KR20120126902A - Method for forming catalyst of cathode materials for fuel cell - Google Patents

Method for forming catalyst of cathode materials for fuel cell Download PDF

Info

Publication number
KR20120126902A
KR20120126902A KR1020110045027A KR20110045027A KR20120126902A KR 20120126902 A KR20120126902 A KR 20120126902A KR 1020110045027 A KR1020110045027 A KR 1020110045027A KR 20110045027 A KR20110045027 A KR 20110045027A KR 20120126902 A KR20120126902 A KR 20120126902A
Authority
KR
South Korea
Prior art keywords
cathode material
catalyst
silver
fuel cell
acid
Prior art date
Application number
KR1020110045027A
Other languages
Korean (ko)
Other versions
KR101340447B1 (en
Inventor
강현숙
이병철
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Priority to KR1020110045027A priority Critical patent/KR101340447B1/en
Publication of KR20120126902A publication Critical patent/KR20120126902A/en
Application granted granted Critical
Publication of KR101340447B1 publication Critical patent/KR101340447B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8892Impregnation or coating of the catalyst layer, e.g. by an ionomer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: A manufacturing method of a catalyst of cathode materials for fuel cell is provided to improve uniformity and adhesion of a catalyst, to not use a chemical reductant, to have simple and economic process. CONSTITUTION: A manufacturing method of a catalyst comprises: a step of adding cathode material into an acidic solution in order to modify surface of the cathode material; a step of adding the cathode material into a catalyst precursor solution; and a step of irradiating the cathode material with radiation. The acid solution comprises one or more selected from sulfuric acid, nitric acid, hydrochloric acid and acetic acid. The catalyst precursor solution comprises one or more metal salts selected from gold, silver, copper, platinum, nickel, zinc and palladium.

Description

연료전지용 공기극 재료의 촉매 형성방법{METHOD FOR FORMING CATALYST OF CATHODE MATERIALS FOR FUEL CELL}METHODS FOR FORMING CATALYST OF CATHODE MATERIALS FOR FUEL CELL}

본 발명은 연료전지용 공기극 재료의 촉매 형성방법에 관한 것으로, 보다 상세하게는 공기극과 전해질층 사이에 형성되는 이차상에 의한 이온 전도도의 감소를 방지하기 위해 그 사이에 촉매를 형성시키는 방법에 관한 것이다.The present invention relates to a method of forming a catalyst of a cathode material for a fuel cell, and more particularly, to a method of forming a catalyst therebetween in order to prevent a decrease in ionic conductivity caused by a secondary phase formed between the cathode and the electrolyte layer. .

고체 산화물 연료전지는 단위 전지와 분리판으로 이루어진 전기 생성 유닛이 복수개로 적층된 구조로 이루어진다. 단위 전지는 전해질층, 상기 전해질층의 일면에 위치하는 공기극과 전해질층의 다른 일면에 위치하는 연료극을 포함한다.
The solid oxide fuel cell has a structure in which a plurality of electricity generating units each including a unit cell and a separator plate are stacked. The unit cell includes an electrolyte layer, an air electrode disposed on one surface of the electrolyte layer, and a fuel electrode located on the other surface of the electrolyte layer.

공기극에 산소를 공급하고 연료극에 수소를 공급하면, 공기극에서 산소의 환원 반응으로 생성된 산소 이온이 전해질층을 지나 연료극으로 이동한 후 연료극에 공급된 수소와 반응하여 물이 생성된다. 이때 연료극에서 생성된 전자가 공기극으로 전달되어 소모되는 과정에서 외부 회로로 전자가 흐르며, 단위 전지는 이러한 전자 흐름을 이용하여 전기 에너지를 생산한다.
When oxygen is supplied to the cathode and hydrogen is supplied to the anode, oxygen ions generated by the reduction reaction of oxygen in the cathode move through the electrolyte layer to the anode and react with hydrogen supplied to the anode to generate water. At this time, electrons flow from the anode to the external circuit in the process of consumption and transfer to the cathode, the unit cell uses the electron flow to produce electrical energy.

