KR20120129834A - Novel bi-specific monoclonal antibody with advanced anti-cancer activity and pharmaceutical composition for treating cancer comprising the same - Google Patents

Novel bi-specific monoclonal antibody with advanced anti-cancer activity and pharmaceutical composition for treating cancer comprising the same Download PDF

Info

Publication number
KR20120129834A
KR20120129834A KR1020120053337A KR20120053337A KR20120129834A KR 20120129834 A KR20120129834 A KR 20120129834A KR 1020120053337 A KR1020120053337 A KR 1020120053337A KR 20120053337 A KR20120053337 A KR 20120053337A KR 20120129834 A KR20120129834 A KR 20120129834A
Authority
KR
South Korea
Prior art keywords
cancer
antibody
ser
gly
val
Prior art date
Application number
KR1020120053337A
Other languages
Korean (ko)
Other versions
KR101423820B1 (en
Inventor
김영민
전희정
손용규
이동헌
김수광
성병제
송대해
문경덕
Original Assignee
한화케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화케미칼 주식회사 filed Critical 한화케미칼 주식회사
Priority to KR1020120053337A priority Critical patent/KR101423820B1/en
Publication of KR20120129834A publication Critical patent/KR20120129834A/en
Application granted granted Critical
Publication of KR101423820B1 publication Critical patent/KR101423820B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against Fc-receptors, e.g. CD16, CD32, CD64
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2887Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE: A novel bispecific monoclonal antibody and a composition for cancer treatment including the same with improved anticancer activities are provided to express improved antibody dependent cellular cytotoxicity. CONSTITUTION: A novel bispecific monoclonal antibody comprises an antibody which combines with the cancer cell surface antigen and a domain which combines with immunocyte surface antigen. A domain which binds with the immunocyte surface antigen is connected with linker at the C-terminal of Fc domain in antibody which binds with the cancer cell surface antigen. The antibody bonded with the cancer cell surface antigen is in IgG form. The domain bonded with the immunocyte surface antigen is in scFv(Single-chain variable fragment) form. The linker is peptide. The linker peptide has the sequence number 4(SEQ ID NO:4).

Description

개선된 항암활성을 가지는 신규한 양특이성 단일클론 항체 및 이를 포함하는 암치료용 조성물{Novel bi-specific monoclonal antibody with advanced anti-cancer activity and pharmaceutical composition for treating cancer comprising the same}Novel bi-specific monoclonal antibody with advanced anti-cancer activity and pharmaceutical composition for treating cancer comprising the same}

본 발명은 개선된 항암활성을 가지는 신규한 양특이성 단일클론 항체 및 이를 포함하는 암치료용 조성물에 관한 것으로서, 더욱 상세하게는 암세포 표면 항원과 결합하는 항체 및 면역세포 표면 항원과 결합하는 도메인을 포함하며, 암세포 표면 항원과 결합하는 항체의 Fc 영역의 C-말단에 면역세포 표면 항원과 결합하는 도메인이 링커로 연결된, 양특이성 단일클론 항체 및 상기 항체를 유효성분으로 포함하는 암 치료용 조성물에 관한 것이다.
The present invention relates to a novel bispecific monoclonal antibody having improved anticancer activity and a composition for treating cancer comprising the same, and more particularly, to a antibody binding to a cancer cell surface antigen and a domain to bind an immune cell surface antigen. And a bispecific monoclonal antibody having a domain linking an immune cell surface antigen to a C-terminus of an Fc region of an antibody binding to a cancer cell surface antigen with a linker, and a composition for treating cancer comprising the antibody as an active ingredient. will be.

항암치료용 항체의 대표적인 암세포 사멸기능으로는 항체의존성 세포독성(Antibody dependent cell cytotoxicity; ADCC)이 있으며, 암세포 표면에 선택적으로 결합한 항체는, Fc 부분과 면역세포 표면에 존재하는 Fc 수용체와의 결합으로 암세포 주위로 면역세포를 모이도록 하는 역할을 한다. 암세포 주위에서 활성화된 면역세포는 각종 사이토카인(cytokine)을 분비하여 암세포를 사멸시킨다. 이러한 세포사멸 과정 때문에 면역세포의 Fc 수용체에 대한 항체의 결합력은 항체의존성 세포독성 정도를 결정하는 중요한 요인이 될 수 있다.Representative cancer cell killing function of the anti-cancer antibody is antibody dependent cell cytotoxicity (ADCC), and the antibody selectively bound to the surface of the cancer cell, by binding to the Fc part and the Fc receptor present on the surface of the immune cell It plays a role in gathering immune cells around cancer cells. Activated immune cells around cancer cells secrete various cytokines (cytokine) to kill cancer cells. Due to this apoptosis process, the binding capacity of the antibody to the Fc receptor may be an important factor in determining the degree of antibody-dependent cytotoxicity.

항암치료용 양특이성 단일클론 항체는 2개의 도메인으로 이루어진 구조로서, 암세포 표면에 존재하는 특정 항원에 결합할 수 있는 도메인과 면역세포 표면에 존재하는 Fc 수용체에 결합할 수 있는 도메인으로 구성되어 있다. 초기에 개발된 양특이성 단일클론 항체의 목적은 면역글로불린(IgG) 형태의 정상적인 항체의 Fc 부분보다 더 강력한 Fc 수용체에 대한 결합력을 얻고자 하는 목적이었다. 자연살상세포(Natural Killer cell; NK cell)의 표면에 존재하는 Fc 수용체에 대한 IgG 1의 결합력은 약 1000 nM (해리상수 Kd 값) 수준이었고, 10배 이상 높은 Fc 수용체 결합력을 나타내는 도메인을 사용하여 양특이성 단일클론 항체를 제조하였다. 상기 결합도메인은 Fab' 형태의 항체단편 이외에 scFv도 사용되었으며, IgG 형태의 양특이성 단일클론 항체도 초기에는 개발되었다. 2개의 결합 도메인을 동시에 발현하는 방법으로는 디아바디(Diabody), 텐덤 디아바디(tandem Diabody), 텐덤 scFv(tandem scFv) 등의 형태가 최근에 개발되었다(Current Opinion in Drug Discovery & Development, 2009, 12(2):276-283, mAbs, 2009, 1(6):1-9).The bispecific monoclonal antibody for anticancer therapy is composed of two domains, and is composed of a domain capable of binding to a specific antigen on the surface of cancer cells and a domain capable of binding to an Fc receptor on the surface of immune cells. The purpose of the early development of bispecific monoclonal antibodies was to obtain binding to Fc receptors that are stronger than the Fc portion of normal antibodies in the form of immunoglobulin (IgG). The binding force of IgG 1 to the Fc receptor present on the surface of Natural Killer cell (NK cell) was about 1000 nM (dissociation constant Kd value), using a domain exhibiting Fc receptor binding ability 10 times higher. Bispecific monoclonal antibodies were prepared. In addition to Fab'-type antibody fragments, the binding domain used scFv as well as IgG-specific bispecific monoclonal antibodies. Diabodies, tandem diabodies, tandem scFv, and the like have been recently developed as methods for simultaneously expressing two binding domains (Current Opinion in Drug Discovery & Development, 2009, 12 (2): 276-283, mAbs, 2009, 1 (6): 1-9).

미국의 카이론(Chiron) 사에서 개발한 2B1 항체는 자연살상세포의 표면 항원(CD16)과 암세포 표면 항원(Her2)에 결합할 수 있는 생쥐 IgG(murine IgG) 형태이며, 임상시험결과 사이토카인 발작(cytokine storm)과 같은 부작용을 나타내어 개발이 중단되었다(Cancer Res. 1995, 55:4586-4593, Immunology Letters, 2008, 116:126-140, Cancer Immunol. Immunother. 1996, 42:141-150). 한편 C6.5/NM3E2 는 자연살상세포의 표면 항원(CD16)과 암세포 표면 항원(Her2)에 결합할 수 있는 텐덤 scFv 형태로, 낮은 발현율 및 CD16에 대한 낮은 항원 친화력 등의 문제점이 있었다 (Molecular Immunology, 1999, 36:433-446, J.of Immunology, 2001, 166:6112-6117). 아울러, 독일의 바이오테스트(Biotest) 사에서 개발했던 HRS-3/A9은 자연살상세포의 표면 항원(CD16)에 결합하는 Fab'와 암세포 표면 항원(Her2)에 결합하는 Fab'를 화학적인 방법으로 연결한 형태로서, 상기 항체는 낮은 생체 내 효력과 사이토카인 발작과 같은 부작용으로 임상 3상에서 개발이 중단되었다. 또한, 2개의 Fab'를 화학적 링커(chemical linker)를 사용하여 연결하는 것은 불균질한 조성과 낮은 제조 수율의 문제점을 나타냈다(Cancer Immunol. Immunother. 1999, 48:9-21, Immunology Letters, 2008, 116:126-140, Advanced Drug Delivery Reviews, 2003, 55:171-197). 독일의 아피메드(Affimed)사에서 개발 중인 AFM-13은 CD19/CD16 텐덤 디아바디 형태로(US20050089519), 자연살상세포의 표면 항원 (CD16)에 대한 친화력이 850 nM (해리상수 Kd값) 정도로 낮은 편이다(US20050089519). 2B1 antibody, developed by Chiron, USA, is a form of mouse IgG that can bind to natural killer cell surface antigen (CD16) and cancer cell surface antigen (Her2). Development was discontinued due to side effects such as cytokine storms (Cancer Res. 1995, 55: 4586-4593, Immunology Letters, 2008, 116: 126-140, Cancer Immunol. Immunother. 1996, 42: 141-150). Meanwhile, C6.5 / NM3E2 is a tandem scFv that can bind to natural killer cell surface antigen (CD16) and cancer cell surface antigen (Her2), and has problems such as low expression rate and low antigen affinity for CD16 (Molecular Immunology , 1999, 36: 433-446, J. of Immunology, 2001, 166: 6112-6117). In addition, HRS-3 / A9, developed by Biotest, Germany, is a chemical method of Fab 'binding to the surface antigen (CD16) of natural killer cells and Fab' binding to the cancer cell surface antigen (Her2). In linked form, the antibody was discontinued in phase 3 clinical trials due to its low in vivo potency and side effects such as cytokine seizures. In addition, linking two Fab's using a chemical linker has shown problems of heterogeneous composition and low production yield (Cancer Immunol. Immunother. 1999, 48: 9-21, Immunology Letters, 2008, 116: 126-140, Advanced Drug Delivery Reviews, 2003, 55: 171-197). AFM-13, developed by Affimed, Germany, is a CD19 / CD16 tandem diabody (US20050089519) with a low affinity for surface antigens (CD16) of natural killer cells, as low as 850 nM (dissociation constant Kd). Side (US20050089519).

암세포 표면항원인 Her2를 타겟으로하는 양특이성 단일클론 항체의 ADCC를 비교하면, 2B1 은 허셉틴(Herceptin, 로슈/제넨텍)보다 약 2배 높고, 텐덤 scFv 형태인 C6B1D2-NM3E2는 허셉틴보다 약 5배 낮은 결과를 보였다(Journal of Immunology, 2001, 166:6112-6117). C6B1D2-NM3E2 의 PK가 개선된 형태로 Anti-Her2 scFv 를 1개 또는 2개를 연결한 미니바디(minibody) 형태의 ADCC 효과도 허셉틴 대비 약 100배 이하로 확인되었다(JBC, 2006, 279(52):53907-53914). IgG 형태의 대조항체인 허셉틴과 비교시 이중항체의 우월한 효력개선 효과를 확인할 수 없었다.Comparing the ADCC of bispecific monoclonal antibodies targeting Her2, a cancer cell surface antigen, 2B1 is about 2 times higher than Herceptin (Roche / Genentec), and C6B1D2-NM3E2 in tandem scFv form is about 5 times lower than Herceptin The result was (Journal of Immunology, 2001, 166: 6112-6117). In the improved PK of C6B1D2-NM3E2, the effect of ADCC in the form of a minibody connecting one or two Anti-Her2 scFv was about 100 times less than that of Herceptin (JBC, 2006, 279 (52). (53907-53914). Compared with Herceptin, an IgG-type control antibody, the superior effect of the dual antibody could not be confirmed.

HRS-3/A9의 경우에도, CD30+ 세포인 L540에서 대조항체 HRS-3 보다 월등한 ADCC 증가를 보인 결과는 없다. 오히려 anti-CD16 항체인 A9를 HRS-3과 같이 넣어주면 ADCC가 감소함을 확인할 수 있었다(US5643759).Even in the case of HRS-3 / A9, there was no significant increase in ADCC in the CD30 + cells L540 compared with the control antibody HRS-3. Rather, when A9, an anti-CD16 antibody, was added together with HRS-3, ADCC was reduced (US5643759).

또한, Neutrophil 리크루팅 방법을 활용하는 bispecific scFv (HLA classII X CD89) 형태의 경우에도, IgG 형태의 대조항체인 anti-HLA classII (B lymphoid cell) IgG1 형태보다 증가된 ADCC 효과를 보였지만, EC50 값이 2.5배 정도 증가하여 월등한 효력개선을 확보할 수 없었다(Journal of Immunology, 2010, 184:1210-1217). In addition, the bispecific scFv (HLA class II X CD89) form using Neutrophil recruiting showed an increased ADCC effect than the anti-HLA class II (B lymphoid cell) IgG1 form, which is an IgG form of the antibody, but the EC50 value was 2.5. It has been increased by a factor of two, so that no significant improvement can be obtained (Journal of Immunology, 2010, 184: 1210-1217).

그러므로, 암세포 표면항원의 종류와 상관없이 IgG 형태인 대조항체와 비교해서 월등한 ADCC 개선효과를 나타낼 수 있는 양특이성 단일클론 항체가 보고된 바 없고 이러한 점이 임상에서 개발이 중단한 원인이라고 볼 수 있다. 즉, 낮은 ADCC 개선효과로 원하는 치료효과를 얻기 위해 많은 양을 투여해야 하고, 많은 양의 양특이성 단일클론 항체가 투여되면 불필요한 면역세포의 활성화가 이루어지고 부작용이 발생한 것으로 볼 수 있다. Therefore, no bispecific monoclonal antibody has been reported that can show superior ADCC improvement compared to IgG-type control antibody regardless of the type of cancer cell surface antigen. . In other words, a large amount of administration must be administered to obtain a desired therapeutic effect with a low ADCC improvement effect, and when a large amount of bispecific monoclonal antibody is administered, unnecessary immune cell activation occurs and side effects may occur.

텐덤 scFv 형태(HLA classII X CD89)의 발현은, E.coli에서 발현시 Inclusion body에서 불용성으로 발현되고 refolding이 진행되지 않았으며, CHO 세포에서는 ~5㎍/L 의 매우 낮은 발현량을 보였으며, insect 세포(SF21)에서는 60~100㎍/L 정도의 발현량을 확인하여 상업화에 매우 부적합한 생산성을 확인하였다(Journal of Immunology, 2010, 184:1210-1217). HRS-3/A9 은 CD30/CD16 diFab 형태로 2개의 Fab을 화학적 링커로 연결된 형태인데, 배양액 1L기준으로 약 100㎎ 정도의 낮은 생산성 때문에 상업적으로 활용할 수 없다(Clinical Cancer research, 2001, 7:1873-1881). 그러므로, 유전자재조합 기술로 높은 발현량과 생산성을 확보할 수 있는 양특이성 단일클론 항체의 신규 형태가 필요하다.
Expression of the tandem scFv form (HLA class II X CD89) was expressed in E. coli as insoluble in the inclusion body and did not undergo refolding, and CHO cells showed very low expression levels of ˜5 μg / L. Insect cells (SF21) confirmed the expression of about 60 ~ 100㎍ / L very unsuitable for commercialization (Journal of Immunology, 2010, 184: 1210-1217). HRS-3 / A9 is a form of CD30 / CD16 diFab in which two Fabs are linked by a chemical linker, which cannot be used commercially due to the low productivity of about 100 mg based on 1 L of culture (Clinical Cancer research, 2001, 7: 1873). -1881). Therefore, there is a need for a novel form of bispecific monoclonal antibody capable of ensuring high expression levels and productivity with genetic recombination technology.

이에 본 발명자들은 높은 발현량과 생산성을 확보할 수 있는 동시에, 개선된 ADCC 효과를 나타내는 양특이성 항체를 개발하기 위해 노력한 결과, 자연살상세포의 표면항원(CD16)에 선택적인 scFv를 항암항체의 카르복실 말단에 펩타이드 링커로 융합된 새로운 형태의 양특이성 단일클론 항체를 제조하였고, 증가된 CD16 결합력과 월등히 개선된 ADCC 효과를 확인하였고, 높은 발현량과 생산성도 확보하여 본 발명을 완성하였다.
Therefore, the present inventors have tried to develop a bispecific antibody that can ensure high expression and productivity, and exhibit improved ADCC effect. As a result, the scFv that is selective for the surface source of natural killer cells (CD16) is selected as the carboxyl of the anticancer antibody. A novel form of bispecific monoclonal antibody fused with a peptide linker at the end was prepared, and the increased CD16 binding ability and the improved ADCC effect were confirmed, and high expression and productivity were secured to complete the present invention.

본 발명의 하나의 목적은 암세포 표면 항원과 결합하는 항체 및 면역세포 표면 항원과 결합하는 도메인을 포함하는 양특이성 단일클론 항체를 제공하는 것이다.One object of the present invention is to provide a bispecific monoclonal antibody comprising an antibody binding to a cancer cell surface antigen and a domain binding to an immune cell surface antigen.

본 발명의 다른 목적은 상기 양특이성 단일클론 항체를 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing the bispecific monoclonal antibody.

본 발명의 또 다른 목적은 상기 양특이성 단일클론 항체을 유효성분으로 하고, 약제학적으로 허용가능한 담체를 포함하는 암치료용 조성물을 제공하는 것이다.
Still another object of the present invention is to provide a composition for treating cancer, comprising the bispecific monoclonal antibody as an active ingredient and a pharmaceutically acceptable carrier.

상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 암세포 표면 항원과 결합하는 항체 및 면역세포 표면 항원과 결합하는 도메인을 포함하며, 암세포 표면 항원과 결합하는 항체의 Fc 영역의 C-말단에 면역세포 표면 항원과 결합하는 도메인이 링커로 연결된, 양특이성 단일클론 항체를 제공한다.As one embodiment for achieving the above object, the present invention comprises an antibody that binds to a cancer cell surface antigen and a domain that binds to an immune cell surface antigen, and is immune to the C-terminus of the Fc region of an antibody that binds to a cancer cell surface antigen. Provided are bispecific monoclonal antibodies in which domains that bind cell surface antigens are linked by linkers.

이때, 상기 암세포 표면 항원과 결합하는 항체는 특별히 이에 제한되지 않으나, IgG 형태인 양특이성 단일클론 항체를 사용함이 바람직하고, 상기 면역세포 표면 항원과 결합하는 도메인은 특별히 이에 제한되지 않으나, scFv (Single-chain variable fragment) 형태임이 바람직하다. 상기 링커는 특별히 이에 제한되지 않으나, 펩타이드 링커로서 서열번호 4의 아미노산 서열로 구성됨이 바람직하다.
The antibody binding to the cancer cell surface antigen is not particularly limited, but it is preferable to use a monospecific monoclonal antibody in the form of IgG, and the domain binding to the immune cell surface antigen is not particularly limited. However, scFv -chain variable fragment. The linker is not particularly limited, but is preferably composed of the amino acid sequence of SEQ ID NO: 4 as a peptide linker.

본 발명에서 용어, "양특이성 단일클론 항체"란 서로 다른 두 종류의 항원에 결합할 수 있는 단일클론 항체를 의미하며, 자연적으로는 존재하지 않으며, 유전공학에 의해 생산된 형태를 의미한다. 본 발명의 목적상 상기 양특이성 단일클론 항체는 동시에 면역세포 표면 항원 및 암세포 표면 항원과 결합할 수 있다.As used herein, the term "bispecific monoclonal antibody" refers to a monoclonal antibody capable of binding to two different antigens, and does not exist naturally, and refers to a form produced by genetic engineering. For the purposes of the present invention, the bispecific monoclonal antibody may simultaneously bind to immune cell surface antigens and cancer cell surface antigens.

본 발명에서 용어, "항체"란 면역학적으로 특정 항원과 반응성을 갖는 면역글로불린 분자를 포함하며, 다클론항체 및 단일클론항체를 모두 포함한다. 또한, 상기 용어는 키메라성 항체(예를 들면, 인간화 뮤린 항체) 및 이종결합항체(예를 들면, 양특이성 항체)와 같은 유전공학에 의해 생산된 형태를 포함한다. 본 발명의 목적상 상기 항체는 이종결합항체인 양특이성 단일클론 항체를 의미하며, 기존의 개량형 항암치료용 항체가 가지고 있던 단점인 면역글로불린(IgG) 형태의 경우 IgG에 존재하는 Fc 부분이 다양한 면역세포의 표면에 존재하는 다양한 Fc 수용체와의 결합으로 암세포 주위로 타겟팅되는 것을 방해하는 것을 방지하기 위해 Fc 영역에 면역세포 표면항원과 결합하는 도메인이 결합하여 목적하는 면역세포와의 결합만을 수행할 수 있게 한다. 본 발명에서 용어 도메인은 항체 단편과 혼용될 수 있다.As used herein, the term "antibody" includes immunoglobulin molecules that are immunologically reactive with specific antigens, and include both polyclonal and monoclonal antibodies. The term also includes forms produced by genetic engineering such as chimeric antibodies (eg, humanized murine antibodies) and heterologous antibodies (eg, bispecific antibodies). For the purposes of the present invention, the antibody refers to a bispecific monoclonal antibody that is a heterologous antibody, and in the case of immunoglobulin (IgG) form, which is a disadvantage of the existing improved anti-cancer therapeutic antibody, the Fc portion of IgG is variously immunized. In order to prevent interfering targeting around cancer cells by binding to various Fc receptors present on the surface of the cell, domains that bind immune cell surface antigens to the Fc region may bind to only the desired immune cells. To be. In the present invention, the term domain can be used interchangeably with antibody fragments.

본 발명에서 용어, "항체 단편"은 항원결합능력을 가지는 단편, 예를 들면, Fab', F(ab')2, Fab, Fv 및 rIgG를 포함하는, 항체의 항원 결합 형태를 포함한다. 또한, 상기 용어는 재조합 단일 사슬 Fv 단편(scFv)을 나타내고, 이가(bivalent) 또는 양특이성 분자, 디아바디 (Diabody), 트리아바디(Triabody) 및 테트라바디 (Tetrabody)를 포함한다.As used herein, the term “antibody fragment” includes antigen-binding forms of an antibody, including fragments having antigen-binding ability, eg, Fab ′, F (ab ′) 2, Fab, Fv and rIgG. The term also refers to a recombinant single chain Fv fragment (scFv) and includes bivalent or bispecific molecules, diabodies, triabodies and tetrabodies.

본 발명에서 용어, "면역세포"는 항체의존성 세포독성 메커니즘에 작용하는 면역세포를 제한 없이 포함하나, 바람직하게는 자연살상세포 (Natural killer cell) 또는 T 세포일 수 있다.As used herein, the term "immune cell" includes, but is not limited to, immune cells that act on antibody-dependent cytotoxic mechanisms, and may preferably be natural killer cells or T cells.

본 발명에서 용어, "면역세포 표면 항원"이란 자연살상세포 또는 T 세포 표면에 존재하는 항원을 제한 없이 포함하나, 바람직하게는 CD3, CD16, CD32, CD64 또는 CD89 등일 수 있다. 본 발명은 상기 면역세포 표면 항원에 결합하는 도메인을 포함하는 항체 단편으로 구성될 수 있다. 본 발명의 일 구현예에 따르면 CD16을 이용하여 양특이성 단일클론 항체를 제작하였다 (도 1).As used herein, the term "immune cell surface antigen" includes, but is not limited to, antigens present on the surface of natural killer cells or T cells, preferably CD3, CD16, CD32, CD64, or CD89. The present invention may comprise an antibody fragment comprising a domain that binds to the immunocell surface antigens. According to one embodiment of the present invention, bispecific monoclonal antibodies were prepared using CD16 (FIG. 1).

본 발명에서 용어, "암세포 표면 항원"이란 암세포 표면에 존재하는 항원을 제한 없이 포함하나, 바람직하게는 CD19, CD20, Her2, EpCAM (Epithelial cell adhesion molecule) 또는 EGFR (epidermal growth factor receptor) 등일 수 있다. 본 발명의 양특이성 단일클론 항체의 면역세포 또는 암세포 표면 항원에 대한 해리 상수 (KD 값)은 이에 제한되지는 않으나, 100 nM 이하임이 바람직하다. 개발중인 항암치료용 개량형 항체는, Fc 아미노산 서열을 변형하거나 당쇄 구조를 변형하는 방법으로 면역세포에 대한 항원 친화력을 개선하였고 이 경우 CD16 에 대한 친화력은 최대 50 nM 정도로 보고되었다. 면역세포를 T 세포로 사용하는 경우(MT101), CD3에 대한 친화력은 100 nM 정도로 보고되었다. 본 발명의 일 구현예에 따르면 CD20 또는 Her2를 이용하여 양특이성 단일클론항체를 제작하였다.As used herein, the term "cancer cell surface antigen" includes, without limitation, antigens present on the surface of cancer cells, but may preferably be CD19, CD20, Her2, Epithelial cell adhesion molecule (EpCAM) or epidermal growth factor receptor (EGFR). . The dissociation constant (K D value) for the immune cell or cancer cell surface antigen of the bispecific monoclonal antibody of the present invention is preferably, but not limited to, 100 nM or less. The anti-cancer therapeutic improved antibody under development improved the antigen affinity for immune cells by modifying the Fc amino acid sequence or the sugar chain structure, in which case the affinity for CD16 was reported to be up to 50 nM. When using immune cells as T cells (MT101), the affinity for CD3 was reported to be about 100 nM. According to one embodiment of the present invention, bispecific monoclonal antibodies were prepared using CD20 or Her2.

본 발명에서 용어, "scFv"는 완전한 항원-인식 및 항원-결합 부위를 갖는 최소 항체 단편을 의미하며, 항체의 VH 및 VL 도메인을 포함하고, 여기서 이 도메인은 단일 폴리펩티드 사슬에 존재한다. As used herein, the term “scFv” refers to the minimum antibody fragment having a complete antigen-recognition and antigen-binding site, comprising the V H and V L domains of an antibody, wherein the domain is present in a single polypeptide chain.

또한, 본 발명에서 용어, "단일클론항체"는 실질적으로 동일한 항체 집단에서 수득한 단일 분자 조성의 항체 분자를 의미하고, 이러한 단일클론항체는 특정 에피토프에 대해 단일 결합 특이성 및 친화도를 나타낸다.
In addition, the term “monoclonal antibody” in the present invention means an antibody molecule of a single molecular composition obtained from substantially the same antibody population, which monoclonal antibody exhibits single binding specificity and affinity for a particular epitope.

본 발명에서 용어, "세포독성"은 인체 내에서 면역세포 등이 바이러스나 기생 생물에 감염된 자신의 세포를 죽이는 현상으로, 본 발명에서는 주로 항체의존성 세포독성(ADCC, antibody-dependent cell-mediated cytotoxicity)을 의미한다. 항체의존성 세포독성이란 대식세포나 백혈구가 항원에 결합한 항체를 인식하여, 해당 항원을 파괴하는 기작을 말한다. 항체의존성 세포독성 기작은 항원체가 기생충이나 이물질화된 고형의 종양 등, 식세포 작용에 의해 섭취되기에 너무 큰 경우와, 항체가 항원의 표면을 덮음에 따라 항원을 직접 인식하여 공격하는 T세포의 작용이 저해되는 경우에 중요한 역할을 한다. 본 발명에서 ADCC 기작은 항원으로 암세포 표면 단백질을 사용하여 면역반응을 이용한 항암효과를 일으킨다.
As used herein, the term "cytotoxicity" refers to a phenomenon in which an immune cell or the like kills its own cells infected with a virus or a parasitic organism, and in the present invention, mainly antibody-dependent cell-mediated cytotoxicity (ADCC). Means. Antibody-dependent cytotoxicity refers to a mechanism in which macrophages or leukocytes recognize an antibody bound to an antigen and destroy the antigen. Antibody-dependent cytotoxic mechanism is the action of T cells that are too large to be ingested by phagocytosis, such as parasites or alien solidified tumors, and directly recognize and attack the antigen as the antibody covers the surface of the antigen. It plays an important role in the case of being inhibited. In the present invention, the ADCC mechanism produces an anticancer effect using an immune response using a cancer cell surface protein as an antigen.

암세포 특유 단백질을 항원으로 인식하는 항체를 이용하여 암을 치료하는 방법에 대해서 많은 연구와 항암제 실용화가 진행되어 왔다. 허셉틴이나 리툭시맙 등 IgG 형태의 제품화된 항암제가 존재하는데 반하여, 암세포 표면항원과 면역세포 표면항원을 모두 인식하는 양특이성 항체는 성공적인 결과를 가져오지 못했다. 구체적으로, 기존 양특이성 항체는 불균질한 조성, 낮은 발현율, 낮은 항원 친화력 및 단순한 IgG 제품에 비해 개선되지 않은 ADCC 효과 등의 문제점을 보였다. 낮은 ADCC 개선효과로 원하는 치료효과를 얻기 위해 많은 양을 투여하면, 불필요한 면역세포의 활성화가 이루어져 사이토카인 발작 등의 부작용이 발생하는 등의 문제점을 보였다. Much research and practical use of anticancer drugs have been conducted to treat cancer using antibodies that recognize cancer cell-specific proteins as antigens. While IgG-type anticancer drugs such as Herceptin and Rituximab exist, bispecific antibodies that recognize both cancer cell surface antigens and immune cell surface antigens have not been successful. Specifically, existing bispecific antibodies have shown problems such as heterogeneous composition, low expression rate, low antigen affinity, and ADCC effect not improved compared to simple IgG products. When a large amount is administered to obtain a desired therapeutic effect with a low ADCC improvement effect, unnecessary immune cells are activated, resulting in side effects such as a cytokine attack.

이에 본 발명의 양특이성 항체는 IgG 형태의 암세포 표면 항원에 결합하는 항체의 Fc 영역의 C-말단에 면역세포 표면 항원에 결합하는 도메인이 링커로 연결된 형태의 항체로서, 기존 양특이성 항체에 비해 높은 발현양과 생산성 및 개선된 ADCC 효과로 상기 문제점을 해결하였다. 먼저, 본 발명의 양특이성 항체는 단일클론 항체로 균질한 조성을 가지고 있으며, 실시예 1-2에서 볼 수 있듯이 CD20/CD16 탠덤 scFv는 기존에 알려진 대로 낮은 발현율을 보여 수득 및 기타 실험을 수행하지 못한데 비하여 본 발명의 양특이성 항체는 이에 비해 향상된 발현 및 수득율을 보였다. 또한, C-말단에 scFv를 결합함으로써 암세포 표면 항원 인식부위의 결합력을 저해시키지 않는 구성적 특징에 따라 높은 항원 결합력(도 2 및 도 3) 및 우월한 ADCC 효과를 가지는 것을 확인하였다(도 4).
Accordingly, the bispecific antibody of the present invention is a linker in which a domain that binds an immune cell surface antigen to the C-terminus of the Fc region of the antibody that binds to an IgG type cancer cell surface antigen is linked with a linker, which is higher than a conventional bispecific antibody. Expression problems, productivity and improved ADCC effect solved this problem. First, the bispecific antibody of the present invention has a homogeneous composition as a monoclonal antibody, and as shown in Examples 1-2, the CD20 / CD16 tandem scFv shows a low expression rate as known in the art and has not been obtained and other experiments have been performed. In comparison, the bispecific antibodies of the present invention showed improved expression and yield. In addition, by binding the scFv to the C-terminal was confirmed to have a high antigen binding capacity (Fig. 2 and 3) and superior ADCC effect according to the constitutive features that do not inhibit the binding capacity of the cancer cell surface antigen recognition site (Fig. 4).

본 발명의 일 구현예에 따르면 본 발명자들은 IgG-scFv형태로 CD20/CD16 IgG-scFv 및 Her2/CD16 IgG-scFv 형태의 양특이성 단일클론 항체를 제작하였으며 (실시예 1-1 및 1-3), ELISA 및 BIAcore 방법으로 면역세포 표면항원인 CD16과의 결합력을 측정한 결과, 대조항암항체 및 Fc engineering 항체보다 결합력이 높은 것을 확인하였다(실시예 2 및 표 1). 아울러, 암세포 표면 항원인 CD20이 과발현되어 있는 세포(Daudi)를 이용하여 항체의존성 세포독성(ADCC) 효과를 분석하였다. 그 결과, 본 발명의 양특이성 단일클론 항체의 대조군인 대조항암항체는 ADCC 효과가 나타나지 않았으며, 다른 대조군인 Fc engineering 항암항체는 1ng/mL부터 항체의존적 세포독성이 발생되기 시작한데 비하여, 양특이성 단일클론 항체는 0.1ng/mL부터 항체의존적 세포독성이 발생되기 시작하면서 10ng/mL 군에서는 최대 80% 항체의존적 세포독성 발생을 확인하였다(도 4). 이에 따라, 본 발명의 양특이성 단일클론 항체를 개선된 ADCC효과가 있는 새로운 양특이성 단일클론 항체의 모델로 사용될 수 있음을 확인하였다.According to an embodiment of the present invention, the present inventors prepared bispecific monoclonal antibodies in the form of CD20 / CD16 IgG-scFv and Her2 / CD16 IgG-scFv in IgG-scFv form (Examples 1-1 and 1-3). As a result of measuring the binding force with CD16, an immune cell surface antigen, ELISA and BIAcore method, it was confirmed that the binding force is higher than the control anticancer antibody and Fc engineering antibody (Example 2 and Table 1). In addition, the antibody-dependent cytotoxicity (ADCC) effect was analyzed using a cell (Daudi) overexpressed cancer cell surface antigen CD20. As a result, the control anticancer antibody of the bispecific monoclonal antibody of the present invention did not exhibit ADCC effect, while the other control Fc engineering anticancer antibody began to develop antibody-dependent cytotoxicity from 1 ng / mL, The monoclonal antibody started to develop antibody-dependent cytotoxicity from 0.1ng / mL, confirming the occurrence of up to 80% antibody-dependent cytotoxicity in the 10ng / mL group (Fig. 4). Accordingly, it was confirmed that the bispecific monoclonal antibody of the present invention can be used as a model of a new bispecific monoclonal antibody with improved ADCC effect.

본 발명의 양특이성 단일클론 항체는 이중항체 포맷인 IgG-scFv 형태이며, scFv는 면역세포의 표면항원에 결합하는 도메인이며, 암세포 표면항원과 결합하는 항체와는 펩타이드 링커로 연결된 것을 특징으로 하며, 이러한 구성의 대표적인 모식도를 도 1에 나타냈다.
Bispecific monoclonal antibody of the present invention is in the form of a double-antibody IgG-scFv, scFv is a domain that binds to the surface antigen of immune cells, characterized in that the antibody that binds to the surface antigen of the cancer cell is linked with a peptide linker, A typical schematic diagram of this configuration is shown in FIG. 1.

또 하나의 양태로서, 본 발명은 상기 양특이성 단일클론 항체를 제조하는 방법을 제공한다.In another aspect, the present invention provides a method for preparing the bispecific monoclonal antibody.

본 발명의 항체는 당업계에 알려져 있는 방법, 예를 들어 파지 디스플레이 방법 또는 효모 세포 표면 발현 시스템을 사용하여 생성될 수 있다. 본 발명의 항체는 인간을 포함하는 포유동물, 조류 등을 포함한 임의의 동물로부터 유래한 것일 수 있다.Antibodies of the invention can be produced using methods known in the art, such as phage display methods or yeast cell surface expression systems. Antibodies of the invention may be derived from any animal, including mammals, birds, and the like, including humans.

바람직하게, 본 발명의 양특이성 단일클론 항체를 제조하는 방법은 (a) 암세포 표면 항원과 결합하는 항체 및 면역세포 표면 항원과 결합하는 도메인을 암호화하는 폴리뉴클레오티드를 각각 수득하는 단계; (b) 암세포 표면 항원과 결합하는 항체의 3'-말단에 면역세포 표면 항원과 결합하는 도메인의 5'-말단을 연결하여, 양특이성 단일클론 항체의 유전자를 수득하는 단계; (c) 상기 수득한 양특이성 단일클론 항체의 유전자를 클로닝하여, 양특이성 단일클론 항체 발현벡터를 수득하는 단계; (d) 상기 수득한 발현벡터를 숙주세포에 도입하여 형질전환체를 수득하는 단계; 및, (e) 상기형질전환체를 배양하고, 이로부터 양특이성 단일클론 항체를 회수하는 단계를 포함할 수 있다.Preferably, the method for producing a bispecific monoclonal antibody of the present invention comprises the steps of: (a) obtaining an antibody binding to a cancer cell surface antigen and a polynucleotide encoding a domain binding to an immune cell surface antigen, respectively; (b) linking the 5'-terminus of the domain that binds the immune cell surface antigen to the 3'-terminus of the antibody that binds the cancer cell surface antigen to obtain a gene of a bispecific monoclonal antibody; (c) cloning the gene of the obtained bispecific monoclonal antibody to obtain a bispecific monoclonal antibody expression vector; (d) introducing the obtained expression vector into a host cell to obtain a transformant; And, (e) culturing the transformant and recovering the bispecific monoclonal antibody therefrom.

더욱 바람직하게는 상기 (a) 및 (b) 단계는, (i) 암세포 표면 항원과 결합하는 항체의 중쇄 및 경쇄를 코딩하는 유전자와 면역세포 표면 항원과 결합하는 항체의 중쇄 가변 영역 및 경쇄 가변 영역을 코딩하는 유전자를 발현벡터에서 증폭하는 단계; (ii) 면역세포 표면 항원과 결합하는 항체의 중쇄 가변 영역 및 경쇄 가변 영역을 링커로 연결시켜주는 단계; 및 (iii) 암세포 표면 항원과 결합하는 항체의 중쇄 영역 3'-말단과 상기 (ii)에서 제조된 면역세포 scFv를 링커로 연결해 주는 단계를 포함할 수 있다. 아울러, 상기의 단계를 거쳐 결합된 유전자를 또 다른 발현벡터에서 클로닝하는 단계를 거쳐 양특이성 단일클론 항체를 제조할 수 있다. 상기 (ii) 단계의 링커는 다양한 길이의 (GGGGS)n 펩타이드를 코딩하는 폴리뉴클레오티드일 수 있으며 바람직하게는 서열번호 1일 수 있다. 상기 (iii) 단계의 링커는 다양한 길이의 (GGGGS)n 펩타이드를 코딩하는 폴리뉴클레오티드일 수 있으며 바람직하게는 서열번호 3일 수 있다. More preferably, the steps (a) and (b) comprise (i) a gene encoding the heavy and light chains of the antibody binding to the cancer cell surface antigen and the heavy chain variable region and the light chain variable region of the antibody binding to the immune cell surface antigen. Amplifying a gene encoding the gene in the expression vector; (ii) linking the heavy chain variable region and the light chain variable region of the antibody that binds the immune cell surface antigen with a linker; And (iii) linking the heavy chain region 3′-terminus of the antibody binding to the cancer cell surface antigen with the immune cell scFv prepared in (ii) with a linker. In addition, a bispecific monoclonal antibody can be prepared by cloning the bound gene in another expression vector through the above steps. The linker of step (ii) may be a polynucleotide encoding (GGGGS) n peptides of various lengths, and preferably may be SEQ ID NO: 1. The linker of step (iii) may be a polynucleotide encoding (GGGGS) n peptides of various lengths, preferably SEQ ID NO: 3.

본 발명의 일 구현예에 따르면 Her2 또는 CD20을 암세포 표면 항원으로 인식하는 항체와 CD16을 면역세포 표면 항원으로 인식하는 항체의 중쇄 및 경쇄를 코딩하는 유전자를 발현벡터에서 증폭하는 단계, 면역세포 표면 항원 및 암세포 표면 항원의 중쇄 가변 영역 및 경쇄 가변 영역을 링커 펩타이드(서열번호 1)로 연결시켜주는 단계, 암세포 표면 항원의 중쇄 영역 3'-말단과 면역세포 scFv를 링커 펩타이드(서열번호 3)로 연결해주는 단계, 및 상기의 단계를 거쳐 결합된 유전자를 또 다른 발현벡터에서 클로닝하는 단계를 거쳐, 동물세포에서 발현시키고 정제하며 양특이성 단일클론 항체 CD20/CD16 IgG-scFv 및 Her2/CD16 IgG-scFv 형태를 제조하였다. 또한, 본 발명에서는 양특이성 단일클론 항체의 약동력학 (pharmacokinetics)연구를 위해 마우스 혈장 내 반감기를 확인할 수 있다. According to an embodiment of the present invention, amplifying a gene encoding the heavy and light chains of an antibody that recognizes Her2 or CD20 as a cancer cell surface antigen and an antibody that recognizes CD16 as an immune cell surface antigen in an expression vector, an immune cell surface antigen And linking the heavy chain variable region and the light chain variable region of the cancer cell surface antigen with the linker peptide (SEQ ID NO: 1), connecting the heavy chain region 3'-terminus of the cancer cell surface antigen and the immune cell scFv with the linker peptide (SEQ ID NO: 3). Cloning the genes linked to another expression vector through the above steps, and expressing and purifying the animal cells in the form of bispecific monoclonal antibodies CD20 / CD16 IgG-scFv and Her2 / CD16 IgG-scFv. Was prepared. In the present invention, half-life in mouse plasma can be identified for pharmacokinetics studies of bispecific monoclonal antibodies.

본 발명의 일 구현예에 따르면 양특이성 단일클론 항체가 생체 내 암세포 억제 효과가 있는지를 검증하기 위하여 항암모델 마우스에서 효능 실험을 실시했다. CD20/CD16 양특이성 단일클론 항체의 경우는 기존 약물인 Rituxan을 대조약물로 사용했다. Her2/CD16 양특이성 단일클론 항체의 경우는 기존 약물인 Herceptin을 대조약물로 사용했다. 그 결과, 항체 투여 4일 이후부터 Vehicle 투여군과 대비하여 종양크기가 감소되었으며, 투여 12일째는 Vehicle 투여군에 비하여 종양크기의 증가가 유의미하게 감소됨을 확인할 수 있었다.
According to one embodiment of the present invention, to test whether the bispecific monoclonal antibody has a cancer cell inhibitory effect in vivo, efficacy experiments were conducted in anti-cancer model mice. In the case of CD20 / CD16 bispecific monoclonal antibodies, Rituxan was used as a reference drug. In the case of Her2 / CD16 bispecific monoclonal antibody, Herceptin was used as a reference drug. As a result, the tumor size was reduced compared to the vehicle-administered group after 4 days of antibody administration, and the increase in tumor size was significantly reduced compared to the vehicle-administered group at day 12.

또 하나의 양태로서, 본 발명은 상기 양특이성 단일클론 항체를 유효성분으로 하고, 약제학적으로 허용가능한 담체를 포함하는 암치료용 조성물을 제공한다.In another aspect, the present invention provides a composition for treating cancer, comprising the bispecific monoclonal antibody as an active ingredient and a pharmaceutically acceptable carrier.

본 발명에서 용어, "암"은 암의 종류를 제한 없이 포함한, 그 예로 식도암, 위암, 대장암, 직장암, 구강암, 인두암, 후두암, 폐암, 결장암, 유방암, 자궁 경부암, 자궁 내막체암, 난소암, 전립선암, 고환암, 방광암, 신장암, 간암, 췌장암, 골암, 결합 조직암, 피부암, 뇌암, 갑상선암, 백혈병, 호지킨(Hodgkin) 질환, 림프종, 또는 다발성 골수종혈액암일 수 있다.As used herein, the term "cancer" includes, without limitation, esophageal cancer, stomach cancer, colon cancer, rectal cancer, oral cancer, pharyngeal cancer, laryngeal cancer, lung cancer, colon cancer, breast cancer, cervical cancer, endometrial cancer, ovarian cancer Prostate cancer, testicular cancer, bladder cancer, kidney cancer, liver cancer, pancreatic cancer, bone cancer, connective tissue cancer, skin cancer, brain cancer, thyroid cancer, leukemia, Hodgkin's disease, lymphoma, or multiple myeloma hematoma cancer.

본 발명의 양특이성 단일클론항체는 기존의 대조항암항체나 Fc engineering 항암항체에 비하여 우월한 암세포를 사멸시키는 항체의 기능인, 항체의존성 세포독성(ADCC)효과가 있음을 확인하였으며, 이를 통해 항암용 조성물로 사용될 수 있음을 확인하였다(도 4). 또한, 림프종인 Daudi 세포를 투여한 xenograft 마우스 항암모델에서 항암치료효과를 확인하였으며, 이는 본 발명의 양특이성 단일클론항체를 포함한 조성물이 암 치료용 조성물로 사용할 수 있음을 뒷받침하는 것이다.The bispecific monoclonal antibody of the present invention was confirmed to have an antibody-dependent cytotoxicity (ADCC) effect, which is a function of an antibody that kills cancer cells superior to conventional control or Fc engineering anticancer antibodies. It was confirmed that it can be used (Fig. 4). In addition, the anticancer treatment effect was confirmed in xenograft mouse anticancer model administered with Daudi cells, which is a lymphoma, which supports that the composition containing the bispecific monoclonal antibody of the present invention can be used as a cancer treatment composition.

본 발명에서 용어, "약학적으로 허용가능한 담체"란 생물체를 자극하지 않고 투여 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 말한다. 액상 용액으로 제제화되는 조성물에 있어서 허용되는 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. As used herein, the term "pharmaceutically acceptable carrier" refers to a carrier or diluent that does not irritate an organism and does not inhibit the biological activity and properties of the administered compound. Examples of the pharmaceutical carrier which is acceptable for the composition to be formulated into a liquid solution include sterilized and sterile water suitable for the living body such as saline, sterilized water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, One or more of these components may be mixed and used. If necessary, other conventional additives such as an antioxidant, a buffer, and a bacteriostatic agent may be added.

본 발명에 따른 상기 양특이성 단일클론 항체를 포함하는 조성물은, 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽 및 에어로졸 등의 경구형 제형, 외용제, 좌제 또는 멸균 주사용액의 형태로 제형화하여 사용될 수 있다.
Compositions comprising the bispecific monoclonal antibodies according to the present invention, respectively, oral formulations, external preparations, suppositories or sterile injections of powders, granules, tablets, capsules, suspensions, emulsions, syrups and aerosols according to conventional methods It can be formulated and used in the form of a solution.

또 하나의 양태로서, 본 발명은 상기 양특이성 단일클론 항체를 이용하여 암을 치료하는 방법을 제공한다.In another aspect, the present invention provides a method of treating cancer using the bispecific monoclonal antibody.

상기 방법은 치료를 필요로 하는 개체에 상기 약학적 조성물을 투여하는 단계를 포함하는 암을 치료하는 방법일 수 있으며, 이때, 사용되는 양특이성 단일클론 항체, 담체 및 암의 종류는 상기에서 설명한 바와 동일하다.The method may be a method of treating cancer comprising administering the pharmaceutical composition to a subject in need thereof, wherein the bispecific monoclonal antibodies, carriers, and types of cancer used are as described above. same.

상기 조성물은 약학적으로 유효한 양으로 단일 또는 다중 투여될 수 있다. 이때, 조성물은 액제, 산제, 에어로졸, 캡슐제, 장용피 정제 또는 캡슐제 또는 좌제의 형태로 투여할 수 있다. 투여 경로는 복강내 투여, 정맥내 투여, 근육내 투여, 피하내 투여, 내피 투여, 경구 투여, 국소 투여, 비내 투여, 폐내 투여, 직장내 투여 등을 포함하지만, 이에 제한되지는 않는다. 그러나 경구 투여시, 펩타이드는 소화가 되기 때문에 경구용 조성물은 활성 약제를 코팅하거나 위에서의 분해로부터 보호되도록 제형화 되어야 한다. 또한, 제약 조성물은 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다. 또한, 본 발명의 항암 치료용 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있다.The composition may be administered in single or multiple amounts in a pharmaceutically effective amount. In this case, the composition may be administered in the form of a liquid, powder, aerosol, capsule, enteric skin tablets or capsules or suppositories. Routes of administration include, but are not limited to, intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, endothelial administration, oral administration, topical administration, intranasal administration, pulmonary administration, rectal administration, and the like. However, upon oral administration, since the peptide is digested, the oral composition must be formulated to coat the active agent or to protect it from degradation in the stomach. In addition, the pharmaceutical composition may be administered by any device in which the active agent may migrate to the target cell. In addition, the anticancer composition of the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, and may be administered sequentially or simultaneously with conventional therapeutic agents.

본 발명의 상기 양특이성 단일클론 항체를 포함하는 조성물은 약제학적으로 유효한 양으로 투여한다. "약제학적으로 유효한 양"이란 의학적 치료 또는 예방에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료 또는 예방하기에 충분한 양을 의미하며, 유효 용량 수준은 질환의 중증도, 약물의 활성, 환자의 연령, 체중, 건강, 성별, 환자의 약물에 대한 민감도, 사용된 본 발명 조성물의 투여 시간, 투여 경로 및 배출 비율 치료기간, 사용된 본 발명의 조성물과 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다.
The composition comprising the bispecific monoclonal antibody of the present invention is administered in a pharmaceutically effective amount. “Pharmaceutically effective amount” means an amount sufficient to treat or prevent a disease at a reasonable benefit / risk ratio applicable to medical treatment or prevention, wherein an effective dose level is the severity of the disease, the activity of the drug, the age of the patient, Body weight, health, sex, sensitivity to the drug of the patient, time of administration of the composition of the invention used, route of administration and rate of release, duration of treatment, elements including drugs used or combined with the composition of the invention used and other medical fields Can be determined according to well-known factors.

본 발명의 양특이성 단일클론 항체를 포함하는 암치료용 조성물을 이용하면, 면역세포 표면 항원과 결합할 수 있는 도메인에 의해 면역세포를 강력하게 끌어와서 대조 항암항체 또는 보고된 Fc 조작된(Fc engineering) 항체보다 증가된 항체의존성 세포독성을 나타낼 수 있으므로, 보다 효과적인 항암치료에 활용될 수 있을 것이다.
Using a cancer therapeutic composition comprising the bispecific monoclonal antibody of the present invention, a powerful anti-cancer antibody is attracted by a domain capable of binding to an immune cell surface antigen, thereby controlling a control anticancer antibody or a reported Fc engineered (Fc engineering). It can be used for more effective chemotherapy because it can show increased antibody-dependent cytotoxicity than antibodies.

도 1 은 양특이성 항암항체(Rituxan-CD16)의 구조를 보여주는 모식도이다.
도 2 는 효소면역측정법 (ELISA, Enzyme Linked ImmunoSorbent Assay)를 통한 인간 면역세포 표면 항원에 대한 대조항암항체(Rituxan), 양특이성 항암항체(Rituxan-CD16) 및 Fc engineering 항암항체(Rituxan-Xc)의 결합력을 측정한 결과를 나타내는 그래프이다.
도 3 은 효소면역측정법 (ELISA, Enzyme Linked ImmunoSorbent Assay)를 통한 마우스 면역세포 표면 항원에 대한 대조항암항체(Rituxan), 양특이성 항암항체(Rituxan-CD16) 및 Fc engineering 항암항체(Rituxan-Xc)의 결합력을 측정한 결과를 나타내는 그래프이다.
도 4는 양특이성 항암항체(Rituxan-CD16)와 대조항체(Rituxan), Fc engineering 항암항체(Rituxan-Xc) 간의 항체의존적 세포독성 (ADCC)발생 정도를 실험한 결과를 나타내는 그래프이다.
도 5는 양특이성 항암항체(Rituxan-CD16)와 대조항체(Rituxan), Fc engineering 항암항체(Rituxan-Xc) 간의 약동력학 (Pharmacokinetics)을 실험한 결과를 나타내는 그래프이다.
도 6은 양특이성 항암항체(Rituxan-CD16)와 대조항체(Rituxan), Fc engineering 항암항체(Rituxan-Xc) 간의 항암효과를 항암모델동물에서 실험한 결과를 나타내는 그래프이다.
1 is a schematic diagram showing the structure of bispecific anticancer antibody (Rituxan-CD16).
Figure 2 shows the anticancer antibody (Rituxan), bispecific anticancer antibody (Rituxan-CD16) and Fc engineering anticancer antibody (Rituxan-Xc) against human immune cell surface antigens by Enzyme Immunoassay (ELISA, Enzyme Linked ImmunoSorbent Assay) It is a graph showing the result of measuring the binding force.
FIG. 3 shows control anticancer antibody (Rituxan), bispecific anticancer antibody (Rituxan-CD16) and Fc engineering anticancer antibody (Rituxan-Xc) against mouse immune cell surface antigens by enzyme immunoassay (ELISA, Enzyme Linked ImmunoSorbent Assay) It is a graph showing the result of measuring the binding force.
Figure 4 is a graph showing the results of experiments on the degree of antibody-dependent cytotoxicity (ADCC) between bispecific anticancer antibody (Rituxan-CD16), control antibody (Rituxan), Fc engineering anticancer antibody (Rituxan-Xc).
5 is a graph showing the results of experiments of pharmacokinetics between bispecific anticancer antibody (Rituxan-CD16), control antibody (Rituxan), Fc engineering anticancer antibody (Rituxan-Xc).
Figure 6 is a graph showing the results of experiments in the anticancer effect between anti-cancer antibody (Rituxan-CD16), control antibody (Rituxan), Fc engineering anticancer antibody (Rituxan-Xc) in anti-cancer model animals.

이하, 하기 실시예를 통하여 본 발명을 더욱 상세하게 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. These embodiments are only for illustrating the present invention, and the scope of the present invention is not construed as being limited by these embodiments.

실시예Example 1:  One: 양특이성Bispecificity 단일클론 항체의 제조 Preparation of Monoclonal Antibodies

실시예Example 1-1:  1-1: CD20CD20 /Of CD16CD16 IgGIgG -- scFvscFv 제조 Produce

CHO-S 포유동물 세포주에서 CD20/CD16 IgG-scFv를 생산하기 위한 목적으로 CD20항체의 중쇄 및 경쇄를 코딩하는 유전자는 리툭시맙 항체의 유전자를 사용하였고, CD16 항체의 중쇄 및 경쇄를 코딩하는 유전자는, C6.5/NM3E2 항체에서 사용한 anti-CD16 scFv의 서열을 사용하였다(Molecular Immunology, 1999, 36:433-446).Genes encoding the heavy and light chains of CD20 antibodies for the purpose of producing CD20 / CD16 IgG-scFv in the CHO-S mammalian cell line used genes of rituximab antibody, genes encoding heavy and light chains of CD16 antibody. The sequence of anti-CD16 scFv used in C6.5 / NM3E2 antibody was used (Molecular Immunology, 1999, 36: 433-446).

CD20/CD16 IgG-scFv 융합 폴리펩타이드를 암호화하는 핵산의 발현은 원핵세포 또는 진핵세포에서 통상의 방법으로 수행할 수 있는데 진핵세포 숙주-벡터 시스템은 많은 상이한 종에 대한 광범위한 벡터를 포함한다. DNA를 증폭시키기 위한 대표적인 벡터는 pcDNA 3.1 벡터이고 이를 다시 유전자 재조합을 통해 CHO-S 포유동물세포주에서 항체 폴리펩타이드를 암호화하는 항체 단백질을 발현할 수 있는 벡터를 확보하였다.Expression of nucleic acids encoding CD20 / CD16 IgG-scFv fusion polypeptides can be carried out by conventional methods in prokaryotic or eukaryotic cells, and eukaryotic host-vector systems include a wide range of vectors for many different species. A representative vector for amplifying DNA is a pcDNA 3.1 vector, and again, a vector capable of expressing an antibody protein encoding an antibody polypeptide in a CHO-S mammalian cell line through gene recombination was obtained.

CD20/CD16 IgG-scFv를 발현할 수 있는 유전자를 디자인하기 위하여, 리툭시맙은 IgG 타입으로 설정하였고, CD16 항체는 scFv 타입으로 설정하였다. CD16 항체의 중쇄 가변 영역 및 경쇄 가변 영역은 링커 펩타이드 GGGGSGGGGSGGGGSGGGGS(서열번호 2)로 연결하고, 리툭시맙의 중쇄영역 C-말단과 CD 16 scFv 항체는 링커 펩타이드 GGGGSGGGGSGGGGS(서열번호 4)를 사용하여 연결하였다(서열번호 6).To design genes that can express CD20 / CD16 IgG-scFv, Rituximab was set to IgG type and CD16 antibody to scFv type. The heavy and light chain variable regions of the CD16 antibody are linked to the linker peptide GGGGSGGGGSGGGGSGGGGS (SEQ ID NO: 2), and the heavy chain region C-terminus of Rituximab and the CD 16 scFv antibody are linked using the linker peptide GGGGSGGGGSGGGGS (SEQ ID NO: 4). (SEQ ID NO: 6).

CD20/CD16 IgG-scFv 단백질을 발현하기 위해 리툭시맙 중쇄영역과 연결되어 있는 CD16 scFv을 해독할 수 있는 유전자를 발현벡터에 클로닝을 하였고, 리툭시맙 경쇄영역을 해독할 수 있는 유전자를 또 다른 발현벡터에 클로닝 하였다.To express the CD20 / CD16 IgG-scFv protein, a gene capable of decoding CD16 scFv linked to the rituximab heavy chain region was cloned into an expression vector, and another gene capable of decoding the rituximab light chain region was obtained. The expression vector was cloned.

항체 생산을 위해서, 세포 내 유전자 전달 효율을 높이는 폴리머를 이용하여 해당 유전자 (양특이성 항암항체, IgG-scFv 형태)를 형질 주입한 부유 동물 세포를 500 mL 배양용 삼각 플라스크 (코닝 코스타) 에서 병 1개 당 200 mL로 배양하였다. IgG 함량이 매우 낮은(ultra low IgG) 소 태아 혈청 (인비트로젠 코포레이션)이 보충된 RPMI (인비트로젠 코포레이션)와 초세포 전용 배지를 혼합액 1L를 4일간 세포배양기 (산뇨)에서 재조합 단백질을 생산하였다. 세포 배양액을 수득하여 원심분리를 수행하여 부유 세포와 분비된 재조합 단백질을 포함하는 상등액을 분리하고 0.22 ㎛ 진공 필터 장치 (밀리포어사, 미국 메릴랜드주)로 1회 여과하였다.For antibody production, floating animal cells transfected with the gene (bispecific anti-cancer antibody, IgG-scFv form) using a polymer that improves the efficiency of intracellular gene transfer were collected in a 500 mL Erlenmeyer flask (Corning Costa). Incubated at 200 mL per dog. 1 L of mixed solution of RPMI (Invitrogen Corp.) supplemented with ultra low IgG fetal bovine serum (Invitrogen Corp.) and hypercellular medium was used to produce recombinant protein in a cell culture (pure) for 4 days. It was. Cell cultures were obtained and centrifuged to separate supernatants containing suspended cells and secreted recombinant protein and filtered once with a 0.22 μm vacuum filter device (Millipore, Maryland, USA).

항체 정제를 위해서, 재조합 프로틴-A 세파로즈 컬럼 (Hitrap MabSelect Sure, 5 mL, GE healthcare)을 사용하여, CD20/CD16 IgG-ScFv 항체를 배양액으로부터 정제하였다. 상기 여과된 배양 배지를 재조합 프로틴-A 세파로즈 컬럼에 로딩하였다. 컬럼을 50 mM Tris-Cl (pH7.2), 100 mM NaCl로 20배 컬럼 부피만큼 세척하고, 20배 컬럼 부피의 50 mM Na-citrate(pH5.0)로 불순물을 세척하였다. 50 mM Na-citrate 100 mM NaCl (pH3.5)로 항체를 용출시켜 1M Tris-HCl, pH 8.0으로 중화시켰다. 분획물들을 SDS-PAGE로 분석하고, 양성 분획물을 모아서 원심분리형 농축기 (아미콘 울트라 (Amicon Ultra), 30,000 MWCO, 미국 메릴랜드주 베드포드 소재 밀리포어 (Millipore))로 농축시켰다. 동일 원심분리형 농축기를 사용하여 50배 볼륨의 PBS, pH 7.4를 첨가하고 농축하여 완충제 교환을 실시하였다. For antibody purification, the CD20 / CD16 IgG-ScFv antibody was purified from the culture using a recombinant Protein-A Sepharose column (Hitrap MabSelect Sure, 5 mL, GE healthcare). The filtered culture medium was loaded onto a recombinant protein-A Sepharose column. The column was washed with 20 mM column volume with 50 mM Tris-Cl (pH 7.2), 100 mM NaCl, and impurities were washed with 50 mM Na-citrate (pH 5.0) at 20 column volume. The antibody was eluted with 50 mM Na-citrate 100 mM NaCl, pH 3.5, and neutralized with 1M Tris-HCl, pH 8.0. The fractions were analyzed by SDS-PAGE and the positive fractions were pooled and concentrated with a centrifuge concentrator (Amicon Ultra, 30,000 MWCO, Millipore, Bedford, MD). Using the same centrifugal concentrator, 50-fold volume of PBS, pH 7.4 was added and concentrated to perform buffer exchange.

마지막으로, 항체를 0.22 ㎛ 공극 직경의 시린지 필터로 멸균 여과하고, 흡광도 (A280)를 측정하여 항체 농도를 결정하였다. 도 1 은 양특이성 항암항체(Rituxan-CD16)의 구조를 보여주는 모식도이다. 도 1에서 보듯이, IgG 형태의 항체 말단에 scFv가 결합한 형태의 새로운 양특이성 항암 항체를 생산할 수 있음을 확인하였다.
Finally, the antibody was sterile filtered with a syringe filter of 0.22 μm pore diameter, and the absorbance (A280) was measured to determine antibody concentration. 1 is a schematic diagram showing the structure of bispecific anticancer antibody (Rituxan-CD16). As shown in Figure 1, it was confirmed that a novel bispecific anti-cancer antibody in the form of scFv bound to the antibody terminal of the IgG form.

실시예Example 1-2:  1-2: CD20CD20 /Of CD16CD16 tandemtandem scFvscFv 제조 Produce

CHO-S 포유동물 세포주에서 CD20/CD16 tandem scFv를 생산하기 위한 목적으로 CD20 항체의 중쇄 및 경쇄를 코딩하는 유전자는 리툭시맙 항체의 유전자를 사용하였고, CD16 항체의 중쇄 및 경쇄를 코딩하는 유전자는, C6.5/NM3E2 항체에서 사용한 anti-CD16 scFv의 서열을 사용하였다 (Molecular Immunology, 1999, 36:433-446).Genes encoding the heavy and light chains of CD20 antibodies were used for the production of CD20 / CD16 tandem scFv in CHO-S mammalian cell lines using genes of rituximab antibody, and genes encoding heavy and light chains of CD16 antibody. , The sequence of anti-CD16 scFv used in the C6.5 / NM3E2 antibody was used (Molecular Immunology, 1999, 36: 433-446).

CD20/CD16 텐덤 scFv(tandem scFv)를 발현할 수 있는 유전자를 디자인하기 위하여, CD20 항체인 리툭시맙의 중쇄 가변 영역 및 경쇄 가변 영역을 암호화하는 유전자와 CD16항체의 중쇄 가변 영역 및 경쇄 가변 영역을 암호화하는 유전자 서열을 확보하였고, CD20 항체 및 CD16 항체의 중쇄 가변 영역 및 경쇄 가변 영역을 연결시켜주는 링커 펩타이드는 동일하게 디자인하였고, 링커 펩타이드로는 서열번호 2의 링커를 사용하였다. CD20 scFv 타입 유전자와 CD16 scFv 타입 유전자를 연결시켜주는 링커 펩타이드로는 서열번호 4의 링커를 사용하였다. CD20/CD16 텐덤 scFv 단백질을 발현하기 위해 암호화 할 수 있는 유전자(서열번호 7)를 발현벡터에 클로닝을 하였다.To design genes capable of expressing CD20 / CD16 tandem scFv, CD20 antibody A gene encoding the heavy and light chain variable regions of rituximab and a gene sequence encoding the heavy and light chain variable regions of the CD16 antibody were obtained, and the heavy and light chain variable regions of the CD20 and CD16 antibodies were linked. The linker peptide was designed in the same manner, and the linker peptide of SEQ ID NO: 2 was used. As a linker peptide connecting the CD20 scFv type gene and the CD16 scFv type gene, a linker of SEQ ID NO: 4 was used. A gene (SEQ ID NO: 7) that can be encoded to express the CD20 / CD16 tandem scFv protein was cloned into the expression vector.

항체 생산을 위해서, 세포 내 유전자 전달 효율을 높이는 폴리머를 이용하여 해당 유전자 (양특이성 항암항체, 텐덤 디아바디 형태)를 형질 주입한 부유 동물 세포를 500 mL 배양용 삼각 플라스크 (코닝 코스타) 에서 병 1개 당 200 mL로 배양하였다. IgG 함량이 매우 낮은(ultra low IgG) 소 태아 혈청 (인비트로젠 코포레이션)이 보충된 RPMI (인비트로젠 코포레이션)와 초세포 전용 배지를 혼합액 1L를 4일간 세포배양기 (산뇨)에서 재조합 단백질을 생산하였다. 세포 배양액을 수득하여 원심분리를 수행하여 부유 세포와 분비된 재조합 단백질을 포함하는 상등액을 분리하고 0.22 ㎛ 진공 필터 장치 (미국 메릴랜드주 베드포드 소재의 밀리포어(Millipore)로 1회 여과하였다.For antibody production, a suspension of animal cells transfected with the gene (bispecific anticancer antibody, tandem diabody form) using a polymer that enhances the efficiency of intracellular gene transfer was used in a 500 mL Erlenmeyer flask (Corning Costa). Incubated at 200 mL per dog. 1 L of mixed solution of RPMI (Invitrogen Corp.) supplemented with ultra low IgG fetal bovine serum (Invitrogen Corp.) and hypercellular medium was used to produce recombinant protein in a cell culture (pure) for 4 days. It was. Cell cultures were obtained and centrifuged to separate supernatants containing suspended cells and secreted recombinant protein and filtered once with a 0.22 μm vacuum filter device (Millipore, Bedford, MD).

히스티딘 정제 컬럼 (GE healthcare)을 이용하여 배양 배지로부터 히스티딘이 결합된 항체단백질을 정제하였다. 배지 중의 인간 항체량에 적절한 크기의 히스티딘 정제 컬럼 (GE healthcare)을 평형화 후 배양액을 로딩하였다. 컬럼을 PBS로 철저하게 세척하고, 0.5M 이미다졸을 포함하는 완충제로 항체 용출 후 투석 카세트(Thermo scientific)를 통해 PBS, pH 7.4로 완충제 교환을 실시하였다.Histidine-bound antibody protein was purified from the culture medium using a histidine purification column (GE healthcare). Cultures were loaded after equilibrating a histidine purification column (GE healthcare) of a size appropriate for the amount of human antibody in the medium. The column was washed thoroughly with PBS, the antibody was eluted with a buffer containing 0.5M imidazole, and then buffer exchanged to PBS, pH 7.4 through a dialysis cassette (Thermo scientific).

마지막으로, 항체를 0.22 ㎛ 공극 직경의 시린지 필터로 멸균 여과하고, Amicon Ultra (밀리포어사, 미국 메릴랜드)로 농축하였다. 이 과정에서 CD20/CD16 텐덤 scFv의 경우, 불안정한 물성으로 침전물이 발생하고 생산수율이 매우 낮았기 때문에 CD16 결합력 실험과 ADCC 실험은 추가로 진행하지 않았다.
Finally, the antibody was sterile filtered with a syringe filter of 0.22 um pore diameter and concentrated with Amicon Ultra (Millipore, Maryland, USA). In the process, CD16 / CD16 tandem scFv did not proceed with CD16 binding and ADCC experiments because the precipitates were unstable and the yield was very low.

실시예Example 1-3:  1-3: Her2Her2 /Of CD16CD16 IgGIgG -- scFvscFv 제조 Produce

CHO-S 포유동물 세포주에서 Her2/CD16 IgG-scFv를 생산하기 위한 목적으로 Her2항체의 중쇄 및 경쇄를 코딩하는 유전자는 트라스주맙(Trastuzumab) 항체의 유전자를 사용하였고, CD16 항체의 중쇄 및 경쇄를 코딩하는 유전자는, C6.5/NM3E2 항체에서 사용한 항-CD16 scFv의 서열을 사용하였다 (Molecular Immunology, 1999, 36:433-446).Genes encoding the heavy and light chains of the Her2 antibody for the purpose of producing Her2 / CD16 IgG-scFv in the CHO-S mammalian cell line used the genes of Trastuzumab antibody, and the heavy and light chains of the CD16 antibody. As the gene encoding, the sequence of the anti-CD16 scFv used in the C6.5 / NM3E2 antibody was used (Molecular Immunology, 1999, 36: 433-446).

Her2/CD16 IgG-scFv를 발현할 수 있는 유전자를 디자인하기 위하여, 트라스주맙은 IgG 타입으로 설정하였고, CD16 항체는 scFv 타입으로 설정하였다. CD16 항체의 중쇄 가변 영역 및 경쇄 가변 영역을 연결시켜주는 링커 펩타이드는 GGGGSGGGGSGGGGSGGGGS(서열번호 2)로 연결하고, 트라스주맙의 중쇄영역 C-말단과 CD 16 scFv 항체를 연결해주는 링커 펩타이드는 GGGGSGGGGSGGGGS(서열번호 4)를 사용하여 연결하였다(서열번호 10).To design genes capable of expressing Her2 / CD16 IgG-scFv, trastuzumab was set to IgG type and CD16 antibody to scFv type. The linker peptide that connects the heavy and light chain variable regions of the CD16 antibody is linked to GGGGSGGGGSGGGGSGGGGS (SEQ ID NO: 2). (4)) (SEQ ID NO: 10).

Her2/CD16 IgG-scFv 단백질을 발현하기 위해 트라스주맙 중쇄영역과 연결되어 있는 CD16 scFv을 해독할 수 있는 유전자를 발현벡터에 클로닝을 하였고, 트라스주맙 경쇄영역을 해독할 수 있는 유전자를 또 다른 발현벡터에 클로닝 하였다.To express the Her2 / CD16 IgG-scFv protein, a gene capable of decoding CD16 scFv linked to the trastuzumab heavy chain region was cloned into an expression vector, and another gene capable of decoding the trastuzumab light chain region was obtained. The expression vector was cloned.

항체 생산을 위해서, 세포 내 유전자 전달 효율을 높이는 폴리머를 이용하여 해당 유전자 (양특이성 항암항체, 면역글로블린 형태)를 형질 주입한 부유 동물 세포를 500 mL 배양용 삼각 플라스크 (코닝 코스타) 에서 병 1개 당 200 mL로 배양하였다. IgG 함량이 매우 낮은(ultra low IgG) 소 태아 혈청(인비트로젠 코포레이션)이 보충된 RPMI(인비트로젠 코포레이션)와 초세포 전용 배지를 혼합액 1L를 4일간 세포배양기 (산뇨)에서 재조합 단백질을 생산하였다. 세포 배양액을 수득하여 원심분리를 수행하여 부유 세포와 분비된 재조합 단백질을 포함하는 상등액을 분리하고 0.22 ㎛ 진공 필터 장치(밀리포어사, 미국 메릴랜드주)로 1회 여과하였다. Her2/CD16 IgG-scFv 배양액을 재조합 프로틴-A 세파로즈 컬럼(Hitrap MabSelect Sure, 5 mL, GE healthcare)을 사용하여 정제하였다. 상기 여과된 배양 배지를 재조합 프로틴-A 세파로즈 컬럼에 로딩하였다. 컬럼을 50 mM Tris-Cl (pH7.2), 100 mM NaCl로 20배 컬럼 부피만큼 세척하고, 20배 컬럼 부피의 50 mM Na-citrate(pH5.0)로 불순물을 세척하였다. 50 mM Na-citrate 100 mM NaCl (pH3.5)로 항체를 용출시켜 1M Tris-HCl, pH 8.0으로 중화시켰다. 일차 정제 후 상기 Hitrap 을 이용하여 항-CD16 도메인이 정상적으로 발현된 항체만을 선별하였다. 중성 pH 완충용액으로 컬럼을 평형화시킨 후 이미다졸 농도 차이를 이용하여 용출하였다.
For antibody production, 1 bottle of floating animal cells transfected with the gene (bispecific anticancer antibody, immunoglobulin form) using a polymer that improves the efficiency of intracellular gene transfer in a 500 mL culture flask (Corning Costa) Incubated at 200 mL per sugar. 1 L of mixed solution of RPMI (Invitrogen Corporation) supplemented with ultra low IgG fetal bovine serum (Invitrogen Corporation) and a supercellular medium was used to produce recombinant protein in a cell culture (pure) for 4 days. It was. Cell cultures were obtained and centrifuged to separate supernatants containing suspended cells and secreted recombinant protein and filtered once with a 0.22 μm vacuum filter device (Millipore, Maryland, USA). Her2 / CD16 IgG-scFv cultures were purified using recombinant Protein-A Sepharose column (Hitrap MabSelect Sure, 5 mL, GE healthcare). The filtered culture medium was loaded onto a recombinant protein-A Sepharose column. The column was washed with 20 mM column volume with 50 mM Tris-Cl (pH 7.2), 100 mM NaCl, and impurities were washed with 50 mM Na-citrate (pH 5.0) at 20 column volume. The antibody was eluted with 50 mM Na-citrate 100 mM NaCl, pH 3.5, and neutralized with 1M Tris-HCl, pH 8.0. After the first purification, only the antibody in which the anti-CD16 domain was normally expressed was selected using Hitrap. The column was equilibrated with neutral pH buffer and eluted using the imidazole concentration difference.

실시예Example 1-4:  1-4: FcFc engineeringengineering 형태의  Form antianti -- CD20CD20 항체 제조  Antibody production

Fc 수용체인 CD16 (FcrRIII)에 대한 친화성을 향상시키기 위하여 CD20 항체인 리툭시맙 IgG 항체의 Fc 영역에서 아미노산 변형을 조작하였다. 공지된 방법에 의하여, IgG1의 Fc 영역 중 CH2 영역에서 239번 세린(S)을 아스파르트산(D)으로 치환하고(S239D), 332번 이소류신(I)을 글루탐산(E)으로 치환(I332E)하였다 (US2008/0260731). 리툭시맙 중쇄영역 중 CH2 영역의 S239D와 I332E로 치환한 유전자(서열번호 11)를 발현벡터에 클로닝 하였고, 리툭시맙 경쇄영역은 또 다른 발현벡터에 클로닝 하였다.Amino acid modifications were engineered in the Fc region of the Rituximab IgG antibody, a CD20 antibody, to enhance affinity for the Fc receptor, CD16 (FcrRIII). By a known method, serine (S) 239 was replaced with aspartic acid (D) in the CH2 region of the Fc region of IgG1 (S239D), and isoleucine (I) 332 was replaced with glutamic acid (E) (I332E). (US2008 / 0260731). Genes substituted with S239D and I332E of the CH2 region of the rituximab heavy chain region (SEQ ID NO: 11) were cloned into the expression vector, and the rituximab light chain region was cloned into another expression vector.

항체 생산을 위해서, 세포 내 유전자 전달 효율을 높이는 폴리머를 이용하여 해당 유전자 (Fc engineering 항암항체, 면역글로블린 형태)를 형질 주입한 부유 동물 세포를 500 mL 배양용 삼각 플라스크 (코닝 코스타) 에서 병 1개 당 200 mL로 배양하였다. IgG 함량이 매우 낮은(ultra low IgG) 소 태아 혈청 (인비트로젠 코포레이션)이 보충된 RPMI (인비트로젠 코포레이션)와 초세포 전용 배지를 혼합액 1L를 4일간 세포배양기 (산뇨)에서 재조합 단백질을 생산하였다. 세포 배양액을 수득하여 원심분리를 수행하여 부유 세포와 분비된 재조합 단백질을 포함하는 상등액을 분리하고 0.22 ㎛ 진공 필터 장치 (밀리포어사, 미국 메릴랜드주)로 1회 여과하였다. 준비된 상등액을 평형화 완충액 (50 mM Tris-HCl (pH 7.2), 100 mM NaCl)으로 평형화시킨 재조합 프로틴-A 세파로즈 컬럼에 통과 시켰다. 컬럼에 결합된 항체를 용출 완충액 (50 mM Na-citrate (pH 3.5), 100 mM NaCl) 용액으로 용출 시킨 후, 2 M Tris-HCl (pH 9.0)으로 중화 시키고 PBS(phosphate buffered saline, pH 7.4, Invitrogen) 완충액으로 교환하였다. 정제된 항체를 Bis-Tris 4-12% 농도구배 SDS-폴리아크릴아미드 겔(NuPAGE gel, Invitrogen) 상에서 비환원 및 환원 조건으로 전기영동 하였다. 그 결과, 비환원 상태에서는 약 160 kDa, 환원 상태에서는 약 55 kDa의 중쇄와 약 25 kDa의 경쇄가 관찰되었다.
For the production of antibodies, 1 bottle of 500 ml culture conical flask (Corning Costa) was used for floating animal cells transfected with the gene (Fc engineering anticancer antibody, immunoglobulin form) using a polymer that enhances the efficiency of intracellular gene transfer. Incubated at 200 mL per sugar. 1 L of mixed solution of RPMI (Invitrogen Corp.) supplemented with ultra low IgG fetal bovine serum (Invitrogen Corp.) and hypercellular medium was used to produce recombinant protein in a cell culture (pure) for 4 days. It was. Cell cultures were obtained and centrifuged to separate supernatants containing suspended cells and secreted recombinant protein and filtered once with a 0.22 μm vacuum filter device (Millipore, Maryland, USA). The prepared supernatant was passed through a recombinant protein-A Sepharose column equilibrated with equilibration buffer (50 mM Tris-HCl, pH 7.2, 100 mM NaCl). The antibody bound to the column was eluted with elution buffer (50 mM Na-citrate (pH 3.5), 100 mM NaCl) solution, then neutralized with 2 M Tris-HCl (pH 9.0) and PBS (phosphate buffered saline, pH 7.4, Invitrogen) buffer. The purified antibody was electrophoresed on Bis-Tris 4-12% gradient SDS-polyacrylamide gel (NuPAGE gel, Invitrogen) under non-reducing and reducing conditions. As a result, about 160 kDa in the non-reduced state, about 55 kDa heavy chain and about 25 kDa light chain were observed in the reduced state.

실시예Example 2:  2: CD16CD16 항원 결합력 측정 Antigen binding

실시예Example 2-1:  2-1: ELISAELISA 방법을 이용한 인간  Human using method CD16CD16 항원 결합력 측정  Antigen binding

96 well plate (Nunc)에 코팅된 인간 면역세포 표면항원 (human CD16)에 대조항암항체, 양특이성 항암항체 및 Fc engineering 항암항체를 농도 별로 처리한 후 항체의 일정 부위에 결합하는 매개체를 통한 발색 반응은 마이크로플레이트 리더기 (molecular device)를 이용하여 측정하였다. 항원과 항체간 최종 결합 정도는 측정된 수치를 토대로 판단하였다(도 2). Color reaction through mediators that bind to a specific site of the antibody after treatment of anticancer antibody, bispecific and Fc engineering anticancer antibodies to human CD16 coated on 96 well plate (Nunc) Was measured using a microplate reader (molecular device). Final binding degree between the antigen and the antibody was determined based on the measured values (FIG. 2).

도 2 는 효소면역측정법 (ELISA, Enzyme Linked ImmunoSorbent Assay)를 통한 면역세포 표면 항원에 대한 대조항암항체(Rituxan), 양특이성 항암항체(Rituxan-CD16) 및 Fc engineering 항암항체(Rituxan-Xc)의 결합력을 측정한 결과를 나타내는 그래프로서, 이때, 각 항체는 최고 100 ㎍/ml을 시작으로 12농도 구간 (0 ㎍/ml 포함, duplicate)에서 실시되었다. 상기 도 2에서 보듯이, 두 단백질 간 최종 결합 강도는 대조항암항체 < Fc engineering 항암항체 << 양특이성 항암항체의 순서임을 확인할 수 있었다.FIG. 2 shows the binding capacity of control anticancer antibody (Rituxan), bispecific anticancer antibody (Rituxan-CD16) and Fc engineering anticancer antibody (Rituxan-Xc) to immune cell surface antigens by Enzyme Linked ImmunoSorbent Assay (ELISA) As a graph showing the results of the measurement, each antibody was performed at 12 concentration intervals (including 0 μg / ml, duplicates), starting with up to 100 μg / ml. As shown in FIG. 2, the final binding strength between the two proteins was found to be in the order of the control anticancer antibody <Fc engineering anticancer antibody << bispecific anticancer antibody.

이와 같은 결과는, 본 발명의 양특이성 항체가 인간 면역세포 표면 항원과의 결합력이 향상되어 결국, ADCC 효과가 개선될 수 있음을 뒷받침하는 것이다.
These results support that the bispecific antibody of the present invention can improve the binding capacity of the human immune cell surface antigen, and eventually improve the ADCC effect.

실시예Example 2-2:  2-2: ELISAELISA 방법을 이용한 마우스  Mouse using method CD16CD16 항원 결합력 측정  Antigen binding

96 well plate (Nunc)에 코팅된 마우스 면역세포 표면항원 (mouse CD16)에 대조항암항체, 양특이성 항암항체 및 Fc engineering 항암항체를 농도 별로 처리한 후 항체의 일정 부위에 결합하는 매개체를 통한 발색 반응은 마이크로플레이트 리더기 (molecular device)를 이용하여 측정하였다. 항원과 항체간 최종 결합 정도는 측정된 수치를 토대로 판단하였다(도 3). Color reaction through mediators that bind to specific regions of the antibody after treatment of anticancer antibody, bispecific and Fc engineering anticancer antibodies to mouse immune cell surface antigen (mouse CD16) coated on 96 well plate (Nunc) Was measured using a microplate reader (molecular device). Final binding degree between the antigen and the antibody was determined based on the measured values (FIG. 3).

도 3 은 효소면역측정법 (ELISA, Enzyme Linked ImmunoSorbent Assay)를 통한 면역세포 표면 항원에 대한 대조항암항체(Rituxan), 양특이성 항암항체(Rituxan-CD16) 및 Fc engineering 항암항체(Rituxan-Xc)의 결합력을 측정한 결과를 나타내는 그래프로서, 이때, 각 항체는 최고 200nM을 시작으로 8농도 구간 (0 nM 포함, duplicate)에서 실시되었다. 상기 도 3에서 보듯이, 두 단백질 간 최종 결합 강도는 대조항암항체 < Fc engineering 항암항체 << 양특이성 항암항체의 순서임을 확인할 수 있었다.Figure 3 shows the binding capacity of the control anticancer antibody (Rituxan), bispecific anticancer antibody (Rituxan-CD16) and Fc engineering anticancer antibody (Rituxan-Xc) to immune cell surface antigens by enzyme immunoassay (ELISA, Enzyme Linked ImmunoSorbent Assay) As a graph showing the results of the measurement, at this time, each antibody was carried out in 8 concentration intervals (including 0 nM, duplicates) starting with the highest 200 nM. As shown in FIG. 3, the final binding strength between the two proteins was found to be in the order of the control anticancer antibody <Fc engineering anticancer antibody << bispecific anticancer antibody.

이와 같은 결과는, 인간 CD16에 대한 3종 항체의 결합력과도 일치하는 것으로 본 발명의 양특이성 항체가 마우스 면역세포 표면 항원과의 결합력이 향상되어 결국, ADCC 효과가 개선될 수 있음을 뒷받침하는 것이다.
These results are consistent with the binding ability of the three antibodies to human CD16, which supports that the bispecific antibody of the present invention may improve the binding ability of the mouse immune cell surface antigens, which in turn may improve the ADCC effect. .

실시예Example 2-3:  2-3: BIAcoreBIAcore 방법을 이용한 인간  Human using method CD16CD16 항원 결합력 측정 Antigen binding

BIACORE(GE healthcare)로 인간 면역세포 표면 항원과 대조항암항체, 양특이성 항암항체 및 Fc engineering 항암항체 간 결합과 해리의 실시간 모니터링을 통해 산출된 평형 해리 상수를 이용하여 결합 정도를 판단하였다.The degree of binding was determined using the equilibrium dissociation constants calculated by real-time monitoring of binding and dissociation between human immune cell surface antigen, anticancer antibody, bispecific and Fc engineering anticancer antibodies with BIACORE (GE healthcare).

대조항암항체의 예상 평형해리상수는 10- 6 으로 본 실험에서는 측정 불가했으며 양특이성 항암항체와 Fc engineering 항암항체의 경우, 각각 7.5*10-9, 1.0*10-7의 평형해리상수가 관찰되었다. 두 단백질의 실시간 결합과 해리 모니터링을 통해 측정된 평형해리상수는 대조항암항체(예상치) > Fc engineering 항암항체 >> 양특이성 항암항체의 순서이다.
Control anti-cancer antibodies estimated equilibrium dissociation constant of 10 - For the present experiments can not be measured 6 has anti-cancer bispecific antibody with Fc engineering anti-cancer antibodies, respectively 7.5 * 10-9, An equilibrium dissociation constant of 1.0 * 10 -7 was observed. The equilibrium dissociation constants measured by real-time binding and dissociation monitoring of the two proteins are in the order of control anticancer antibody (estimated)> Fc engineering anticancer antibody >> bispecific anticancer antibody.

항암항체 간 평형해리상수 비교 Comparison of Equilibrium Dissociation Constants between Anticancer Antibodies 시료sample 결합상수Coupling constant 해리상수Dissociation constant 평행 해리상수Parallel dissociation constant 대조항암항체Anticancer Antibody -- -- -- 양특이성 항암항체Bispecific Anticancer Antibody 4.5*104 4.5 * 10 4 3.4*10-4 3.4 * 10 -4 7.5*10-9 7.5 * 10 -9 Fc engineering 항암항체Fc engineering anticancer antibody 3.4*105 3.4 * 10 5 3.4*10-2 3.4 * 10 -2 1.0*10-7 1.0 * 10 -7

실시예Example 3:  3: InIn vitrovitro ADCCADCC 분석법을 통한 항체의존적 세포독성 확인 Confirmation of Antibody-Dependent Cytotoxicity by Assay

CD20이 과발현되어 있는 Daudi(ATCC, CCL-213) 세포를 배양용기에 1.5 x 106 세포수가 되도록 분주한 후, 최종농도 3 uM로 희석한 칼세인(Calcein) AM이 들어간 배지에 넣고 30 분간 37℃ 배양기에서 반응하였다. 30분 뒤 반응용액에 PBS를 이용하여 2회 세척을 실시하였다. 세척 후, 배지 3 mL을 넣어 현탁시키고, 상기 현탁액을 각 웰당 50 ㎕씩 분주하고, 이어 각 웰당 75 x 104 세포수의 인간 PBMC세포를 상기 Daudi 세포가 분주된 각 웰에 분주하였다. 원하는 농도로 희석한 대조항암항체(Rituxan)와 양특이성 항암항체(Rituxan-CD16), 및 Fc engineering 항암항체(Rituxan-Xc)를 각 웰에 20 ㎕ 부피로 첨가한 후 부드럽게 Daudi 세포와 인간 PBMC 세포를 섞은 후, 37℃ 배양기에서 4시간 동안 반응하였다. 반응 후 배양플레이트를 원심분리하고 상등액만을 회수하여 방출된 칼세인-AM의 양을 측정하였다(도 4).Daudi (ATCC, CCL-213) cells overexpressed with CD20 were dispensed to 1.5 x 10 6 cells in a culture vessel, and then placed in a medium containing Calcein AM diluted to a final concentration of 3 u M for 30 minutes. The reaction was carried out in a 37 ° C. incubator. After 30 minutes, the reaction solution was washed twice with PBS. After washing, 3 mL of medium was added to suspend and the suspension was dispensed 50 [mu] l per well, and then 75 x 10 4 cells per well of human PBMC cells were dispensed into each well dispensed with the Daudi cells. A 20 μl volume of control anticancer antibody (Rituxan) and bispecific anticancer antibody (Rituxan-CD16), and Fc engineering anticancer antibody (Rituxan-Xc) diluted to desired concentrations were added to each well, followed by gentle Daudi cells and human PBMC cells. After mixing, the reaction was carried out for 4 hours at 37 ℃ incubator. After the reaction, the culture plate was centrifuged and only the supernatant was recovered to measure the amount of calcein-AM released (FIG. 4).

도 4는 양특이성 항암항체(Rituxan-CD16)와 대조항암항체(Rituxan) 및 Fc engineering 항암항체(Rituxan-Xc) 간의 항체의존적 세포독성 (ADCC)발생 정도를 실험한 결과를 나타내는 그래프로서, 표적세포(Daudi)세포와 작용기세포(인간 PBMC)의 비율을 1:50으로 하였으며, 항체처리에 의해 발생하는 항체의존적 세포독성을 나타내는 칼세인-AM(Calcein-AM)의 양으로 확인하였다. 상기 도 4에서 보듯이, 각 항체의 처리농도를 0.001 ng/mL부터 10 ng/mL까지 처리하였을 때, 대조항암항체(Rituxan)는 항체의존적 세포독성 현상이 처리농도 전 범위에서 거의 발생하지 않았으나, 양특이성 항암항체(Rituxan-CD16)에서는 0.1 ng/mL부터 항체의존적 세포독성이 발생되기 시작하면서 10 ng/mL 처리군에서는 최대 80%의 항체의존적 세포독성 발생을 확인할 수 있었다.
4 is a graph showing the results of experiments on the degree of antibody-dependent cytotoxicity (ADCC) development between bispecific anticancer antibody (Rituxan-CD16), control anticancer antibody (Rituxan) and Fc engineering anticancer antibody (Rituxan-Xc). The ratio of (Daudi) cells and effector cells (human PBMC) was 1:50, and the amount of calcein-AM (Calcein-AM) indicating antibody-dependent cytotoxicity generated by antibody treatment was determined. As shown in FIG. 4, when the treatment concentration of each antibody was treated from 0.001 ng / mL to 10 ng / mL, the control anticancer antibody (Rituxan) showed almost no antibody-dependent cytotoxicity in the entire treatment concentration range. In the bispecific anticancer antibody (Rituxan-CD16), antibody-dependent cytotoxicity began to develop from 0.1 ng / mL, and up to 80% of the antibody-dependent cytotoxicity was observed in the 10 ng / mL treatment group.

실시예Example 4:  4: 약동력학Pharmacokinetics ( ( PharmacokineticsPharmacokinetics ) 분석 ) analysis

각각의 BALB/c 마우스 (7주령, 암컷)에 상기 실시예 1-1에서 제조한 CD20/CD16 IgG-scFv인 양특이성 단일클론 항체, 대조항암항체 또는 Fc engineering 항암항체를 5 ㎎/kg씩 복강 투여하였다. 투여 직전 및 30분, 1, 3, 6, 12, 24, 36, 48, 72. 96, 120시간이 지난 후 마우스 꼬리에서 채혈을 하였다. 채혈한 혈액은 ELISA 방법으로 혈장 내 양특이성 단일클론 항체의 농도를 측정하였다. ELISA 방법으로 측정된 양특이성 단일클론 항체 농도측정 결과를 WinNolin 프로그램 (PhoenixTMWinNolinVersion 6.1, Pharsight Corporation, U.S.A)의 Non-compartment model분석을 통해 혈중반감기 (T1/2), Cmax 및 Tmax 결과를 도출하였다(표 2). 양특이성 항암항체의 혈중반감기를 측정한 결과, 대조항암항체의 혈중반감기(약 248시간)보다 약간 감소하였으나, Fc engineering 항암항체보다는 100시간 가량 증가한 약 216시간으로 확인되었다(도 5).
Each BALB / c mouse (7 weeks old, female) was intraperitoneally injected with 5 mg / kg of bispecific monoclonal antibody, control anticancer antibody or Fc engineering anticancer antibody, which is CD20 / CD16 IgG-scFv prepared in Example 1-1. Administered. Blood was collected from the tails of mice immediately before and 30 minutes, 1, 3, 6, 12, 24, 36, 48, 72. 96, 120 hours later. The collected blood was measured for concentration of bispecific monoclonal antibody in plasma by ELISA method. The results of blood half-life (T1 / 2), Cmax, and Tmax were derived from the non-compartment model analysis of the WinNolin program (Phoenix TM WinNolinVersion 6.1, Pharsight Corporation, USA). (Table 2). As a result of measuring the blood half-life of the bispecific anticancer antibody, the blood half-life of the control anticancer antibody was slightly decreased (about 248 hours), but it was confirmed to be about 216 hours which was increased by about 100 hours than the Fc engineering anticancer antibody (FIG. 5).

Figure pat00001
Figure pat00001

실시예Example 5: 항암모델동물에서 항암효과 확인실험  5: Anticancer Effect Confirmation Experiment in Anticancer Model Animals

RPMI1640 (Gibco)에 FBS를 첨가한 배지를 이용하여 37도 배양기에서 Daudi세포 (ATCC, CCL-213TM)배양을 실시하였다. 동물 투여를 위해서 마리당 1x107 Daudi세포와 Matrigel (BD, 356237)을 조제한 세포혼합물을 SCID 마우스 (9주령, 암컷)의 우측 피하에서 이식을 진행하였다. 이식 후, 투여한 종양의 크기가 안정되는 시점 (약 400 mm3)에서 양특이성 항암항체를 복강 내 주 2회 투여하였다. 약물이 투여가 진행되면서 Vehicle 투여군 대비 종양크기의 감소가 투여 4일 이후부터 관찰되었으나, 투여 개시 12일째 측정된 종양크기에서는 Fc engineering 항암항체, 대조 항암항체와 양특이성 항암항체는 전체적으로 유사한 약물억제효과가 발생되었다(도 6). Daudi cells (ATCC, CCL-213TM) were cultured in a 37-degree incubator using medium containing FBS in RPMI1640 (Gibco). For animal administration, a cell mixture prepared with 1x10 7 Daudi cells and Matrigel (BD, 356237) was implanted in the subcutaneous right side of SCID mice (9 weeks old, female). After transplantation, bispecific anticancer antibodies were administered intraperitoneally twice a week at the time point when the tumor size stabilized (about 400 mm 3 ). As the drug was administered, the decrease in tumor size was observed from 4 days after the administration of the vehicle.However, in the tumor size measured on the 12th day of the administration, the Fc engineering anticancer antibody, the control anticancer antibody and the bispecific anticancer antibody have similar drug suppression effects. Was generated (FIG. 6).

<110> HANWHA CHEMICAL CORPORATION <120> Novel bi-specific monoclonal antibody with advanced anti-cancer activity and pharmaceutical composition for treating cancer comprising the same <130> PA120394KR <150> KR 10-2011-0046885 <151> 2011-05-18 <160> 12 <170> KopatentIn 2.0 <210> 1 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> linker peptide <400> 1 ggtggagggg gttcaggagg gggaggatct ggtggcggcg gatccggggg agggggatcc 60 60 <210> 2 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> linker peptide <400> 2 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 1 5 10 15 Gly Gly Gly Ser 20 <210> 3 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> linker peptide <400> 3 ggtggaggtg gcagcggtgg tggcggcagt ggcggtggcg gctcc 45 <210> 4 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> linker peptide <400> 4 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 1 5 10 15 <210> 5 <211> 2193 <212> DNA <213> Artificial Sequence <220> <223> CD20IgG-CD16scFv <400> 5 atgggctggt cctgcatcat cctgttcctg gtggccaccg ccaccggcgt gcactcccag 60 gtgcagctgc agcagcccgg cgccgagctg gtgaagcccg gcgcctccgt gaagatgtcc 120 tgcaaggcct ccggctacac cttcacctcc tacaacatgc actgggtgaa gcagaccccc 180 ggccggggcc tggagtggat cggcgccatc taccccggca acggcgacac ctcctacaac 240 cagaagttca agggcaaggc caccctgacc gccgacaagt cctcctccac cgcctacatg 300 cagctgtcct ccctgacctc cgaggactcc gccgtgtact actgcgcccg gtccacctac 360 tacggcggcg actggtactt caacgtgtgg ggcgccggca ccaccgtgac cgtgtccgcc 420 gcctccacca agggcccctc cgtgttcccc ctggccccct cctccaagtc cacctccggc 480 ggcaccgccg ccctgggctg cctggtgaag gactacttcc ccgagcccgt gaccgtgtcc 540 tggaactccg gcgccctgac ctccggcgtg cacaccttcc ccgccgtgct gcagtcctcc 600 ggcctgtact ccctgtcctc cgtggtgacc gtgccctcct cctccctggg cacccagacc 660 tacatctgca acgtgaacca caagccctcc aacaccaagg tggacaagaa ggccgagccc 720 aagtcctgcg acaagaccca cacctgcccc ccctgccccg cccccgagct gctgggcggc 780 ccctccgtgt tcctgttccc ccccaagccc aaggacaccc tgatgatctc ccggaccccc 840 gaggtgacct gcgtggtggt ggacgtgtcc cacgaggacc ccgaggtgaa gttcaactgg 900 tacgtggacg gcgtggaggt gcacaacgcc aagaccaagc cccgggagga gcagtacaac 960 tccacctacc gggtggtgtc cgtgctgacc gtgctgcacc aggactggct gaacggcaag 1020 gagtacaagt gcaaggtgtc caacaaggcc ctgcccgccc ccatcgagaa gaccatctcc 1080 aaggccaagg gccagccccg ggagccccag gtgtacaccc tgcccccctc ccgggacgag 1140 ctgaccaaga accaggtgtc cctgacctgc ctggtgaagg gcttctaccc ctccgacatc 1200 gccgtggagt gggagtccaa cggccagccc gagaacaact acaagaccac cccccccgtg 1260 ctggactccg acggctcctt cttcctgtac tccaagctga ccgtggacaa gtcccggtgg 1320 cagcagggca acgtgttctc ctgctccgtg atgcacgagg ccctgcacaa ccactacacc 1380 cagaagtccc tgtccctgtc ccccggcaag ggtggaggtg gcagcggtgg tggcggcagt 1440 ggcggtggcg gctcctcctc cgagctgacc caggaccccg ccgtgtccgt ggccctgggc 1500 cagaccgtgc ggatcacctg ccagggcgac tccctgcggt cctactacgc ctcctggtac 1560 cagcagaagc ccggccaggc ccccgtgctg gtgatctacg gcaagaacaa ccggccctcc 1620 ggcatccccg accggttctc cggctcctcc tccggcaaca ccgcctccct gaccatcacc 1680 ggcgcccagg ccgaggacga ggccgactac tactgcaact cccgggactc ctccggcaac 1740 cacgtggtgt tcggcggcgg caccaagctg accgtgggcg gtggaggggg ttcaggaggg 1800 ggaggatctg gtggcggcgg atccggggga gggggatccg aggtgcagct ggtggagtcc 1860 ggcggcggcg tggtgcggcc cggcggctcc ctgcggctgt cctgcgccgc ctccggcttc 1920 accttcgacg actacggcat gtcctgggtg cggcaggccc ccggcaaggg cctggagtgg 1980 gtgtccggca tcaactggaa cggcggctcc accggctacg ccgactccgt gaagggccgg 2040 ttcaccatct cccgggacaa cgccaagaac tccctgtacc tgcagatgaa ctccctgcgg 2100 gccgaggaca ccgccgtgta ctactgcgcc cggggccggt ccctgctgtt cgactactgg 2160 ggccagggca ccctggtgac cgtgtcccgg tga 2193 <210> 6 <211> 730 <212> PRT <213> Artificial Sequence <220> <223> CD20IgG-CD16scFv <400> 6 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys 20 25 30 Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe 35 40 45 Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu 50 55 60 Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn 65 70 75 80 Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser 85 90 95 Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val 100 105 110 Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn 115 120 125 Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala Ala Ser Thr Lys 130 135 140 Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly 145 150 155 160 Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 165 170 175 Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 180 185 190 Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 195 200 205 Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn 210 215 220 Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Ala Glu Pro 225 230 235 240 Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu 245 250 255 Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 260 265 270 Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 275 280 285 Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly 290 295 300 Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn 305 310 315 320 Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp 325 330 335 Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro 340 345 350 Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu 355 360 365 Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn 370 375 380 Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 385 390 395 400 Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 405 410 415 Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 420 425 430 Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys 435 440 445 Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 450 455 460 Ser Leu Ser Pro Gly Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 465 470 475 480 Gly Gly Gly Gly Ser Ser Ser Glu Leu Thr Gln Asp Pro Ala Val Ser 485 490 495 Val Ala Leu Gly Gln Thr Val Arg Ile Thr Cys Gln Gly Asp Ser Leu 500 505 510 Arg Ser Tyr Tyr Ala Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro 515 520 525 Val Leu Val Ile Tyr Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp 530 535 540 Arg Phe Ser Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr 545 550 555 560 Gly Ala Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Arg Asp 565 570 575 Ser Ser Gly Asn His Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val 580 585 590 Gly Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 595 600 605 Gly Gly Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val 610 615 620 Val Arg Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe 625 630 635 640 Thr Phe Asp Asp Tyr Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys 645 650 655 Gly Leu Glu Trp Val Ser Gly Ile Asn Trp Asn Gly Gly Ser Thr Gly 660 665 670 Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala 675 680 685 Lys Asn Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr 690 695 700 Ala Val Tyr Tyr Cys Ala Arg Gly Arg Ser Leu Leu Phe Asp Tyr Trp 705 710 715 720 Gly Gln Gly Thr Leu Val Thr Val Ser Arg 725 730 <210> 7 <211> 1680 <212> DNA <213> Artificial Sequence <220> <223> CD20-CD16 tandem scFv <400> 7 atgggctggt cctgcatcat cctgttcctg gtggccaccg ccaccggcgt gcactcccag 60 gtgcagctgc agcagcccgg cgccgagctg gtgaagcccg gcgcctccgt gaagatgtcc 120 tgcaaggcct ccggctacac cttcacctcc tacaacatgc actgggtgaa gcagaccccc 180 ggccggggcc tggagtggat cggcgccatc taccccggca acggcgacac ctcctacaac 240 cagaagttca agggcaaggc caccctgacc gccgacaagt cctcctccac cgcctacatg 300 cagctgtcct ccctgacctc cgaggactcc gccgtgtact actgcgcccg gtccacctac 360 tacggcggcg actggtactt caacgtgtgg ggcgccggca ccaccgtgac cgtgtccgcc 420 ggtggagggg gttcaggagg gggaggatct ggtggcggcg gatccggggg agggggatcc 480 cagatcgtgc tgtcccagtc ccccgccatc ctgtccgcct cccccggcga gaaggtgacc 540 atgacctgcc gggcctcctc ctccgtgtcc tacatccact ggttccagca gaagcccggc 600 tcctccccca agccctggat ctacgccacc tccaacctgg cctccggcgt gcccgtgcgg 660 ttctccggct ccggctccgg cacctcctac tccctgacca tctcccgggt ggaggccgag 720 gacgccgcca cctactactg ccagcagtgg acctccaacc cccccacctt cggcggcggc 780 accaagctgg agatcaagcg gtcctccggt ggagggggtt caggaggggg aggatctggt 840 ggcggcggat cgggaggttc cgaggtgcag ctggtggagt ccggcggcgg cgtggtgcgg 900 cccggcggct ccctgcggct gtcctgcgcc gcctccggct tcaccttcga cgactacggc 960 atgtcctggg tgcggcaggc ccccggcaag ggcctggagt gggtgtccgg catcaactgg 1020 aacggcggct ccaccggcta cgccgactcc gtgaagggcc ggttcaccat ctcccgggac 1080 aacgccaaga actccctgta cctgcagatg aactccctgc gggccgagga caccgccgtg 1140 tactactgcg cccggggccg gtccctgctg ttcgactact ggggccaggg caccctggtg 1200 accgtgtccc ggggtggagg gggttcagga gggggaggat ctggtggcgg cggatccggg 1260 ggagggggat cctcctccga gctgacccag gaccccgccg tgtccgtggc cctgggccag 1320 accgtgcgga tcacctgcca gggcgactcc ctgcggtcct actacgcctc ctggtaccag 1380 cagaagcccg gccaggcccc cgtgctggtg atctacggca agaacaaccg gccctccggc 1440 atccccgacc ggttctccgg ctcctcctcc ggcaacaccg cctccctgac catcaccggc 1500 gcccaggccg aggacgaggc cgactactac tgcaactccc gggactcctc cggcaaccac 1560 gtggtgttcg gcggcggcac caagctgacc gtgggcctgg tgccgcgcgg cagcgtcgac 1620 gagcagaagc tgatctccga ggaggacctg catcatcatc atcatcatca tcattagtga 1680 1680 <210> 8 <211> 558 <212> PRT <213> Artificial Sequence <220> <223> CD20-CD16 tandem scFv <400> 8 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys 20 25 30 Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe 35 40 45 Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu 50 55 60 Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn 65 70 75 80 Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser 85 90 95 Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val 100 105 110 Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn 115 120 125 Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala Gly Gly Gly Gly 130 135 140 Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 145 150 155 160 Gln Ile Val Leu Ser Gln Ser Pro Ala Ile Leu Ser Ala Ser Pro Gly 165 170 175 Glu Lys Val Thr Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Ile 180 185 190 His Trp Phe Gln Gln Lys Pro Gly Ser Ser Pro Lys Pro Trp Ile Tyr 195 200 205 Ala Thr Ser Asn Leu Ala Ser Gly Val Pro Val Arg Phe Ser Gly Ser 210 215 220 Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Arg Val Glu Ala Glu 225 230 235 240 Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Thr Ser Asn Pro Pro Thr 245 250 255 Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ser Ser Gly Gly Gly 260 265 270 Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Ser Glu 275 280 285 Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Arg Pro Gly Gly Ser 290 295 300 Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp Asp Tyr Gly 305 310 315 320 Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser 325 330 335 Gly Ile Asn Trp Asn Gly Gly Ser Thr Gly Tyr Ala Asp Ser Val Lys 340 345 350 Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 355 360 365 Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 370 375 380 Arg Gly Arg Ser Leu Leu Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val 385 390 395 400 Thr Val Ser Arg Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 405 410 415 Gly Gly Ser Gly Gly Gly Gly Ser Ser Ser Glu Leu Thr Gln Asp Pro 420 425 430 Ala Val Ser Val Ala Leu Gly Gln Thr Val Arg Ile Thr Cys Gln Gly 435 440 445 Asp Ser Leu Arg Ser Tyr Tyr Ala Ser Trp Tyr Gln Gln Lys Pro Gly 450 455 460 Gln Ala Pro Val Leu Val Ile Tyr Gly Lys Asn Asn Arg Pro Ser Gly 465 470 475 480 Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu 485 490 495 Thr Ile Thr Gly Ala Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Asn 500 505 510 Ser Arg Asp Ser Ser Gly Asn His Val Val Phe Gly Gly Gly Thr Lys 515 520 525 Leu Thr Val Gly Leu Val Pro Arg Gly Ser Val Asp Glu Gln Lys Leu 530 535 540 Ile Ser Glu Glu Asp Leu His His His His His His His His 545 550 555 <210> 9 <211> 2190 <212> DNA <213> Artificial Sequence <220> <223> Her2IgG-CD16scFv <400> 9 atgggctggt cctgcatcat cctgttcctg gtggccaccg ccaccggcgt gcactccgag 60 gtgcagctgg tggagtccgg cggcggcctg gtgcagcccg gcggctccct gcggctgtcc 120 tgcgccgcct ccggcttcaa catcaaggac acctacatcc actgggtgcg gcaggccccc 180 ggcaagggcc tggagtgggt ggcccggatc taccccacca acggctacac ccggtacgcc 240 gactccgtga agggccggtt caccatctcc gccgacacct ccaagaacac cgcctacctg 300 cagatgaact ccctgcgggc cgaggacacc gccgtgtact actgctcccg gtggggcggc 360 gacggcttct acgccatgga ctactggggc cagggcaccc tggtgaccgt gtcctccgcc 420 tccaccaagg gcccctccgt gttccccctg gccccctcct ccaagtccac ctccggcggc 480 accgccgccc tgggctgcct ggtgaaggac tacttccccg agcccgtgac cgtgtcctgg 540 aactccggcg ccctgacctc cggcgtgcac accttccccg ccgtgctgca gtcctccggc 600 ctgtactccc tgtcctccgt ggtgaccgtg ccctcctcct ccctgggcac ccagacctac 660 atctgcaacg tgaaccacaa gccctccaac accaaggtgg acaagaaggt ggagcccaag 720 tcctgcgaca agacccacac ctgccccccc tgccccgccc ccgagctgct gggcggcccc 780 tccgtgttcc tgttcccccc caagcccaag gacaccctga tgatctcccg gacccccgag 840 gtgacctgcg tggtggtgga cgtgtcccac gaggaccccg aggtgaagtt caactggtac 900 gtggacggcg tggaggtgca caacgccaag accaagcccc gggaggagca gtacaactcc 960 acctaccggg tggtgtccgt gctgaccgtg ctgcaccagg actggctgaa cggcaaggag 1020 tacaagtgca aggtgtccaa caaggccctg cccgccccca tcgagaagac catctccaag 1080 gccaagggcc agccccggga gccccaggtg tacaccctgc ccccctcccg ggaggagatg 1140 accaagaacc aggtgtccct gacctgcctg gtgaagggct tctacccctc cgacatcgcc 1200 gtggagtggg agtccaacgg ccagcccgag aacaactaca agaccacccc ccccgtgctg 1260 gactccgacg gctccttctt cctgtactcc aagctgaccg tggacaagtc ccggtggcag 1320 cagggcaacg tgttctcctg ctccgtgatg cacgaggccc tgcacaacca ctacacccag 1380 aagtccctgt ccctgtcccc cggcaagggt ggaggtggca gcggtggtgg cggcagtggc 1440 ggtggcggct cctcctccga gctgacccag gaccccgccg tgtccgtggc cctgggccag 1500 accgtgcgga tcacctgcca gggcgactcc ctgcggtcct actacgcctc ctggtaccag 1560 cagaagcccg gccaggcccc cgtgctggtg atctacggca agaacaaccg gccctccggc 1620 atccccgacc ggttctccgg ctcctcctcc ggcaacaccg cctccctgac catcaccggc 1680 gcccaggccg aggacgaggc cgactactac tgcaactccc gggactcctc cggcaaccac 1740 gtggtgttcg gcggcggcac caagctgacc gtgggcggtg gagggggttc aggaggggga 1800 ggatctggtg gcggcggatc cgggggaggg ggatccgagg tgcagctggt ggagtccggc 1860 ggcggcgtgg tgcggcccgg cggctccctg cggctgtcct gcgccgcctc cggcttcacc 1920 ttcgacgact acggcatgtc ctgggtgcgg caggcccccg gcaagggcct ggagtgggtg 1980 tccggcatca actggaacgg cggctccacc ggctacgccg actccgtgaa gggccggttc 2040 accatctccc gggacaacgc caagaactcc ctgtacctgc agatgaactc cctgcgggcc 2100 gaggacaccg ccgtgtacta ctgcgcccgg ggccggtccc tgctgttcga ctactggggc 2160 cagggcaccc tggtgaccgt gtcccggtga 2190 <210> 10 <211> 729 <212> PRT <213> Artificial Sequence <220> <223> Her2IgG-CD16scFv <400> 10 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln 20 25 30 Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile 35 40 45 Lys Asp Thr Tyr Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60 Glu Trp Val Ala Arg Ile Tyr Pro Thr Asn Gly Tyr Thr Arg Tyr Ala 65 70 75 80 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn 85 90 95 Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 100 105 110 Tyr Tyr Cys Ser Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr 115 120 125 Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly 130 135 140 Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly 145 150 155 160 Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val 165 170 175 Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe 180 185 190 Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val 195 200 205 Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val 210 215 220 Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys 225 230 235 240 Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu 245 250 255 Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 260 265 270 Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 275 280 285 Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val 290 295 300 Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 305 310 315 320 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 325 330 335 Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala 340 345 350 Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 355 360 365 Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln 370 375 380 Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 385 390 395 400 Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 405 410 415 Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 420 425 430 Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 435 440 445 Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 450 455 460 Leu Ser Pro Gly Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 465 470 475 480 Gly Gly Gly Ser Ser Ser Glu Leu Thr Gln Asp Pro Ala Val Ser Val 485 490 495 Ala Leu Gly Gln Thr Val Arg Ile Thr Cys Gln Gly Asp Ser Leu Arg 500 505 510 Ser Tyr Tyr Ala Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val 515 520 525 Leu Val Ile Tyr Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg 530 535 540 Phe Ser Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly 545 550 555 560 Ala Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Arg Asp Ser 565 570 575 Ser Gly Asn His Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Gly 580 585 590 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 595 600 605 Gly Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val Val 610 615 620 Arg Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr 625 630 635 640 Phe Asp Asp Tyr Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly 645 650 655 Leu Glu Trp Val Ser Gly Ile Asn Trp Asn Gly Gly Ser Thr Gly Tyr 660 665 670 Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys 675 680 685 Asn Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala 690 695 700 Val Tyr Tyr Cys Ala Arg Gly Arg Ser Leu Leu Phe Asp Tyr Trp Gly 705 710 715 720 Gln Gly Thr Leu Val Thr Val Ser Arg 725 <210> 11 <211> 1413 <212> DNA <213> Artificial Sequence <220> <223> Fc engineering CD20 <400> 11 atgggctggt cctgcatcat cctgttcctg gtggccaccg ccaccggcgt gcactcccag 60 gtgcagctgc agcagcccgg cgccgagctg gtgaagcccg gcgcctccgt gaagatgtcc 120 tgcaaggcct ccggctacac cttcacctcc tacaacatgc actgggtgaa gcagaccccc 180 ggccggggcc tggagtggat cggcgccatc taccccggca acggcgacac ctcctacaac 240 cagaagttca agggcaaggc caccctgacc gccgacaagt cctcctccac cgcctacatg 300 cagctgtcct ccctgacctc cgaggactcc gccgtgtact actgcgcccg gtccacctac 360 tacggcggcg actggtactt caacgtgtgg ggcgccggca ccaccgtgac cgtgtccgcc 420 gcctccacca agggcccctc cgtgttcccc ctggccccct cctccaagtc cacctccggc 480 ggcaccgccg ccctgggctg cctggtgaag gactacttcc ccgagcccgt gaccgtgtcc 540 tggaactccg gcgccctgac ctccggcgtg cacaccttcc ccgccgtgct gcagtcctcc 600 ggcctgtact ccctgtcctc cgtggtgacc gtgccctcct cctccctggg cacccagacc 660 tacatctgca acgtgaacca caagccctcc aacaccaagg tggacaagaa ggccgagccc 720 aagtcctgcg acaagaccca cacctgccct ccctgccccg ctcccgagct gctgggcgga 780 cccgacgtgt tcctgttccc ccccaagccc aaggacaccc tgatgatctc ccggaccccc 840 gaggtgacct gcgtggtggt ggacgtgtcc cacgaggacc ccgaggtgaa gttcaactgg 900 tacgtggacg gcgtggaggt gcacaacgcc aagaccaagc cccgggagga gcagtacaac 960 tccacctacc gggtggtgtc cgtgctgacc gtgctgcacc aggactggct gaacggcaag 1020 gagtacaagt gcaaggtgtc caacaaggct ctgcccgctc ccgaggagaa gaccatctcc 1080 aaggctaagg gacagcctcg ggagcctcag gtgtacaccc tgcccccctc ccgggacgag 1140 ctgaccaaga accaggtgtc cctgacctgc ctggtgaagg gcttctaccc ctccgacatc 1200 gccgtggagt gggagtccaa cggccagccc gagaacaact acaagaccac cccccccgtg 1260 ctggactccg acggctcctt cttcctgtac tccaagctga ccgtggacaa gtcccggtgg 1320 cagcagggca acgtgttctc ctgctccgtg atgcacgagg ccctgcacaa ccactacacc 1380 cagaagtccc tgtccctgtc ccccggcaag tga 1413 <210> 12 <211> 470 <212> PRT <213> Artificial Sequence <220> <223> Fc engineering CD20 <400> 12 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys 20 25 30 Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe 35 40 45 Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu 50 55 60 Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn 65 70 75 80 Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser 85 90 95 Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val 100 105 110 Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn 115 120 125 Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala Ala Ser Thr Lys 130 135 140 Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly 145 150 155 160 Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 165 170 175 Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 180 185 190 Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 195 200 205 Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn 210 215 220 Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Ala Glu Pro 225 230 235 240 Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu 245 250 255 Leu Leu Gly Gly Pro Asp Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 260 265 270 Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 275 280 285 Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly 290 295 300 Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn 305 310 315 320 Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp 325 330 335 Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro 340 345 350 Ala Pro Glu Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu 355 360 365 Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn 370 375 380 Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 385 390 395 400 Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 405 410 415 Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 420 425 430 Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys 435 440 445 Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 450 455 460 Ser Leu Ser Pro Gly Lys 465 470 <110> HANWHA CHEMICAL CORPORATION <120> Novel bi-specific monoclonal antibody with advanced anti-cancer activity and pharmaceutical composition for treating cancer comprising the same <130> PA120394KR <150> KR 10-2011-0046885 <151> 2011-05-18 <160> 12 <170> Kopatentin 2.0 <210> 1 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> linker peptide <400> 1 ggtggagggg gttcaggagg gggaggatct ggtggcggcg gatccggggg agggggatcc 60                                                                           60 <210> 2 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> linker peptide <400> 2 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly   1 5 10 15 Gly Gly Gly Ser              20 <210> 3 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> linker peptide <400> 3 ggtggaggtg gcagcggtgg tggcggcagt ggcggtggcg gctcc 45 <210> 4 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> linker peptide <400> 4 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser   1 5 10 15 <210> 5 <211> 2193 <212> DNA <213> Artificial Sequence <220> <223> CD20IgG-CD16scFv <400> 5 atgggctggt cctgcatcat cctgttcctg gtggccaccg ccaccggcgt gcactcccag 60 gtgcagctgc agcagcccgg cgccgagctg gtgaagcccg gcgcctccgt gaagatgtcc 120 tgcaaggcct ccggctacac cttcacctcc tacaacatgc actgggtgaa gcagaccccc 180 ggccggggcc tggagtggat cggcgccatc taccccggca acggcgacac ctcctacaac 240 cagaagttca agggcaaggc caccctgacc gccgacaagt cctcctccac cgcctacatg 300 cagctgtcct ccctgacctc cgaggactcc gccgtgtact actgcgcccg gtccacctac 360 tacggcggcg actggtactt caacgtgtgg ggcgccggca ccaccgtgac cgtgtccgcc 420 gcctccacca agggcccctc cgtgttcccc ctggccccct cctccaagtc cacctccggc 480 ggcaccgccg ccctgggctg cctggtgaag gactacttcc ccgagcccgt gaccgtgtcc 540 tggaactccg gcgccctgac ctccggcgtg cacaccttcc ccgccgtgct gcagtcctcc 600 ggcctgtact ccctgtcctc cgtggtgacc gtgccctcct cctccctggg cacccagacc 660 tacatctgca acgtgaacca caagccctcc aacaccaagg tggacaagaa ggccgagccc 720 aagtcctgcg acaagaccca cacctgcccc ccctgccccg cccccgagct gctgggcggc 780 ccctccgtgt tcctgttccc ccccaagccc aaggacaccc tgatgatctc ccggaccccc 840 gaggtgacct gcgtggtggt ggacgtgtcc cacgaggacc ccgaggtgaa gttcaactgg 900 tacgtggacg gcgtggaggt gcacaacgcc aagaccaagc cccgggagga gcagtacaac 960 tccacctacc gggtggtgtc cgtgctgacc gtgctgcacc aggactggct gaacggcaag 1020 gagtacaagt gcaaggtgtc caacaaggcc ctgcccgccc ccatcgagaa gaccatctcc 1080 aaggccaagg gccagccccg ggagccccag gtgtacaccc tgcccccctc ccgggacgag 1140 ctgaccaaga accaggtgtc cctgacctgc ctggtgaagg gcttctaccc ctccgacatc 1200 gccgtggagt gggagtccaa cggccagccc gagaacaact acaagaccac cccccccgtg 1260 ctggactccg acggctcctt cttcctgtac tccaagctga ccgtggacaa gtcccggtgg 1320 cagcagggca acgtgttctc ctgctccgtg atgcacgagg ccctgcacaa ccactacacc 1380 cagaagtccc tgtccctgtc ccccggcaag ggtggaggtg gcagcggtgg tggcggcagt 1440 ggcggtggcg gctcctcctc cgagctgacc caggaccccg ccgtgtccgt ggccctgggc 1500 cagaccgtgc ggatcacctg ccagggcgac tccctgcggt cctactacgc ctcctggtac 1560 cagcagaagc ccggccaggc ccccgtgctg gtgatctacg gcaagaacaa ccggccctcc 1620 ggcatccccg accggttctc cggctcctcc tccggcaaca ccgcctccct gaccatcacc 1680 ggcgcccagg ccgaggacga ggccgactac tactgcaact cccgggactc ctccggcaac 1740 cacgtggtgt tcggcggcgg caccaagctg accgtgggcg gtggaggggg ttcaggaggg 1800 ggaggatctg gtggcggcgg atccggggga gggggatccg aggtgcagct ggtggagtcc 1860 ggcggcggcg tggtgcggcc cggcggctcc ctgcggctgt cctgcgccgc ctccggcttc 1920 accttcgacg actacggcat gtcctgggtg cggcaggccc ccggcaaggg cctggagtgg 1980 gtgtccggca tcaactggaa cggcggctcc accggctacg ccgactccgt gaagggccgg 2040 ttcaccatct cccgggacaa cgccaagaac tccctgtacc tgcagatgaa ctccctgcgg 2100 gccgaggaca ccgccgtgta ctactgcgcc cggggccggt ccctgctgtt cgactactgg 2160 ggccagggca ccctggtgac cgtgtcccgg tga 2193 <210> 6 <211> 730 <212> PRT <213> Artificial Sequence <220> <223> CD20IgG-CD16scFv <400> 6 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly   1 5 10 15 Val His Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys              20 25 30 Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe          35 40 45 Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu      50 55 60 Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn  65 70 75 80 Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser                  85 90 95 Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val             100 105 110 Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn         115 120 125 Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala Ala Ser Thr Lys     130 135 140 Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly 145 150 155 160 Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro                 165 170 175 Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr             180 185 190 Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val         195 200 205 Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn     210 215 220 Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Ala Glu Pro 225 230 235 240 Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu                 245 250 255 Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp             260 265 270 Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp         275 280 285 Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly     290 295 300 Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn 305 310 315 320 Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp                 325 330 335 Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro             340 345 350 Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu         355 360 365 Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn     370 375 380 Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 385 390 395 400 Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr                 405 410 415 Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys             420 425 430 Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys         435 440 445 Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu     450 455 460 Ser Leu Ser Pro Gly Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 465 470 475 480 Gly Gly Gly Gly Ser Ser Ser Glu Leu Thr Gln Asp Pro Ala Val Ser                 485 490 495 Val Ala Leu Gly Gln Thr Val Arg Ile Thr Cys Gln Gly Asp Ser Leu             500 505 510 Arg Ser Tyr Tyr Ala Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro         515 520 525 Val Leu Val Ile Tyr Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp     530 535 540 Arg Phe Ser Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr 545 550 555 560 Gly Ala Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Arg Asp                 565 570 575 Ser Ser Gly Asn His Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val             580 585 590 Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly Ser         595 600 605 Gly Gly Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val     610 615 620 Val Arg Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe 625 630 635 640 Thr Phe Asp Asp Tyr Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys                 645 650 655 Gly Leu Glu Trp Val Ser Gly Ile Asn Trp Asn Gly Gly Ser Thr Gly             660 665 670 Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala         675 680 685 Lys Asn Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr     690 695 700 Ala Val Tyr Tyr Cys Ala Arg Gly Arg Ser Leu Leu Phe Asp Tyr Trp 705 710 715 720 Gly Gln Gly Thr Leu Val Thr Val Ser Arg                 725 730 <210> 7 <211> 1680 <212> DNA <213> Artificial Sequence <220> <223> CD20-CD16 tandem scFv <400> 7 atgggctggt cctgcatcat cctgttcctg gtggccaccg ccaccggcgt gcactcccag 60 gtgcagctgc agcagcccgg cgccgagctg gtgaagcccg gcgcctccgt gaagatgtcc 120 tgcaaggcct ccggctacac cttcacctcc tacaacatgc actgggtgaa gcagaccccc 180 ggccggggcc tggagtggat cggcgccatc taccccggca acggcgacac ctcctacaac 240 cagaagttca agggcaaggc caccctgacc gccgacaagt cctcctccac cgcctacatg 300 cagctgtcct ccctgacctc cgaggactcc gccgtgtact actgcgcccg gtccacctac 360 tacggcggcg actggtactt caacgtgtgg ggcgccggca ccaccgtgac cgtgtccgcc 420 ggtggagggg gttcaggagg gggaggatct ggtggcggcg gatccggggg agggggatcc 480 cagatcgtgc tgtcccagtc ccccgccatc ctgtccgcct cccccggcga gaaggtgacc 540 atgacctgcc gggcctcctc ctccgtgtcc tacatccact ggttccagca gaagcccggc 600 tcctccccca agccctggat ctacgccacc tccaacctgg cctccggcgt gcccgtgcgg 660 ttctccggct ccggctccgg cacctcctac tccctgacca tctcccgggt ggaggccgag 720 gacgccgcca cctactactg ccagcagtgg acctccaacc cccccacctt cggcggcggc 780 accaagctgg agatcaagcg gtcctccggt ggagggggtt caggaggggg aggatctggt 840 ggcggcggat cgggaggttc cgaggtgcag ctggtggagt ccggcggcgg cgtggtgcgg 900 cccggcggct ccctgcggct gtcctgcgcc gcctccggct tcaccttcga cgactacggc 960 atgtcctggg tgcggcaggc ccccggcaag ggcctggagt gggtgtccgg catcaactgg 1020 aacggcggct ccaccggcta cgccgactcc gtgaagggcc ggttcaccat ctcccgggac 1080 aacgccaaga actccctgta cctgcagatg aactccctgc gggccgagga caccgccgtg 1140 tactactgcg cccggggccg gtccctgctg ttcgactact ggggccaggg caccctggtg 1200 accgtgtccc ggggtggagg gggttcagga gggggaggat ctggtggcgg cggatccggg 1260 ggagggggat cctcctccga gctgacccag gaccccgccg tgtccgtggc cctgggccag 1320 accgtgcgga tcacctgcca gggcgactcc ctgcggtcct actacgcctc ctggtaccag 1380 cagaagcccg gccaggcccc cgtgctggtg atctacggca agaacaaccg gccctccggc 1440 atccccgacc ggttctccgg ctcctcctcc ggcaacaccg cctccctgac catcaccggc 1500 gcccaggccg aggacgaggc cgactactac tgcaactccc gggactcctc cggcaaccac 1560 gtggtgttcg gcggcggcac caagctgacc gtgggcctgg tgccgcgcgg cagcgtcgac 1620 gagcagaagc tgatctccga ggaggacctg catcatcatc atcatcatca tcattagtga 1680                                                                         1680 <210> 8 <211> 558 <212> PRT <213> Artificial Sequence <220> <223> CD20-CD16 tandem scFv <400> 8 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly   1 5 10 15 Val His Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys              20 25 30 Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe          35 40 45 Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu      50 55 60 Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn  65 70 75 80 Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser                  85 90 95 Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val             100 105 110 Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn         115 120 125 Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala Gly Gly Gly Gly     130 135 140 Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 145 150 155 160 Gln Ile Val Leu Ser Gln Ser Pro Ala Ile Leu Ser Ala Ser Pro Gly                 165 170 175 Glu Lys Val Thr Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Ile             180 185 190 His Trp Phe Gln Gln Lys Pro Gly Ser Ser Pro Lys Pro Trp Ile Tyr         195 200 205 Ala Thr Ser Asn Leu Ala Ser Gly Val Pro Val Arg Phe Ser Gly Ser     210 215 220 Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Arg Val Glu Ala Glu 225 230 235 240 Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Thr Ser Asn Pro Pro Thr                 245 250 255 Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ser Ser Gly Gly Gly             260 265 270 Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Ser Glu         275 280 285 Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Arg Pro Gly Gly Ser     290 295 300 Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp Asp Tyr Gly 305 310 315 320 Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser                 325 330 335 Gly Ile Asn Trp Asn Gly Gly Ser Thr Gly Tyr Ala Asp Ser Val Lys             340 345 350 Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu         355 360 365 Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala     370 375 380 Arg Gly Arg Ser Leu Leu Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val 385 390 395 400 Thr Val Ser Arg Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly                 405 410 415 Gly Gly Ser Gly Gly Gly Gly Ser Ser Ser Glu Leu Thr Gln Asp Pro             420 425 430 Ala Val Ser Val Ala Leu Gly Gln Thr Val Arg Ile Thr Cys Gln Gly         435 440 445 Asp Ser Leu Arg Ser Tyr Tyr Ala Ser Trp Tyr Gln Gln Lys Pro Gly     450 455 460 Gln Ala Pro Val Leu Val Ile Tyr Gly Lys Asn Asn Arg Pro Ser Gly 465 470 475 480 Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu                 485 490 495 Thr Ile Thr Gly Ala Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Asn             500 505 510 Ser Arg Asp Ser Ser Gly Asn His Val Val Phe Gly Gly Gly Thr Lys         515 520 525 Leu Thr Val Gly Leu Val Pro Arg Gly Ser Val Asp Glu Gln Lys Leu     530 535 540 Ile Ser Glu Glu Asp Leu His His His His His His His His His 545 550 555 <210> 9 <211> 2190 <212> DNA <213> Artificial Sequence <220> <223> Her2IgG-CD16scFv <400> 9 atgggctggt cctgcatcat cctgttcctg gtggccaccg ccaccggcgt gcactccgag 60 gtgcagctgg tggagtccgg cggcggcctg gtgcagcccg gcggctccct gcggctgtcc 120 tgcgccgcct ccggcttcaa catcaaggac acctacatcc actgggtgcg gcaggccccc 180 ggcaagggcc tggagtgggt ggcccggatc taccccacca acggctacac ccggtacgcc 240 gactccgtga agggccggtt caccatctcc gccgacacct ccaagaacac cgcctacctg 300 cagatgaact ccctgcgggc cgaggacacc gccgtgtact actgctcccg gtggggcggc 360 gacggcttct acgccatgga ctactggggc cagggcaccc tggtgaccgt gtcctccgcc 420 tccaccaagg gcccctccgt gttccccctg gccccctcct ccaagtccac ctccggcggc 480 accgccgccc tgggctgcct ggtgaaggac tacttccccg agcccgtgac cgtgtcctgg 540 aactccggcg ccctgacctc cggcgtgcac accttccccg ccgtgctgca gtcctccggc 600 ctgtactccc tgtcctccgt ggtgaccgtg ccctcctcct ccctgggcac ccagacctac 660 atctgcaacg tgaaccacaa gccctccaac accaaggtgg acaagaaggt ggagcccaag 720 tcctgcgaca agacccacac ctgccccccc tgccccgccc ccgagctgct gggcggcccc 780 tccgtgttcc tgttcccccc caagcccaag gacaccctga tgatctcccg gacccccgag 840 gtgacctgcg tggtggtgga cgtgtcccac gaggaccccg aggtgaagtt caactggtac 900 gtggacggcg tggaggtgca caacgccaag accaagcccc gggaggagca gtacaactcc 960 acctaccggg tggtgtccgt gctgaccgtg ctgcaccagg actggctgaa cggcaaggag 1020 tacaagtgca aggtgtccaa caaggccctg cccgccccca tcgagaagac catctccaag 1080 gccaagggcc agccccggga gccccaggtg tacaccctgc ccccctcccg ggaggagatg 1140 accaagaacc aggtgtccct gacctgcctg gtgaagggct tctacccctc cgacatcgcc 1200 gtggagtggg agtccaacgg ccagcccgag aacaactaca agaccacccc ccccgtgctg 1260 gactccgacg gctccttctt cctgtactcc aagctgaccg tggacaagtc ccggtggcag 1320 cagggcaacg tgttctcctg ctccgtgatg cacgaggccc tgcacaacca ctacacccag 1380 aagtccctgt ccctgtcccc cggcaagggt ggaggtggca gcggtggtgg cggcagtggc 1440 ggtggcggct cctcctccga gctgacccag gaccccgccg tgtccgtggc cctgggccag 1500 accgtgcgga tcacctgcca gggcgactcc ctgcggtcct actacgcctc ctggtaccag 1560 cagaagcccg gccaggcccc cgtgctggtg atctacggca agaacaaccg gccctccggc 1620 atccccgacc ggttctccgg ctcctcctcc ggcaacaccg cctccctgac catcaccggc 1680 gcccaggccg aggacgaggc cgactactac tgcaactccc gggactcctc cggcaaccac 1740 gtggtgttcg gcggcggcac caagctgacc gtgggcggtg gagggggttc aggaggggga 1800 ggatctggtg gcggcggatc cgggggaggg ggatccgagg tgcagctggt ggagtccggc 1860 ggcggcgtgg tgcggcccgg cggctccctg cggctgtcct gcgccgcctc cggcttcacc 1920 ttcgacgact acggcatgtc ctgggtgcgg caggcccccg gcaagggcct ggagtgggtg 1980 tccggcatca actggaacgg cggctccacc ggctacgccg actccgtgaa gggccggttc 2040 accatctccc gggacaacgc caagaactcc ctgtacctgc agatgaactc cctgcgggcc 2100 gaggacaccg ccgtgtacta ctgcgcccgg ggccggtccc tgctgttcga ctactggggc 2160 cagggcaccc tggtgaccgt gtcccggtga 2190 <210> 10 <211> 729 <212> PRT <213> Artificial Sequence <220> <223> Her2IgG-CD16scFv <400> 10 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly   1 5 10 15 Val His Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln              20 25 30 Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile          35 40 45 Lys Asp Thr Tyr Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu      50 55 60 Glu Trp Val Ala Arg Ile Tyr Pro Thr Asn Gly Tyr Thr Arg Tyr Ala  65 70 75 80 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn                  85 90 95 Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val             100 105 110 Tyr Tyr Cys Ser Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr         115 120 125 Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly     130 135 140 Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly 145 150 155 160 Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val                 165 170 175 Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe             180 185 190 Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val         195 200 205 Thr Val Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val     210 215 220 Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys 225 230 235 240 Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu                 245 250 255 Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr             260 265 270 Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Asp Val         275 280 285 Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val     290 295 300 Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 305 310 315 320 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu                 325 330 335 Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala             340 345 350 Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro         355 360 365 Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln     370 375 380 Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 385 390 395 400 Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr                 405 410 415 Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu             420 425 430 Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser         435 440 445 Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser     450 455 460 Leu Ser Pro Gly Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 465 470 475 480 Gly Gly Gly Ser Ser Ser Glu Leu Thr Gln Asp Pro Ala Val Ser Val                 485 490 495 Ala Leu Gly Gln Thr Val Arg Ile Thr Cys Gln Gly Asp Ser Leu Arg             500 505 510 Ser Tyr Tyr Ala Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val         515 520 525 Leu Val Ile Tyr Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg     530 535 540 Phe Ser Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly 545 550 555 560 Ala Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Arg Asp Ser                 565 570 575 Ser Gly Asn His Val Val Phe Gly Gly Thr Lys Leu Thr Val Gly             580 585 590 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly         595 600 605 Gly Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val Val     610 615 620 Arg Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr 625 630 635 640 Phe Asp Asp Tyr Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly                 645 650 655 Leu Glu Trp Val Ser Gly Ile Asn Trp Asn Gly Gly Ser Thr Gly Tyr             660 665 670 Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys         675 680 685 Asn Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala     690 695 700 Val Tyr Tyr Cys Ala Arg Gly Arg Ser Leu Leu Phe Asp Tyr Trp Gly 705 710 715 720 Gln Gly Thr Leu Val Thr Val Ser Arg                 725 <210> 11 <211> 1413 <212> DNA <213> Artificial Sequence <220> <223> Fc engineering CD20 <400> 11 atgggctggt cctgcatcat cctgttcctg gtggccaccg ccaccggcgt gcactcccag 60 gtgcagctgc agcagcccgg cgccgagctg gtgaagcccg gcgcctccgt gaagatgtcc 120 tgcaaggcct ccggctacac cttcacctcc tacaacatgc actgggtgaa gcagaccccc 180 ggccggggcc tggagtggat cggcgccatc taccccggca acggcgacac ctcctacaac 240 cagaagttca agggcaaggc caccctgacc gccgacaagt cctcctccac cgcctacatg 300 cagctgtcct ccctgacctc cgaggactcc gccgtgtact actgcgcccg gtccacctac 360 tacggcggcg actggtactt caacgtgtgg ggcgccggca ccaccgtgac cgtgtccgcc 420 gcctccacca agggcccctc cgtgttcccc ctggccccct cctccaagtc cacctccggc 480 ggcaccgccg ccctgggctg cctggtgaag gactacttcc ccgagcccgt gaccgtgtcc 540 tggaactccg gcgccctgac ctccggcgtg cacaccttcc ccgccgtgct gcagtcctcc 600 ggcctgtact ccctgtcctc cgtggtgacc gtgccctcct cctccctggg cacccagacc 660 tacatctgca acgtgaacca caagccctcc aacaccaagg tggacaagaa ggccgagccc 720 aagtcctgcg acaagaccca cacctgccct ccctgccccg ctcccgagct gctgggcgga 780 cccgacgtgt tcctgttccc ccccaagccc aaggacaccc tgatgatctc ccggaccccc 840 gaggtgacct gcgtggtggt ggacgtgtcc cacgaggacc ccgaggtgaa gttcaactgg 900 tacgtggacg gcgtggaggt gcacaacgcc aagaccaagc cccgggagga gcagtacaac 960 tccacctacc gggtggtgtc cgtgctgacc gtgctgcacc aggactggct gaacggcaag 1020 gagtacaagt gcaaggtgtc caacaaggct ctgcccgctc ccgaggagaa gaccatctcc 1080 aaggctaagg gacagcctcg ggagcctcag gtgtacaccc tgcccccctc ccgggacgag 1140 ctgaccaaga accaggtgtc cctgacctgc ctggtgaagg gcttctaccc ctccgacatc 1200 gccgtggagt gggagtccaa cggccagccc gagaacaact acaagaccac cccccccgtg 1260 ctggactccg acggctcctt cttcctgtac tccaagctga ccgtggacaa gtcccggtgg 1320 cagcagggca acgtgttctc ctgctccgtg atgcacgagg ccctgcacaa ccactacacc 1380 cagaagtccc tgtccctgtc ccccggcaag tga 1413 <210> 12 <211> 470 <212> PRT <213> Artificial Sequence <220> <223> Fc engineering CD20 <400> 12 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly   1 5 10 15 Val His Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys              20 25 30 Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe          35 40 45 Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu      50 55 60 Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn  65 70 75 80 Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser                  85 90 95 Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val             100 105 110 Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn         115 120 125 Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala Ala Ser Thr Lys     130 135 140 Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly 145 150 155 160 Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro                 165 170 175 Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr             180 185 190 Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val         195 200 205 Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn     210 215 220 Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Ala Glu Pro 225 230 235 240 Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu                 245 250 255 Leu Leu Gly Gly Pro Asp Val Phe Leu Phe Pro Pro Lys Pro Lys Asp             260 265 270 Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp         275 280 285 Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly     290 295 300 Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn 305 310 315 320 Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp                 325 330 335 Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro             340 345 350 Ala Pro Glu Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu         355 360 365 Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn     370 375 380 Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 385 390 395 400 Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr                 405 410 415 Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys             420 425 430 Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys         435 440 445 Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu     450 455 460 Ser Leu Ser Pro Gly Lys 465 470

Claims (13)

암세포 표면 항원과 결합하는 항체 및 면역세포 표면 항원과 결합하는 도메인을 포함하며, 암세포 표면 항원과 결합하는 항체의 Fc 영역의 C-말단에 면역세포 표면 항원과 결합하는 도메인이 링커로 연결된, 양특이성 단일클론 항체.
Bispecificity comprising an antibody binding to a cancer cell surface antigen and a domain that binds an immune cell surface antigen, wherein a domain that binds the immune cell surface antigen to the C-terminus of the Fc region of the antibody that binds the cancer cell surface antigen is linked by a linker Monoclonal antibodies.
제1항에 있어서,
상기 암세포 표면 항원과 결합하는 항체는 IgG 형태인 것인 양특이성 단일클론 항체.
The method of claim 1,
The antibody that binds to the cancer cell surface antigen is a bispecific monoclonal antibody of the IgG form.
제1항에 있어서,
상기 면역세포 표면 항원과 결합하는 도메인은 scFv (Single-chain variable fragment) 형태인 것인 양특이성 단일클론 항체.
The method of claim 1,
The domain that binds to the immune cell surface antigen is a bispecific monoclonal antibody in the form of a scFv (Single-chain variable fragment).
제1항에 있어서,
상기 링커는 펩타이드인 것인, 양특이성 단일클론 항체.
The method of claim 1,
The linker is a peptide, bispecific monoclonal antibody.
제4항에 있어서,
상기 링커 펩타이드는 서열번호 4인 것인, 양특이성 단일클론 항체.
5. The method of claim 4,
The linker peptide is SEQ ID NO: 4, bispecific monoclonal antibody.
제1항에 있어서,
상기 면역세포는 자연살상세포(Natural Killer cell) 또는 T 세포인 양특이성 단일클론 항체.
The method of claim 1,
The immune cell is a natural killer cell (Natural Killer cell) or T-specific bispecific monoclonal antibody.
제1항에 있어서,
상기 면역세포 표면 항원은 CD3, CD16, CD32, CD64 및 CD89로 이루어진 군에서 선택된 것인 양특이성 단일클론 항체.
The method of claim 1,
The immune cell surface antigen is a bispecific monoclonal antibody selected from the group consisting of CD3, CD16, CD32, CD64 and CD89.
제1항에 있어서,
상기 암세포 표면 항원은 CD19, CD20, Her2, EpCAM (Epithelial cell adhesion molecule) 및 EGFR (epidermal growth factor receptor)로 이루어진 군에서 선택된 것인 양특이성 단일클론 항체.
The method of claim 1,
The cancer cell surface antigen is a bispecific monoclonal antibody selected from the group consisting of CD19, CD20, Her2, Epithelial cell adhesion molecule (EpCAM) and epidermal growth factor receptor (EGFR).
제1항에 있어서,
면역세포 표면 항원에 대한 해리 상수 (KD value)가 100nM 이하인 친화력을 가지는 것인 양특이성 단일클론 항체.
The method of claim 1,
Dissociation Constants for Immune Cell Surface Antigens (K D) bispecific monoclonal antibody having an affinity with a value of 100 nM or less.
(a) 암세포 표면 항원과 결합하는 항체 및 면역세포 표면 항원과 결합하는 도메인을 암호화하는 폴리뉴클레오티드를 각각 수득하는 단계;
(b) 암세포 표면 항원과 결합하는 항체의 Fc 영역의 3'-말단에 면역세포 표면 항원과 결합하는 도메인의 5'-말단을 연결하여, 양특이성 단일클론 항체의 유전자를 수득하는 단계;
(c) 상기 수득한 양특이성 단일클론 항체의 유전자를 클로닝하여, 양특이성 단일클론 항체 발현벡터를 수득하는 단계;
(d) 상기 수득한 발현벡터를 숙주세포에 도입하여 형질전환체를 수득하는 단계; 및
(e) 상기 형질전환체를 배양하고, 이로부터 양특이성 단일클론 항체를 회수하는 단계를 포함하는, 제1항 내지 제9항 중 어느 한 항의 양특이성 단일클론 항체를 제조하는 방법.
(a) obtaining an antibody that binds a cancer cell surface antigen and a polynucleotide encoding a domain that binds an immune cell surface antigen, respectively;
(b) linking the 5'-terminus of the domain that binds the immune cell surface antigen to the 3'-terminus of the Fc region of the antibody that binds the cancer cell surface antigen to obtain a gene of a bispecific monoclonal antibody;
(c) cloning the gene of the obtained bispecific monoclonal antibody to obtain a bispecific monoclonal antibody expression vector;
(d) introducing the obtained expression vector into a host cell to obtain a transformant; And
(e) culturing the transformant, and recovering the bispecific monoclonal antibody therefrom, the method of producing the bispecific monoclonal antibody of any one of claims 1 to 9.
제10항에 있어서, 상기 (a) 및 (b) 단계는
(i) 암세포 표면 항원과 결합하는 항체의 중쇄 및 경쇄를 코딩하는 유전자와 면역세포 표면 항원과 결합하는 항체의 중쇄 가변 영역 및 경쇄 가변 영역을 코딩하는 유전자를 발현벡터에서 증폭하는 단계;
(ii) 면역세포 표면 항원과 결합하는 항체의 중쇄 가변 영역 및 경쇄 가변 영역을 링커로 연결시켜주는 단계; 및
(iii) 암세포 표면 항원과 결합하는 항체의 중쇄 영역 3'-말단과 상기 (ii)에서 제조된 면역세포 scFv를 링커로 연결해 주는 단계를 포함하는, 양특이성 단일클론 항체를 제조하는 방법.
The method of claim 10, wherein the steps (a) and (b)
(i) amplifying in a expression vector a gene encoding the heavy and light chains of the antibody binding to the cancer cell surface antigen and the gene encoding the heavy and light chain variable regions of the antibody binding to the immune cell surface antigen;
(ii) linking the heavy chain variable region and the light chain variable region of the antibody that binds the immune cell surface antigen with a linker; And
(iii) linking the heavy chain region 3′-terminus of the antibody that binds the cancer cell surface antigen and the immune cell scFv prepared in (ii) with a linker, a method for producing a bispecific monoclonal antibody.
제1항 내지 제9항 중 어느 한 항의 양특이성 단일클론 항체 및 약제학적으로 허용가능한 담체를 포함하는 암치료용 조성물.
A cancer treatment composition comprising the bispecific monoclonal antibody of any one of claims 1 to 9 and a pharmaceutically acceptable carrier.
제12항에 있어서,
상기 암은 식도암, 위암, 대장암, 직장암, 구강암, 인두암, 후두암, 폐암, 결장암, 유방암, 자궁 경부암, 자궁 내막체암, 난소암, 전립선암, 고환암, 방광암, 신장암, 간암, 췌장암, 골암, 결합 조직암, 피부암, 뇌암, 갑상선암, 백혈병, 호지킨(Hodgkin) 질환, 림프종, 및 다발성 골수종혈액암으로 이루어진 군에서 선택된 것인 암치료용 조성물.

The method of claim 12,
The cancer is esophageal cancer, stomach cancer, colon cancer, rectal cancer, oral cancer, pharyngeal cancer, laryngeal cancer, lung cancer, colon cancer, breast cancer, cervical cancer, endometrial cancer, ovarian cancer, prostate cancer, testicular cancer, bladder cancer, kidney cancer, liver cancer, pancreatic cancer, bone cancer A cancer treatment composition selected from the group consisting of connective tissue cancer, skin cancer, brain cancer, thyroid cancer, leukemia, Hodgkin's disease, lymphoma, and multiple myeloma blood cancer.

KR1020120053337A 2011-05-18 2012-05-18 Novel bi-specific monoclonal antibody with advanced anti-cancer activity and pharmaceutical composition for treating cancer comprising the same KR101423820B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120053337A KR101423820B1 (en) 2011-05-18 2012-05-18 Novel bi-specific monoclonal antibody with advanced anti-cancer activity and pharmaceutical composition for treating cancer comprising the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020110046885 2011-05-18
KR20110046885 2011-05-18
KR1020120053337A KR101423820B1 (en) 2011-05-18 2012-05-18 Novel bi-specific monoclonal antibody with advanced anti-cancer activity and pharmaceutical composition for treating cancer comprising the same

Publications (2)

Publication Number Publication Date
KR20120129834A true KR20120129834A (en) 2012-11-28
KR101423820B1 KR101423820B1 (en) 2014-07-30

Family

ID=47514277

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120053337A KR101423820B1 (en) 2011-05-18 2012-05-18 Novel bi-specific monoclonal antibody with advanced anti-cancer activity and pharmaceutical composition for treating cancer comprising the same

Country Status (1)

Country Link
KR (1) KR101423820B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162098A1 (en) * 2020-02-14 2021-08-19 協和キリン株式会社 Bispecific antibody that binds to cd3

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10156482A1 (en) * 2001-11-12 2003-05-28 Gundram Jung Bispecific antibody molecule
US7754209B2 (en) 2003-07-26 2010-07-13 Trubion Pharmaceuticals Binding constructs and methods for use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162098A1 (en) * 2020-02-14 2021-08-19 協和キリン株式会社 Bispecific antibody that binds to cd3

Also Published As

Publication number Publication date
KR101423820B1 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP7515412B2 (en) Novel cytokine prodrugs
KR102691790B1 (en) Anti-PD-L1/VEGF dual function antibody and uses thereof
KR102404077B1 (en) Bispecific antibody constructs that bind DLL3 and CD3
CN107001485B (en) Protein heterodimers and uses thereof
CN112512581A (en) Antibody constructs directed against CLDN18.2 and CD3
KR20200118080A (en) Antibody variable domain targeting the NKG2D receptor
KR20200037388A (en) Proteins that bind NKG2D, CD16, and EGFR, HLA-E, CCR4, or PD-L1
WO2015184941A1 (en) Cd7 nanobodies, encoding sequence and use thereof
US20200299412A1 (en) Anti-pd-l1/anti-pd-1 natural antibody structure-like heterodimeric bispecific antibody and preparation thereof
EA034142B1 (en) Bi-specific monovalent diabodies that are capable of binding cd123 and cd3, and uses thereof
US11529425B2 (en) Immunoconjugates comprising signal regulatory protein alpha
KR20200044957A (en) Proteins that bind NKG2D, CD16 and tumor-associated antigens
AU2019225740A1 (en) Antibody variable domains targeting CD33, and use thereof
CN111699201B (en) Heterodimeric bispecific antibody with anti-PD-1/anti-HER 2 natural antibody structure and preparation method thereof
KR20200051789A (en) Proteins that bind NKG2D, CD16, and C-type lectin-like molecule-1 (CLL-1)
CN111971090B (en) Bispecific EGFR/CD16 antigen binding proteins
US10683358B2 (en) Human TNFRSF25 antibody
JP2021533161A (en) Multispecific binding protein that binds to HER2, NKG2D and CD16 and how to use it
US20230272110A1 (en) Antibodies that bind psma and gamma-delta t cell receptors
KR20190120770A (en) Proteins That Bind PSMA, NKG2D, and CD16
TWI825459B (en) A SIRPα-Fc fusion protein
RU2652880C2 (en) Epidermal growth factor receptor antibody
KR20160135764A (en) Bi-specific antigen-binding polypeptides
KR101423820B1 (en) Novel bi-specific monoclonal antibody with advanced anti-cancer activity and pharmaceutical composition for treating cancer comprising the same
CN118369350A (en) Fusion protein of anti-TIGIT antibody and IL2 or variant thereof and use thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee