시켜 homodimeric 형태의(ScFv)4-IgG(항원: EGFR, IGF-1R)로 발현시킨 사례도 보고된 바 있다(Lu et al ., J. Biol . Chem ., 279:2856, 2004). 하지만, 이 항체의 경우 생산성이 현저히 낮은 것이 문제점으로 대두되었으며, 이에 동일 연구그룹에서(ScFv)4-IgG를 보완하여 동일 표적에 대해서 생산성을 향상시킨 디-디아바디(di-diabody)를 제작하여 그 가능성을 확인하였다(Lu et al ., J. Biol . Chem ., 280:19665, 2005). 하지만, 이 형태의 항체는 디아바디 자체의 문제점인 안정성이 떨어지는 단점을 극복하지는 못했다. 또한, 임클론사의 Shen et al .은 인간 VEGFR-2에 대한 chimeric 단일클론항체인 IMC-1C11을 기반으로하여, 이 항체의 경쇄 아미노 말단에 마우스 혈소판유도성장인자수용체-알파(Platelet-derived Growth Factor Receptor-a, PDGFR-a)에 대한 single variable domain만을 융합시켜 이중표적항체를 제작하여 그 가능성을 보고하였다(Shen et al ., J. Biol . Chem ., 281:10706, 2006; Shen et al ., J. Immunol. Methods, 318:65, 2007). 최근에 Rossi et al .은 단백질 카이네이즈 A(protein kinase A, PKA) R 서브유닛의 dimerization and docking domain(DDD)과 PKA의 anchoring domain을 이용한 이른 바 dock and lock(DNL)이라 불리는 방법을 통해서 CD20에 대한 다수의 항원결합가를 지니는 항체를 선보인 바 있으며(Rossi et al ., Proc . Natl . Acad . Sci . U.S.A., 103:6841, 2006; Rossi et al ., Cancer Res ., 68:8384, 2008), 동일 연구그룹에서 그러한 기술을 바탕으로 한 이중표적항체를 보고한 바 있다(Chang et al ., Clin . Cancer Res ., 13:5586, 2007). DNL 방법을 이용하는 항체는 적용이 간편하고, 모듈 형식이라 다양한 조합이 가능하며, 생체내 안정성이 우수하다는 장점을 지니지만, 생체내 단백질 분해효소에 의한 분해가 있을 수 있으며, 면역원성 관련 문제가 있을 수 있다고 알려져 있다.On the other hand, although it is far from being commercialized, many studies are being conducted at the academic level. For example, the light chains are shared, and so-called Holes made by modifying some amino acids of the C H3 homodimeric domain of Fc for different heavy chains. and Knob-type dual target antibodies have been reported (Merchant et. al . , Nat . Biotechnol. , 16: 677, 1998). In addition to the heterotarget antibody of the heterotype, two different ScFvs were expressed in the homodimeric form (ScFv) 4 -IgG (antigens: EGFR, IGF-1R) by fusion expression of two different ScFvs into the constant domain instead of the variable domain of the light and heavy chains of IgG, respectively. Have been reported (Lu et. al . , J. Biol . Chem . , 279: 2856, 2004). However, the low productivity of this antibody has emerged as a problem. Therefore, the same research group (ScFv) was supplemented with 4- IgG to produce a di-diabody that improved productivity for the same target. The possibility was confirmed (Lu et al . , J. Biol . Chem . , 280: 19665, 2005). However, this type of antibody did not overcome the disadvantage of poor stability, which is a problem of diabodies themselves. In addition, Shen et of al . Is based on the IMC-1C11, a chimeric monoclonal antibody against human VEGFR-2, and the mouse platelet-derived growth factor receptor-alpha (PDGFR-a) at the light chain amino terminus of the antibody. Dual target antibodies were prepared by fusing only a single variable domain for the report (Shen et. al . , J. Biol . Chem . , 281: 10706, 2006; Shen et al . , J. Immunol. Methods , 318: 65, 2007). Recently Rossi et al . The antigen binding to CD20 can be determined by a method called so-called dock and lock (DNL) using the dimerization and docking domain (DDD) of the protein kinase A (PKA) R subunit and the anchoring domain of PKA. Genie has demonstrated antibodies (Rossi et al . , Proc . Natl . Acad . Sci . USA , 103: 6841, 2006; Rossi et al . , Cancer Res . , 68: 8384, 2008), and the same research group reported double-target antibodies based on such techniques (Chang et al. al . , Clin . Cancer Res . , 13: 5586, 2007). Antibodies using the DNL method are easy to apply, have a modular form, and can be variously combined, and have excellent in vivo stability, but may be degraded by proteolytic enzymes in vivo and may have immunogenicity-related problems. It is known that.

상기와 같이 이중표적 또는 다중표적 항체 및 그의 제조방법에 대해 다양한 학술적 보고가 있었으며, 상기 항체들은 사용목적에 따른 형태학적 특징에 따라 저마다 기능상의 장단점을 보이지만, 암을 치료하기 위한 효과적이고 새로운 치료용 이중표적 및 다중표적 항체의 개발은 여전히 필요한 실정이다. 특히, 이중표적 또는 다중표적을 위해 제조된 항체가 제대로 그 기능을 나타내는가가 중요한 문제이며, 이 경우 무엇보다도 동시 표적으로 하는 항원에 대한 선택이 매우 중요한 것으로 이해되고 있다.As described above, there have been various academic reports on the double-target or multi-target antibody and its manufacturing method, and the antibodies have functional advantages and disadvantages according to their morphological characteristics according to the purpose of use, but they are effective and new therapeutic agents for treating cancer. The development of double- and multi-target antibodies is still needed. In particular, it is an important question whether an antibody prepared for a dual target or a multi-target properly exhibits its function. In this case, it is understood that the selection for the co-targeting antigen is very important.

이에, 본 발명자들은 혈관신생 억제를 통한 항암치료용 이중표적항체 개발을 위해, 혈관신생 기작 및 종양의 성장과 전이와 관련된 전후과정에서 밀접히 관여하는 수용체인 VEGFR-2 및 c-Met을 동시에 중화시킬 수 있는 이중표적항체를 제조하고자 예의 노력한 결과, 본 발명자들이 개발하여 기출원한(대한민국 등록특허 제10-0883430호 및 국제출원 제PCT/KR07/003077호) 완전인간 anti-KDR 항체인 TTAC-0001을 뼈대로 하여, c-Met에 대하여 길항적 작용을 나타내는 펩타이드를 특정 링커서열과 함께 연결하여 이중표적항체(PIG-KM)를 제작하였고, 상기 이중표적항체가 VEGFR-2 및 c-Met을 동시에 중화시킬 수 있으며, VEGFR-2 단일표적 항체 또는 c-Met 길항 펩타이드에 비해서 세포 수준에서 대등하거나 보다 우수한 항암효과를 나타내는 것을 확인하고서 본 발명을 완성하게 되었다.
Therefore, the present inventors simultaneously neutralize VEGFR-2 and c-Met, which are receptors closely involved in the angiogenesis mechanism and post-war processes related to tumor growth and metastasis, in order to develop a dual target antibody for anticancer treatment through angiogenesis inhibition. As a result of intensive efforts to prepare a double target antibody, TTAC-0001, a complete human anti-KDR antibody, developed and filed by the present inventors (Korean Patent No. 10-0883430 and International Application No. PCT / KR07 / 003077). As a skeleton, a double-target antibody (PIG-KM) was prepared by linking a peptide showing antagonistic action against c-Met with a specific linker sequence, and the double-target antibody simultaneously produced VEGFR-2 and c-Met. The present invention was completed by confirming that the cells can be neutralized and show comparable or better anti-cancer effects at the cellular level compared to VEGFR-2 single target antibody or c-Met antagonist peptide. .

본 발명의 하나의 목적은 혈관내피성장인자 수용체 중화항체의 경쇄 N-말단 에 수용성 펩타이드가 융합되어, 항 혈관신생 효과와 더불어 c-Met의 인산화에 의한 암세포의 증식 및 이동을 저해할 수 있는 이중표적항체를 제공하는 것이다. One object of the present invention is a double soluble peptide that is fused to the light chain N-terminus of the vascular endothelial growth factor receptor neutralizing antibody, which can inhibit the proliferation and migration of cancer cells by the phosphorylation of c-Met with anti-angiogenic effects. To provide a target antibody.

본 발명의 다른 목적은 상기 이중표적항체를 코딩하는 DNA를 제공하는 것이다. Another object of the present invention is to provide a DNA encoding the double target antibody.

본 발명의 또 다른 목적은 상기 DNA를 포함하는 재조합 발현 벡터를 제공하는 것이다. Still another object of the present invention is to provide a recombinant expression vector comprising the DNA.

본 발명의 또 다른 목적은 상기 재조합 발현 벡터로 형질전환된 숙주세포를 제공하는 것이다. Still another object of the present invention is to provide a host cell transformed with the recombinant expression vector.

본 발명의 또 다른 목적은 상기 숙주세포를 배양하여 이중표적항체를 제조하는 방법을 제공하는 것이다. Still another object of the present invention is to provide a method of producing a double target antibody by culturing the host cell.

본 발명의 또 다른 목적은 상기 이중표적항체를 포함하는 약제학적 조성물을 제공하는 것이다. Still another object of the present invention is to provide a pharmaceutical composition comprising the double target antibody.

상기 목적을 달성하기 위하여, 본 발명은 혈관내피성장인자 수용체 중화항체의 경쇄 N-말단에 수용성 펩타이드가 융합된 신규한 형태의 이중표적항체를 제공한다.In order to achieve the above object, the present invention provides a novel target double target antibody in which a water-soluble peptide is fused to the light chain N-terminus of the vascular endothelial growth factor receptor neutralizing antibody.

본 발명의 이중표적항체는 이에 제한되는 것은 아니지만, 종양 세포(neoplastic cell), 암 기질 세포(cancer stromal cell), 종양 연관 내피세포(tumor associate endothelial cell), 종양 연관 내피 전구세포(tumor associated endothelial progenitor cell), 종양 연관 순환 내피세포(tumor associated circulating endothelial cell), 순환 종양세포(circulating tumor cell), 암 줄기세포(cancer stem cell) 등에서 특이적으로 발현하는 항원에 대한 항체인 것이 바람직하다.Dual target antibodies of the present invention include, but are not limited to, neoplastic cells, cancer stromal cells, tumor associate endothelial cells, tumor associated endothelial progenitors cells, tumor associated circulating endothelial cells, circulating tumor cells, cancer stem cells, and the like.

보다 구체적으로는, 본 발명의 이중표적항체에 대한 항원은 VEGFR-1(Vascular Endothelial Growth Factor Receptor-1), VEGFR-2(Vascular Endothelial Growth Factor Receptor 2), VEGFR-3(Vascular Endothelial Growth Factor Receptor 3), FLT3(FMS-like Tyrosine Kinase 3), CSF1R(Colony Stimulating Factor 1 Receptor), RET(Rearranged during Transfection), c-Met(Mesenchymal-Epithelial Transition Factor), EGFR(Epidermal Growth Factor Receptor), Her2/neu(Human Epidermal Growth Factor Receptor 2), HER3(Human Epidermal Growth Factor Receptor 3), HER4(Human Epidermal Growth Factor Receptor 4), FGFRs(Fibroblast Growth Factor Receptors), 인슐린 유사 성장 인자(Insulin-like Growth Factors), PDGFR(Platelet-Derived Growth Factor Receptors), c-KIT, BCR, 인테그린(Integrin), MMPs(Matrix Metalloproteinases) 등 세포 표면에 발현하는 단백질일 수 있으나, 이에 국한되는 것은 아니다. More specifically, the antigen for the dual target antibody of the present invention is Vascular Endothelial Growth Factor Receptor-1 (VEGFR-1), Vascular Endothelial Growth Factor Receptor 2 (VEGFR-2), Vascular Endothelial Growth Factor Receptor 3 ), FLT3 (FMS-like Tyrosine Kinase 3), CSF1R (Colony Stimulating Factor 1 Receptor), RET (Rearranged during Transfection), c-Met (Mesenchymal-Epithelial Transition Factor), EGFR (Epidermal Growth Factor Receptor), Her2 / neu (Human Epidermal Growth Factor Receptor 2), HER3 (Human Epidermal Growth Factor Receptor 3), HER4 (Human Epidermal Growth Factor Receptor 4), Fibroblast Growth Factor Receptors (FGFRs), Insulin-like Growth Factors, PDGFR (Platelet-Derived Growth Factor Receptors), c-KIT, BCR, Integrin (Integrin), MMPs (Matrix Metalloproteinases) and other proteins that can be expressed on the cell surface, but is not limited thereto.

본 발명에서 이중표적항체는 '다클론' 또는 '단클론' 항체일 수 있으나, 단클론 항체가 보다 바람직하다. 단클론 항체는 실질적으로 균질한 항체 집단으로부터 수득된 항체를 말하는데, 즉 이러한 집단을 구성하는 개개의 항체는 소량으로 존재할 수도 있는 가능한 자연 발생 돌연변이를 제외하고는 동일하다. 단클론 항체는 단일 항원성 부위에 대해 고도로 특이적이다. 더욱이, 상이한 에피토프에 대한 상이한 항체를 포함하는 다클론 항체와는 반대로, 각각의 단클론 항체는 항원 상의 단일 에피토프에 대해 유도된다. 단클론은 임의의 특정한 방법으로 항체를 생성하는 것을 필요로 한다는 의미로 해석되어서는 안된다. 예를 들면, 본 발명에서 유용한 단클론 항체는 문헌 [Kohler et al., Nature, 256:495(1975)]에 기재된 하이브리도마 방법으로 제조하거나, 재조합 DNA 방법 [미국특허 제4,816,567호 참조]으로 제조할 수 있다. 또한, 단클론 항체는 예를 들면 문헌 [Clackson et al., Nature, 352:624-628(1991); Marks et al., J. Mol. Biol., 222:581-597(1991)]에 기재된 기술을 이용하여 파지 항체 라이브러리로부터 단리할 수도 있다. In the present invention, the dual target antibody may be a 'polyclonal' or 'monoclonal' antibody, but a monoclonal antibody is more preferable. Monoclonal antibodies refer to antibodies obtained from a substantially homogeneous population of antibodies, ie the individual antibodies that make up this population are identical except for possible naturally occurring mutations that may be present in small amounts. Monoclonal antibodies are highly specific for a single antigenic site. Moreover, in contrast to polyclonal antibodies that include different antibodies to different epitopes, each monoclonal antibody is directed against a single epitope on the antigen. Monoclonal should not be construed to mean that it requires the production of antibodies in any particular way. For example, monoclonal antibodies useful in the present invention are prepared by the hybridoma method described in Kohler et al., Nature, 256: 495 (1975), or by recombinant DNA method [see US Pat. No. 4,816,567]. can do. In addition, monoclonal antibodies are described, eg, in Clackson et al., Nature, 352: 624-628 (1991); Marks et al., J. Mol. Biol., 222: 581-597 (1991), can also be isolated from phage antibody libraries.

본 발명의 이중표적항체는 '인간화 항체'인 것이 바람직하다. 인간화 항체란, 비인간 상보성 결정 영역(CDR)을 보유하는 항체의 서열을 변경시킴으로써 일부 또는 전체가 인간 항체 배선(germline)으로부터 유도된 아미노산 서열로 구성된 항체를 의미한다. 또한, 본 발명의 항체는 '인간 항체'인 것이 특히 바람직하다. 인간 항체는 인간에 의해 생산된 항체 또는 인간 항체를 제조하기 위한 기술 중 임의의 기술을 이용하여 제조한 항체의 아미노산 서열에 상응하는 아미노산 서열을 갖는 항체이다. 인간 항체는 당업계에 알려진 다양한 기술을 이용하여 제조할 수 있다. It is preferable that the dual target antibody of this invention is a "humanized antibody." Humanized antibody means an antibody composed of amino acid sequences derived in part or in whole from human antibody germlines by altering the sequence of an antibody having a non-human complementarity determining region (CDR). Moreover, it is especially preferable that the antibody of this invention is a "human antibody." Human antibodies are antibodies having an amino acid sequence that corresponds to the amino acid sequence of an antibody produced by a human or an antibody produced using any of the techniques for making a human antibody. Human antibodies can be prepared using various techniques known in the art.

본 발명의 상기 혈관내피성장인자 수용체 중화항체는 대한민국 등록특허 제10-0883430호 및 국제출원 제PCT/KR07/003077호에 기 출원된 완전인간 anti-KDR 항체인 6A6-scFv(TTAC-0001), 6A6-IgG 및 6A6-scFv의 경쇄서열을 경쇄 셔플링 방법으로 변이시킨 변이체 등을 모두 포함한다. 상기 대한민국 등록특허 제10-0883430호 및 국제출원 제PCT/KR07/003077호에서 개시된 TTAC-0001 내지 TTAC-0019의 제조방법 및 효과를 비롯한 모든 내용은 본 발명에 참조로서 포함된다. The vascular endothelial growth factor receptor neutralizing antibody of the present invention is a 6A6-scFv (TTAC-0001), which is a complete human anti-KDR antibody previously filed in Korean Patent Registration No. 10-0883430 and International Application No. PCT / KR07 / 003077, And all variants in which the light chain sequences of 6A6-IgG and 6A6-scFv are mutated by the light chain shuffling method. All the contents including the manufacturing method and effects of TTAC-0001 to TTAC-0019 disclosed in the Republic of Korea Patent No. 10-0883430 and International Application No. PCT / KR07 / 003077 are incorporated herein by reference.