상기 공기극 재료로서, LSM(La1 - xSrxMnO3), LSCF(La1 - xSrxCo1 - yFeyO3), LSF(La1 -xSrxFeO3), LSCo(La1 - xSrxCoO3), LSCu (La1 - xSrxCuO3), SSC (Sm1 - xSrxCoO3) 및 BSCF (Ba1 -xSrxCo1-yFeyO3) 등을 들 수 있는데, 이 중에서도 이온 및 전자 전도도가 높고, 촉매 활성이 우수한 LSCF가 널리 사용되고 있다.
As the cathode material, LSM (La 1 - x Sr x MnO 3 ), LSCF (La 1 - x Sr x Co 1 - y Fe y O 3 ), LSF (La 1 -x Sr x FeO 3 ), LSCo (La 1 - x Sr x CoO 3 ), LSCu (La 1 - x Sr x CuO 3 ), SSC (Sm 1 - x Sr x CoO 3 ) and BSCF (Ba 1 -x Sr x Co 1-y Fe y O 3 ) Among them, LSCF, which has high ion and electron conductivity and excellent catalytic activity, is widely used.

다만, 상기 전해질층 재료로는 이트리아 안정화 지르코니아(YSZ)가 일반적으로 사용되는데, 공기극 재료인 LSCF와 전해질층의 재료인 이트리아 안정화 지르코니아가 반응하여 SrZrO3 또는 LaZr2O7과 같은 이차상을 생성하게 되고, 이러한 이차상은 공기극과 전해질층의 계면에서 이온 전도도를 감소시켜 전지를 현저하게 저하시키는 문제점을 발생시켰다.
However, yttria stabilized zirconia (YSZ) is generally used as the electrolyte layer material, and LSCF as the cathode material and yttria stabilized zirconia as the material of the electrolyte layer react to form a secondary phase such as SrZrO 3 or LaZr 2 O 7 . This secondary phase causes a problem of significantly lowering the battery by reducing the ionic conductivity at the interface between the cathode and the electrolyte layer.

따라서, 이러한 문제점을 해결하기 위해 공기극과 전해질의 계면에 촉매를 형성시키는 방법을 사용하여 왔고, 그 촉매로는 주로 백금이 적용되고 있다. 백금은 탄화수소 또는 다양한 연료전지용 가스 확산 전극에서의 수소 산화 및 산소 환원에 우수한 촉매 특성을 발휘하므로, 상기 이차상의 생성을 방지하게 적합한 장점이 있으나, 그 양이 빠르게 감소하고 재생이 되지 않아 재료원가가 상당히 많이 소용되는 문제점이 있었다.
Therefore, in order to solve this problem, the method of forming a catalyst at the interface between an air electrode and an electrolyte has been used, and platinum is mainly applied as the catalyst. Since platinum exhibits excellent catalytic properties for hydrogen oxidation and oxygen reduction in hydrocarbon or gas diffusion electrodes for various fuel cells, it has the advantage of preventing the formation of the secondary phase, but the amount thereof decreases rapidly and is not regenerated, resulting in material cost reduction. There was a problem that was quite much use.

또한, 일반적으로 전구체 용액의 화학적 환원을 이용하여 촉매를 형성하였는데, 이 경우 2차적인 후열처리 과정이 필요하고, 인체에 유해한 환원제를 대량으로 사용하여야 하므로 반응 후 잔존하는 환원제를 처리해야하는 부가적인 공정이 필요한 단점이 있다.
In addition, the catalyst was generally formed by chemical reduction of the precursor solution. In this case, a secondary post-heat treatment process is required, and an additional process of treating the reducing agent remaining after the reaction is required because a large amount of reducing agent harmful to the human body is required. This has the necessary disadvantages.

따라서, 상기 계면에서의 이차상 생성을 방지하기 위한 촉매 형성방법으로서, 경제적이고 효율적이며 촉매의 균일성 및 부착성이 우수하고, 또한 화학적 환원제를 사용하지 않고 전구체 용액을 환원시킬 수 있는 공기극 재료의 촉매 형성기술에 대한 연구가 매우 절실한 시점이라 할 수 있다.Accordingly, as a catalyst formation method for preventing the generation of secondary phases at the interface, it is economical and efficient, and has excellent uniformity and adhesion of the catalyst, and can also reduce the precursor solution without using a chemical reducing agent. This is a very urgent time for research on catalyst formation technology.

본 발명은 공기극 재료의 표면에 촉매를 형성시켜 공기극과 전해질층의 계면에 이차상에 의한 이온 전도도의 감소를 방지하는 기술을 제공하는 것으로, 촉매의 균일성 및 부착성이 우수하고, 화학적 환원제를 사용하지 않으며, 경제적으로 효율적인 연료전지용 공기극 재료의 촉매 형성방법을 제공한다.The present invention provides a technique for forming a catalyst on the surface of the cathode material to prevent the reduction of the ionic conductivity due to the secondary phase at the interface between the cathode and the electrolyte layer, excellent in the uniformity and adhesion of the catalyst, and a chemical reducing agent It provides a catalyst formation method of the cathode material for fuel cells which is not used and is economically efficient.

본 발명의 일측면은 공기극 재료의 표면이 개질되도록 공기극 재료를 산성 용액에 첨가하는 단계; 상기 표면이 개질된 공기극 재료를 촉매 전구체 용액에 첨가하는 단계; 및 상기 촉매 전구체 용액에 첨가된 공기극 재료에 방사선을 조사하는 단계를 포함하는 연료전지용 공기극 재료의 촉매 형성방법을 제공한다.
One aspect of the present invention comprises the steps of adding the cathode material to the acidic solution so that the surface of the cathode material is modified; Adding the surface-modified cathode material to a catalyst precursor solution; And irradiating the cathode material added to the catalyst precursor solution with radiation to provide a catalyst formation method of the cathode material for a fuel cell.

이때, 상기 공기극 재료는 LSM(La1 - xSrxMnO3), LSCF(La1 - xSrxCo1 - yFeyO3), LSF(La1-xSrxFeO3), LSCo(La1 - xSrxCoO3), LSCu(La1 - xSrxCuO3), SSC(Sm1 - xSrxCoO3) 및 BSCF(Ba1-xSrxCo1-yFeyO3)로 이루어진 그룹으로부터 선택된 1종 이상인 것이 바람직하다.
In this case, the cathode material is LSM (La 1 - x Sr x MnO 3 ), LSCF (La 1 - x Sr x Co 1 - y Fe y O 3 ), LSF (La 1-x Sr x FeO 3 ), LSCo ( La 1 - x Sr x CoO 3 ), LSCu (La 1 - x Sr x CuO 3 ), SSC (Sm 1 - x Sr x CoO 3 ) and BSCF (Ba 1-x Sr x Co 1-y Fe y O 3 It is preferable that it is at least one selected from the group consisting of

또한, 상기 산성 용액은 황산, 질산, 염산 및 아세트산으로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것이 바람직하다.
In addition, the acidic solution preferably includes one or more selected from the group consisting of sulfuric acid, nitric acid, hydrochloric acid and acetic acid.

또한, 상기 촉매 전구체 용액은 금, 은, 구리, 백금, 니켈, 아연 및 팔라듐으로 이루어진 그룹으로부터 선택된 1종 이상의 금속염을 포함하는 용액인 것이 바람직하다.
In addition, the catalyst precursor solution is preferably a solution containing at least one metal salt selected from the group consisting of gold, silver, copper, platinum, nickel, zinc and palladium.

이때, 상기 촉매 전구체 용액은 질산은, 과염소산은, 염소산은, 탄산은, 황산은, 염화은, 브룸화은, 초산은, 불소은로 이루어진 그룹으로부터 선택된 1종 이상의 은염을 포함하는 용액인 것이 보다 바람직하다.
At this time, the catalyst precursor solution is more preferably a solution containing at least one silver salt selected from the group consisting of silver nitrate, silver perchloric acid, silver chlorate, silver carbonate, silver sulfate, silver chloride, silver bromide, silver acetate, and silver fluorine.

또한, 상기 방사선을 조사하는 단계는 0.3~10 MeV의 에너지와 10~500kGy의 선량으로 방사선을 조사하는 것이 바람직하다.
In addition, the step of irradiating the radiation is preferably irradiated with energy of 0.3 ~ 10 MeV and dose of 10 ~ 500kGy.

이때, 상기 방사선을 조사하는 단계는 전자빔을 조사하는 것이 보다 바람직하다.At this time, the step of irradiating the radiation is more preferably irradiated with an electron beam.

본 발명의 일측면은 공기극 재료의 표면에 부착되는 촉매의 균일성 및 부착성을 향상시킬 수 있고, 화학적 환원제를 사용하지 않아 친환경적이고 공정이 간소화할 수 있으며, 경제적으로도 매우 효율적으로 공기극 재료의 촉매를 형성시킬 수 있다.One aspect of the present invention can improve the uniformity and adhesion of the catalyst adhered to the surface of the cathode material, it is environmentally friendly and can simplify the process without the use of chemical reducing agents, economically and very efficiently A catalyst can be formed.

도 1은 공기극 재료(LSCF)를 찍은 SEM 사진을 나타낸 것이다.
도 2는 공기극 재료(LSCF)를 표면 산처리한 후에 찍은 SEM 사진을 나타낸 것이다.
도 3은 공기극 재료(LSCF)를 표면 산처리하고, 방사선 조사를 통한 환원 처리에 의해 촉매를 형성시킨 후에 찍은 SEM 사진을 나타낸 것이다.
1 shows a SEM photograph of the cathode material (LSCF).
2 shows a SEM photograph taken after surface acid treatment of the cathode material (LSCF).
FIG. 3 shows SEM images taken after surface acid treatment of the cathode material (LSCF) and formation of the catalyst by reduction treatment through irradiation.

본 발명의 일측면은 공기극 재료의 표면이 개질되도록 공기극 재료를 산성 용액에 첨가하는 단계; 상기 표면이 개질된 공기극 재료를 촉매 전구체 용액에 첨가하는 단계; 및 상기 촉매 전구체 용액에 첨가된 공기극 재료에 방사선을 조사하는 단계를 포함하는 연료전지용 공기극 재료의 촉매 형성방법을 제공한다.
One aspect of the present invention comprises the steps of adding the cathode material to the acidic solution so that the surface of the cathode material is modified; Adding the surface-modified cathode material to a catalyst precursor solution; And irradiating the cathode material added to the catalyst precursor solution with radiation to provide a catalyst formation method of the cathode material for a fuel cell.

이때, 상기 공기극 재료는 LSM(La1 - xSrxMnO3), LSCF(La1 - xSrxCo1 - yFeyO3), LSF(La1-xSrxFeO3), LSCo(La1 - xSrxCoO3), LSCu (La1 - xSrxCuO3), SSC (Sm1 - xSrxCoO3) 및 BSCF (Ba1 - xSrxCo1 - yFeyO3)로 이루어진 그룹으로부터 선택된 1종 이상인 것이 바람직하다. 이 중 고체 산화물 연료전지의 공기극 재료로 LSM과 LSCF가 대표적인데, 이중 이온 및 전자 전도도가 높고 촉매 활성이 우수한 LSCF가 가장 널리 사용되고 있다.
In this case, the cathode material is LSM (La 1 - x Sr x MnO 3 ), LSCF (La 1 - x Sr x Co 1 - y Fe y O 3 ), LSF (La 1-x Sr x FeO 3 ), LSCo ( La 1 - x Sr x CoO 3 ), LSCu (La 1 - x Sr x CuO 3 ), SSC (Sm 1 - x Sr x CoO 3 ) and BSCF (Ba 1 - x Sr x Co 1 - y Fe y O 3 It is preferable that it is at least one selected from the group consisting of Among them, LSM and LSCF are typical cathode materials of a solid oxide fuel cell. LSCF, which has high double ion and electron conductivity and excellent catalytic activity, is most widely used.

다만, 예를 들어 LSCF를 공기극 재료로 형성시킬 경우 전해질층의 일반적인 조성인 이트리아 안정화 지르코니아와 반응하여 SrZrO3 또는 LaZr2O7과 같은 이차상을 생성하게 되고, 이것이 이온 전도를 방해하여 연료전지의 성능을 현저히 저하시키는 문제점이 있었다.
However, for example, when LSCF is formed of a cathode material, it reacts with yttria stabilized zirconia, which is a general composition of the electrolyte layer, to generate a secondary phase such as SrZrO 3 or LaZr 2 O 7 , which interferes with ion conduction, thereby causing the fuel cell to fail. There was a problem that significantly lowers the performance of.

따라서, 본 발명은 이러한 이차상에 의한 전지의 성능 저하를 방지하기 위해 전구체 용액을 환원시켜 공기극와 전해질층 사이에 촉매를 형성시키는 것을 기본적인 특징으로 하되 기존에 화학적 환원제를 이용하여 공기극 표면에 촉매를 형성시키는 방법이 가지는 한계를 개선하기 위해 방사선 조사를 통해 전구체 용액을 환원시켜 촉매를 형성시키는 것을 특징으로 한다.
Therefore, the present invention is characterized in that the precursor solution is reduced to form a catalyst between the cathode and the electrolyte layer by reducing the precursor solution in order to prevent performance degradation of the battery by the secondary phase, but the catalyst is formed on the surface of the cathode using a conventional chemical reducing agent In order to improve the limitations of the method, the precursor solution is characterized by reducing the precursor solution through radiation to form a catalyst.

다만, 공기극 재료를 바로 전구체 용액에 첨가시켜 방사선을 조사할 경우 전구체 용액이 공기극의 표면에 잘 부착되지 않아 촉매를 효과적으로 형성시킬 수 없는 문제점이 있었다.
However, when the cathode material is directly added to the precursor solution and irradiated with radiation, the precursor solution does not adhere well to the surface of the cathode and thus cannot effectively form a catalyst.

따라서, 촉매의 부착성 및 균일성을 확보하기 위해 먼저 산성 용액을 이용하여 공기극 재료의 표면을 산처리함으로써, 표면을 개질시키는 과정을 거치게 된다. 이와 같이 공기극 재료를 산성 용액에 첨가시켜 산처리를 행할 경우 표면 상태가 거칠어짐으로써 이 후 전구체 용액에 첨가할 경우 금속이 잘 달라붙게 되어 촉매가 매우 효과적으로 부착될 수 있는 장점이 있다.
Therefore, in order to secure the adhesion and uniformity of the catalyst, the surface of the cathode material is first acidified using an acidic solution, thereby undergoing a process of modifying the surface. As described above, when the cathode material is added to the acidic solution and subjected to acid treatment, the surface state becomes rough, and when added to the precursor solution, the metal adheres well so that the catalyst can be attached very effectively.

또한, 상기 산성 용액은 황산, 질산, 염산 및 아세트산으로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것이 바람직하고, 특히 황산 용액을 사용하는 것이 바람직한데, 상기 산성 용액은 2~10,000배로 희석한 용액을 사용하고, 50배 이상 희석한 것이 보다 바람직하다. 만약, 2배 이하로 희석된 산성 용액의 경우 산성이 강하여 은염을 녹일 염려가 있고, 표면이 너무 거칠어져 공기극에 접착이 쉽지 않은 문제가 있으며, 반대로 10,000배 이상으로 희석할 경우 너무 묽게 되어 표면이 거칠어지지 않으므로 효과를 발생시키기 어렵게 된다.
In addition, the acidic solution preferably contains at least one selected from the group consisting of sulfuric acid, nitric acid, hydrochloric acid and acetic acid, and in particular, it is preferable to use a sulfuric acid solution, the acidic solution is a solution diluted 2 to 10,000 times It is more preferable to use and to dilute 50 times or more. If the acid solution diluted to 2 times or less is strong in acid, it may dissolve the silver salt, and the surface is so rough that it is not easy to adhere to the air electrode. On the contrary, when diluted more than 10,000 times, the surface becomes too diluted. Since it is not rough, it becomes difficult to produce an effect.

이와 같이, 공기극 재료의 표면 개질 단계를 행한 후에 공기극 재료의 표면에 촉매를 형성시키기 위해 촉매 전구체 입자 이온이 함유된 용액에 공기극 재료를 첨가하는 과정을 거치게 된다. 이 경우 상기 표면 개질에 의해 표면의 거칠기가 상승하여 금속 전구체 입자가 용이하게 공기극 재료의 표면에 부착하게 되므로, 촉매의 균일성 및 부착성이 매우 우수하게 확보될 수 있다.
As such, after performing the surface modification step of the cathode material, the cathode material is added to the solution containing the catalyst precursor particle ions to form a catalyst on the surface of the cathode material. In this case, since the surface roughness is increased by the surface modification, the metal precursor particles easily adhere to the surface of the cathode material, so that uniformity and adhesion of the catalyst can be secured very well.

이때, 상기 촉매 전구체 용액은 금, 은, 구리, 백금, 니켈, 아연 및 팔라듐으로 이루어진 그룹으로부터 선택된 1종 이상의 금속염을 포함하는 용액인 것이 바람직하다. 상기 금속은 공기극 재료의 표면에 부착되어 공기극 재료와 전해질층이 반응하여 이차상을 형성하는 것을 억제하는 역할을 하게 된다.
At this time, the catalyst precursor solution is preferably a solution containing at least one metal salt selected from the group consisting of gold, silver, copper, platinum, nickel, zinc and palladium. The metal is attached to the surface of the cathode material and serves to suppress the reaction between the cathode material and the electrolyte layer to form a secondary phase.

다만, 이차상 형성 방지 기능 및 경제적 측면에서 은염을 포함하는 용액을 사용하는 것이 가장 효과적이며, 따라서 질산은, 과염소산은, 염소산은, 탄산은, 황산은, 염화은, 브룸화은, 초산은, 불소은로 이루어진 그룹으로부터 선택된 1종 이상의 은염을 포함하는 용액인 것이 보다 바람직하다.
However, it is most effective to use a solution containing silver salt in terms of secondary phase formation prevention function and economical. Therefore, a group consisting of silver nitrate, perchloric acid, chloric acid, silver carbonate, sulfuric acid, silver chloride, silver bromide, silver acetate, and fluorine silver It is more preferable that it is a solution containing at least one silver salt selected from.

다음으로, 표면이 개질된 공기극 재료를 촉매 전구체 용액에 첨가하여 교반한 후에 방사선 조사를 통해 전구체 용액을 환원시켜 공기극 재료의 표면에 촉매를 형성시키게 된다. 이때, 방사선을 0.3~10 MeV의 에너지와 10~500kGy의 선량으로 조사하는 것이 바람직하다. 방사선 조사는 강한 에너지로 인하여 촉매 전구체 입자 이온을 환원시키는 역할을 하는 것이므로, 이러한 환원에 필요한 충분한 에너지를 가져야 하고, 따라서 0.3MeV 이상의 에너지를 가할 필요가 있다. 다만, 방사선 에너지가 너무 높을 경우 환원 구동력이 과다해서 입자가 조대해지거나 응집될 우려가 있으므로, 상한은 10MeV로 한정하는 것이 바람직하다. 동일한 이유로 방사선의 선량도 10~500kGy로 제한하는 것이 바람직하다.
Next, after the surface-modified cathode material is added to the catalyst precursor solution and stirred, the precursor solution is reduced by irradiation with radiation to form a catalyst on the surface of the cathode material. At this time, the radiation is preferably irradiated with an energy of 0.3-10 MeV and a dose of 10-500 kGy. Since the radiation serves to reduce the catalyst precursor particle ions due to the strong energy, it must have sufficient energy for such reduction, and therefore, it is necessary to apply energy of 0.3MeV or more. However, if the radiation energy is too high, the reduction driving force may be excessive and the particles may coarsen or aggregate. Therefore, the upper limit is preferably limited to 10 MeV. For the same reason, the radiation dose is preferably limited to 10 to 500 kGy.

본 발명에서 사용가능한 방사선은 상기 촉매 전구체 이온을 환원시키기에 충분한 것이라면 모두 가능하므로, 그 종류에는 특별한 제한이 없다. 다만, 보다 바람직한 예를 든다면 α선, β선, γ선, X선, 방사광, 전자선, 양자선, 중이온빔 및 중성자선 등의 방사선을 들 수 있으며, 그 중에서도 전자빔을 사용하는 것이 보다 바람직하다.
Since the radiation usable in the present invention can be any one sufficient to reduce the catalyst precursor ions, there is no particular limitation on the kind thereof. However, more preferable examples include radiation such as α-rays, β-rays, γ-rays, X-rays, radiation, electron beams, quantum rays, heavy ion beams, and neutron beams, and more preferably, electron beams are used. .

이하, 실시예를 통해 본 발명을 상세히 설명하지만, 이는 본 발명의 보다 완전한 설명을 위한 것이고, 하기 개별실시예에 의해 본 발명의 권리범위가 제한되는 것은 아니다.
Hereinafter, the present invention will be described in detail by way of examples, which are intended for a more complete description of the present invention, and the scope of the present invention is not limited by the following individual examples.

(실시예)(Example)

LSCF 파우더에 황산을 부피비로 50배 희석하여 30분간 교반시키고, 3회 세척을 행하였다. 그리고나서 질산은을 첨가하여 교반시킨 후, 0.7MeV, 300kGy의 조건으로 전자빔을 조사하여, LSCF의 표면에 은 촉매를 형성하였다.
The sulfuric acid was diluted 50 times by volume ratio in LSCF powder, stirred for 30 minutes, and washed three times. Then, after adding and stirring silver nitrate, the electron beam was irradiated on conditions of 0.7 MeV and 300 kGy, and the silver catalyst was formed in the surface of LSCF.

도 1은 LSCF를 찍은 SEM 사진을 나타낸 것이고, 도 2는 표면 산처리한 후에 찍은 SEM 사진을 나타낸 것인데, 산처리에 의해 LSCF의 표면이 더 거칠어졌음을 확인할 수 있다. 도 3은 상기 표면 처리된 LSCF를 질산은에 첨가하여 방사선 조사를 행하여 환원 처리에 의해 촉매를 형성시킨 후에 찍은 SEM 사진을 나타낸 것인데, 은 촉매가 균일하게 매우 잘 부착되어 있음을 확인할 수 있다.
Figure 1 shows a SEM picture taken LSCF, Figure 2 shows a SEM picture taken after the surface acid treatment, it can be confirmed that the surface of the LSCF is rougher by the acid treatment. 3 is a SEM photograph taken after the surface-treated LSCF is added to silver nitrate and irradiated to form a catalyst by reduction treatment. It can be seen that the silver catalyst is uniformly attached very well.

즉, 표면 산처리에 의해 거칠어진 표면이 촉매의 부착력을 향상시키는 데에 기여하였고, 화학적 환원제를 사용하지 않고 방사선 조사에 의해 촉매 전구체 용액을 환원시킴으로써 간편한 공정으로 촉매를 더욱 균일하게 형성시킨 것으로 분석할 수 있다.That is, the surface roughened by the surface acid treatment contributed to improving the adhesion of the catalyst, and it was analyzed that the catalyst was formed more uniformly by a simple process by reducing the catalyst precursor solution by irradiation without using a chemical reducing agent. can do.

Claims (7)

공기극 재료의 표면이 개질되도록 공기극 재료를 산성 용액에 첨가하는 단계;
상기 표면이 개질된 공기극 재료를 촉매 전구체 용액에 첨가하는 단계; 및
상기 촉매 전구체 용액에 첨가된 공기극 재료에 방사선을 조사하는 단계를 포함하는 연료전지용 공기극 재료의 촉매 형성방법.
Adding the cathode material to the acidic solution such that the surface of the cathode material is modified;
Adding the surface-modified cathode material to a catalyst precursor solution; And
And irradiating the cathode material added to the catalyst precursor solution with the radiation.
청구항 1에 있어서,
상기 공기극 재료는 LSM(La1 - xSrxMnO3), LSCF(La1 - xSrxCo1 - yFeyO3), LSF(La1 -xSrxFeO3), LSCo(La1 - xSrxCoO3), LSCu (La1 - xSrxCuO3), SSC (Sm1 - xSrxCoO3) 및 BSCF (Ba1 -xSrxCo1-yFeyO3)로 이루어진 그룹으로부터 선택된 1종 이상인 것을 특징으로 하는 연료전지용 공기극 재료의 촉매 형성방법.
The method according to claim 1,
The cathode material is LSM (La 1 - x Sr x MnO 3 ), LSCF (La 1 - x Sr x Co 1 - y Fe y O 3 ), LSF (La 1 -x Sr x FeO 3 ), LSCo (La 1 - with x Sr x CoO 3) and BSCF (Ba 1 -x Sr x Co 1-y Fe y O 3) - x Sr x CoO 3), LSCu (La 1 - x Sr x CuO 3), SSC (Sm 1 A method of forming a catalyst for a cathode material for a fuel cell, characterized in that at least one member selected from the group consisting of.
청구항 1에 있어서,
상기 산성 용액은 황산, 질산, 염산 및 아세트산으로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 특징으로 하는 연료전지용 공기극 재료의 촉매 형성방법.
The method according to claim 1,
Wherein said acidic solution comprises at least one member selected from the group consisting of sulfuric acid, nitric acid, hydrochloric acid and acetic acid.
청구항 1에 있어서,
상기 촉매 전구체 용액은 금, 은, 구리, 백금, 니켈, 아연 및 팔라듐으로 이루어진 그룹으로부터 선택된 1종 이상의 금속염을 포함하는 용액인 것을 특징으로 하는 연료전지용 공기극 재료의 촉매 형성방법.
The method according to claim 1,
The catalyst precursor solution is a catalyst containing a cathode material for a fuel cell, characterized in that the solution containing at least one metal salt selected from the group consisting of gold, silver, copper, platinum, nickel, zinc and palladium.
청구항 4에 있어서,
상기 촉매 전구체 용액은 질산은, 과염소산은, 염소산은, 탄산은, 황산은, 염화은, 브룸화은, 초산은, 불소은로 이루어진 그룹으로부터 선택된 1종 이상의 은염을 포함하는 용액인 것을 특징으로 하는 연료전지용 공기극 재료의 촉매 형성방법.
The method of claim 4,
The catalyst precursor solution is a solution containing at least one silver salt selected from the group consisting of silver nitrate, silver perchloric acid, silver chlorate, silver carbonate, silver sulfate, silver chloride, silver bromide, silver acetate and silver fluorine. Catalyst Formation Method.
청구항 1에 있어서,
상기 방사선을 조사하는 단계는 0.3~10 MeV의 에너지와 10~500kGy의 선량으로 방사선을 조사하는 것을 특징으로 하는 연료전지용 공기극 재료의 촉매 형성방법.
The method according to claim 1,
The irradiating step is a method of forming a catalyst for a cathode material for a fuel cell, characterized in that for irradiating radiation with energy of 0.3 ~ 10 MeV and dose of 10 ~ 500kGy.
청구항 6에 있어서,
상기 방사선을 조사하는 단계는 전자빔을 조사하는 것을 특징으로 하는 연료전지용 공기극 재료의 촉매 형성방법.
The method of claim 6,
The irradiating the radiation is a method of forming a catalyst for a cathode material for a fuel cell, characterized in that for irradiating an electron beam.
KR1020110045027A 2011-05-13 2011-05-13 Method for forming catalyst of cathode materials for fuel cell KR101340447B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110045027A KR101340447B1 (en) 2011-05-13 2011-05-13 Method for forming catalyst of cathode materials for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110045027A KR101340447B1 (en) 2011-05-13 2011-05-13 Method for forming catalyst of cathode materials for fuel cell

Publications (2)

Publication Number Publication Date
KR20120126902A true KR20120126902A (en) 2012-11-21
KR101340447B1 KR101340447B1 (en) 2013-12-11

Family

ID=47512152

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110045027A KR101340447B1 (en) 2011-05-13 2011-05-13 Method for forming catalyst of cathode materials for fuel cell

Country Status (1)

Country Link
KR (1) KR101340447B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100586196B1 (en) 2004-03-18 2006-06-07 (주)탠덤이피 Preparation Method of the Carbon Catalyst by Photonic Reduction for Fuel Cell and Its Carbon Catalyst for Fuel Cell
KR100683920B1 (en) * 2005-06-22 2007-02-15 주식회사 카본나노텍 Method of Making Catalysts for Fuel Cell
KR101150284B1 (en) * 2009-04-28 2012-05-24 한국수력원자력 주식회사 Preparation of Core-shell or bimetallic nanoparticle by radiation method
KR101106272B1 (en) * 2009-11-10 2012-01-18 한국에너지기술연구원 Synthetic process of catalyst support using natural cellulose fibers and surface treatment for the deposition of highly dispersed metal nano particles on them, and the preparation method of the supported catalyst

Also Published As

Publication number Publication date
KR101340447B1 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
Kim et al. Near surface electric field enhancement: Pyridinic-N rich few-layer graphene encapsulating cobalt catalysts as highly active and stable bifunctional ORR/OER catalyst for seawater batteries
McKerracher et al. A review of the iron–air secondary battery for energy storage
JP2014516465A (en) Shape control core shell catalyst
de León et al. A direct borohydride–peroxide fuel cell using a Pd/Ir alloy coated microfibrous carbon cathode
An et al. The in situ morphology transformation of bismuth-based catalysts for the effective electroreduction of carbon dioxide
JP2009518795A (en) Bifunctional air electrode
US11028490B2 (en) Subnanometer catalytic clusters for water splitting, method for splitting water using subnanometer catalyst clusters
EP3623501B1 (en) Carbon dioxide electrolytic device
He et al. Recent progress of manganese dioxide based electrocatalysts for the oxygen evolution reaction
WO2014119549A1 (en) Positive electrode catalyst and device
Kao et al. Formation enhancement of a lead/acid battery positive plate by barium metaplumbate and Ebonex®
Thakur et al. Extending the Cyclability of Alkaline Zinc–Air Batteries: Synergistic Roles of Li+ and K+ Ions in Electrodics
Lianos A brief review on solar charging of Zn–air batteries
KR101340447B1 (en) Method for forming catalyst of cathode materials for fuel cell
TW201706037A (en) Core-shell catalyst and method for accelerating reaction
Nakamori et al. Pt–Ru anode catalyst to suppress H2O2 formation due to oxygen crossover
US7935267B2 (en) Electrolyte solution for hydrogen generating apparatus and hydrogen generating apparatus comprising the same
CN110931264B (en) Iron in-situ doped sodium titanate electrode material and preparation method thereof
CN106848243A (en) Graphene/tin oxide coats LiMn2O4 and preparation method thereof altogether
KR101897523B1 (en) Catalyst compelx material for metal air battery and metal air battery having the same
Strasser Dealloyed Pt bimetallic electrocatalysts for oxygen reduction
KR101884066B1 (en) Negative active material for zinc-air secondary battery, and zinc-air secondary battery containing the same
US20130088184A1 (en) Battery device utilizing oxidation and reduction reactions to produce electric potential
Pershina et al. The electrochemical facing of powder iron for thermogalvanic elements
JP2017174562A (en) Electrode catalyst for fuel cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee