KR20120127023A - The specific binding molecules-nanofibers complex and method for activating the same - Google Patents

The specific binding molecules-nanofibers complex and method for activating the same Download PDF

Info

Publication number
KR20120127023A
KR20120127023A KR1020110045219A KR20110045219A KR20120127023A KR 20120127023 A KR20120127023 A KR 20120127023A KR 1020110045219 A KR1020110045219 A KR 1020110045219A KR 20110045219 A KR20110045219 A KR 20110045219A KR 20120127023 A KR20120127023 A KR 20120127023A
Authority
KR
South Korea
Prior art keywords
cells
nanofiber
nanofibers
specific binding
cell
Prior art date
Application number
KR1020110045219A
Other languages
Korean (ko)
Other versions
KR101616705B1 (en
Inventor
이경미
김중배
김광희
전승현
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020110045219A priority Critical patent/KR101616705B1/en
Publication of KR20120127023A publication Critical patent/KR20120127023A/en
Application granted granted Critical
Publication of KR101616705B1 publication Critical patent/KR101616705B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/24Methods of sampling, or inoculating or spreading a sample; Methods of physically isolating an intact microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Abstract

PURPOSE: A method for activating immunocytes using a specific binding molecule-nanofiber composite is provided to specifically and efficiently isolate a target cell and to obtain 95% or more nave cells without cell loss. CONSTITUTION: A method for preparing a specific binding molecule-nanofiber composite for cell isolation comprises: a step of electrospining a polymer solution to fabricate a nanofiber; a step of treating the nanofiber with 20-100%(v/v) of alcohol and prepare a nanofiber; and a step of mixing specific binding molecules, anti-CD4, or anti-CD4 antibody to the nanofiber. A method for isolating cells using the nanofibers conjugated with the specific binding molecules comprises: a step of mixing the composite and cells and culturing; and a step of isolating the cells conjugated to the composite.

Description

특이적 결합분자?나노섬유 복합체 및 이를 이용한 세포활성화 방법{The specific binding molecules-nanofibers complex and method for activating the same}The specific binding molecules-nanofibers complex and method for activating the same}

본 발명은 특이적 결합분자-나노섬유 복합체 및 이를 이용한 면역세포 활성화 방법에 관한 것이다.The present invention relates to a specific binding molecule-nanofiber complex and a method for activating immune cells using the same.

세포의 분리는 질병의 진단이나 치료에 있어서 생물학적 또는 생의 학적인 적용 등의 다양한 분야에 매우 중요한 기술 중 하나로서, 다양한 세포의 혼합으로부터 원하는 특정 세포를 분리하기 위해 사용이 증가하고 있다[McCloskey KE, et al., Anal Chem, 2003, Dec 15;75(24):6868-6874; McCloskey KE, et al., Biotechnol Prog, 2003, May-Jun;19(3):899-907]. 따라서 이러한 중요성 때문에 현재 많은 연구 그룹에서 세포 분리의 기술과 관련한 많은 연구를 진행 중에 있다.Isolation of cells is one of the most important techniques in various fields, such as biological or biomedical applications in the diagnosis or treatment of diseases, and its use is increasingly being used to isolate specific cells of interest from a mixture of different cells. [McCloskey KE , et al., Anal Chem, 2003, Dec 15; 75 (24): 6868-6874; McCloskey KE, et al., Biotechnol Prog, 2003, May-Jun; 19 (3): 899-907. Therefore, because of this importance, many research groups are currently conducting a lot of research on the technology of cell separation.

비중이 서로 다른 세포를 분리하는 경우에는 속도 침강법에 의해 분리할 수 있다. 한편, 감작(感作)한 세포와 미감작의 세포를 분별하는 것과 같이, 세포의 차이가 거의 없는 경우에는 형광항체로 염색한 정보 또는 직접 현미경 관찰을 통한 정보로 세포를 분리할 필요가 있다. 예를 들어, 형광색소로 표지하여 표지의 강약에 따라 세포를 분획하여 특정의 세포집단을 분리하여 채취하는 세포분별장치(cell sorter)[Kamarck, M.E., Methods Enzymol. Vol. 151, p150-165, 1987]가 이용되고, 최근에는 마이크로 가공기술을 이용해서 만든 미세한 유로에 생긴 층류(層流)중을 흐르는 미립자를 직접 현미경 관찰하면서 분리하는 세포분별장치[Micro Total Analysis, 98, pp.77-80, Kluwer Academic Publishers, 1998; Analytical Chemistry, 70, pp.1909-1915, 1998]가 개발되어 있다.In the case of separating cells having different specific gravity, they can be separated by speed sedimentation. On the other hand, when there is little difference between cells, such as distinguishing sensitized cells from unsensitized cells, it is necessary to separate the cells by information stained with fluorescent antibodies or by direct microscopic observation. For example, a cell sorter (Kamarck, M.E., Methods Enzymol.) That separates and collects specific cell populations by fractionating cells according to the label strengths by labeling with fluorescent dyes. Vol. 151, p150-165, 1987], and recently, a cell fractionation apparatus for separating microscopically observed microscopic particles flowing in a laminar flow generated in a microchannel made using microfabrication techniques [Micro Total Analysis, 98 , pp. 77-80, Kluwer Academic Publishers, 1998; Analytical Chemistry, 70, pp. 1909-1915, 1998].

현재 많이 사용되고 있는 세포 분리 방법 중 하나인 형광활성세포분류기(fluorescence activated cell sorter, FACS)는 레이저 광선을 사용하여 림프구 등 유리세포의 표면 항원을 해석하거나 표면 항원의 유무 등에 의해 세포를 분리하는 장치로서, 유액 상태의 입자나 세포가 일정 감지 지역을 통과할 때 각각의 입자나 세포를 신속하게 측정하여, 각각의 세포가 갖는 형광의 세기를 측정하고, 수치화된 형광의 세기를 이용하여, 특정 세포를 선택적으로 분리할 수 있다. 형광염료(fluorescent dye) 또는 단일클론 항체(monoclonal antibodies)를 사용하여 세포의 표면 및 내부가 갖는 면역상태를 파악하여 세포를 분리할 수 있다. 그러나, 장치의 복잡한 조작 기술, 고도로 숙련된 기술자, 많은 시간의 소요, 및 고가의 기계가 필요하다는 단점이 있다[Lancioni CL, et al., J Immunol Methods, 2009, May 15;344(1):15-25].Fluorescence activated cell sorter (FACS), one of the most widely used cell separation methods, is a device that analyzes the surface antigens of glass cells such as lymphocytes or separates cells by the presence or absence of surface antigens using laser beam. As the latex particles or cells pass through a certain sensing area, each particle or cell is quickly measured, the intensity of fluorescence of each cell is measured, and the specific cells are detected using the quantized intensity of fluorescence. Can be selectively separated. Fluorescent dyes or monoclonal antibodies can be used to determine the immune state of the surface and inside of the cells to isolate the cells. However, there are drawbacks to the complex operation techniques of the device, highly skilled technicians, time consuming and expensive machines [Lancioni CL, et al., J Immunol Methods, 2009, May 15; 344 (1): 15-25].

또한, 현재 사용되고 있는 또 다른 방법 중 하나인 자기활성세포분류기(magnetic activated cell sorter)는 자기 입자(magnetic particle)가 붙어있는 항체나 또는 그에 상응하는 물질을 이용하여 자기장의 힘으로 원하는 특정 세포를 분리하는 것으로, 이때, 세포 분리시 필요한 비드(bead)가 세포와 결합하여 세포 내로 들어감으로써 세포의 상태에 변화가 발생한다는 단점이 있다.In addition, one of the currently used magnetic activated cell sorter (magnetic activated cell sorter) is to separate the specific cells desired by the force of the magnetic field using an antibody or a corresponding material attached to the magnetic particles (magnetic particle) In this case, there is a disadvantage in that a change in the state of a cell occurs because beads necessary for cell separation bind to the cell and enter the cell.

한편, 항체(antibody)는 항원에 대한 특이성(specificity) 때문에 세포 표면 항원에 대해 특이적인 항체를 사용하여 생물학적 물질의 검출, 분리 및 측정에 널리 이용되고 있다. 세포 치료를 위한 특정 세포의 분리 또는 특정 세포의 검출을 위해서는 동일한 세포 특성을 갖는, 보다 간편하고 용이하게 안정적인 고순도 세포를 분리하는 방법의 확립이 필요하다. 또한 분리한 세포를 별도의 공정과정이 없이 체외 활성화시켜 암 및 자가면역질환 환자에 적용할 수 있는 체외 나노플랫폼을 개발하는 기술은 현재 전 세계적으로 채동 단계에 있는 기술이다.On the other hand, antibodies are widely used for the detection, isolation and measurement of biological substances using antibodies specific for cell surface antigens because of their specificity to antigens. Isolation of specific cells for cell therapy or detection of specific cells requires the establishment of a method for separating simpler and more stable high purity cells with the same cellular characteristics. In addition, the technology to develop in vitro nanoplatforms that can be applied to cancer and autoimmune diseases patients by activating the isolated cells in vitro without a separate process is a technology that is currently being mined worldwide.

본 발명의 목적은 특이적 결합분자-나노섬유 복합체 및 이를 이용한 면역세포 활성화 방법을 제공하는 것이다.An object of the present invention is to provide a specific binding molecule-nanofiber complex and a method for activating immune cells using the same.

전기방사된 나노섬유는 적은 공간에 넓은 표면적을 지니고 있으며, 내구성이 강하고, 다루기가 매우 간편하고, 다양한 형태로 제작이 가능하며 또한, 다양한 물질을 화학적으로 결합시키는 것이 용이하다는 좋은 특징을 가지고 있기 때문에 세포분리의 적용에 있어서 매우 좋은 방향의 접근을 제공한다.Electrospun nanofibers have a good feature of having a large surface area in a small space, being durable, very easy to handle, made in various forms, and easy to chemically bond various materials. It provides a very good approach to the application of cell separation.

이에, 본 발명자들은 세포분리와 세포활성화를 하나의 플랫폼에서 이루어질 수 있도록 고안하여 보다 간편하고 효과적인 one-step 세포 분리 및 활성화 플랫폼을 구축하였다. 나노섬유에 알코올을 처리하여 제조한 분산된 나노섬유는 섬유 사이의 공간이 증가하여 결합하는 항체의 함량이 향상되었고, 항체가 결합된 분산된 나노섬유는 항체에 대한 표적세포가 효과적이며 특이적으로 결합할 뿐만 아니라 사용이 간편하고 신속함을 확인하였다.Accordingly, the present inventors have designed a simple and effective one-step cell separation and activation platform by devising the cell separation and cell activation in one platform. The dispersed nanofibers prepared by treating alcohol with nanofibers increased the amount of antibody bound by increasing the space between the fibers, and the dispersed nanofibers in which the antibodies were bound are effective and specifically targeted to the antibody. As well as combining, it was found to be easy and quick to use.

또한 본 발명자는 항체의 종류에 따라 나노파이버에 결합된 면역세포의 활성화 및 서방형 방출을 조절할 수 있다는 사실을 발견하였다. 예를 들어 일반 나노섬유에 CD4 항체를 결합시켜 세포를 분리할 경우에는 나노섬유와 분리된 CD4+T 세포의 결합이 너무 강하여 활성화된 세포가 나노파이버 매트릭스 내에서 주로 머물러 있으며 매우 적은 양의 세포가 시간에 따라 서서히 방출되는 것을 관찰할 수 있었다. 그러나 나노섬유에 CD3 항체를 결합시켜 CD3+T 세포를 분리한 후 배양하였을 때에는 CD3 항체와 면역세포 간의 친화력이 낮아 보다 빠르게 많은 양의 활성화된 면역세포가 나노섬유로부터 분리되어 나오는 것을 확인함으로써 본 발명을 완성하였다.The present inventors also found that the activation and sustained release of the immune cells bound to the nanofibers can be regulated according to the type of antibody. For example, when the cells are separated by binding CD4 antibodies to normal nanofibers, the binding of the nanofibers to the isolated CD4 + T cells is so strong that the activated cells stay mainly in the nanofiber matrix and very small amounts of cells Slow release over time could be observed. However, when CD3 + T cells were isolated by incubating CD3 antibodies to nanofibers and then cultured, the affinity between CD3 antibodies and immune cells was low, thereby confirming that a larger amount of activated immune cells were released from the nanofibers. Was completed.

상기 목적을 달성하기 위하여, 본 발명은In order to achieve the above object,

1) 고분자 용액을 전기방사하여 나노섬유를 제조하는 단계;1) preparing a nanofiber by electrospinning the polymer solution;

2) 단계 1)의 나노섬유에 20 내지 100%(v/v) 농도의 알코올을 처리하여, 분산된 나노섬유를 제조다는 단계; 및2) treating the nanofibers of step 1) with 20-100% (v / v) alcohol to prepare dispersed nanofibers; And

3) 단계 2)의 분산된 나노섬유에 특이적 결합분자를 혼합하여 결합시키는 단계를 포함하는, 세포분리용 특이적 결합분자-나노섬유 복합체의 제조방법을 제공한다.3) It provides a method for producing a specific binding molecule-nanofiber composite for cell separation, comprising the step of combining and binding specific binding molecules to the dispersed nanofibers of step 2).

또한, 본 발명은 상기 방법에 따라 제조된, 특이적 결합분자-나노섬유 복합체를 제공한다.The present invention also provides a specific binding molecule-nanofiber composite prepared according to the above method.

아울러, 본 발명은In addition,

1) 상기 특이적 결합분자-나노섬유 복합체에 세포를 혼합하여 배양하는 단계; 및1) culturing by mixing the cells with the specific binding molecule-nanofiber complex; And

2) 단계 1)의 혼합물로부터 복합체에 결합된 세포를 분리하는 단계를 포함하는, 특이적 결합분자가 결합된 나노섬유를 이용한 세포 분리 방법을 제공한다.2) provides a method for cell separation using nanofibers with specific binding molecules, including the step of separating the cells bound to the complex from the mixture of step 1).

3) 단계 2)의 세포가 결합된 특이적 결합분자-나노섬유 복합체를 이용하여 세포를 활성화시키는 방법을 제공한다.3) A method of activating a cell using a specific binding molecule-nanofiber complex to which cells of step 2) are bound is provided.

본 발명의 특이적 결합분자가 결합된 나노섬유는 항체와 이에 대한 표적 세포의 결합 및 분리가 신속하고 사용방법이 간단하여 간편하게 사용 할 수 있을 뿐만 아니라 표적 세포를 특이적이고 효율적으로 분리할 수 있고, 특히 세포수의 소실 없이 나이브(naive)한 상태의 세포를 약 95% 이상 수득할 수 있으므로 본 발명의 특이적 결합분자가 결합된 나노섬유는 기존의 비드를 사용한 세포분리 방법의 단점 (약 50%의 세포 손실)을 보완할 수 있는, 높은 함량의 항체 또는 앱타머가 결합된 나노섬유의 제족, 및 간편하고 신속하며 효과적인 세포 분리에 유용하게 이용될 수 있다. 또한 이렇게 분리한 세포를 이용하여 바로 활성화를 시킴으로써 세포활성 실험에 매우 간편하게 사용할 수 있다. Nanofibers to which specific binding molecules of the present invention are bound are not only simple and easy to use because the binding and separation of antibodies and target cells are fast and simple to use, but also to separate target cells specifically and efficiently, In particular, since about 95% or more of the cells in a naive state can be obtained without losing the number of cells, the nanofibers to which the specific binding molecules of the present invention are bound are disadvantageous of the cell separation method using the conventional beads (about 50% It can be useful for the removal of a high amount of antibody or aptamer-bound nanofibers, which can compensate for the cell loss), and for simple, rapid and effective cell separation. In addition, by immediately activating the cells thus isolated can be used very simply for cell activity experiments.

도 1은 나노섬유의 제조 과정을 도식적으로 보여준다.
도 2는 실시예 3의 결과를 보여주는 것으로서, 항- CD4 또는 항 CD3 단클론 항체와 결합된 나노섬유 복합체로부터 방출된 세포의 광학 현미경 이미지이다.
도 3은 실시예 4의 결과로서, CD3 결합분자-나노섬유복합체로부터 분리된 T 세포의 시간에 따른 활성화와 증가를 보여준다.
Figure 1 schematically shows the manufacturing process of nanofibers.
2 shows the results of Example 3, which is an optical microscopic image of cells released from nanofiber complexes bound with anti-CD4 or anti CD3 monoclonal antibodies.
FIG. 3 shows the activation and increase over time of T cells isolated from CD3 binding molecule-nanofiber complexes as a result of Example 4. FIG.

하기 실시예는 본 발명을 더욱 쉽게 이해하기 위해서 제시하는 것일 뿐, 이에 의해서 본 발명의 범위나 내용이 축소되거나 제한되어 해석될 수 없다.The following examples are only presented to more easily understand the present invention, whereby the scope or content of the present invention is reduced or limited and cannot be interpreted.

[실시예 1] 재료의 준비Example 1 Preparation of Materials

4-니트로페닐 부틸레이트(4-nitrophenyl butyrate, 4-NPB), N,N-디메틸포름아미드(N,N-dimethylformamide, DMF)는 Sigma(ST Louis, MO, USA)로부터 구입하였고, 폴리스티렌(polystyrene, PS, MW=950,400) 및 스티렌말레익 안하이드라이드 공중합체{poly(styrene-co-maleic anhydride), PSMA, MW=224,000}, 테트라하이드로퓨란(Tetrahydrofuran, THF)은 Aldrich(Milwaukee, WI, USA)로부터 구입하였으며, 에탄올은 Deajung(Siheung, Korea)으로부터 구입하였다. 7주령 C57BL/6 마우스는 Narabiotech(Seoul, Korea)로부터 구입하여 고려대학교 동물실에서 사육하였다. 실험에 사용된 모든 마우스는 7-10주령이었다. 모든 과정은 고려대학교 실험동물운영위원회(KUIACUC-2009-105)의 승인하에 실시하였다. 플루오레세인 이소티오시아네이트(fluorescein isothiocyanate, FITC)가 결합 또는 결합되지 않은 항-마우스 CD3(145-2C11), CD4(GK1.5, RM4-4), CD8(53-6.7), NK1.1(PK136) 및 CD25(PC61.5) 단일클론 항체(mAbs), 피코에리트린(phycoerythrin, PE), 또는 알로피코시아닌(allophycocyanin, APC)은 eBioscience(San Diego, CA)로부터 구입하였다. 페리디닌 클로로필 단백질 복합체(Peridinin Chlorophyll Protein Complex, PerCP)가 결합된 항-마우스 CD19(6D5) mAb는 BioLegend(San Diego, CA)로부터 구입하였다. 모든 다른 시약들은 상업적으로 구입가능한 가장 높은 등급으로 Sigma and Aldrich로부터 구입하였다.
4-nitrophenyl butyrate (4-NPB), N, N-dimethylformamide (DMF) was purchased from Sigma (ST Louis, MO, USA) and polystyrene , PS, MW = 950,400) and styrenemaleic anhydride copolymer (poly (styrene-co-maleic anhydride), PSMA, MW = 224,000}, Tetrahydrofuran (THF) are Aldrich (Milwaukee, WI, USA). ) And ethanol from Deajung (Siheung, Korea). Seven-week-old C57BL / 6 mice were purchased from Narabiotech (Seoul, Korea) and bred in Korea University animal lab. All mice used in the experiments were 7-10 weeks of age. All procedures were conducted with the approval of Korea University Experimental Animal Operation Committee (KUIACUC-2009-105). Anti-mouse CD3 (145-2C11), CD4 (GK1.5, RM4-4), CD8 (53-6.7), NK1.1 with or without fluorescein isothiocyanate (FITC) bound (PK136) and CD25 (PC61.5) monoclonal antibodies (mAbs), phycoerythrin (PE), or allophycocyanin (APC) were purchased from eBioscience (San Diego, Calif.). Anti-mouse CD19 (6D5) mAb coupled to Peridinin Chlorophyll Protein Complex (PerCP) was purchased from BioLegend (San Diego, Calif.). All other reagents were purchased from Sigma and Aldrich at the highest commercially available grades.

[실시예 2] 나노섬유의 제조Example 2 Preparation of Nanofibers

도 1에 나타낸 것처럼, 폴리머 용액은 상온에서 테트라하이드로퓨란(tetrahydrofuran, THF)에 PS : PSMA 혼합물을 2:1 중량비로 넣고 용해를 위해 유기 용매인 테트라하이드로퓨란을 이용하여 용해함으로써 제조하였다. 혼합된 용액을 자석교반기를 사용하여 3시간 동안 PS 및 PSMA 혼합물을 완전히 녹였다. 그런 다음, 폴리머 용액의 점성을 감소시키기 위하여 상기 폴리머 용액에 아세톤 용액을 넣었다. 상기 폴리머 용액을 30 게이지 스테인리스강 주사 바늘이 장착된 5 mL의 플라스틱 주사기에 채워 넣었다. 고전압 공급기를 사용한 전압의 작동 조건은 7 kV이었고, 상기 용액은 주사기 펌프(PHD-2000 Infusion, Harvard Apparatus, Holliston, MA, USA)를 사용하여 0.1 mL/시간으로 공급하였다. 전기방사된 나노섬유를 바늘끝으로부터 적절한 거리(7-10 cm)에 놓인 깨끗한 알루미늄 박 위(바닥에 연결된)에 모아놓았다.
As shown in Figure 1, the polymer solution was prepared by dissolving a PS: PSMA mixture in tetrahydrofuran (THF) at room temperature in a 2: 1 weight ratio and dissolving it using tetrahydrofuran as an organic solvent for dissolution. The mixed solution was completely dissolved in the PS and PSMA mixture for 3 hours using a magnetic stirrer. Then, acetone solution was added to the polymer solution to reduce the viscosity of the polymer solution. The polymer solution was filled into a 5 mL plastic syringe equipped with a 30 gauge stainless steel injection needle. The operating conditions of the voltage using the high voltage supply was 7 kV and the solution was supplied at 0.1 mL / hour using a syringe pump (PHD-2000 Infusion, Harvard Apparatus, Holliston, Mass., USA). Electrospun nanofibers were collected on a clean aluminum foil (connected to the floor) placed at an appropriate distance (7-10 cm) from the needle tip.

[실시예 3] 항- CD4 또는 항 CD3 단클론 항체와 결합된 나노섬유 복합체로부터 방출된 세포의 광학 현미경 이미지Example 3 Optical Microscopy Image of Cells Released from Nanofiber Complex Bound to Anti-CD4 or Anti CD3 Monoclonal Antibodies

도 2에 나타낸 것과 같이, 특이적 결합분자-나노섬유 복합체에 결합된 세포는 광학 현미경으로 사진을 찍기 위해 7일간 항- CD3 단클론 항체 1mg/ml 항 CD28 단클론 항체 1 mg/mL와 배양되었다. 다음으로 CD4 및 CD3 나노입자- 나노섬유에 부착된 세포가 활성화되거나, 스캐폴드로부터 방출될 수 있는지에 대한 실험을 진행했다. 부착된 T 세포는 항체- 매개 수용체 교차반응에 의해 T 세포 수용체/CD3 복합체와 보조 자극제 CD28의 자극을 통해 T 세포의 활성화를 이끄는 항 CD3, 항 CD28 1 mg/mL의 첨가로 활성화될 수 있다. 하지만, 용해성의 항 CD3, 항 CD28 단클론 항체의 존재하에서 세포와 CD4 결합분자-나노섬유 복합체는 7 일간 배양되었을 때, 대부분의 세포는 CD4 결합분자-나노섬유에 부착되어 배양 배지에서 적은 세포들이 수집되었다. 대조적으로 CD3 결합분자-나노섬유 복합체는 7 일간 배양하였을 때, 세포가 CD3 결합분자-나노섬유 복합체로부터 분리되어 나오는 것이 관찰되었으며, 현미경 상에서 더욱 활성화되어있는 형태를 보여주었다.
As shown in FIG. 2, cells bound to specific binding molecule-nanofiber complexes were incubated with 1 mg / mL of anti-CD3 monoclonal antibody 1 mg / mL for 7 days for optical microscopy. Next, experiments were conducted on whether the cells attached to the CD4 and CD3 nanoparticles-nanofibers could be activated or released from the scaffold. Attached T cells can be activated by the addition of anti-CD3, anti-CD28 1 mg / mL leading to the activation of T cells via stimulation of the T cell receptor / CD3 complex and the auxiliary stimulant CD28 by antibody-mediated receptor cross-reaction. However, when cells and CD4 binding molecule-nanofiber complexes were cultured for 7 days in the presence of soluble anti-CD3 and anti-CD28 monoclonal antibodies, most of the cells adhered to the CD4 binding molecule-nanofibers to collect fewer cells in the culture medium. It became. In contrast, when the CD3 binding molecule-nanofiber complex was cultured for 7 days, it was observed that the cells were separated from the CD3 binding molecule-nanofiber complex and showed a more activated form under the microscope.

[실시예 4] CD3 결합분자-나노섬유복합체로부터 분리된 T 세포의 시간에 따른 활성화와 증가Example 4 Activation and increase over time of T cells isolated from CD3 binding molecule-nanofiber complex

CD3 결합분자-나노섬유복합체로부터 방출된 T 세포의 활성화 정도를 확인하기 위하여 7 일간 배양 후 세포의 활성화 마커인 CD25 수준을 확인하였다. 그 결과, 도 3에 나타낸 것과 같이, CD3 결합분자-나노섬유복합체로부터 분리된 T 세포의 활성화 마커인 CD25의 수준이 매우 올라가 있는 것을 확인하였다.In order to confirm the activation level of the T cells released from the CD3 binding molecule-nanofiber complex, the CD25 level, which is an activation marker of the cells, was checked after 7 days of culture. As a result, as shown in Figure 3, it was confirmed that the level of CD25, which is an activation marker of T cells isolated from the CD3 binding molecule-nanofiber complex, is very high.

Claims (2)

1) 고분자 용액을 전기방사하여 나노섬유를 제조하는 단계;
2) 상기 단계 1)의 나노섬유에 20 내지 100%(v/v) 농도의 알코올을 처리하여, 분산된 나노섬유를 제조하는 단계; 및
3) 상기 단계 2)의 분산된 나노섬유에 특이적 결합분자, anti-CD4 또는 anti-CD4 항체를 혼합하여 결합시키는 단계를 포함하는, 세포분리용 특이적 결합분자-나노섬유 복합체의 제조방법.
1) preparing a nanofiber by electrospinning the polymer solution;
2) treating the nanofibers of step 1) with alcohol at a concentration of 20 to 100% (v / v) to produce dispersed nanofibers; And
3) mixing the specific binding molecule, anti-CD4 or anti-CD4 antibody to the dispersed nanofibers of step 2), comprising the step of combining and binding, specific binding molecule-nanofiber composite for cell separation.
제1항에 따른 세포가 결합된 특이적 결합분자-나노섬유 복합체를 이용하여 세포를 체외 활성화시키는 방법.A method of activating a cell in vitro by using a specific binding molecule-nanofiber complex to which a cell according to claim 1 is bound.
KR1020110045219A 2011-05-13 2011-05-13 The specific binding molecules-nanofibers complex and method for activating the same KR101616705B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110045219A KR101616705B1 (en) 2011-05-13 2011-05-13 The specific binding molecules-nanofibers complex and method for activating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110045219A KR101616705B1 (en) 2011-05-13 2011-05-13 The specific binding molecules-nanofibers complex and method for activating the same

Publications (2)

Publication Number Publication Date
KR20120127023A true KR20120127023A (en) 2012-11-21
KR101616705B1 KR101616705B1 (en) 2016-05-02

Family

ID=47512255

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110045219A KR101616705B1 (en) 2011-05-13 2011-05-13 The specific binding molecules-nanofibers complex and method for activating the same

Country Status (1)

Country Link
KR (1) KR101616705B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200095420A (en) * 2019-01-31 2020-08-10 고려대학교 산학협력단 Method for manufacturing well-plate based kit and kit manufactured thereby

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100491705B1 (en) 2002-07-30 2005-05-27 민병무 Wound dressing of silk fibroin nanofibers nonwoven and its preparation
KR100545404B1 (en) 2003-10-02 2006-01-24 재단법인서울대학교산학협력재단 Nonwoven containing nanofibers of chitin or chitosan

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200095420A (en) * 2019-01-31 2020-08-10 고려대학교 산학협력단 Method for manufacturing well-plate based kit and kit manufactured thereby

Also Published As

Publication number Publication date
KR101616705B1 (en) 2016-05-02

Similar Documents

Publication Publication Date Title
JP6825065B2 (en) Microfluidic devices and their use in multicellular assays for secretions
Zaretsky et al. ICAMs support B cell interactions with T follicular helper cells and promote clonal selection
Basu et al. Mechanical communication at the immunological synapse
JP7416749B2 (en) Apparatus and method for analysis of cell secretions
KR20180101548A (en) A method of manufacturing a patient-specific anticancer drug and a method of treating the same
Kim et al. Novel streptavidin-functionalized silicon nanowire arrays for CD4+ T lymphocyte separation
US20230357689A1 (en) Intracellular delivery using microfluidics-assisted cell screening (macs)
KR101146263B1 (en) The specific binding molecules-nanofibers complex and method for preparing the same
KR101588070B1 (en) The specific binding molecules-biodegradable nanofibers complex and method for preparing the same
KR101616705B1 (en) The specific binding molecules-nanofibers complex and method for activating the same
Cheng et al. Aptamer-based traceless multiplexed cell isolation systems
KR101637895B1 (en) The specific binding molecules-nanofibers complex for B cells separation and separation method therefor
Lee et al. A microfluidic platform reveals differential response of regulatory T cells to micropatterned costimulation arrays
JP7335883B2 (en) Methods for detecting particles present in cell compositions
KR101616704B1 (en) The specific binding molecules-magnetic nanofibers complex and method for activating the same
US20140315297A1 (en) Method for isolating cells and bioparticles
Quiñones et al. Application of a new wall-less plate technology to complex multistep cell-based investigations using suspension cells
EP3126027A1 (en) Devices and methods for purification, detection and use of biological cells
WO2023007793A1 (en) Cell sample preparation reagent
US9347863B2 (en) Phosphorothioate oligonucleotide-labeling of white blood cells
WO2023218017A1 (en) Means and methods for determining cellular avidity
Stone MICROFLUIDIC CELL PROCESSING FOR PERSONALIZED AND REGENERATIVE MEDICINE
WO2023126470A1 (en) Selecting forces for means and methods involving cellular avidity
Arm Miniaturized single-cell analyses for biomedical applications
WO2023218015A1 (en) Means and methods to determine cellular avidity

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190319

Year of fee payment: 4