상기 TTAC-0001 항체는 서열번호 1로 기재되는 아미노산 서열로 표시되는 경쇄 가변영역 및 서열번호 20으로 기재된 아미노산 서열로 표시되는 중쇄 가변영역을 가지는 IgG 형태의 scFv(Single Chain Fragment Variable) 항체이다. 또한, 상기 TTAC-0002 내지 TTAC-0019 항체는 각각 서열번호 2 내지 서열번호 19로 기재되는 아미노산 서열로 표시되는 경쇄 가변영역을 가지며, 서열번호 20으로 기재된 아미노산 서열로 표시되는 중쇄 가변영역을 가진다.The TTAC-0001 antibody is an IgG-type scFv (Single Chain Fragment Variable) antibody having a light chain variable region represented by the amino acid sequence of SEQ ID NO: 1 and a heavy chain variable region represented by the amino acid sequence of SEQ ID NO: 20. In addition, the TTAC-0002 to TTAC-0019 antibodies each have a light chain variable region represented by the amino acid sequence of SEQ ID NO: 2 to SEQ ID NO: 19, and has a heavy chain variable region represented by the amino acid sequence of SEQ ID NO: 20.

본 발명에서 사용하는 용어 수용성 펩타이드는 세포에 존재하는 특히, 세포 표면에 존재하는 수용체에 특이적으로 결합하는 단백질로 물에 용해될 수 있는 수용성 특성을 나타내는 아미노산 20개 미만의 펩타이드를 의미한다. 본 발명의 수용성 펩타이드는 바람직하게는 서열번호 21 로 기재되는 pep1 또는 서열번호 22로 기재되는 pep2일 수 있으며, c-Met에 결합하여 c-Met를 억제하는 길항적 작용을 할 수 있다 (pep1: KSLSRHDHIHHH, pep2: YLFSVHWPPLKA).As used herein, the term water soluble peptide refers to a peptide having less than 20 amino acids that exhibit water solubility in water as a protein that specifically binds to a receptor present on a cell surface, particularly a receptor present on a cell surface. The The water soluble peptide may preferably be pep1 described in SEQ ID NO: 21 or pep2 described in SEQ ID NO: 22, and may have an antagonistic effect of binding to c-Met and inhibiting c-Met (pep1: KSLSRHDHIHHH, pep2 : YLFSVHWPPLKA).

본 발명의 상기 혈관내피성장인자 수용체 중화항체의 중쇄 또는 경쇄의 N-말단 또는 C-말단과 수용성 펩타이드는 링커(linker)를 통해 연결시킬 수 있다. 본 발명에서 '링커'는 융합 단백질의 두 부분을 연결하는 펩티드 단편을 말한다. 본 발명에 적합한 링커는 5 내지 25개의 아미노산, 바람직하게는 10 내지 20개의 아미노산, 더욱 바람직하게는 10 내지 15개의 아미노산을 가지는 펩티드를 포함한다. 본 발명에서 상기 링커는 바람직하게 서열번호 23으로 기재되는 링커일 수 있다 (linker: GGGGSGGGGSGS). The N-terminus or C-terminus of the heavy or light chain of the vascular endothelial growth factor receptor neutralizing antibody of the present invention and the water-soluble peptide may be linked through a linker. In the present invention, the 'linker' refers to a peptide fragment that connects two portions of the fusion protein. Linkers suitable for the present invention include peptides having 5 to 25 amino acids, preferably 10 to 20 amino acids, more preferably 10 to 15 amino acids. The linker in the present invention may preferably be a linker set forth in SEQ ID NO: 23 (linker: GGGGSGGGGSGS).

본 발명의 이중표적항체에서 상기 혈관내피성장인자 수용체 중화항체와 상기 수용성 펩타이드는 각각의 고유한 역할을 그대로 발휘한다. 또한, 이중표적항체의 경우 두 개의 신호를 동시에 억제 또는 증폭시킬 수 있기 때문에 하나의 신호를 억제/증폭하는 경우보다 더욱 효과적일 수 있으며, 각각의 신호를 각각의 신호억제제로 처리했을 경우와 비교하면, 저용량 투약이 가능하며, 동일한 시간 및 공간에서의 두 개의 신호를 억제/증폭시킬 수 있는 장점이 있다. In the dual target antibody of the present invention, the vascular endothelial growth factor receptor neutralizing antibody and the water soluble peptide play their respective roles. In addition, since the dual target antibody can simultaneously suppress or amplify two signals, it can be more effective than suppressing / amplifying a single signal, compared to the case of treating each signal with a respective signal inhibitor. In addition, low-dose administration is possible, and there is an advantage of suppressing / amplifying two signals at the same time and space.

바람직하게, 상기 이중표적항체는 서열번호 1 내지 서열번호 19 중 어느 하나의 아미노산 서열로 표시되는 경쇄 가변영역 및 서열번호 20의 아미노산 서열로 표시되는 중쇄 가변영역을 포함하는 혈관내피성장인자 수용체 중화항체의 경쇄 N-말단에 서열번호 21 또는 서열번호 22로 기재된 아미노산 서열로 표시되는 수용성 펩타이드가 연결된, VEGFR-2(Vasicular Endothelial Growth Factor Receptor-2) 및 c-Met(Mesenchymal-Epithelial Transition factor)에 결합 특이성을 갖는 이중표적항체일 수 있다. 보다 바람직하게, 서열번호 1의 아미노산 서열로 표시되는 경쇄 가변영역을 가지는 혈관내피성장인자 수용체 중화항체(TTAC-0001)의 경쇄의 N-말단에 서열번호 21 또는 서열번호 22로 기재된 아미노산 서열로 표시되는 수용성 펩타이드가 연결된 이중표적항체일 수 있다. Preferably, the double target antibody is a vascular endothelial growth factor receptor neutralizing antibody comprising a light chain variable region represented by the amino acid sequence of any one of SEQ ID NO: 1 to SEQ ID NO: 19 and a heavy chain variable region represented by the amino acid sequence of SEQ ID NO: 20 Binding to VEGFR-2 (Vasicular Endothelial Growth Factor Receptor-2) and c-Met (Mesenchymal-Epithelial Transition factor) linked to the light chain N-terminus of the water-soluble peptide represented by SEQ ID NO: 21 or SEQ ID NO: 22 It may be a dual target antibody with specificity. More preferably, the amino acid sequence of SEQ ID NO: 21 or SEQ ID NO: 22 is displayed at the N-terminus of the light chain of the vascular endothelial growth factor receptor neutralizing antibody (TTAC-0001) having the light chain variable region represented by the amino acid sequence of SEQ ID NO: 1 It may be a double target antibody to which the water-soluble peptide is linked.

또한, 본 발명의 이중표적항체를 이루는 상기 혈관내피성장인자 수용체 중화항체의 경쇄 또는 중쇄와 수용성 펩타이드 또는 링커는 암호화된 단백질의 작용적 특성에 영향을 미치지 않는 한, 서열번호 1 내지 23으로 표시되는 아미노산 서열 및 이를 암호화하는 DNA 서열과 적어도 약 80% 이상, 90% 이상, 또는 95% 이상의 상동성을 갖는 아미노산 서열 또는 DNA 서열을 가질 수 있다. In addition, the light chain or heavy chain of the vascular endothelial growth factor receptor neutralizing antibody and the water-soluble peptide or linker constituting the double target antibody of the present invention are represented by SEQ ID NOs: 1 to 23, as long as they do not affect the functional properties of the encoded protein. It may have an amino acid sequence or DNA sequence having at least about 80%, at least 90%, or at least 95% homology with the amino acid sequence and the DNA sequence encoding it.

또한, 바람직하게 상기 이중표적항체를 이루는 아미노산 서열을 코딩하는 염기서열은 코돈 최적화된 것일 수 있다. 코돈 최적화란 DNA의 발현율을 증가시키기 위해, 숙주세포 또는 동물에서의 발현 빈도가 높은 코돈으로 염기를 치환하는 것을 말한다. 숙주 또는 동물 내에서 DNA가 단백질로 전사 및 번역될 때 아미노산을 지령하는 코돈 사이에 숙주 또는 동물에 따라 선호도가 높은 코돈이 존재하는데, 이들 선호도가 높은 코돈으로 치환함으로써 그 핵산이 암호화하는 아미노산 또는 단백질의 발현 효율을 증가시키는 것을 말한다. 본 발명의 목적상 상기 이중표적항체를 이루는 VEGFR-2 결합항체의 경쇄 또는 중쇄 서열, 링커 및 c-Met 결합 수용체 펩타이드의 염기 서열의 코돈 최적화는 세포 내 또는 동물 내에서 발현율을 증가시킴으로써 치료항체로서의 효과를 극대화할 수 있을 것이다. Also, preferably, the base sequence encoding the amino acid sequence constituting the double target antibody may be codon optimized. Codon optimization refers to the substitution of bases with codons with high expression in host cells or animals in order to increase the expression rate of DNA. When a DNA is transcribed and translated into a protein in a host or animal, a codon with high affinity exists between the codons that command the amino acid, and the amino acid or protein encoded by the nucleic acid by substituting these highly preferred codons. To increase the expression efficiency of. For the purposes of the present invention, codon optimization of the light chain or heavy chain sequence of the VEGFR-2 binding antibody constituting the double target antibody, the base sequence of the linker and the c-Met binding receptor peptide is performed as a therapeutic antibody by increasing the expression rate in cells or in animals. You will be able to maximize the effect.

본 발명의 구체적인 실시예에서는, 상기 TTAC-0001을 근간으로 하여 이 항체의 경쇄 아미노 말단 부위에 특정 링커를 통해서 c-Met과 결합하는 펩타이드를 융합시킴으로써 이중표적항체(PIG-KMs)를 완성하였으며 (도 1 및 도 2 참조),이중표적항체 PIG-KMs의 VEGFR-2 및 c-Met에 대한 결합능과 친화도를 BIAcore를 이용하여 분석하였고(도 3 참조), Protein A 친화성 컬럼, SP-sepharose 컬럼, 크기배제 컬럼을 이용한 FPLC를 통해서 순도 95% 이상의 정제된 항체만을 확보하여 (도 4 및 도 5 참조), PIG-KM에 대한 세포이동을 분석한 결과, HGF에 의한 HUVEC 세포의 이동성을 억제하지 못하는 TTAC-0001 처리군에 반해 PIG-KM은 VEGF와 HGF 각각에 의해 비롯되는 HUVEC 세포의 이동성을 효과적으로 저해할 수 있음을 확인하였으며, VEGF 및 HGF가 함께 유도하는 HUVEC 세포의 이동성을 효과적으로 저해할 수 있음을 확인하였다 (도 6 참조). 또한, HUVEC 세포에 대한 세포 증식률 어세이 결과, 본 발명의 PIG-KM 이중표적항체가 VEGF 또는 HGF 각각에 의해 야기되는 HUVEC 세포의 생존능을 저해할 수 있음을 확인하였으며, VEGF 및 HGF가 함께 유도하는 HUVEC 세포의 증식률 또한 효과적으로 저해할 수 있음을 확인하였다 (도 7 참조). 또한, 초대 배양한 HUVEC 세포에 대한 세포 상처 치유능 어세이 결과, 증식 및 이동이 많이 진행된 TTAC-0001과 비교할 때 PIG-KM 처리군에서는 HUVEC 증식 및 이동을 저해하여 결과적으로 HUVEC 세포의 상처치유를 저해하는 효과가 있음을 확인하였으며 (도 8 참조), 나아가 본 발명의 PIG-KM은 HGF에 의해 유도되는 c-Met의 신호전달 기작을 효과적으로 저해함을 확인할 수 있었다 (도 9 참조). In a specific embodiment of the present invention, the dual target antibody (PIG-KMs) was completed by fusing a peptide that binds c-Met through a specific linker to the light chain amino terminal region of the antibody based on TTAC-0001 ( 1 and 2), the binding capacity and affinity of the dual target antibody PIG-KMs to VEGFR-2 and c-Met were analyzed using BIAcore (see Figure 3), Protein A affinity column, SP-sepharose Purifying only purified antibody with purity of 95% or more through FPLC using column and size exclusion column (see FIGS. 4 and 5), and analyzing the cell migration to PIG-KM, inhibiting the mobility of HUVEC cells by HGF. In contrast to the TTAC-0001 treatment group, PIG-KM was found to effectively inhibit the mobility of HUVEC cells caused by VEGF and HGF, respectively, and effectively inhibit the mobility of HUVEC cells induced by VEGF and HGF.That was confirmed (see Fig. 6). In addition, as a result of cell proliferation assay for HUVEC cells, it was confirmed that the PIG-KM dual target antibody of the present invention could inhibit the viability of HUVEC cells caused by VEGF or HGF, respectively. It was confirmed that the proliferation rate of HUVEC cells can also be effectively inhibited (see FIG. 7). In addition, as a result of cell wound healing assay for primary cultured HUVEC cells, PIG-KM treated group inhibited HUVEC proliferation and migration as compared with TTAC-0001, which had a lot of proliferation and migration, resulting in wound healing of HUVEC cells. It was confirmed that there is an inhibitory effect (see FIG. 8), and furthermore, the PIG-KM of the present invention was confirmed to effectively inhibit the signaling mechanism of c-Met induced by HGF (see FIG. 9).

따라서, 본 발명의 이중표적항체는 VEGFR-2 및 c-Met에 결합 특이성을 가지며 VEGFR-2 및 c-Met를 동시에 중화시킬 수 있는 효과가 있는 바, 혈관내피세포의 이동과 증식에 의한 혈관신생이 VEGF/VEGFR-2(KDR) 신호전달 기작에 의해 주로 이루어지고, 암세포의 증식과 전이가 HGF/c-Met 신호전달 기작에 의해 주로 이루어짐을 고려할 때, 이들 두 타겟이 과발현된 종양에 대해서 두 신호전달 기작을 동시에 중화시킬 수 있어 암치료 전략으로서 매우 효과적일 것으로 판단된다. 특히, VEGF와 HGF를 병행 처리한 효율적인 혈관형성 조건에서, c-Met 및 KDR로부터 비롯되는 세포 내 신호전달의 상호대화(crosstalk)는 세포골격(cytoskeleton)과 이동 그리고 형태변화(morphogenesis)를 야기시킴으로써 전이과정을 촉진할 수 있기 때문에(Sulpice et al., Biol . Cell, 101:525, 2009), 상기 두 가지 타이로신 카이네이즈 수용체(receptor tyrosine kinase)를 하나의 항체로 억제하는 것은 의미가 크다고 할 수 있다. Therefore, the dual target antibody of the present invention has binding specificity to VEGFR-2 and c-Met, and has an effect of neutralizing VEGFR-2 and c-Met simultaneously. Angiogenesis by migration and proliferation of vascular endothelial cells Given that these VEGF / VEGFR-2 (KDR) signaling mechanisms are primarily involved, and that cancer cell proliferation and metastasis are largely caused by HGF / c-Met signaling mechanisms, these two targets may be Signaling mechanisms can be neutralized at the same time, which is expected to be very effective as a cancer treatment strategy. In particular, under efficient angiogenesis conditions with VEGF and HGF, intracellular crosstalk from c-Met and KDR can lead to cytoskeleton, migration and morphogenesis. Because it can promote the metastasis process (Sulpice et al., Biol . Cell , 101: 525, 2009), it is significant to inhibit the two tyrosine kinase receptors with one antibody. .

또한, 각각 개별적으로 항원 타겟에 대한 결합 특이성을 가지는 것을 결합한다고 해서 반드시 원하는 타겟을 동시에 중화시키는 bispecific 효과를 갖는 이중표적항체를 얻을 수 있는 것은 아니나, 본 발명에서는 우수한 bispecific 효과를 가지는 것을 확인하였다는 점에서 암치료용 약제에 사용할 수 있다는 점에서 더욱 의미가 크다고 할 수 있다. 이러한 이중표적항체 제작의 예측불가능성은 완전히 밝혀진 것은 아니나, 이중표적항체가 전통적인 IgG 형태에서 벗어난 양태를 취함에 따라 세포내에서 분해되거나 세포밖으로 분비되는 효율이 떨어질 수 있으며, 생산된 항체의 정제가 용이하지 않거나 최종 제품의 안정성이 기존의 항체와는 차이가 있을 수 있다는데 그 원인이 있을 것으로 사료된다.
In addition, the binding of each having specific binding specificity to an antigen target does not necessarily result in a bitarget antibody having a bispecific effect of neutralizing a desired target at the same time, but it was confirmed that the present invention has an excellent bispecific effect. In that sense, it can be said that the meaning can be used in the drug for cancer treatment. While the unpredictability of the preparation of such double-target antibodies is not fully understood, as the dual-target antibodies take the form deviated from the conventional IgG form, the efficiency of being degraded or secreted into cells may be reduced, and the purification of the produced antibodies is easy. Or the stability of the final product may differ from the existing antibodies.

다른 하나의 양태로서, 본 발명은 상기 기술한 본 발명의 이중표적항체를 코딩하는 DNA를 제공한다. 상기 DNA는 상기에서 기술한 바와 같이 암호화된 단백질의 작용적 특성에 영향을 미치지 않는 한, DNA 서열과 적어도 약 80% 이상, 90% 이상, 또는 95% 이상의 상동성을 갖는 서열을 모두 포함하며, 발현율을 높이기 위해 코돈 최적화된 서열을 가질 수 있다.In another aspect, the present invention provides DNA encoding the dual target antibody of the present invention described above. The DNA includes all sequences having at least about 80%, at least 90%, or at least 95% homology with the DNA sequence, as long as it does not affect the functional properties of the encoded protein as described above, It may have a codon optimized sequence to increase the expression rate.

바람직하게, 상기 이중표적항체를 코딩하는 DNA는 서열번호 24 또는 서열번호 25로 기재된 것일 수 있다(도 1 참조). 상기 DNA 서열은 중화항체의 경쇄를 코딩하는 핵산 서열의 5' 말단에 링커를 코딩하는 핵산 서열의 3말단을 융합시키고, 그 링커를 코딩하는 핵산 서열의 5말단에 수용성 펩타이드를 코딩하는 핵산 서열의 3' 말단을 융합시킴으로써 제작할 수 있다. Preferably, the DNA encoding the dual target antibody may be that described in SEQ ID NO: 24 or SEQ ID NO: 25 (see Figure 1). The DNA sequence is a fusion of the three ends of the nucleic acid sequence encoding the linker to the 5 'end of the nucleic acid sequence encoding the light chain of the neutralizing antibody, and the nucleic acid sequence of the nucleic acid sequence encoding the water-soluble peptide at the five ends of the nucleic acid sequence encoding the linker It can be produced by fusing the 3 'end.

한 양태로서, 링커를 통해 융합된 이중표적항체를 코딩하는 핵산 서열은 프라이머에 펩타이드 및 링커의 핵산 서열이 포함되도록 설계한 후 PCR을 수행함으로써 수득할 수 있다. 상기에서 제조된 이중표적항체 코딩 유전자를 벡터에 삽입하여 재조합 발현 플라스미드를 제조한 후, 이 플라스미드를 숙주세포에 도입하여 형질감염체 또는 형질전환체를 제조하고, 이 세포를 증폭 배양하여 생성된 이중표적항체는 분리 정제함으로써 목적하는 이중표적항체를 얻을 수 있다.
In one embodiment, the nucleic acid sequence encoding a dual target antibody fused through a linker can be obtained by designing the primer to include the nucleic acid sequences of the peptide and the linker and then performing PCR. A recombinant expression plasmid was prepared by inserting the double-target antibody coding gene prepared above into a vector, and then introducing the plasmid into a host cell to prepare a transfectant or transformant, and amplifying and culturing the cell. The target antibody can be separated and purified to obtain the desired double target antibody.

다른 하나의 양태로서, 본 발명은 상기 이중표적항체를 코딩하는 DNA를 포함하는 재조합 발현 벡터를 제공한다. 바람직하게 상기 벡터는 도 2에 나타낸 pIgG-pep1/6A6lgt 또는 pIgG-pep2/6A6lgt의 개열지도를 갖는 것인 재조합 발현 벡터일 수 있다.In another aspect, the present invention provides a recombinant expression vector comprising a DNA encoding the dual target antibody. Preferably the vector may be a recombinant expression vector having a cleavage map of pIgG-pep1 / 6A6lgt or pIgG-pep2 / 6A6lgt shown in FIG. 2.

본 발명에서 용어, "재조합 발현 벡터"란 적당한 숙주세포에서 목적 단백질을 발현할 수 있는 발현 벡터로서, 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 말한다. As used herein, the term "recombinant expression vector" refers to a gene construct, which is an expression vector capable of expressing a protein of interest in a suitable host cell, comprising an essential regulatory element operably linked to express a gene insert.

본 발명에서 "작동가능하게 연결된 (operably linked)"는 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질을 코딩하는 핵산 서열이 기능적으로 연결되어 있는 것을 말한다. 재조합 벡터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용하여 용이하게 할 수 있다In the present invention, "operably linked" means that the nucleic acid expression control sequence and the nucleic acid sequence encoding the protein of interest is functionally linked to perform a general function. Operational linkages with recombinant vectors can be made using recombinant DNA techniques well known in the art, and site-specific DNA cleavage and linkage can be facilitated using enzymes generally known in the art have

본 발명의 적합한 발현 벡터는 프로모터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서 같은 발현 조절 엘리먼트 외에도 막 표적화 또는 분비를 위한 시그널 서열을 포함할 수 있다. 개시 코돈 및 종결 코돈은 일반적으로 면역원성 표적 단백질을 코딩하는 뉴클레오타이드 서열의 일부로 간주되며, 유전자 작제물이 투여되었을 때 개체에서 반드시 작용을 나타내야 하며 코딩 서열과 인프레임(in frame)에 있어야 한다. 일반 프로모터는 구성적 또는 유도성일 수 있다. 원핵 세포에는 lac, tac, T3 및 T7 프로모터가 있으나 이로 제한되지는 않는다. 진핵세포에는 원숭이 바이러스 40(SV40), 마우스 유방 종양 바이러스(MMTV) 프로모터, 사람 면역 결핍 바이러스(HIV), 예를 들면 HIV의 긴 말단 반복부(LTR) 프로모터, 몰로니 바이러스, 시토메갈로바이러스(CMV), 엡스타인 바 바이러스(EBV), 로우스 사코마 바이러스(RSV)프로모터 뿐만 아니라, 사람 헤로글로빈, 사람 근육 크레아틴, 사람 메탈로티오네인 유래의 프로모터가 있으나 이것으로 제한되지는 않는다. Suitable expression vectors of the invention may include signal sequences for membrane targeting or secretion in addition to expression control elements such as promoters, initiation codons, termination codons, polyadenylation signals and enhancers. Initiation and termination codons are generally considered to be part of the nucleotide sequence encoding the immunogenic target protein and must be functional in the subject and be in frame with the coding sequence when the gene construct is administered. Generic promoters can be either constitutive or inducible. Prokaryotic cells include, but are not limited to, the lac, tac, T3 and T7 promoters. Eukaryotic cells include monkey virus 40 (SV40), mouse mammary tumor virus (MMTV) promoter, human immunodeficiency virus (HIV), for example the long terminal repeat (LTR) promoter of HIV, moronivirus, cytomegalovirus (CMV) ), Epstein bar virus (EBV), Loose sacoma virus (RSV) promoters, as well as promoters derived from human heroglobin, human muscle creatine, human metallothionein.

상기 발현 벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택성 마커를 포함할 수 있다. 선택마커는 벡터로 형질전환된 세포를 선별하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제 (selective agent)가 처리된 환경에서 선별 마커를 발현하는 세포만 생존하므로 형질전환된 세포가 선별 가능하다. 또한, 벡터는 복제가능한 발현벡터인 경우, 복제가 개시되는 특정 핵산 서열인 복제원점 (replication origin)을 포함할 수 있다. The expression vector may comprise a selectable marker for selecting a host cell containing the vector. The selection marker is for selecting cells transformed with the vector, and markers conferring a selectable phenotype such as drug resistance, nutritional requirements, resistance to cytotoxic agents or expression of surface proteins can be used. Since only cells expressing a selection marker survive in an environment treated with a selective agent, transformed cells can be selected. In addition, when the vector is a replicable expression vector, the vector may include a replication origin, which is a specific nucleic acid sequence from which replication is initiated.

외래 유전자를 삽입하기 위한 재조합 발현 벡터로는 플라스미드, 바이러스, 코즈미드 등 다양한 형태의 벡터를 사용할 수 있다. 재조합 벡터의 종류는 원핵세포 및 진핵세포의 각종 숙주세포에서 원하는 유전자를 발현하고 원하는 단백질을 생산하는 기능을 하는 한 특별히 한정되지 않지만, 강력한 활성을 나타내는 프로모터와 강한 발현력을 보유하면서 자연 상태와 유사한 형태의 외래 단백질을 대량으로 생산할 수 있는 벡터가 바람직하다.
As a recombinant expression vector for inserting a foreign gene, various forms of vectors such as plasmids, viruses, and cosmids can be used. The type of recombinant vector is not particularly limited as long as it functions to express a desired gene and to produce a desired protein in various host cells of prokaryotic and eukaryotic cells, but has a promoter with strong activity and strong expression, similar to natural state Vectors that can produce large amounts of foreign protein in form are preferred.

다른 하나의 양태로서, 본 발명은 상기 재조합 벡터로 형질전환된 숙주세포를 제공한다. In another aspect, the present invention provides a host cell transformed with the recombinant vector.

본 발명에서, 이중표적항체 발현에 사용되는 숙주세포는 원핵 또는 진핵생물 세포일 수 있다. 또한, DNA의 도입효율이 높고, 도입된 DNA의 발현효율이 높은 숙주가 통상 사용된다. 이.콜라이, 슈도모나스, 바실러스, 스트렙토마이세스, 진균, 효모와 같은 주지의 진핵 및 원핵 숙주들, 스포도프레라 프루기페르다(SF9)와 같은 곤충세포, 챠이니즈 햄스터 난소 세포(CHO) 및 마우스 세포와 같은 동물세포, COS1, COS7, 사람 태아신장 293 세포(human embryonic kidney cells), BSC 1, BSC 40 및 BMT 10과 같은 아프리카 그린 원숭이 세포, 그 외 조직 배양된 인간 세포가 사용될 수 있는 숙주세포의 예이다.In the present invention, the host cell used for dual target antibody expression may be a prokaryotic or eukaryotic cell. In addition, a host having a high DNA introduction efficiency and a high expression efficiency of the introduced DNA is usually used. Well-known eukaryotic and prokaryotic hosts such as E. coli, Pseudomonas, Bacillus, Streptomyces, fungi, yeast, insect cells such as Spodoprera pruiferferda (SF9), Chinese hamster ovary cells (CHO) and mice Animal cells such as cells, COS1, COS7, human embryonic kidney cells, African green monkey cells such as BSC 1, BSC 40 and BMT 10, and other tissue cultured human cells. Is an example.

본 발명에서, 이중표적항체를 발현하기 위해 매우 다양한 발현숙주/벡터 조합이 이용될 수 있다. 진핵 숙주에 적합한 발현 벡터에는, 예를 들어 SV40, 소 유두종바이러스, 아데노바이러스, 아데노-연관 바이러스(adeno-associated virus), 시토메갈로바이러스 및 레트로바이러스를 포함한다. 세균 숙주에 사용할 수 있는 발현 벡터에는 pBluescript, pGEX2T, pUC, pCR1, pBR322, pMB9 및 이들의 유도체와 같은 세균성 플라스미드, RP4와 같이 보다 넓은 숙주 범위를 갖는 플라스미드, gt10과 11, NM989와 같은 매우 다양한 파지 람다(phage lamda) 유도체로 예시될 수 있는 파지 DNA, 및 M13과 필라멘트성 단일가닥의 DNA 파지와 같은 기타 다른 DNA 파지가 포함된다. 효모 세포에 유용한 발현벡터는 2μ 플라스미드 및 그의 유도체이다. In the present invention, a wide variety of expression host / vector combinations can be used to express dual target antibodies. Suitable expression vectors for eukaryotic hosts include, for example, SV40, bovine papillomavirus, adenovirus, adeno-associated virus, cytomegalovirus and retrovirus. Expression vectors that can be used in bacterial hosts include bacterial plasmids such as pBluescript, pGEX2T, pUC, pCR1, pBR322, pMB9 and derivatives thereof, plasmids with a wider host range such as RP4, and a wide variety of phages such as gt10 and 11, NM989 Phage DNA, which may be exemplified as a phage lamda derivative, and other DNA phages such as M13 and filamentary single stranded DNA phage. Useful expression vectors for yeast cells are 2μ plasmids and derivatives thereof.

재조합 발현 벡터의 숙주세포로의 형질전환은 예를 들면, DEAE-덱스트란 매개 형질전환(DEAE-dextran mediated transfection), 전기천공(electroporation), 형질도입(transduction), 칼슘 포스페이트 형질전환(calcium phosphate transfection), 양이온 지질-매개 형질전환(cationic lipid-mediated transfection), 스크래프 로딩(scrape loading) 및 감염(infection) 등이 포함된다.
Transformation of the recombinant expression vector into a host cell may include, for example, DEAE-dextran mediated transfection, electroporation, transduction, calcium phosphate transfection. ), Cationic lipid-mediated transfection, scrape loading and infection.

다른 하나의 양태로서, 본 발명은 상기 기술한 숙주세포를 배양하고, 이의 배양물로부터 이중표적항체를 분리함으로써 이중표적항체를 제조하는 방법을 제공한다. In another aspect, the present invention provides a method for producing a dual target antibody by culturing the host cell described above, and separating the dual target antibody from the culture thereof.

본 발명에서 상기 숙주세포는 적절한 배지와 이중표적항체의 발현 및/또는 분리되는 것을 허용하는 조건 하에, 실시된 실험실 또는 산업용 발효기에서 소규모 혹은 대규모 발효, 셰이크 플라스크 배양에 의해서 배양될 수 있다. 배양은 공지된 기술을 사용해서 탄소, 질소 공급원 및 무기염을 포함하는 적합한 배양 배지에서 진행한다. 적합한 배지는 상업적으로 입수 가능하고, 예를 들면, ATCC(American Type Culture Collection)의 카탈로그 등에 기재된 성분 및 이들의 조성 비율에 따라 만들 수 있다. In the present invention, the host cell may be cultured by small or large-scale fermentation, shake flask culture in a laboratory or industrial fermenter performed under conditions that allow the expression and / or isolation of the appropriate medium and the dual target antibody. The cultivation is carried out in a suitable culture medium containing carbon, nitrogen sources and inorganic salts using known techniques. Suitable media are commercially available and can be made, for example, according to the components described in the catalog of the American Type Culture Collection (ATCC) and the like and their composition ratios.

이러한 배양물로부터 이중표적항체는 당업계에 공지된 방법에 의해 분리될 수 있다. 예를 들어, 이중표적항체는 이에 제한되는 것은 아니지만, 원심분리, 여과, 추출, 분무 건조, 증발 또는 침전을 포함하는 통상의 방법에 의해서 배양물로부터 분리될 수 있다. 더 나아가, 이중표적항체는 크로마토그래피(예, 이온 교화, 친화성, 소수성 및 크기별 배제), 전기영동, 분별용해도(예, 암모늄 설페이트 침전), SDS-PAGE 또는 추출을 포함하여 당업계에 공지된 다양한 방법을 통해서 정제될 수 있다. 바람직하게, 본 발명의 이중표적항체는 단백질 A 친화성 컬럼, SP-세파로스 컬럼 및 크기배제크로마토그래피를 가지고 FPLC(Fast Protein Liquid Chromatography)를 이용해서 추가로 정제할 수 있다.
Dual-target antibodies from such cultures can be isolated by methods known in the art. For example, dual target antibodies can be isolated from the culture by conventional methods, including but not limited to centrifugation, filtration, extraction, spray drying, evaporation or precipitation. Furthermore, dual target antibodies are known in the art, including chromatography (eg, ion exchange, affinity, hydrophobicity and size exclusion), electrophoresis, fractional solubility (eg, ammonium sulfate precipitation), SDS-PAGE or extraction. It can be purified through various methods. Preferably, the dual target antibody of the present invention can be further purified using Fast Protein Liquid Chromatography (FPLC) with a Protein A affinity column, SP-Sepharose column and size exclusion chromatography.

다른 하나의 양태로서, 본 발명은 상기에서 기술한 이중표적항체를 포함하는 혈관신생억제용 또는 암 치료용 약제학적 조성물을 제공한다. 상기에서 살펴보았듯이, 본 발명의 이중표적항체는 혈관신생을 억제 효과가 있으므로, 혈관신생과 관련된 질환을 치료하는데 이용될 수 있다.
In another aspect, the present invention provides a pharmaceutical composition for inhibiting angiogenesis or cancer, comprising the dual target antibody described above. As described above, since the dual target antibody of the present invention has an inhibitory effect on angiogenesis, it can be used to treat diseases related to angiogenesis.

본 발명에서 '혈관신생 관련 질환'은 암, 연령관련 황반변성(age-related macular degeneration), 류마티스성 관절염(rheumatoid arthritis), 당뇨병성 망막병증(diabetic retinopathy), 건선(psoriasis) 및 만성 염증(chronic inflammation)을 포함하며, 이에 한정되는 것은 아니다.In the present invention, 'angiogenesis related disease' includes cancer, age-related macular degeneration, rheumatoid arthritis, diabetic retinopathy, psoriasis and chronic inflammation. inflammation).

본 발명의 상기 이중표적항체는 환자에게 투여함으로써 암세포에서 과발현되어 암의 발생, 성장, 전이에 관련되는 항원 분자의 활성을 억제하여 암 치료 기능을 가질 수 있다. The dual target antibody of the present invention may have a cancer therapeutic function by inhibiting the activity of antigen molecules related to the occurrence, growth, and metastasis of cancer by overexpression in cancer cells by administration to a patient.

본 발명에서 상기 암은 위암, 간암, 폐암, 갑상선암, 유방암, 자궁경부암, 대장암, 췌장암, 직장암, 대장직장암, 전립선암, 신장암, 흑색종, 전립선암의 골전이암, 난소암 등의 각종 고형암 및 혈액암을 포함하며, 이에 한정되는 것은 아니다.In the present invention, the cancer is gastric cancer, liver cancer, lung cancer, thyroid cancer, breast cancer, cervical cancer, colon cancer, pancreatic cancer, rectal cancer, colorectal cancer, prostate cancer, kidney cancer, melanoma, prostate cancer, bone metastasis cancer, ovarian cancer, etc. It includes, but is not limited to, solid and blood cancers.

본 발명의 이중표적항체는 암 환자에게 치료적 처치를 위해 종양의 진행, 예를 들어 종양의 성장, 침입, 전이 및(또는) 재발을 방지, 억제 또는 감소시키기에 충분한 양으로 투여될 수 있다. 상기 목적을 달성하기에 적절한 양을 치료 유효 용량으로 정의한다. 상기 용도에 효과적인 양은 질병의 심각도 및 환자 자신의 면역계의 일반적인 상태에 따를 것이다.The dual target antibodies of the invention can be administered to cancer patients in an amount sufficient to prevent, inhibit or reduce the progression of the tumor, for example, the growth, invasion, metastasis and / or recurrence of the tumor for therapeutic treatment. A suitable amount to achieve this goal is defined as a therapeutically effective dose. The amount effective for this use will depend on the severity of the disease and the general state of the patient's own immune system.

또한, 발명의 조성물은 특정 분자에 적합한 임의의 경로에 의해 투여할 수 있다. 본 발명의 조성물은 임의의 적절한 수단을 이용하여 인간을 포함한 동물에게 직접적으로(예컨대, 주사, 피하주입 또는 조직 위치에의 국소적 투여와 같이 국소적으로) 또는 전신적으로(예컨대, 비경구 또는 경구적으로) 제공될 수 있다. 본 발명에 따른 조성물이 비경구, 예컨대 정맥, 피하, 눈, 복강, 근육내, 구강, 직장, 질, 안와내, 대뇌내, 척수내, 심실내, 초내, 조내, 낭내, 비강내, 또는 연무질 투여에 의해 제공될 경우, 조성물은 수성 또는 생리적 화합성인 유체 현탁액 또는 용액 부분을 포함하는 것이 바람직하다. 그러므로, 담체 또는 부형제는 생리적으로 허용 가능한 것이어서, 원하는 조성물을 환자에게 전달하는 것 외에도, 환자의 전해질 및/또는 부피 균형에 불리한 영향을 미치지 않아야 한다. In addition, the compositions of the invention can be administered by any route suitable for the particular molecule. The compositions of the present invention may be used directly or by systemic (eg, parenteral or oral) to any animal, including humans, directly (eg, by injection, subcutaneous injection or topical administration to a tissue location) using any suitable means. May be provided). The compositions according to the invention may be parenterally, such as intravenous, subcutaneous, eye, abdominal, intramuscular, oral, rectal, vaginal, orbital, intracranial, spinal cord, intraventricular, intratracheal, intramural, intraoral, intranasal, or aerosol. When provided by administration, the composition preferably comprises a fluid suspension or solution portion that is aqueous or physiologically compatible. Therefore, the carrier or excipient must be physiologically acceptable and, in addition to delivering the desired composition to the patient, must not adversely affect the electrolyte and / or volume balance of the patient.

본 발명의 이중표적항체를 함유하는 약제학적 조성물은 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀전, 시럽, 에어로졸 등 경구 투여용 제형, 멸균 주사용액, 좌제 및 경피 투여용 제제로 제형화하여 사용될 수 있다. 조성물에 포함될 수 있는 담체, 부형제 및 희석제로는 락토오스, 덱스트로오스, 수크로오스, 솔비톨, 만니톨, 자일리통, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로오스, 메틸 셀룰로오스, 미정질 셀룰로오스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 필요에 따라 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 제형화한다.The pharmaceutical composition containing the dual target antibody of the present invention may be formulated for oral administration such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, sterile injectable solutions, suppositories, and transdermal administrations according to conventional methods. Can be formulated and used. Carriers, excipients and diluents which may be included in the composition include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose , Microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. If necessary, it is formulated with diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrants, surfactants and the like.

본 발명의 이중표적항체는 경구 투여용 고상 제제 또는 액상 제제로 제형화할 수 있다. 경구 투여를 위한 고상 제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되는데, 이러한 고상 제제는 상기 추출물에 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘 카르보네이트, 수크로오스 또는 락토오스, 젤라틴 등을 혼합하여 제형화된다. 또한, 경구 투여를 위한 액상 제제는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데, 이러한 액상 제제에는 통상적으로 사용되는 불활성 희석제(예를 들면, 정제수, 에탄올, 리퀴드 파라핀) 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다.The dual target antibodies of the present invention can be formulated in solid or liquid formulations for oral administration. Solid form preparations for oral administration include tablets, pills, powders, granules, capsules and the like, which include at least one excipient such as starch, calcium carbonate, sucrose or lactose, gelatin and the like. It is formulated by mixing. In addition, liquid preparations for oral administration include suspensions, solutions, emulsions, syrups, and the like, which include various excipients in addition to conventionally used inert diluents (e.g., purified water, ethanol, liquid paraffin), For example, wetting agents, sweetening agents, fragrances, preservatives and the like can be included.

본 발명에 따르는 조성물은 해당 질환과 관련된 다른 치료제와 병행 또는 혼합하여 사용할 수 있다. 본 발명의 이중표적항체를 화학요법제, 방사선, 추가의 수용체 길항제 또는 그의 조합과 함께 이용해서, 인간 종양을 포함하는 종양을 대상으로 치료하는 경우, 상승작용이 존재할 수 있다. 하나의 예로서, 상기 약제학적 조성물에는 혈관신생 인자 또는 그의 수용체에 결합하여 혈관신생 활성을 차단하는 물질을 추가로 포함할 수 있다. 예를 들어, 본 발명과 다른 VEGF-A 또는 VEGF-A 수용체 (예를 들어, KDR 수용체 또는 Flt-1 수용체)에 대한 항체, VEGF 트랩, 항-PDGFR 억제제, 예를 들어, 이마티닙 메실레이트(상품명 GleevecTM)를 포함한다. 또한, 천연 혈관신생 억제제로서, 안지오스타틴(angiostatin), 엔도스타틴(endostatin) 등을 포함한다. 이외에도, 베바시주마브(상품명 Avastin, 수니티니브, 소라페니브, 레날리도미드 등을 포함할 수 있다. The composition according to the invention can be used in combination or in combination with other therapeutic agents associated with the disease. Synergy may be present when treating a tumor, including a human tumor, using the dual target antibody of the invention in combination with a chemotherapeutic agent, radiation, additional receptor antagonist or a combination thereof. As one example, the pharmaceutical composition may further include a substance that binds an angiogenic factor or a receptor thereof and blocks angiogenic activity. For example, antibodies to VEGF-A or VEGF-A receptors (eg, KDR receptors or Flt-1 receptors) that are different from the present invention, VEGF traps, anti-PDGFR inhibitors, such as imatinib mesylate Gleevec ). In addition, natural angiogenesis inhibitors include angiostatin, endostatin, and the like. In addition, bevacizumab (trade name Avastin, sunit nib, sorafenib, lenalidomide, etc. can be included.

따라서, 본 발명의 이중표적항체는 당 업계에 잘 알려진 연구, 예방 또는 치료방법을 위해 생체내 및 시험관내에서 사용될 수 있다. 물론, 당 업계의 숙련인이 본 명세서에 개시된 본 발명의 원리를 변동시킬 수 있으며, 그러한 변형이 본 발명의 범위 내에 포함되는 것은 자명한 것이다.
Thus, the dual target antibodies of the present invention can be used in vivo and in vitro for research, prophylaxis or treatment methods well known in the art. Of course, it will be apparent to those skilled in the art that the principles of the invention disclosed herein may be varied and that such modifications are included within the scope of the invention.

본 발명은 혈관신생에 관여하는 VEGFR-2 및 c-Met을 동시에 중화시킴으로써, 혈관신생 및 암세포 증식에 관련된 신호전달기작을 효과적으로 억제할 수 있는 인간 단일클론항체 유래 이중표적항체와 상기 항체를 함유하는 혈관신생 억제 및 암 치료용 조성물을 제공한다. 본 발명에 따른 이중표적항체는 혈관신생과 암세포 증식에 관여하는 두 가지 표적을 동시에 중화시킴으로써, 기존의 단일표적 항체에 비해서 뛰어난 중화능을 보일 뿐만 아니라, 암 치료에도 매우 효과적이다. 또한 상호 연관성이 있는 두 가지 표적에 대하여, 본 발명자가 발명한 형태의 이중표적항체를 제작함으로써 단일표적 항체 처치에 의한 실익보다 우수한 효과를 기대할 수 있다.
The present invention is to neutralize VEGFR-2 and c-Met involved in angiogenesis at the same time, to effectively inhibit the signaling mechanisms involved in angiogenesis and cancer cell proliferation, containing a dual target antibody derived from a human monoclonal antibody and the antibody Provided are compositions for inhibiting angiogenesis and treating cancer. The dual target antibody according to the present invention simultaneously neutralizes two targets involved in angiogenesis and cancer cell proliferation, thereby exhibiting superior neutralizing ability as compared to the conventional single target antibody, and is very effective in treating cancer. In addition, for the two targets that are correlated with each other, by producing a double-target antibody of the present invention can be expected to be superior to the benefit of the single-target antibody treatment.

도 1은 pIgG-pep1/6A6lgt 및 pIgG-pep2/6A6lgt 벡터에 삽입된 유전자의 DNA 서열 및 기능을 나타낸 것이다.
도 2는 본 발명에 따른 벡터 pIgG-pep1/6A6lgt 및 pIgG-pep2/6A6lgt 의 제조를 위한 방법을 도식화하여 나타낸 것이다.
도 3은 본 발명에 따라 생산된 이중표적항체 PIG-KM1 및 PIG-KM2가 VEGFR-2 및 c-Met에 각기 결합할 수 있음을 나타낸 결과이다.
도 4는 본 발명에 따른 고 생산성 세포주 확립을 위해서, MTX 반복처리(320 nM까지)를 통한 고 생산성 클론의 선별 결과를 나타낸 것이다.
도 5는 정제된 PIG-KM1 및 PIG-KM2의 SDS-PAGE 결과를 나타낸 것이다.
도 6은 본 발명에 따른 PIG-KM1 및 PIG-KM2의 HUVEC에 대한 이동성 분석(migration assay) 결과를 나타낸 것이다.
도 7은 본 발명에 따른 PIG-KM1 및 PIG-KM2의 HUVEC에 대한 증식률 분석(proliferation assay) 결과를 나타낸 것이다.
도 8은 본 발명에 따른 PIG-KM1의 HUVEC에 대한 상처치유 분석(wound healing assay) 결과를 나타낸 것이다.
도 9는 본 발명에 따른 PIG-KM1의 HGF에 의한 c-Met의 인산화 억제능을 웨스턴 블로팅을 통해서 확인한 결과이다.
Figure 1 shows the DNA sequence and function of the gene inserted into the pIgG-pep1 / 6A6lgt and pIgG-pep2 / 6A6lgt vector.
Figure 2 schematically shows a method for the preparation of the vectors pIgG-pep1 / 6A6lgt and pIgG-pep2 / 6A6lgt according to the present invention.
3 shows that the dual target antibodies PIG-KM1 and PIG-KM2 produced according to the present invention can bind to VEGFR-2 and c-Met, respectively.
Figure 4 shows the results of the selection of high productivity clones through MTX iteration (up to 320 nM) in order to establish a high productivity cell line according to the present invention.
Figure 5 shows the SDS-PAGE results of purified PIG-KM1 and PIG-KM2.
Figure 6 shows the results of the migration assay (migration assay) for HUVEC of PIG-KM1 and PIG-KM2 according to the present invention.
Figure 7 shows the results of proliferation assay (proliferation assay) for HUVEC of PIG-KM1 and PIG-KM2 according to the present invention.
8 shows the results of a wound healing assay for HUVEC of PIG-KM1 according to the present invention.
9 is a result of confirming the phosphorylation inhibition of c-Met by HGF of PIG-KM1 according to the present invention through Western blotting.

이하, 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention as defined by the appended claims. It will be obvious to you.

실시예 1: PIG-KMs 생산용 발현벡터의 제조Example 1 Preparation of Expression Vectors for PIG-KMs Production

C-Met과 결합하여 활성을 억제하는 펩타이드 관련 DNA는 서울대학교 의과대학 정준호 박사(Kim et al ., Biochem Biophys Res Commun ., 354: 115, 2007) 및 미국 반 앤델 연구소 Brian Cao 박사의 연구(Zhao et al ., Clin . Cancer Res ., 13(20);6049, 2007)에서 유래되었다. 각각의 펩타이드는 pep1 및 pep2로 명명되었으며, 특정 링커를 통해서 TTAC-0001의 경쇄 아미노 말단 부위에 연결시켰고, 이를 위해서 4차에 걸친 PCR 반응을 수행하였다. PCR을 위한 반응조건은 다음과 같다: 94 4분,(94 45초/50 45초/72 45초) 30회, 72 7분, 4 8. 4차에 걸친 PCR에서 공히 사용된 반응물 조성은 다음과 같다: 중합효소로서 nPfu forte 2.5 U(Enzynomics #P425), 10X 버퍼 5 , dNTP 2 (각 2.5 mM), 증류수 37.5 . 1차 PCR을 위해서 공통 PCR 반응물에 정방향 F-ksw002(5'-AGT GGC GGA GGA GGC TCC GGT TCC AAT TTT ATG CTG ACT CAG, 서열번호 26)과 역방향 프라이머 R-ksw002(5'-CAG ATC TTT CCA CGA GGC TGG CTC CTC, 서열번호 27) 각 2 (10 pmole/), 주형 DNA로써 pIgGLD6A6lgt(서열번호 1, TTAC-0001의 경쇄가변서열임) 0.5 (200 ng/)이 추가적으로 사용되었으며, 이를 통해서 1차 PCR 산물 6A6lgt 1을 확보하였다. PCR을 통해서 얻어낸 산물은 1% 아가로스 겔을 통해서 전기영동을 수행하였으며, 이후 400 bp에 못 미치는 DNA 밴드를 MEGA-spinTM Gel/PCR DNA Extraction Kit(iNtRON Biotechnology Inc. #17183, 대한민국)를 이용해서 분리해 내었다. Peptide-related DNA, which binds to C-Met and inhibits its activity, is described by Kim, Jun-Ho (Kim et. al . , Biochem Biophys Res Commun . , 354: 115, 2007) and the work of Dr. Brian Cao, Van Andel Institute (Zhao et. al . , Clin . Cancer Res . , 13 (20); 6049, 2007). Each peptide was named pep1 and pep2, and was linked to the light chain amino terminal region of TTAC-0001 via a specific linker, for which four rounds of PCR reactions were performed. The reaction conditions for the PCR are as follows: 94 4 min, (94 45 sec / 50 45 sec / 72 45 sec), 30 times, 72 7 min, 4 8. NPfu forte 2.5 U (Enzynomics # P425), 10X buffer 5, dNTP 2 (2.5 mM each), distilled water 37.5 as polymerase. Forward PCR F-ksw002 (5'-AGT GGC GGA GGA GGC TCC GGT TCC AAT TTT ATG CTG ACT CAG, SEQ ID NO: 26) and reverse primer R-ksw002 (5'-CAG ATC TTT CCA) CGA GGC TGG CTC CTC, SEQ ID NO: 27) 2 (10 pmole /), pIgGLD6A6lgt (SEQ ID NO: 1, light chain variable sequence of TTAC-0001) 0.5 (200 ng /) was additionally used as template DNA. Primary PCR product 6A6lgt 1 was obtained. The product obtained by PCR was subjected to electrophoresis through 1% agarose gel, and then the DNA band of less than 400 bp using the MEGA-spin TM Gel / PCR DNA Extraction Kit (iNtRON Biotechnology Inc. # 17183, South Korea). I separated it.

2차 PCR 산물을 얻기 위해서 동일 반응조건에서 6A6lgt 1을 주형으로 하고, F-ksw003(5'-GGA GGC GGA GGT AGT GGC GGA GGA GGC TCC, 서열번호 28)과 R-ksw002를 공통 PCR 반응물에 첨가하여 PCR 반응을 진행하였다. 이로써 얻은 PCR 산물을 6A6lgt 2라 명명하였으며, 1% 아가로스 겔 전기영동을 통해서 목적 밴드를 이동시켰으며, gel extraction kit를 이용해서 분리하였다. To obtain a secondary PCR product, 6A6lgt 1 was used as a template under the same reaction conditions, and F-ksw003 (5'-GGA GGC GGA GGT AGT GGC GGA GGA GGC TCC, SEQ ID NO: 28) and R-ksw002 were added to a common PCR reaction product. PCR reaction was performed. The PCR product thus obtained was named 6A6lgt 2, the target band was moved by 1% agarose gel electrophoresis, and separated using a gel extraction kit.

3차 PCR 반응은 동일 반응조건에서 공통 PCR 반응물에 6A6lgt 2를 주형으로 첨가하고, F-pep1(5'-TCT AGA CAT GAT CAT ATT CAT CAT CAT GGA GGC GGA GGT AGT GGC GGA GGA, 서열번호 29)과 F-pep2(5'-TCT GTT CAT TGG CCA CCA TTG AAA GCT GGA GGC GGA GGT AGT GGC GGA GGA, 서열번호 30)를 각각 정방향 프라이머로, R-ksw002를 공히 역방향 프라이머로 첨가하여 PCR을 수행함으로써, PCR 반응산물 pep1/6A6lgt 1 및 pep2/6A6lgt 1을 각각 확보하였다. 해당 PCR 산물은 앞서와 동일한 방식을 통해서 목적 밴드만을 분리해 내었다. C-met 길항 펩타이드가 링크된 TTAC-0001 경쇄 부위의 획득은 4차 PCR 반응을 통해서 달성되었다. 이전과 동일한 반응 조건에서 PCR 반응을 수행하였으며, pep1/6A6lgt 1 및 pep2/6A6lgt 1을 각각의 주형으로 이용하였다. 이때 사용된 프라이머는 정방향 프라이머로써 F-pep1a(5'-CAC TCC AGC GGT GTG GGT TCC AAA TCT TTG TCT AGA CAT GAT CAT ATT C, 서열번호 31) 및 F-pep2a(5'-CAC TCC AGC GGT GTG GGT TCC TAT TTG TTT TCT GTT CAT TGG CCA CCA TTG, 서열번호 32) 그리고 역방향 프라이머로써 R-ksw002를 공히 사용하였다. In the third PCR reaction, 6A6lgt 2 was added as a template to the common PCR reaction under the same reaction conditions, and F-pep1 (5'-TCT AGA CAT GAT CAT ATT CAT CAT GGA GGC GGA GGT AGT GGC GGA GGA, SEQ ID NO: 29) PCR was performed by adding F-pep2 (5'-TCT GTT CAT TGG CCA CCA TTG AAA GCT GGA GGC GGA GGT AGT GGC GGA GGA, SEQ ID NO: 30) as a forward primer and R-ksw002 as a reverse primer. , PCR reaction products pep1 / 6A6lgt 1 and pep2 / 6A6lgt 1 were obtained, respectively. The PCR product separated only the target band in the same manner as before. Acquisition of the TTAC-0001 light chain region linked to the C-met antagonist peptide was achieved via a fourth-order PCR reaction. PCR reactions were performed under the same reaction conditions as before, and pep1 / 6A6lgt 1 and pep2 / 6A6lgt 1 were used as templates. The primers used were F-pep1a (5'-CAC TCC AGC GGT GTG GGT TCC AAA TCT TTG TCT AGA CAT GAT CAT ATT C, SEQ ID NO: 31) and F-pep2a (5'-CAC TCC AGC GGT GTG) GGT TCC TAT TTG TTT TCT GTT CAT TGG CCA CCA TTG (SEQ ID NO: 32) and R-ksw002 were used as reverse primers.

최종적으로 얻어진 PCR 산물은 1% 아가로스 겔 전기영동을 통해서 분리하였고, gel extraction kit를 이용해서 회수하였다 (각각 pep1/6A6lgt 2 및 pep2/6A6lgt 2로 명명). 회수된 각각의 PCR 산물 pep1/6A6lgt 2 및 pep2/6A6lgt 2는 TOPcloner TA 클로닝 키트(Enzymonics #EZ111, 대한민국)를 이용해서 T-벡터에 삽입시킨 후, 대장균 DH5에 형질전환시켜 미니프렙 및 제한효소 BstXI 처리 후, 400 bp 가량의 목적 DNA를 함유한 벡터에 대해서 DNA 염기서열 동정을 의뢰하였으며, 최종적인 서열(서열번호 24, 서열번호 25)을 확인하였다(도 1 참조). The final PCR product was isolated by 1% agarose gel electrophoresis and recovered using a gel extraction kit (named pep1 / 6A6lgt 2 and pep2 / 6A6lgt 2, respectively). Each of the recovered PCR products pep1 / 6A6lgt 2 and pep2 / 6A6lgt 2 was inserted into T-vector using TOPcloner TA cloning kit (Enzymonics # EZ111, South Korea), and then transformed into E. coli DH5 for miniprep and restriction enzyme Bst. After XI treatment, DNA sequencing was requested for a vector containing about 400 bp of the target DNA, and the final sequence (SEQ ID NO: 24, SEQ ID NO: 25) was confirmed (see FIG. 1).

이중표적항체 PIG-KM의 발현을 위한 경쇄 발현벡터 제조방법은 다음과 같다(도 2 참조). 우선, 본 연구진이 보유하고 있는 TTAC-0001 경쇄발현벡터 pIgGLD6A6lgt를 BstXI으로 처리하여, 전기영동을 거쳐 1% 아가로스 겔로부터 벡터로 사용될 수 있는 부분만을 분리하였다. 또한, PCR 산물 pep1/6A6lgt 2 및 pep2/6A6lgt 2가 삽입된 T-벡터를 역시 BstXI으로 처리하여, 전기영동을 거쳐 1% 아가로스 겔로부터 잘려져 나온 단편만을 분리하였다. 이후, 분리된 두 단편을 T4 DNA 리가아제(Enzynomics #M001S, 대한민국)를 이용하여 4에서 12시간가량 방치함으로써 하나의 완성된 벡터로 제조하였다. 제조된 벡터는 대장균 DH5를 통한 형질전환을 거쳐, 미니프렙 후 BstXI 처리를 통해서 pep1/6A6lgt 2 및 pep2/6A6lgt 2의 삽입 유무를 최종적으로 확인하였다. 확인된 재조합 벡터는 'pIgG-pep1/6A6lgt 및 pIgG-pep2/6A6lgt'로 명명하였다.
The light chain expression vector preparation method for the expression of the dual target antibody PIG-KM is as follows (see Fig. 2). First, the TTAC-0001 light chain expression vector, pIgGLD6A6lgt, which the team had, was treated with Bst XI, and electrophoresis separated only the portion that could be used as a vector from the 1% agarose gel. In addition, T-vectors in which the PCR products pep1 / 6A6lgt 2 and pep2 / 6A6lgt 2 were inserted were also treated with Bst XI to isolate only fragments that were cut from the 1% agarose gel via electrophoresis. Thereafter, the separated two fragments were prepared as one completed vector by standing for 4 to 12 hours using T4 DNA ligase (Enzynomics # M001S, South Korea). The prepared vector was transformed through E. coli DH5, and finally confirmed whether pep1 / 6A6lgt 2 and pep2 / 6A6lgt 2 were inserted through miniprep and Bst XI. The identified recombinant vectors were named 'pIgG-pep1 / 6A6lgt and pIgG-pep2 / 6A6lgt'.

실시예 2: PIG-KMs 의 생산 및 동정Example 2: Production and Identification of PIG-KMs

완성된 경쇄발현 벡터 pIgG-pep1/6A6lgt 및 pIgG-pep2/6A6lgt와 기존의 중쇄발현 벡터 pIgGHD6A6hvy(PCT/KR07/003077)를 다이하이드로 폴레이트 환원효소 결핍(dhfr-deficeint) CHO 세포인 CHO DG-44에 공동 형질도입을 통한 임의발현을 유도한 후, SDS-PAGE 및 웨스턴블로팅을 통해서 그 발현여부를 확인하였다. 형질도입은 lipofectamineTM 2000(Invitrogen #11668-019, 미국)을 이용하였으며, 그 방법은 제조사의 설명을 따랐다. 약술하면, aMEM 배지(Welgene, 대한민국)가 들어있는 6-웰 플레이트에 웰당 5 x 105개의 CHO-DG44 세포를 접종한 후, 가습이 유지되는 CO2(5%) 배양기를 사용하여 37에서 24시간 방치함으로써, 세포밀도가 80-90% 정도 되도록 조밀하게 배양하였다. 재조합벡터 3 (pIgGHD6A6hvy와 pIgG-pep1/6A6lgt 또는 pIgGHD6A6hvy와 pIgG-pep2/6A6lgt 각 1.5 씩)과 6 의 lipofectaminTM 2000을 각기 250 의 무혈청 aMEM 배지에 희석하여 상온에서 5분간 방치하였다. DNA 희석액과 lipofectaminTM 2000 희석액을 섞어 상온에서 20분간 반응시켜 DNA-lipofectaminTM 2000 복합체가 형성되도록 하였다. 배양된 세포에서 기존의 배지를 제거한 후, DNA-lipofectaminTM 2000 복합체 500 와 무혈청 aMEM 배지 500 를 각 웰에 첨가하여, 37 조건의 CO2 배양기에서 6시간 동안 배양하였다. 투석우태혈청이 20% 포함된 aMEM 배지 1 ml를 추가하여 48-72시간 동안 배양한 후, 그 상등액만을 분리하여 항체의 발현 여부를 SDS-PAGE와 웨스턴블로팅을 통해 확인하였다. SDS-PAGE 및 웨스턴블로팅은 당업계에서 일반적으로 사용되는 방법을 준용하였으며, 사용된 시료는 다음과 같다: 12% SDS-polyacrylamide Gel, PVDF 멤브레인(Millipore #IPVH00010, 미국), HRP-conjugated goat anti-human IgG(kappa) 항체, 그리고 HRP-conjugated goat anti-human IgG(Fc) 항체(Pierce, 미국). SDS-PAGE 및 웨스턴블로팅을 통해 확인된 항체는 각각 PIG-KM1 및 PIG-KM2로 명명되었다.
The completed light chain expression vectors pIgG-pep1 / 6A6lgt and pIgG-pep2 / 6A6lgt and the existing heavy chain expression vector pIgGHD6A6hvy (PCT / KR07 / 003077) were converted to CHO DG-44, a dhfr- deficeint CHO cell. Induction of random expression through co-transduction was confirmed by the expression of SDS-PAGE and Western blotting. Transduction was performed using lipofectamine 2000 (Invitrogen # 11668-019, USA), the method following the manufacturer's instructions. Briefly, 5 x 10 5 CHO-DG44 cells per well were inoculated into a 6-well plate containing aMEM medium (Welgene, South Korea), followed by 37 to 24 using a CO 2 (5%) incubator maintained in humidification. By allowing to stand for time, the cells were densely cultured so that the cell density was about 80-90%. Recombinant vectors 3 (pIgGHD6A6hvy and pIgG-pep1 / 6A6lgt or pIgGHD6A6hvy and pIgG-pep2 / 6A6lgt each 1.5) and 6 lipofectamin TM 2000 were diluted in 250 serum-free aMEM medium and left for 5 minutes at room temperature. A DNA-lipofectamin 2000 complex was formed by reacting the DNA dilution with lipofectamin 2000 dilution for 20 minutes at room temperature. After removing the existing medium from the cultured cells, DNA-lipofectamin 2000 complex 500 and serum-free aMEM medium 500 were added to each well and incubated for 6 hours in a CO 2 incubator at 37 conditions. After adding 1 ml of aMEM medium containing 20% dialysis fetal calf serum and incubating for 48-72 hours, only the supernatant was isolated and confirmed by SDS-PAGE and Western blotting. SDS-PAGE and Western blotting were applied in a manner commonly used in the art, and the samples used were: 12% SDS-polyacrylamide Gel, PVDF membrane (Millipore # IPVH00010, USA), HRP-conjugated goat anti -human IgG (kappa) antibodies, and HRP-conjugated goat anti-human IgG (Fc) antibodies (Pierce, USA). Antibodies identified through SDS-PAGE and western blotting were named PIG-KM1 and PIG-KM2, respectively.

실시예 3: PIG-KM1 및 PIG-KM2의 결합능 및 친화도 측정Example 3: Determination of affinity and affinity of PIG-KM1 and PIG-KM2

이중표적항체 PIG-KM1 및 PIG-KM2의 c-Met과 VEGFR-2에 대한 결합력을 BIAcore를 활용하여 분석하였으며, 각기 항원에 대한 친화도 역시 동일 장비를 사용하여 측정하였다. 분석에 사용된 장비는 BIAcore 3000 (GE Healthcare, USA)으로, 아민 커플링법을 통해서 4,000 RU의 시그널값을 지니도록 hIgG, TTAC-0001, PIG-KM1 및 PIG-KM2를 5 /min의 속도로 CM5 칩 (GE Healthcare, USA)에 고정화하였다. 이때 사용된 시료는 모두 PBS에 용융된 상태의 시료를 사용하였다. 이후 각각의 리간드가 고정화되어 있는 칩에 500 nM의 c-Met-Fc (R&D systems)를 5분간 흘려주어 리간드와의 결합을 유도하였다. 이후 1분 30초간 HBS-EP (GE Healthcare, USA) 워킹버퍼를 흘려주어 안정화 시킨 후, 500 nM의 VEGFR-2 ECD (PharmAbcine)를 5분간 흘려주어 리간드와의 결합을 재차 유도하였다. 리간드와의 결합을 마친 CM5 칩은 regeneration 용액 (8 mM NaOH)을 5분간 흘려주어 리간드와 결합된 분석물질들을 떼어냄으로써 친화도 측정에 사용하였다 (도 3 참조). 도 3에서 보듯이, PIG-KM1 및 PIG-KM2는 c-Met과 VEGFR-2 모두에 대하여 결합능을 보여준 반면에, VEGFR-2 단일표적항체인 TTAC-0001은 VEGFR-2에만 결합하였고, 대조군인 hIgG는 c-Met과 VEGFR-2 어느 것과도 결합하지 않는 것으로 확인되었다. 이로써 이중표적항체 PIG-KM1 및 PIG-KM2는 c-Met과 VEGFR-2에 특이적으로 결합할 수 있음이 입증되었다. The avidity of the dual target antibodies PIG-KM1 and PIG-KM2 to c-Met and VEGFR-2 was analyzed using BIAcore, and the affinity for each antigen was also measured using the same equipment. The instrument used for the analysis was BIAcore 3000 (GE Healthcare, USA), which used CM5 at a rate of 5 / min for hIgG, TTAC-0001, PIG-KM1, and PIG-KM2 with a signal value of 4,000 RU through the amine coupling method. Immobilized on a chip (GE Healthcare, USA). In this case, all samples used were samples of a state melted in PBS. Thereafter, 500 nM of c-Met-Fc (R & D systems) was flowed on the chip where each ligand was immobilized to induce binding with the ligand. After stabilization by flowing HBS-EP (GE Healthcare, USA) working buffer for 1 minute and 30 seconds, 500 nM of VEGFR-2 ECD (PharmAbcine) was flowed for 5 minutes to induce binding with the ligand again. After binding to the ligand CM5 chip was used for affinity measurement by flowing a regeneration solution (8 mM NaOH) for 5 minutes to remove the analyte bound to the ligand (see Figure 3). As shown in FIG. 3, PIG-KM1 and PIG-KM2 showed binding ability to both c-Met and VEGFR-2, whereas TTAC-0001, a VEGFR-2 single target antibody, bound only to VEGFR-2, and hIgG was found to bind neither c-Met nor VEGFR-2. This demonstrated that the dual target antibodies PIG-KM1 and PIG-KM2 can specifically bind c-Met and VEGFR-2.

PIG-KM1 및 PIG-KM2의 친화도 측정을 위한 칩은 결합능 측정을 위해 사용했던 CM5 칩을 재사용하였으며, 9.8 nM-156.3 nM까지 다양한 농도의 c-Met-Fc와 VEGFR-2 ECD를 30 /min의 속도로 각기 흘려줌으로써, 친화도를 계산하였다. 이를 통해서 PIG-KM1 및 PIG-KM2는 VEGFR-2 및 c-Met에 대하여 KD값이 sub nM 수준으로 확인되었다.
For the affinity measurement of PIG-KM1 and PIG-KM2, the CM5 chip used for binding capacity was reused, and c-Met-Fc and VEGFR-2 ECD of various concentrations up to 9.8 nM-156.3 nM were 30 / min. The affinity was calculated by flowing each at a rate of. Through this, PIG-KM1 and PIG-KM2 were confirmed to have a KD value of sub nM for VEGFR-2 and c-Met.

실시예 4: PIG-KM1 및 PIG-KM2 생산을 위한 세포주 확립 및 항체의 분리정제Example 4 Establishment of Cell Lines for PIG-KM1 and PIG-KM2 Production and Separation and Purification of Antibodies

CHO-DG44(dhfr-deficeint CHO) 세포를 통해서 PIG-KMs 생산 세포주를 구축하였다. 재조합 항체 발현 CHO-DG44 세포주를 확립하기 위한 형질도입 과정은 실시예 2에서 기술한 바와 동일하다. 형질도입된 CHO-DG44 세포(dhfr-positive)의 선별을 위해, hypoxantine-thymidine이 제거된 aMEM 배지를 사용하였고, 선별 마커로써 500 /ml의 G418(Sigma-aldrich사, 미국)과 400 /ml zeocine(Invitrogen, 미국)을 이용하여 일차 선별하였다. 재조합 항체가 발현되는 단일클론 콜로니를 얻기 위해, 일차 선별된 세포를 10 cells/ml의 밀도로 희석하여 96-웰 플레이트(Nunc, 미국)에 접종하여 2주간 배양, 단세포로부터 분열하여 형성된 단일 콜로니를 분리하여 모세포 클론을 확립하였다. 고발현 세포주를 얻기 위해 다양한 농도(40 nM, 80 nM, 160 nM, 320 nM)의 methotrexate(MTX)가 첨가된 배지에서 단계적으로 3~5회 계대 배양하였으며, 발현정도는 ELISA를 사용하여 확인하였다. 이를 위해서 96-웰 플레이트에 1차 항체로써, 2 /ml의 goat anti-human IgG(Fc)(Pierce, 미국)를 100 씩 첨가하고, 4에서 12시간 방치함으로써 코팅을 마쳤다. 이후 웰 속에 남아있는 용액을 버린 후, 1x PBS에 2% 탈지우유를 함유한 blocking solution을 200 씩 첨가, 37에서 1시간 방치하였다. 1x PBS에 0.05% Tween-20을 함유한 Washing buffer로 각 웰을 3번 반복하여 씻은 후, 항체발현 CHO-DG44 세포주로부터 얻은 세포배양액 100 씩을 첨가하여 상온에서 1시간 반응시켰다. 재차 washing buffer로 각 웰을 3번 반복해서 씻고 난 후, 2차 항체로써 HRP-conjugated goat anti-human IgG(kappa)를 washing buffer에 1:5,000 비율로 희석하여 100 씩 첨가, 상온에서 1시간 동안 반응시켰다. 다시 washing buffer로 각 웰을 3번 반복해서 씻고 난 후, TMB substrate reagent(BD biosciences, 미국)를 100 씩 첨가, 5~10분 동안 반응시킨 후, 2N 황산(H2SO4)용액 50 씩 첨가하여 발색반응을 중지시켰다. 마이크로플레이트 리더(Tecan, 스위스)를 사용하여 O.D450-650nm 값을 얻었다. 동일한 방식으로 1차 항체로써 VEGFR-2 및 Tie-2를 사용하고, 2차 항체로써 HRP-conjugated goat anti-human IgG(kappa)를 이용하여 ELISA를 수행함으로써 결과를 재확인 하였다. 최종적으로, MTX 320 nM에서 가장 높은 발현율을 보이는 클론을 고발현 세포주로 확립하였다(도 4 참조). 고발현 세포주의 배양은 10% 투석우태혈청(KDR, 대한민국), 100 units/ml의 페니실린(Hyclone, 미국), 100 /ml의 스트렙토마이신(Hyclone, 미국), 그리고 aMEM 배지(Welgene, 대한민국)를 사용해서 이루어졌으며, 세포배양은 37 배양기를 이용하여 가습된 5% CO2 혼합공기 조건하에서 진행되었다.PIG-KMs producing cell lines were constructed via CHO-DG44 ( dhfr- deficeint CHO) cells. The transduction procedure for establishing the recombinant antibody expressing CHO-DG44 cell line is the same as described in Example 2. For selection of transduced CHO-DG44 cells ( dhfr- positive), aMEM medium without hypoxantine-thymidine was used, and 500 / ml G418 (Sigma-aldrich, USA) and 400 / ml zeocine as selection markers. (Invitrogen, USA) was used for primary selection. To obtain monoclonal colonies expressing recombinant antibodies, the primary selected cells were diluted to a density of 10 cells / ml, inoculated in 96-well plates (Nunc, USA), cultured for two weeks, and single colonies formed by dividing from single cells. Isolation to establish parental clones. In order to obtain a high expression cell line, the cells were passaged three to five times in a medium to which methotrexate (MTX) at various concentrations (40 nM, 80 nM, 160 nM, 320 nM) was added, and the expression level was confirmed by ELISA. . To this end, coating was completed by adding 100 ml of goat anti-human IgG (Fc) (Pierce, USA) as a primary antibody to a 96-well plate, and standing at 4 to 12 hours. Then, after discarding the remaining solution in the well, 200 x blocking solution containing 2% skim milk in 1x PBS, and left for 1 hour at 37. After washing each well three times with Washing buffer containing 0.05% Tween-20 in 1x PBS, 100 cells of the culture medium obtained from the antibody-expressing CHO-DG44 cell line were added and reacted at room temperature for 1 hour. After washing each well three times with washing buffer again, dilute HRP-conjugated goat anti-human IgG (kappa) in washing buffer at a ratio of 1: 5,000 in a washing buffer, and add 100 parts each for 1 hour at room temperature. Reacted. After washing each well three times with washing buffer again, 100 TMB substrate reagent (BD biosciences, USA) was added and reacted for 5-10 minutes, followed by 50 2N sulfuric acid (H 2 SO 4 ) solution. The color reaction was stopped. OD 450-650 nm values were obtained using a microplate reader (Tecan, Switzerland). In the same manner, VEGFR-2 and Tie-2 were used as primary antibodies, and HISA-conjugated goat anti-human IgG (kappa) was used as a secondary antibody to confirm the results. Finally, clones with the highest expression rates at MTX 320 nM were established as high expressing cell lines (see FIG. 4). Cultures of high expressing cell lines were treated with 10% dialysis fetal calf serum (KDR, Korea), 100 units / ml penicillin (Hyclone, USA), 100 / ml streptomycin (Hyclone, USA), and aMEM medium (Welgene, Korea). Cell culture was carried out under humidified 5% CO 2 mixed air conditions using 37 incubators.

고발현 세포주의 배양을 통해서 확보된 이중표적항체 PIG-KMs는 보다 세밀한 연구를 위해서 Protein A 친화성 컬럼, SP-sepharose 컬럼 및 크기배제크로마토그래피를 가지고 FPLC(fast protein liquid chromatography)를 이용해서 순도 95% 이상의 정제된 항체만을 확보하였다(도 5 참조). 우선, 배양액을 원심분리를 통해서 세포 덩어리와 배지로 분리하였으며, 분리된 배지 내 PIG-KM들은 분획분자량(molecular weight cut-off)이 10,000 Da 이하인 한외여과막(Millipore, 미국)을 통해서 농축되었다. 한외여과를 거친 배지는 protein A 친화성 크로마토그래피를 이용하여 1차 정제를 마쳤다. The dual-target antibody PIG-KMs obtained through the culture of high expressing cell lines were purified using Fast Protein Liquid Chromatography (FPLC) with Protein A affinity column, SP-sepharose column and size exclusion chromatography for further study. Only at least% purified antibody was obtained (see FIG. 5). First, the culture medium was separated into cell mass and medium by centrifugation, and PIG-KMs in the separated medium were concentrated through an ultrafiltration membrane (Millipore, USA) having a molecular weight cut-off of 10,000 Da or less. Ultrafiltration medium was first purified using protein A affinity chromatography.

상기 과정을 구체적으로 설명하면 다음과 같다. 0.1 M NaCl이 포함된 20 mM sodium phosphate(pH 7.0) 버퍼로 안정화된 protien A 컬럼에, 한외여과를 거친 배지를 넣은 후, 결합하지 않은 단백질을 동일 버퍼를 사용하여 씻어내고, 다시 한 번 0.5 M NaCl이 포함된 20 mM sodium phosphate(pH 7.0) 버퍼 용액을 이용해서 비특이적으로 protein A 레진에 결합한 단백질을 씻어냈다. Protein-A에 특이적으로 결합하는 단백질은 0.1 M NaCl이 포함된 0.1 M Glycine-Cl(pH 3.5) 버퍼를 사용하여 용출하였으며, 1 M Tris를 이용하여 pH 6.0으로 시료를 중화시켰다. 이후, 친화성 컬럼을 통해 분리된 시료 내에 잔존할지도 모르는 DNA, endotoxin, protein-A의 오염을 제거하기 위해서 양이온교환 크로마토그래피를 다음의 절차에 따라 실시하였다. 우선 protein-A 컬럼에서 용출된 시료는 동일한 부피의 20 mM sodium phosphate(pH 6.0) 버퍼와 섞어 놓는다. 이후 50 mM의 NaCl이 함유된 10 mM sodium phosphate(pH 6.0) 버퍼로 SP-sepharose(5 ml, GE healthcare, 미국) 컬럼을 안정화 시킨 후, 시료를 첨가하여 결합되지 않는 DNA, endotoxin 등을 세척하였다. 레진에 결합된 항체분자는 pH, salt gradient(50 mM sodium phosphate(pH 7.0), 1 M NaCl)를 이용하여 용출하였다. 마지막으로 다량체 항체를 제거하기 위하여, 시료를 PBS로 안정화시킨 Superdex 200(16 mm x 60 cm, GE healthcare) 컬럼에 넣은 후, 크기배제 크로마토그래피를 수행하였다. 위 정제 과정을 모두 마친 항체를 이용하여 세포를 통한 분석을 수행하였다 .
The above process is described in detail. In a protien A column stabilized with 20 mM sodium phosphate (pH 7.0) buffer containing 0.1 M NaCl, ultrafiltration medium was added, and the unbound protein was washed out using the same buffer. 20 mM sodium phosphate (pH 7.0) buffer solution containing NaCl washed non-specifically bound protein A protein. Proteins that specifically bind to Protein-A were eluted using 0.1 M Glycine-Cl (pH 3.5) buffer containing 0.1 M NaCl, and the samples were neutralized to pH 6.0 using 1 M Tris. Then, cation exchange chromatography was performed according to the following procedure to remove contamination of DNA, endotoxin, and protein-A that may remain in the sample separated through the affinity column. First, the sample eluted from the protein-A column is mixed with an equal volume of 20 mM sodium phosphate (pH 6.0) buffer. After stabilizing the SP-sepharose (5 ml, GE healthcare, USA) column with 10 mM sodium phosphate (pH 6.0) buffer containing 50 mM NaCl, samples were added to wash unbound DNA and endotoxin. . The antibody molecules bound to the resin were eluted using pH, salt gradient (50 mM sodium phosphate (pH 7.0), 1 M NaCl). Finally, in order to remove the multimeric antibody, the sample was placed in a Superdex 200 (16 mm x 60 cm, GE healthcare) column stabilized with PBS, followed by size exclusion chromatography. Cell analysis was performed using antibodies that completed the above purification process.

실시예Example 5:  5: PIGPIG -- KM1KM1  And PIGPIG -- KM2KM2 처리 후  After treatment HUVECHUVEC 의 이동성 분석Mobility analysis

HUVEC의 배양은 20% 우태혈청(Hyclone, 미국), 페니실린 100 units/ml(Hyclone, 미국), 스트렙토마이신 100 /ml(Hyclone, 미국), 섬유아세포성장인자(bFGF, basic fibroblast growth factor, Upstate Biotechnology, 미국) 3 ng/ml, 헤파린 5 units/ml(Sigma-Aldrich, 미국)을 첨가한 페놀레드가 결여된(phenol red-free) M199 배지(Invitrogen, 미국)를 사용하였으며, 세포배양은 가습된 5% CO2 혼합공기 조건의 37 배양기에서 배양하였다. Cultures of HUVEC consisted of 20% fetal bovine serum (Hyclone, USA), penicillin 100 units / ml (Hyclone, USA), streptomycin 100 / ml (Hyclone, USA), fibroblast growth factor (bFGF, basic fibroblast growth factor, Upstate Biotechnology Phenol red-free M199 medium (Invitrogen, USA) with 3 ng / ml and heparin 5 units / ml (Sigma-Aldrich, USA) was used. 5% CO 2 The cells were cultured in 37 incubators under mixed air conditions.

PIG-KM 1 및 PIG-KM 2의 HUVEC에 대한 이동성(주화성) 억제를 확인하기 위해서, 세포 이동성 분석을 실시하였다. HUVEC의 이동성 분석을 위해서, 8- pore-sized polycarbonate filters 트랜스웰(Corning, 미국)을 이용하였으며, 사용 전 필터의 아랫면을 10 젤라틴으로 코팅한 후, 건조시켜 사용하였다. 아래쪽 웰에는 1% 우태혈청을 포함하는 M199 배지에 20 ng/ml의 VEGF와 50 ng/ml의 HGF를 첨가하였다. 낮은 혈청농도에서 6시간 배양한 혈관내피세포를 트립신 처리하여 떼어낸 후, 1 x 106cells/ml의 밀도로 1% 우태혈청을 포함하는 M199 배지에 현탁하여 준비하였다. 다양한 농도의 항체로 30분간 선 처리한 세포를 위쪽 트랜스웰에 100 씩 균일하게 뿌린 후, 37℃ 세포 배양기에서 4시간 동안 배양하였다. 세포를 크리스탈바이올렛(Sigma, 미국)으로 염색하고, 필터 윗면에 붙어있는 미 이동세포는 면봉을 이용하여 제거하여, 필터 아랫면의 이동한 세포만을 남겨두었다. 디지털카메라가 부착된 광학현미경(Olympus, IX71, 일본)에서 100배율로 사진을 찍어 이동한 세포수를 비교하였으며, 각 조건별로 10개의 이미지를 계수, 분석하였다.In order to confirm the mobility (chemotability) inhibition of PIG-KM 1 and PIG-KM 2 against HUVECs, cell mobility analysis was performed. For mobility analysis of HUVEC, 8-pore-sized polycarbonate filters transwell (Corning, USA) was used, and the bottom surface of the filter was coated with 10 gelatin and dried before use. In the lower wells, 20 ng / ml of VEGF and 50 ng / ml of HGF were added to M199 medium containing 1% fetal bovine serum. The vascular endothelial cells cultured at low serum concentration for 6 hours were trypsinized, removed, and then suspended in M199 medium containing 1% fetal bovine serum at a density of 1 × 10 6 cells / ml. The cells pre-treated with antibodies of various concentrations for 30 minutes were evenly sprayed into the upper transwells by 100, and then cultured in a 37 ° C. cell incubator for 4 hours. The cells were stained with crystal violet (Sigma, USA), and the unmigrated cells attached to the top of the filter were removed using a cotton swab, leaving only the migrated cells on the bottom of the filter. In the optical microscope equipped with a digital camera (Olympus, IX71, Japan), the number of cells moved by taking a 100-fold photograph was compared, and 10 images were counted and analyzed for each condition.

그 결과, 아무것도 첨가되지 음성 대조군(Null/Mock)의 경우 HUVEC의 이동성이 basal 수준의 이동성을 나타냈으나, 혈관신생 인자인 VEGF나 HGF 또는 VEGF/HGF가 첨가된 양성 대조군(Mock)에서는 HUVEC의 이동성이 크게 증가됨을 확인할 수 있었고, 그러한 효과는 HGF의 첨가에 의해 더욱 크게 좌우됨을 확인할 수 있었다 (도 6 참조). 반면, VEGF/VEGFR-2 신호전달 기작을 저해하는 TTAC-0001 처리군의 경우, VEGF에 의한 HUVEC의 이동성을 억제하는 것으로 확인되었으나, HGF에 의한 HUVEC의 이동성을 억제하지는 못하는 것으로 확인되었다. 한편, VEGF/VEGFR-2 및 HGF/c-Met 신호전달 기작을 동시에 저해하는 PIG-KM 1 및 PIG-KM 2 처리군의 경우는 VEGF나 HGF 단독 첨가 뿐만 아니라 VEGF/HGF 동시 첨가 조건에 대해서도 HUVEC의 이동성을 효과적으로 억제하는 것으로 밝혀졌다. 이 결과는 다양한 성장인자가 존재하는 체내 미세환경(micro-environment) 조건에서 이중표적항체가 단일표적항체에 비해서 효과적으로 작용할 수 있음을 보여주는 좋은 사례가 될 수 있음을 보여준다.
As a result, in the negative control group (Null / Mock), the mobility of HUVEC showed basal mobility, but in the positive control group (Mock) to which angiogenic factors VEGF, HGF, or VEGF / HGF were added, It was confirmed that the mobility is greatly increased, and that the effect is more dependent on the addition of HGF (see Fig. 6). On the other hand, the TTAC-0001 treatment group that inhibited the VEGF / VEGFR-2 signaling mechanism was found to inhibit the mobility of HUVECs by VEGF, but did not inhibit the mobility of HUVECs by HGF. On the other hand, in the PIG-KM 1 and PIG-KM 2 treatment groups which simultaneously inhibit VEGF / VEGFR-2 and HGF / c-Met signaling mechanisms, the HUVEC was not only added to VEGF or HGF alone but also to VEGF / HGF simultaneous addition conditions. It has been found to effectively inhibit the mobility of. This result is a good example showing that double-target antibodies can act more effectively than single-target antibodies in micro-environment conditions where various growth factors are present.

실시예Example 6:  6: PIGPIG -- KMKM 처리 후  After treatment HUVECHUVEC 의 증식률 분석Growth rate analysis

혈관내피세포의 증식률 분석을 위해서 이들 세포를 24-웰 플레이트에 2 x 104 세포/웰의 밀도로 24시간 배양하였다. 이후, M199 배지로 2회 씻어낸 후, 1% 우태혈청(Hyclone, 미국)이 포함된 M199 배지의 낮은 혈청농도 조건에서 6시간 동안 배양하였다. 다양한 농도의 TTAC-0001, PIG-KM 1 및 PIG-KM 2 항체를 세포에 30분간 선 처리한 후, 20 ng/ml VEGF(R&D systems, 미국)와 50 ng/ml HGF(R&D systems, 미국)을 처리하였다. 41시간 배양 후 CCK-8(Dojindo, 일본)을 2시간 처리하여 450 nm 파장에서의 흡광도를 측정함으로써, 각 조건에서의 세포 생존률을 비교하였다.For proliferation analysis of vascular endothelial cells, these cells were incubated for 24 hours at a density of 2 × 10 4 cells / well in 24-well plates. Then, after washing twice with M199 medium, and cultured for 6 hours at low serum concentration conditions of M199 medium containing 1% fetal bovine serum (Hyclone, USA). After 30 min pretreatment of cells with various concentrations of TTAC-0001, PIG-KM 1 and PIG-KM 2 antibodies, 20 ng / ml VEGF (R & D systems, USA) and 50 ng / ml HGF (R & D systems, USA) Was treated. After 41 hours of incubation, CCK-8 (Dojindo, Japan) was treated for 2 hours and absorbance at 450 nm wavelength was measured to compare cell viability under each condition.

그 결과, VEGF 및 HGF를 공동처리한 양성 대조군(HGF+VEGF/Mock)의 경우 무처리군(null/Mock)에 비해서 약 70%까지 HUVEC의 증식률 증가를 나타냈으며, 이들 성장인자가 처리된 HUVEC에 TTAC-0001, PIG-KM1 그리고 PIG-KM2를 처리하게 되면 HUVEC의 증식률 저해가 일어남을 확인하였다. PIG-KM1 및 PIG-KM2 모두 단일표적항체 TTAC-0001 대비 약 10% 가량의 HUVEC 세포 증식 저해능을 보였으며, VEGF 및 HGF를 공동처리한 대조군(Mock)에 비해서는 두 항체 모두 약 45% 가량의 HUVEC 세포 증식 저해능을 나타냈다 (도 7 참조). TTAC-0001의 HUVEC 증식률 저해능이 이중표적항체 PIG-KM1 및 PIG-KM2와 상대적으로 크게 차이나지 않는 이유로서, HGF/c-Met 신호전달 기작이 혈관신생 기작에 있어서 HUVEC의 증식 보다는 주로 이동성이나 튜브형성에 관여하는 것으로 보고한 기존의 연구결과와 일치한다 (Yi Xu et al., Mol. Vision, 16:1982, 2010).
As a result, the positive control group co-treated with VEGF and HGF (HGF + VEGF / Mock) showed an increase in HUVEC proliferation up to about 70% compared to the non-treated group (null / Mock), and these growth factors were treated with HUVEC. Treatment with TTAC-0001, PIG-KM1 and PIG-KM2 resulted in inhibition of proliferation of HUVECs. Both PIG-KM1 and PIG-KM2 showed about 10% inhibition of HUVEC cell proliferation compared to the single target antibody TTAC-0001, and about 45% of both antibodies compared to the control group (Mock) co-treated with VEGF and HGF. It showed HUVEC cell proliferation inhibitory ability (see FIG. 7). The HUVEC proliferation inhibition rate of TTAC-0001 is relatively indistinguishable from that of the dual target antibodies PIG-KM1 and PIG-KM2. HGF / c-Met signaling mechanism is mainly associated with mobility and tube formation rather than HUVEC proliferation in angiogenesis. Consistent with previous findings reported to be involved in (Yi Xu et al., Mol. Vision, 16: 1982, 2010).

실시예Example 7: 상처치유법을 통한 c- 7: c- through wound healing MetMet 기능 저해 분석 Inhibition Analysis

혈관내피세포의 증식률 및 이동성 분석을 위해서 이들 HUVEC을 6-웰 플레이트에 2 x 105 cells/well의 밀도로 24시간 배양하였다. 24시간 배양 후 세포가 90 %이상 자랐을 때, 200 파이펫 팁으로 플레이트 바닥에 일정한 두께의 상처를 내었다. 다양한 농도의 TTAC-0001 및 PIG-KM 1 항체를 세포에 30분간 선 처리하고, 50 ng/ml HGF를 처리하였다. 16 시간 배양 후 사진을 찍어 처음 상처가 얼마나 치유되었는지를 사진을 찍어 상처의 간극을 보고 저해능을 결정하였다.For proliferation and mobility analysis of vascular endothelial cells, these HUVECs were cultured in 6-well plates for 24 hours at a density of 2 × 10 5 cells / well. When cells grew more than 90% after 24 hours of incubation, a constant thickness wound was made at the bottom of the plate with a 200 pipette tip. Various concentrations of TTAC-0001 and PIG-KM 1 antibodies were pretreated with cells for 30 minutes and treated with 50 ng / ml HGF. After 16 hours of incubation, photographs were taken of how the wounds healed for the first time, and the inhibition was determined by looking at the gap of the wounds.

그 결과, Mock과 TTAC-0001의 경우 HGF에서 기인한 HUVEC의 증식 및 이동성이 PIG-KM1 처리군에 비해 다소 많이 진행된 것으로 확인되었다 (도 8 참조). 이 결과는 PIG-KM1이 HGF/c-Met 신호전달 기작을 방해함으로써, HUVEC의 증식 및 이동성을 저해하고, 결과적으로 상처치유를 더디게 진행시킬 수 있음을 보여주는 것이다.
As a result, in the case of Mock and TTAC-0001, it was confirmed that the growth and mobility of HUVECs due to HGF progressed somewhat compared to the PIG-KM1 treatment group (see FIG. 8). These results show that PIG-KM1 interferes with HGF / c-Met signaling mechanisms, thereby inhibiting the proliferation and mobility of HUVECs and consequently slowing wound healing.

실시예Example 8:  8: 웨스턴Western 블로팅법을Blotting 통한  through 세포내Intracellular c- c- MetMet 인산화 저해 분석 Phosphorylation Inhibition Assay

본 발명의 이중표적항체 PIG-KM1의 c-Met에 대한 인산화 저해를 확인하기 위해서 면역침강법과 웨스턴블로팅법을 실시하였다. 24시간 동안 배양된 혈관내피세포를 1% 우태혈청을 포함하는 M199 배지 조건에서 6시간 배양 후, 10 /ml의 PIG-KMs 항체를 30분간 선 처리하였다. 이후, 20 ng/ml VEGF와 100 ng/ml Ang1을 15분간 처리하였다. In order to confirm the phosphorylation inhibition of c-Met of the dual target antibody PIG-KM1 of the present invention, immunoprecipitation and western blotting were performed. Vascular endothelial cells cultured for 24 hours were incubated for 6 hours under conditions of M199 medium containing 1% fetal bovine serum, followed by pretreatment with 10 / ml PIG-KMs antibody for 30 minutes. Thereafter, 20 ng / ml VEGF and 100 ng / ml Ang1 were treated for 15 minutes.

웨스턴블로팅법을 통한 분석을 위해서, 용균완충액(1%(w/v) SDS, 10 mM Tris(pH 7.4), 2 mM sodium orthovanadate, 2 mM EGTA, 2 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, and 1 mM sodium fluoride)을 처리하여 용해질을 얻어 끓인 후, 4℃에서 10,000 g로 5분간 원심분리하여 비용해성 침전물을 제거하였다. 상층액을 SDS 샘플 버퍼와 섞어 10분간 끓여 준비하였다. SDS-PAGE 및 웨스턴블로팅은 당업계에서 일반적으로 사용되는 방법을 준용하였으며, 사용된 시료는 다음과 같다: 4-20% SDS-polyacrylamide Gel(BioRad, 미국), PVDF 멤브레인(Millipore #IPVH00010, 미국), c-Met 인산화 저해활성 분석을 위한 1차 항체로써 anti-c-Met 항체(Santa Cruz, 미국)와 anti-phospho-c-Met 항체(Cell Signaling technology, 미국); anti-β actin 항체(Sigma, 미국)와 그리고 화학발광법을 위해 1차 항체와 결합할 2차 항체로써 HRP-conjugated goat anti-mouse IgG 항체(Santa Cruze Biotechnology, 미국) 및 HRP-conjugated goat anti-rabbit IgG(Santa Cruze Biotechnology, 미국)For analysis by Western blotting, lysis buffer (1% (w / v) SDS, 10 mM Tris (pH 7.4), 2 mM sodium orthovanadate, 2 mM EGTA, 2 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, and 1 mM) sodium fluoride) was treated to obtain a lysate, which was then boiled and centrifuged at 10,000 g at 4 ° C. for 5 minutes to remove insoluble precipitate. The supernatant was prepared by mixing with SDS sample buffer and boiling for 10 minutes. SDS-PAGE and Western blotting were applied in the same manner as commonly used in the art, and the samples used were as follows: 4-20% SDS-polyacrylamide Gel (BioRad, USA), PVDF membrane (Millipore # IPVH00010, USA ), anti-c-Met antibody (Santa Cruz, USA) and anti-phospho-c-Met antibody (Cell Signaling technology, USA) as primary antibodies for c-Met phosphorylation inhibitory activity assay; HRP-conjugated goat anti-mouse IgG antibody (Santa Cruze Biotechnology, USA) and HRP-conjugated goat anti- as secondary antibodies to bind anti-β actin antibody (Sigma, USA) and primary antibody for chemiluminescence. rabbit IgG (Santa Cruze Biotechnology, USA)

웨스턴 블로팅을 수행한 결과, PIG-KM1은 c-Met의 인산화를 효과적으로 저해할 수 있음을 확인할 수 있었다 (도 9 참조). 도 9에서 보듯이, c-Met의 인산화는 HGF에 의존적으로 진행되기 때문에, 대조군 (Mock)의 경우, HGF가 처리된 U-87 MG 세포에서 c-Met 인산화가 확인되었다. 반면 PIG-KM1 처리군의 경우, HGF가 처리된 U-87 MG 세포에서 c-Met 인산화는 확인되지 않았으며, 이는 PIG-KM1의 c-Met 저해 기능에서 기인한 것으로 판단된다.
As a result of Western blotting, it was confirmed that PIG-KM1 can effectively inhibit c-Met phosphorylation (see FIG. 9). As shown in FIG. 9, since phosphorylation of c-Met proceeds dependent on HGF, c-Met phosphorylation was confirmed in HGF-treated U-87 MG cells in the control group (Mock). On the other hand, in the PIG-KM1 treatment group, c-Met phosphorylation was not confirmed in UGF-87 MG cells treated with HGF, which may be attributed to the c-Met inhibition function of PIG-KM1.

<110> PharmAbcine Inc. Samsung Life Public Welfare Foundation <120> Bispecific antibody fused peptide and use thereof <160> 32 <170> KopatentIn 1.71 <210> 1 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 6A6 <400> 1 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Lys 1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val 20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr 35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr 85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly 100 105 <210> 2 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> KE3 <400> 2 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Lys 1 5 10 15 Thr Ala Arg Ile Thr Cys Gly Gly Asp Asn Ile Gly Ser Gln Ser Val 20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr 35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr 85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly 100 105 <210> 3 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> KE6 <400> 3 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Lys 1 5 10 15 Thr Ala Gly Ile Thr Cys Gly Gly Asp Asp Ile Gly Ser Lys Ser Val 20 25 30 His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr 35 40 45 Tyr Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr 85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly 100 105 <210> 4 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> IE4 <400> 4 Ser Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser Ser Ala Pro Gly Lys 1 5 10 15 Thr Ala Thr Ile Thr Cys Glu Gly Lys Asn Ile Gly Ser Lys Ser Val 20 25 30 His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Leu Ile Tyr 35 40 45 Tyr Asp Gln Asp Arg Pro Ser Ala Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60 Asn Ser Asp Asn Met Ala Thr Leu Thr Ile Ser Arg Val Ala Ala Gly 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Gly Asn Gly Lys Val Val 85 90 95 Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly 100 105 <210> 5 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> SD5 <400> 5 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Lys 1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val 20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr 35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr 85 90 95 Val Phe Gly Ala Gly Thr Lys Val Thr Val Leu Gly 100 105 <210> 6 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 2KG8 <400> 6 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Lys 1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val 20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr 35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr 85 90 95 Val Phe Gly Ala Gly Thr Lys Val Thr Val Leu Gly 100 105 <210> 7 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 3KE11 <400> 7 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Lys 1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val 20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr 35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60 Asn Ser Gly Asn Thr Ala Ile Leu Thr Ile Ser Gly Val Glu Ala Gly 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr 85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly 100 105 <210> 8 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 3KF11 <400> 8 Asn Phe Met Leu Thr Gln Pro Ser Ser Val Ser Val Ser Pro Gly Lys 1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val 20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr 35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr 85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly 100 105 <210> 9 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 3KG3 <400> 9 Asn Phe Met Leu Thr Gln Pro His Ser Val Ser Val Ser Pro Gly Lys 1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val 20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr 35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr 85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly 100 105 <210> 10 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 3IG11 <400> 10 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Lys 1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val 20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Ile Met Tyr 35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr 85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly 100 105 <210> 11 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 3IG12 <400> 11 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Lys 1 5 10 15 Thr Ala Arg Ile Thr Cys Met Gly Asp Asn Leu Gly Asp Val Asn Val 20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr 35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr 85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly 100 105 <210> 12 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 3IE1 <400> 12 Asn Phe Met Leu Thr Gln Pro Ser Ser Val Ser Val Pro Pro Gly Lys 1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val 20 25 30 His Trp Tyr Gln Gln Arg Arg Gly Gln Ala Pro Val Leu Val Met Tyr 35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Phe 85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly 100 105 <210> 13 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 3IH2 <400> 13 Asn Phe Met Leu Thr Gln Pro Pro Ser Leu Ser Val Ser Pro Gly Gln 1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val 20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr 35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr 85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly 100 105 <210> 14 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> K3F1 <400> 14 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val 20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr 35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr 85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly 100 105 <210> 15 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> I2F2 <400> 15 Asn Phe Met Leu Thr Gln Pro Pro Ala Val Ser Val Ser Pro Gly Lys 1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val 20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr 35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr 85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly 100 105 <210> 16 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> I3A12 <400> 16 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Lys 1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val 20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr 35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Lys Arg Phe Ser Gly Ser 50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr 85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly 100 105 <210> 17 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> I3F2 <400> 17 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Lys 1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val 20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Ile Tyr 35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr 85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly 100 105 <210> 18 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 4SC3 <400> 18 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Lys 1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val 20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr 35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Asn Glu Tyr 85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly 100 105 <210> 19 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 4SC5 <400> 19 Gln Phe Val Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Lys 1 5 10 15 Thr Ala Arg Ile Thr Cys Gly Gly Asn Asn Ile Gly Ser Lys Ser Val 20 25 30 His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr 35 40 45 Tyr Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60 Asn Phe Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Ser Ser Arg Asp Tyr 85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly 100 105 <210> 20 <211> 121 <212> PRT <213> Artificial Sequence <220> <223> 6A6 VH <400> 20 Gln Met Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15 Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Ser Ser Tyr 20 25 30 Trp Met His Trp Val Arg Gln Ala Pro Gly Gln Arg Leu Glu Trp Met 35 40 45 Gly Glu Ile Asn Pro Gly Asn Gly His Thr Asn Tyr Asn Glu Lys Phe 50 55 60 Lys Ser Arg Val Thr Ile Thr Val Asp Lys Ser Ala Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Lys Ile Trp Gly Pro Ser Leu Thr Ser Pro Phe Asp Tyr Trp Gly 100 105 110 Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 21 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> pep1 <400> 21 Lys Ser Leu Ser Arg His Asp His Ile His His His 1 5 10 <210> 22 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> pep2 <400> 22 Tyr Leu Phe Ser Val His Trp Pro Pro Leu Lys Ala 1 5 10 <210> 23 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> linker <400> 23 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Ser 1 5 10 <210> 24 <211> 396 <212> DNA <213> Artificial Sequence <220> <223> pep1/6A6lgt2 <400> 24 aaatctttgt ctagacatga tcatattcat catcatggag gcggaggtag tggcggagga 60 ggctccggtt ccaattttat gctgactcag cccccctcag tgtcagtgtc cccaggaaag 120 acggccagga tcacttgtag gggagataac cttggagatg taaatgttca ctggtaccag 180 cagcggccag gccaggcccc tgtattggtc atgtattatg atgccgaccg gccctcaggg 240 atccctgagc gattctctgg ctccaactct gggaacacgg ccacactgac catcagcgga 300 gtcgaagccg gggatgaggc cgactactat tgtcaggtgt gggataggac tagtgagtat 360 gtcttcggaa ctgggaccaa ggtcaccgtc ctaggt 396 <210> 25 <211> 396 <212> DNA <213> Artificial Sequence <220> <223> pep2/6A6lgt2 <400> 25 tatttgtttt ctgttcattg gccaccattg aaagctggag gcggaggtag tggcggagga 60 ggctccggtt ccaattttat gctgactcag cccccctcag tgtcagtgtc cccaggaaag 120 acggccagga tcacttgtag gggagataac cttggagatg taaatgttca ctggtaccag 180 cagcggccag gccaggcccc tgtattggtc atgtattatg atgccgaccg gccctcaggg 240 atccctgagc gattctctgg ctccaactct gggaacacgg ccacactgac catcagcgga 300 gtcgaagccg gggatgaggc cgactactat tgtcaggtgt gggataggac tagtgagtat 360 gtcttcggaa ctgggaccaa ggtcaccgtc ctaggt 396 <210> 26 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer F-ksw002 <400> 26 agtggcggag gaggctccgg ttccaatttt atgctgactc ag 42 <210> 27 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer R-ksw002 <400> 27 cagatctttc cacgaggctg gctcctc 27 <210> 28 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer F-ksw003 <400> 28 ggaggcggag gtagtggcgg aggaggctcc 30 <210> 29 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> primer F-pep1 <400> 29 tctagacatg atcatattca tcatcatgga ggcggaggta gtggcggagg a 51 <210> 30 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> primer F-pep2 <400> 30 tctgttcatt ggccaccatt gaaagctgga ggcggaggta gtggcggagg a 51 <210> 31 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> primer F-pep1a <400> 31 cactccagcg gtgtgggttc caaatctttg tctagacatg atcatattc 49 <210> 32 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> primer F-pep2a <400> 32 cactccagcg gtgtgggttc ctatttgttt tctgttcatt ggccaccatt g 51 <110> PharmAbcine Inc.          Samsung Life Public Welfare Foundation <120> Bispecific antibody fused peptide and use <160> 32 <170> Kopatentin 1.71 <210> 1 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 6A6 <400> 1 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Lys   1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val              20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr          35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser      50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly  65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr                  85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly             100 105 <210> 2 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> KE3 <400> 2 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Lys   1 5 10 15 Thr Ala Arg Ile Thr Cys Gly Gly Asp Asn Ile Gly Ser Gln Ser Val              20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr          35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser      50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly  65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr                  85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly             100 105 <210> 3 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> KE6 <400> 3 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Lys   1 5 10 15 Thr Ala Gly Ile Thr Cys Gly Gly Asp Asp Ile Gly Ser Lys Ser Val              20 25 30 His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr          35 40 45 Tyr Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser      50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly  65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr                  85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly             100 105 <210> 4 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> IE4 <400> 4 Ser Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser Ser Ala Pro Gly Lys   1 5 10 15 Thr Ala Thr Ile Thr Cys Glu Gly Lys Asn Ile Gly Ser Lys Ser Val              20 25 30 His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Leu Ile Tyr          35 40 45 Tyr Asp Gln Asp Arg Pro Ser Ala Ile Pro Glu Arg Phe Ser Gly Ser      50 55 60 Asn Ser Asp Asn Met Ala Thr Leu Thr Ile Ser Arg Val Ala Ala Gly  65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Gly Asn Gly Lys Val Val                  85 90 95 Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly             100 105 <210> 5 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> SD5 <400> 5 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Lys   1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val              20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr          35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser      50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly  65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr                  85 90 95 Val Phe Gly Ala Gly Thr Lys Val Thr Val Leu Gly             100 105 <210> 6 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 2KG8 <400> 6 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Lys   1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val              20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr          35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser      50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly  65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr                  85 90 95 Val Phe Gly Ala Gly Thr Lys Val Thr Val Leu Gly             100 105 <210> 7 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 3KE11 <400> 7 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Lys   1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val              20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr          35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser      50 55 60 Asn Ser Gly Asn Thr Ala Ile Leu Thr Ile Ser Gly Val Glu Ala Gly  65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr                  85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly             100 105 <210> 8 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 3KF11 <400> 8 Asn Phe Met Leu Thr Gln Pro Ser Ser Val Ser Val Ser Pro Gly Lys   1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val              20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr          35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser      50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly  65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr                  85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly             100 105 <210> 9 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 3KG3 <400> 9 Asn Phe Met Leu Thr Gln Pro His Ser Val Ser Val Ser Pro Gly Lys   1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val              20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr          35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser      50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly  65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr                  85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly             100 105 <210> 10 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 3IG11 <400> 10 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Lys   1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val              20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Ile Met Tyr          35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser      50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly  65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr                  85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly             100 105 <210> 11 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 3IG12 <400> 11 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Lys   1 5 10 15 Thr Ala Arg Ile Thr Cys Met Gly Asp Asn Leu Gly Asp Val Asn Val              20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr          35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser      50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly  65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr                  85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly             100 105 <210> 12 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 3IE1 <400> 12 Asn Phe Met Leu Thr Gln Pro Ser Ser Val Ser Val Pro Pro Gly Lys   1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val              20 25 30 His Trp Tyr Gln Gln Arg Arg Gly Gln Ala Pro Val Leu Val Met Tyr          35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser      50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly  65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Phe                  85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly             100 105 <210> 13 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 3IH2 <400> 13 Asn Phe Met Leu Thr Gln Pro Pro Ser Leu Ser Val Ser Pro Gly Gln   1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val              20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr          35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser      50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly  65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr                  85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly             100 105 <210> 14 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> K3F1 <400> 14 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln   1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val              20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr          35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser      50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly  65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr                  85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly             100 105 <210> 15 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> I2F2 <400> 15 Asn Phe Met Leu Thr Gln Pro Pro Ala Val Ser Val Ser Pro Gly Lys   1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val              20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr          35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser      50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly  65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr                  85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly             100 105 <210> 16 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> I3A12 <400> 16 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Lys   1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val              20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr          35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Lys Arg Phe Ser Gly Ser      50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly  65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr                  85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly             100 105 <210> 17 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> I3F2 <400> 17 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Lys   1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val              20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Ile Tyr          35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser      50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly  65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Ser Glu Tyr                  85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly             100 105 <210> 18 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 4SC3 <400> 18 Asn Phe Met Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Lys   1 5 10 15 Thr Ala Arg Ile Thr Cys Arg Gly Asp Asn Leu Gly Asp Val Asn Val              20 25 30 His Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Val Leu Val Met Tyr          35 40 45 Tyr Asp Ala Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser      50 55 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Val Glu Ala Gly  65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Arg Thr Asn Glu Tyr                  85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly             100 105 <210> 19 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> 4SC5 <400> 19 Gln Phe Val Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Lys   1 5 10 15 Thr Ala Arg Ile Thr Cys Gly Gly Asn Asn Ile Gly Ser Lys Ser Val              20 25 30 His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr          35 40 45 Tyr Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser      50 55 60 Asn Phe Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly  65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Ser Ser Arg Asp Tyr                  85 90 95 Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly             100 105 <210> 20 <211> 121 <212> PRT <213> Artificial Sequence <220> <223> 6A6 VH <400> 20 Gln Met Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala   1 5 10 15 Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Ser Ser Tyr              20 25 30 Trp Met His Trp Val Arg Gln Ala Pro Gly Gln Arg Leu Glu Trp Met          35 40 45 Gly Glu Ile Asn Pro Gly Asn Gly His Thr Asn Tyr Asn Glu Lys Phe      50 55 60 Lys Ser Arg Val Thr Ile Thr Val Asp Lys Ser Ala Ser Thr Ala Tyr  65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys                  85 90 95 Ala Lys Ile Trp Gly Pro Ser Leu Thr Ser Pro Phe Asp Tyr Trp Gly             100 105 110 Gln Gly Thr Leu Val Thr Val Ser Ser         115 120 <210> 21 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> pep1 <400> 21 Lys Ser Leu Ser Arg His Asp His Ile His His His   1 5 10 <210> 22 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> pep2 <400> 22 Tyr Leu Phe Ser Val His Trp Pro Pro Leu Lys Ala   1 5 10 <210> 23 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> linker <400> 23 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Ser   1 5 10 <210> 24 <211> 396 <212> DNA <213> Artificial Sequence <220> <223> pep1 / 6A6lgt2 <400> 24 aaatctttgt ctagacatga tcatattcat catcatggag gcggaggtag tggcggagga 60 ggctccggtt ccaattttat gctgactcag cccccctcag tgtcagtgtc cccaggaaag 120 acggccagga tcacttgtag gggagataac cttggagatg taaatgttca ctggtaccag 180 cagcggccag gccaggcccc tgtattggtc atgtattatg atgccgaccg gccctcaggg 240 atccctgagc gattctctgg ctccaactct gggaacacgg ccacactgac catcagcgga 300 gtcgaagccg gggatgaggc cgactactat tgtcaggtgt gggataggac tagtgagtat 360 gtcttcggaa ctgggaccaa ggtcaccgtc ctaggt 396 <210> 25 <211> 396 <212> DNA <213> Artificial Sequence <220> <223> pep2 / 6A6lgt2 <400> 25 tatttgtttt ctgttcattg gccaccattg aaagctggag gcggaggtag tggcggagga 60 ggctccggtt ccaattttat gctgactcag cccccctcag tgtcagtgtc cccaggaaag 120 acggccagga tcacttgtag gggagataac cttggagatg taaatgttca ctggtaccag 180 cagcggccag gccaggcccc tgtattggtc atgtattatg atgccgaccg gccctcaggg 240 atccctgagc gattctctgg ctccaactct gggaacacgg ccacactgac catcagcgga 300 gtcgaagccg gggatgaggc cgactactat tgtcaggtgt gggataggac tagtgagtat 360 gtcttcggaa ctgggaccaa ggtcaccgtc ctaggt 396 <210> 26 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer F-ksw002 <400> 26 agtggcggag gaggctccgg ttccaatttt atgctgactc ag 42 <210> 27 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer R-ksw002 <400> 27 cagatctttc cacgaggctg gctcctc 27 <210> 28 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer F-ksw003 <400> 28 ggaggcggag gtagtggcgg aggaggctcc 30 <210> 29 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> primer F-pep1 <400> 29 tctagacatg atcatattca tcatcatgga ggcggaggta gtggcggagg a 51 <210> 30 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> primer F-pep2 <400> 30 tctgttcatt ggccaccatt gaaagctgga ggcggaggta gtggcggagg a 51 <210> 31 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> primer F-pep1a <400> 31 cactccagcg gtgtgggttc caaatctttg tctagacatg atcatattc 49 <210> 32 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> primer F-pep2a <400> 32 cactccagcg gtgtgggttc ctatttgttt tctgttcatt ggccaccatt g 51

Claims (18)

서열번호 1 내지 서열번호 19 중 어느 하나의 아미노산 서열로 표시되는 경쇄 가변영역 및 서열번호 20의 아미노산 서열로 표시되는 중쇄 가변영역을 포함하는 혈관내피성장인자 수용체 중화항체의 경쇄의 N-말단에 서열번호 21 또는 서열번호 22로기재된 아미노산 서열로 표시되는 수용성 펩타이드가 연결된, VEGFR-2(Vasicular Endothelial Growth Factor Receptor-2) 및 c-Met(Mesenchymal-Epithelial Transition factor)에 결합 특이성을 갖는 이중표적항체.
A sequence at the N-terminus of the light chain of a vascular endothelial growth factor receptor neutralizing antibody comprising a light chain variable region represented by the amino acid sequence of any one of SEQ ID NOs: 1 to 19 and a heavy chain variable region represented by the amino acid sequence of SEQ ID NO: 20 A dual target antibody having binding specificity to Vasicular Endothelial Growth Factor Receptor-2 (VEGFR-2) and Mesenchymal-Epithelial Transition factor (cEG) -2, to which a water-soluble peptide represented by the amino acid sequence of SEQ ID NO: 21 or SEQ ID NO: 22 is linked.
제1항에 있어서, 상기 혈관내피성장인자 수용체 중화항체는 scFv(Single Chain Fragment Variable) 또는 IgG(immunoglobulin g)인 이중표적항체.
The dual target antibody of claim 1, wherein the vascular endothelial growth factor receptor neutralizing antibody is a scFv (Single Chain Fragment Variable) or an IgG (immunoglobulin g).
제1항에 있어서, 상기 이중표적항체는 서열번호 1의 아미노산 서열로 표시되는 경쇄 가변영역을 가지는 혈관내피성장인자 수용체 중화항체(TTAC-0001)의 경쇄의 N-말단에 서열번호 21 또는 서열번호 22로 기재된 아미노산 서열로 표시되는 수용성 펩타이드가 연결된 이중표적항체.
According to claim 1, wherein the double target antibody is SEQ ID NO: 21 or SEQ ID NO: 21 at the N-terminal end of the light chain of the vascular endothelial growth factor receptor neutralizing antibody (TTAC-0001) having a light chain variable region represented by the amino acid sequence of SEQ ID NO: A dual target antibody linked to a water soluble peptide represented by the amino acid sequence set forth in 22.
제1항에 있어서, 상기 혈관내피성장인자 수용체 중화항체의 중쇄 또는 경쇄의 N-말단과 수용성 펩타이드는 링커를 통해 연결되는 것인 이중표적항체.
The dual target antibody of claim 1, wherein the N-terminus of the heavy or light chain of the vascular endothelial growth factor receptor neutralizing antibody and the water-soluble peptide are linked through a linker.
제4항에 있어서, 상기 링커는 서열번호 23의 염기 서열을 가지는 것인 이중표적항체.
The dual target antibody of claim 4, wherein the linker has a nucleotide sequence of SEQ ID NO: 23. 6.
제1항에 있어서, 상기 수용성 펩타이드는 c-Met에 결합하여 길항적 작용을 하는 것인 이중표적항체.
The dual target antibody of claim 1, wherein the water soluble peptide binds to c-Met and antagonizes.
제1항 내지 제6항 중 어느 한 항에 따른 이중표적항체를 코딩하는 DNA.
A DNA encoding a dual target antibody according to any one of claims 1 to 6.
제7항에 있어서, 상기 DNA는 발현율을 높이기 위해 코돈 최적화된 서열을 가지는 것인 DNA.
8. The DNA of claim 7, wherein said DNA has a codon optimized sequence to increase expression.
제7항에 있어서, 상기 DNA는 서열번호 24 또는 서열번호 25에 기재된 염기서열로 이루어진 DNA.
8. The DNA according to claim 7, wherein the DNA consists of the nucleotide sequence set forth in SEQ ID NO: 24 or SEQ ID NO: 25.
제9항에 따른 DNA를 포함하는 재조합 발현 벡터.
Recombinant expression vector comprising a DNA according to claim 9.
제10항에 있어서, 상기 벡터는 도 2에 나타낸 pIgG-pep1/6A6lgt 또는 pIgG-pep2/6A6lgt의 개열지도를 갖는 것인 재조합 발현 벡터.
The recombinant expression vector of claim 10, wherein the vector has a cleavage map of pIgG-pep1 / 6A6lgt or pIgG-pep2 / 6A6lgt shown in FIG. 2.
제10항에 따른 재조합 발현 벡터로 형질전환된 숙주세포.
A host cell transformed with the recombinant expression vector according to claim 10.
제12항에 따른 숙주세포를 배양하고, 이의 배양물로부터 이중표적항체를 분리함으로써 이중표적항체를 제조하는 방법.
A method of preparing a double target antibody by culturing the host cell according to claim 12 and separating the double target antibody from the culture thereof.
제13항에 있어서, 상기 이중표적항체는 단백질 A 친화성 컬럼, SP-세파로스 컬럼 및 크기배제크로마토그래피를 가지고 FPLC(Fast Protein Liquid Chromatography)를 이용해서 추가로 정제하는 것인 방법.
The method of claim 13, wherein the dual target antibody is further purified using Fast Protein Liquid Chromatography (FPLC) with a Protein A affinity column, SP-Sepharose column, and size exclusion chromatography.
제1항 내지 제6항 중 어느 한 항에 따른 이중표적항체를 포함하는 혈관신생억제용 약제학적 조성물.
A pharmaceutical composition for inhibiting angiogenesis, comprising the dual target antibody according to any one of claims 1 to 6.
제15항에 있어서, 상기 약제학적 조성물에 엔도스타틴(endostatin), 안지오스타틴(angiostatin), 베바시주마브(상품명 AvastinTM), 수니티니브, 소라페니브, 레날리도미드, 및 VEGF-trap로 이루어진 그룹 중에서 선택되는 혈관신생 억제제를 추가로 포함하는 약제학적 조성물.
The group of claim 15 wherein the pharmaceutical composition comprises endostatin, angiostatin, bevacizumab (tradename Avastin ), sunitinib, sorafenib, lenalidomide, and VEGF-trap. A pharmaceutical composition further comprising an angiogenesis inhibitor selected from.
제1항 내지 제6항 중 어느 한 항에 따른 이중표적항체를 포함하는 암 치료용 약제학적 조성물.
A pharmaceutical composition for treating cancer comprising the dual target antibody according to any one of claims 1 to 6.
제17항에 있어서, 상기 암은 위암, 간암, 폐암, 갑상선암, 유방암, 자궁경부암, 대장암, 췌장암, 직장암, 대장직장암, 전립선암, 신장암, 흑색종, 전립선암의 골전이암, 난소암 등의 각종 고형암 및 혈액암 중에서 선택되는 것인 약제학적 조성물.
The method of claim 17, wherein the cancer is gastric cancer, liver cancer, lung cancer, thyroid cancer, breast cancer, cervical cancer, colon cancer, pancreatic cancer, rectal cancer, colorectal cancer, prostate cancer, kidney cancer, melanoma, prostate cancer, bone metastasis cancer, ovarian cancer A pharmaceutical composition that is selected from various solid cancers and blood cancers, such as.
KR1020110048756A 2011-05-23 2011-05-23 Bispecific antibody fused peptide and use thereof KR20120130658A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020110048756A KR20120130658A (en) 2011-05-23 2011-05-23 Bispecific antibody fused peptide and use thereof
PCT/KR2011/005079 WO2012161372A1 (en) 2011-05-23 2011-07-12 Double-target antibody fused with a peptide and use of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110048756A KR20120130658A (en) 2011-05-23 2011-05-23 Bispecific antibody fused peptide and use thereof

Publications (1)

Publication Number Publication Date
KR20120130658A true KR20120130658A (en) 2012-12-03

Family

ID=47217427

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110048756A KR20120130658A (en) 2011-05-23 2011-05-23 Bispecific antibody fused peptide and use thereof

Country Status (2)

Country Link
KR (1) KR20120130658A (en)
WO (1) WO2012161372A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160044774A (en) * 2014-10-16 2016-04-26 주식회사 파멥신 Double Target Antibody having Binding ability for VEGFR-2 and c-Met
US9637541B2 (en) 2013-11-29 2017-05-02 Samsung Electronics Co., Ltd. Anti-C-Met/anti-Ang2 bispecific antibody
WO2017200173A1 (en) * 2016-05-19 2017-11-23 삼성전자 주식회사 Vegf-binding fragment mutant, and fusion protein comprising vegf-binding fragment mutant and anti-c-met antibody
US10246507B2 (en) 2014-09-29 2019-04-02 Samsung Electronics Co., Ltd. Polypeptide, anti-VEGF antibody, and anti-c-Met/anti-VEGF bispecific antibodies comprising the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060297A1 (en) * 2014-10-16 2016-04-21 주식회사 파멥신 Dual-target antibody having binding ability to vegfr-2 and c-met
TWI782930B (en) 2016-11-16 2022-11-11 美商再生元醫藥公司 Anti-met antibodies, bispecific antigen binding molecules that bind met, and methods of use thereof
CN109324143B (en) * 2018-10-19 2021-10-29 张骐 Method for preparing related impurities of antibody products by two-dimensional liquid phase separation
JP2022547274A (en) 2019-09-16 2022-11-11 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Radiolabeled MET binding protein for immunoPET imaging
CN114409797B (en) * 2021-12-24 2024-02-20 合肥天港免疫药物有限公司 Recombinant antibodies and uses thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100556660B1 (en) * 2003-11-11 2006-03-10 국립암센터 Neutralizable epitope of hgf and neutralizing antibody binding to same
KR100883430B1 (en) * 2007-06-13 2009-02-12 한국생명공학연구원 Human Monoclonal Antibody Neutralizing Vesicular Endothelial Growth Factor Receptor and Use Thereof
ES2569215T3 (en) * 2007-09-10 2016-05-09 Boston Biomedical, Inc. A new group of inhibitors of the Stat3 pathway and inhibitors of the cancer stem cell pathway
KR101224468B1 (en) * 2009-05-20 2013-01-23 주식회사 파멥신 Bispecific antibody having a novel form and use thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9637541B2 (en) 2013-11-29 2017-05-02 Samsung Electronics Co., Ltd. Anti-C-Met/anti-Ang2 bispecific antibody
US11155627B2 (en) 2013-11-29 2021-10-26 Samsung Electronics Co., Ltd. Anti-c-Met/anti-Ang2 bispecific antibody
US10246507B2 (en) 2014-09-29 2019-04-02 Samsung Electronics Co., Ltd. Polypeptide, anti-VEGF antibody, and anti-c-Met/anti-VEGF bispecific antibodies comprising the same
KR20160044774A (en) * 2014-10-16 2016-04-26 주식회사 파멥신 Double Target Antibody having Binding ability for VEGFR-2 and c-Met
WO2017200173A1 (en) * 2016-05-19 2017-11-23 삼성전자 주식회사 Vegf-binding fragment mutant, and fusion protein comprising vegf-binding fragment mutant and anti-c-met antibody

Also Published As

Publication number Publication date
WO2012161372A1 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
KR101224468B1 (en) Bispecific antibody having a novel form and use thereof
KR20120130658A (en) Bispecific antibody fused peptide and use thereof
RU2597973C2 (en) Bispecific bivalent anti-vegf/anti-ang-2 antibodies
TW201444872A (en) Anti-c-Met tandem Fc bispecific antibodies
CN107428826B (en) VEGFA/Ang2 compounds
WO2005120557A2 (en) Inhibition of macrophage-stimulating protein receptor (ron)
KR102444797B1 (en) Bispecific antibodies against α-SYN/IGF1R and uses thereof
US20190352386A1 (en) Highly potent monoclonal antibodies to angiogenic factors
CA3204322A1 (en) Tetravalent fzd and wnt co-receptor binding antibody molecules and uses thereof
CN112961250A (en) Antibody fusion protein and application thereof
CN112500491B (en) Bispecific antibody for specifically neutralizing helper T cell TGF-beta signal, pharmaceutical composition and application thereof
CA2945157A1 (en) Vegfr2/ang2 compounds
WO2023109888A1 (en) Anti-ang2-vegf bispecific antibody and use thereof
KR20240056422A (en) Bispecific antibody comprising a first antigen binding site that specifically binds to human angiopoietin-2 and Use of the same
CN117586413A (en) Heteromultimeric proteins and methods of making the same
CN118215677A (en) VEGF binding proteins and uses thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application