KR20120126165A - Rubber compound for car engine mount enhanced vds by mixing epdm with hybrid vulcanization system - Google Patents

Rubber compound for car engine mount enhanced vds by mixing epdm with hybrid vulcanization system Download PDF

Info

Publication number
KR20120126165A
KR20120126165A KR1020110043758A KR20110043758A KR20120126165A KR 20120126165 A KR20120126165 A KR 20120126165A KR 1020110043758 A KR1020110043758 A KR 1020110043758A KR 20110043758 A KR20110043758 A KR 20110043758A KR 20120126165 A KR20120126165 A KR 20120126165A
Authority
KR
South Korea
Prior art keywords
parts
weight
epdm
engine mount
hybrid
Prior art date
Application number
KR1020110043758A
Other languages
Korean (ko)
Other versions
KR101338005B1 (en
Inventor
김영길
정재흠
양경모
박종민
Original Assignee
주식회사 대흥알앤티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대흥알앤티 filed Critical 주식회사 대흥알앤티
Priority to KR1020110043758A priority Critical patent/KR101338005B1/en
Publication of KR20120126165A publication Critical patent/KR20120126165A/en
Application granted granted Critical
Publication of KR101338005B1 publication Critical patent/KR101338005B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE: A rubber composition for an automotive engine mount is provided to enhance thermal resistance and to maintain a low dynamic ratio by enhancing a dynamic characteristic. CONSTITUTION: A rubber composition for automotive engine mount comprises 0.4-1.5 parts by weight of sulfur, 0.5-3.5 parts of N-cyclohexyl-2-benzothiazyl-sulfenamide, 0.5-3.5 parts of tetramethylthiuram disulfide, 2-8 parts of a peroxide cross-linker, 15-30 parts of SRF(semi-reinforcing furnace) carbon black, 10-20 parts of FEF(fast extrusion furnace) carbon black, and 4-6 parts of paraffinic oil based on an EPDM mixture which blends EPDM 1 which does not include oil and EPDM 2 which includes oil at the weight ratio of 1:3. As additives, 2-7 parts by weight of activated zinc, 1-3 parts of stearic acid, 1-2 parts of SUN 682(Sunprax) and 2-4 parts of 13 C (N-phenyl-N'-isopropyl-p-phenylenediamine) are included.

Description

이피디엠에 하이브리드 가류시스템을 적용한 내구성이 향상된 자동차 엔진마운트용 고무 조성물{RUBBER COMPOUND FOR CAR ENGINE MOUNT ENHANCED VDS BY MIXING EPDM WITH HYBRID VULCANIZATION SYSTEM} RUBBER COMPOUND FOR CAR ENGINE MOUNT ENHANCED VDS BY MIXING EPDM WITH HYBRID VULCANIZATION SYSTEM}

본 발명은 EPDM에 하이브리드 가류시스템를 적용한 내구성이 향상된 자동차 엔진마운트용 고무 조성물에 관한 것으로, 보다 상세하게는 기존 천연고무와 동등한 기계적 물성을 가지면서 적어도 140℃ 이상에서도 사용가능한 내열성을 확보하고, 자동차 엔진마운트에서 요구하는 동배율 특성을 만족시킴과 동시에 내크리프성도 만족시킬 수 있도록 한 EPDM에 하이브리드 가류시스템를 적용한 내구성이 향상된 자동차 엔진마운트용 고무 조성물에 관한 것이다. The present invention relates to a rubber composition for an automobile engine mount having improved durability by applying a hybrid vulcanization system to EPDM, and more particularly, having a mechanical property equivalent to that of existing natural rubber, and ensuring heat resistance that can be used even at least 140 ° C. The present invention relates to a rubber composition for automobile engine mounts having improved durability by applying a hybrid vulcanization system to EPDM, which satisfies the dynamic magnification characteristics required by the mount and at the same time creep resistance.

일반적으로, 자동차의 엔진을 지지하면서 엔진에서 발생되는 진동이 승차자에게 전달되는 것을 억제하는 역할을 하는 방진고무는 자동차의 소음진동(N.V.H)과 관련된 기술 개발에 있어 대단히 중요한 요소이다. In general, the anti-vibration rubber, which supports the engine of the vehicle and serves to suppress the transmission of vibration generated from the engine to the rider, is a very important factor in the technology development related to the noise vibration (N.V.H) of the automobile.

그 중, 엔진마운트(engine mount)는 엔진 및 트랜스미션의 중량을 지지하기 위해 높은 정적인 스티프니스(Stiffness)와 진동전달을 억제하기 위해 낮은 동적 스티프니스(Stiffness)를 동시에 가져야 하는 중요한 부품 중 하나이다. Among them, the engine mount is one of the important parts that must simultaneously have high static stiffness and low dynamic stiffness to suppress the transmission of vibration to support the weight of the engine and the transmission.

예컨대, 자동차의 엔진마운트는 파워 프랜트 위치 확보 기능 및 유동제어 기능과 진동 소음 절연 기능을 요구하고 있다. 특히, 주행시 불규칙한 노면에서 발생하는 충격을 차체에 전달되는 것을 최소화하고 자동차의 승차감, 주행 안정성을 높이기 위한 중요한 부품이다. For example, engine mounts for automobiles require power plant positioning, flow control, and vibration noise isolation. In particular, it is an important part for minimizing the transmission of the impact generated on the irregular road surface to the vehicle body and increasing the ride comfort and driving stability of the vehicle.

이러한 엔진마운트는 엔진의 위치 확보와 진동 전달을 억제하기 위해 동배율(동특성/정특성)이 적을수록 유리하며, 감쇄성은 클수록 유리하다. 또한, 엔진마운트 특성상 엔진과 주행시 노면에서 발생되는 진동으로 인해 내피로성이 요구된다. 즉, 자동차의 주행 중에는 반복적인 대하중이 입력되므로 이를 견디기 위한 고무의 내구성이 동시에 요구되어진다. Such an engine mount is advantageous to have a smaller dynamic ratio (dynamic / static characteristic) in order to secure the position of the engine and to suppress vibration transmission, and has a higher attenuation. In addition, due to the characteristics of the engine mount, fatigue resistance is required due to vibration generated on the road surface of the engine and when driving. That is, since repeated heavy loads are input while the vehicle is driving, durability of the rubber to withstand them is required at the same time.

결국, 엔진마운트는 저동배율, 내피로성, 내열성능, 내크리프성(CREEP RESISTANCE)을 동시에 확보해야 하는 기술적 특성을 가져야 한다. As a result, the engine mount must have technical characteristics that must simultaneously secure low dynamic power, fatigue resistance, heat resistance, and creep resistance.

이와 같은 복합적인 요구특성을 만족하기 위해 우수한 기계적 물성을 갖는 천연고무를 기본원료로 하고, 여기에 충진제, 가황제, 가류제, 노화방지제 등을 첨가한 화합물을 사용하여 엔진마운트를 제작해 왔다. In order to satisfy such complex requirements, engine mounts have been manufactured using natural rubber having excellent mechanical properties as a basic raw material, and compounds including fillers, vulcanizing agents, vulcanizing agents, anti-aging agents, and the like.

따라서, 엔진마운트의 물성은 사용되는 천연고무의 순도, 첨가물의 종류에 따라 크게 달라지게 된다. Therefore, the physical properties of the engine mount vary greatly depending on the purity of the natural rubber used and the type of additives.

그런데, 자동차의 엔진마운트는 고온의 엔진룸에 위치하고 있어 항상 고열에 노출되어 있는 상태이고, 최근 자동차의 고성능화 및 배기환경의 규제와 같은 환경 요건이 강화되면서 엔진룸 온도가 급격히 상승하였는데, 이로 인해 천연고무를 주재로 하여 제조된 엔진마운트는 내열 요구조건을 충족시키기가 어려워지고 있다. However, the engine mount of a car is located in a high temperature engine room and is always exposed to high temperatures. Recently, the engine room temperature has risen sharply as environmental requirements such as high performance of the car and regulation of exhaust environment have been strengthened. Engine mounts manufactured from rubber are becoming increasingly difficult to meet heat resistance requirements.

특히, 고온 지역에서 사용되는 자동차의 경우에는 그 사용온도가 100℃를 초과하여 고무의 치명적인 노화가 발생되고 있는데, 천연고무는 열에 취약한 이중 결합을 포함하고 있어 사용범위가 100℃를 넘지 못하는 한계를 가지고 있다 Particularly, in the case of automobiles used in high temperature areas, the use temperature exceeds 100 ℃ and the fatal aging of rubber occurs. Natural rubber contains a double bond that is susceptible to heat, so the range of use does not exceed 100 ℃. Have

이에, 내열성이 좋은 CR(Chloroprene rubber)과 EPDM(Ethylene propylene diene rubber)이 차기 대응 폴리머로 검토되고 있으나, 기계적 물성과 저온특성, 높은 동특성으로 인해 엔진마운트에 대해 적용하기는 어려운 문제점을 가지고 있다. Therefore, CR (Chloroprene rubber) and EPDM (Ethylene propylene diene rubber), which have good heat resistance, have been considered as next-response polymers, but are difficult to apply to engine mounts due to mechanical properties, low temperature characteristics, and high dynamic characteristics.

이와 관련하여, 공개특허 제10-2004-0000852호 "엔진 마운트용 고무 조성물"이 개시된 바 있다. In this regard, Patent Publication No. 10-2004-0000852 "Rubber Composition for Engine Mount" has been disclosed.

개시된 기술은 상술한 단점 중 주로 내열성 부분에 촛점이 맞추어진 것으로서, EPDM에 가황제로 황(S), 촉진제로 CBS(N-Cyclohexyl-2-benzothiazyl-sulfenamide) 및 TT(Tetra methylthiuram disulfide), 충진제로 카본블랙을 첨가하여 내열 특성을 향상시킨 예이다. The disclosed technique focuses mainly on the heat-resistant part of the above-mentioned disadvantages, and is sulfur (S) as a vulcanizing agent in EPDM, N-Cyclohexyl-2-benzothiazyl-sulfenamide (CBS) and Tetra methylthiuram disulfide (TT) as fillers Carbon black is added to improve heat resistance.

그러나, 개시된 기술은 여전히 동특성이 높아 동배율 측면에서 불리하므로 이에 대한 개선이 필요하였다. However, the disclosed technology is still disadvantageous in terms of dynamic magnification due to its high dynamic characteristics, and an improvement thereof has been required.

뿐만 아니라, 내구성이 강해 장수명을 갖는 엔진마운트를 제작하기 위해서는 내열성과 동시에 내크리프성을 만족시켜야 하는데, 개시된 기술은 이 점에 있어 미흡한 점이 있었다.
In addition, in order to manufacture an engine mount having long durability and long life, heat resistance and creep resistance must be satisfied. However, the disclosed technology has been insufficient in this regard.

본 발명은 상술한 바와 같은 종래 기술상의 제반 문제점을 감안하여 이를 해결하고자 창출된 것으로, 천연고무 대비 동등 수준의 기계적 물성을 가지면서 140℃ 이상에서도 사용가능한 내열성을 갖고, 무엇보다도 동특성이 향상되어 저 동배율을 유지하여 진동 전달 억제력이 뛰어난 엔진마운트를 제작할 수 있고, 동시에 내크리프성도 우수하여 장수명화를 달성할 수 있는 EPDM에 하이브리드 가류시스템를 적용한 내구성이 향상된 자동차 엔진마운트용 고무 조성물을 제공함에 그 주된 목적이 있다.
The present invention has been made in view of the above-mentioned problems in the prior art, and has been created to solve this problem, and has the same level of mechanical properties as natural rubber and has heat resistance usable at 140 ° C. or higher, and above all, the dynamic characteristics are improved. It is possible to manufacture engine mounts with excellent vibration suppression ability by maintaining dynamic magnification, and at the same time, it provides excellent durability and rubber composition for automobile engine mounts with improved durability by applying hybrid vulcanization system to EPDM, which can achieve long life with excellent creep resistance. There is a purpose.

본 발명은 상기한 목적을 달성하기 위한 수단으로, 오일을 포함하지 않는 EPDM 1과, 오일을 포함하는 EPDM 2를 1:3의 중량비율로 블렌딩한 EPDM 배합물 100 중량부에 대하여; 황: 0.4-1.5 중량부, CZ, TT: 각각 0.5-3.5 중량부, 과산화물 가교제: 2-8 중량부, SRF: 15-30 중량부, FEF: 10-20 중량부, 파라핀오일: 4-6 중량부;를 포함하고, 기타 첨가제로, 활성화아연: 2-7중량부, 스테아릭산: 1-3중량부, SUN682(sunprax): 1-2중량부, 13C(N-Phenyl-N'-isopropyl-p-phenylenediamine): 2-4중량부가 첨가되어 조성된 것을 특징으로 하는 EPDM에 하이브리드 가류시스템를 적용한 자동차 엔진마운트용 고무 조성물을 제공한다.The present invention provides a means for achieving the above object, with respect to 100 parts by weight of EPDM blend blending EPDM 1 not containing oil and EPDM 2 including oil in a weight ratio of 1: 3; Sulfur: 0.4-1.5 parts by weight, CZ, TT: 0.5-3.5 parts by weight, peroxide crosslinking agent: 2-8 parts by weight, SRF: 15-30 parts by weight, FEF: 10-20 parts by weight, paraffin oil: 4-6 Including, by weight, other additives, activated zinc: 2-7 parts by weight, stearic acid: 1-3 parts by weight, SUN682 (sunprax): 1-2 parts by weight, 13C (N-Phenyl-N'-isopropyl -p-phenylenediamine): Provides a rubber composition for automobile engine mount applying a hybrid vulcanization system to EPDM, characterized in that the composition is added by 2-4 parts by weight.

이때, 상기 EPDM은 EPDM 전체 중량 대비, ENB(ethylidene norbornene) 4-6wt%, 에틸렌 50-70wt%를 포함하고, 무니 점성도(mooney viscosity)는 50~60ML인 것을 사용하는 것에도 그 특징이 있다.In this case, the EPDM includes 4-6 wt% of ethylidene norbornene (ENB) and 50-70 wt% of ethylene, and has a Mooney viscosity of 50 to 60 ml based on the total weight of EPDM.

또한, 상기 과산화물 가교제는 TBPDB(Di-t-butyl peroxy di-siopropyl benzene)인 것에도 그 특징이 있다.
In addition, the peroxide crosslinking agent is also characterized in that TBPDB (Di-t-butyl peroxy di-siopropyl benzene).

본 발명에 따르면, 하이브리드 가류시스템를 적용함으로써 기계적 특성은 천연고무와 동등 수준을 유지하되 내열성이 향상되어 장수명화가 가능하고, 동특성이 향상되어 진동 전달 억제력이 뛰어나며, 내크리프성이 향상되어 우수한 내구성을 갖는 자동차용 엔진마운트를 제작 가능하게 한 효과를 얻을 수 있다.
According to the present invention, by applying a hybrid vulcanization system, the mechanical properties are maintained at the same level as natural rubber, but the heat resistance is improved, long life is possible, the dynamic properties are improved, the vibration transmission is excellent, and the creep resistance is improved, and the durability is excellent. The effect which made the engine mount for automobiles possible can be acquired.

이하에서는, 본 발명에 따른 바람직한 실시예를 보다 상세하게 설명하기로 한다. Hereinafter, preferred embodiments according to the present invention will be described in detail.

먼저, EPM이란 ethylene unit(E)와 propylene unit(P)로 이루어진 랜덤 코폴리머(random copolymer)를 의미하며, 여기에 가황을 위한 3성분으로 디엔 모노머(diene monomer)를 도입한 것을 EPDM이라고 한다. First, EPM refers to a random copolymer composed of ethylene unit (E) and propylene unit (P). Herein, the introduction of a diene monomer as a three component for vulcanization is called EPDM.

이러한 EPDM은 평균분자량, 분자량 분포, 에틸렌/프로필렌(Ethylene/propylene) 비율, 제3모노머(termonomer)의 종류, 분지도 등의 파라메터에 의하여 최종 제품의 물성 및 가공성이 다양하게 변화될 수 있으며, 이러한 구조와 물성간의 관계를 충분히 고려하여 적절한 EPDM 등급(grade)을 선택해야 한다. The EPDM has various properties such as average molecular weight, molecular weight distribution, ethylene / propylene ratio, type of termonomer, branching, and the like, and thus the physical properties and processability of the final product can be varied. Due consideration should be given to the relationship between structure and physical properties, the appropriate EPDM grade should be selected.

지금까지의 EPDM은 뛰어난 내오존성과 내후성, 내약품성을 바탕으로 웨더스트립류(weather strip)류, 오일씰류 등에 주로 사용되었으며, 동적 특성이나 감쇄 특성이 불리한 EPDM은 이러한 특성을 요구하는 엔진마운트에는 적용이 이루어지지 못했다. EPDM has been used mainly for weather strips and oil seals based on its excellent ozone resistance, weather resistance and chemical resistance. EPDM, which has a disadvantage in dynamic or damping properties, is applied to engine mounts that require these characteristics. This could not be done.

그러므로, 동특성과 감쇄성능의 요구조건을 만족하기 위해서는 EPDM 베이스 폴리머(base polymer)의 선택과 가류제(加硫濟), 충진제를 어떤 종류로 어떤 함량에 맞춰 선택 배합하는가가 무엇보다 중요하다. Therefore, in order to satisfy the requirements of dynamic characteristics and attenuation performance, it is important to select EPDM base polymer, and to select and mix vulcanizing agent and filler in what kind and to what content.

EPDM의 전반적이 특성은 주사슬에 이중결합이 없기 때문에 내오존성, 내약품성, 내열성 등이 우수하다. 특히 압축줄음률, 고온 성능, 저온유연성 등은 고분자의 조성과 배합에 의해 크게 좌우 된다. The overall characteristics of EPDM are excellent ozone resistance, chemical resistance, heat resistance, etc. because there is no double bond in the main chain. In particular, compressive shrinkage, high temperature performance, low temperature flexibility, and the like largely depend on the composition and blending of the polymer.

반면, EPDM은 분자 측쇄에 소량의 불포화기를 함유하고 있지만, 천연고무, DIENE계 고무와 비교하면 불포화도가 적기 때문에 가황속도가 느리며,  피로성능과 동특성이 천연고무에 비해 저하되는 단점이 있다. 그러므로, 엔진마운트용 EPDM 고무 조성물의 개발은 베이스 폴리머(base polymer)의 선택과 컴파운드 디자인(compound design)을 통해 자동차용 엔진마운트가 요구하는 제반 물성의 향상을 도모하는데 있다. On the other hand, EPDM contains a small amount of unsaturated groups in the molecular side chain, but the vulcanization rate is slow due to less unsaturation compared to natural rubber and diene rubber, and has a disadvantage in that fatigue performance and dynamic properties are lower than those of natural rubber. Therefore, the development of EPDM rubber compositions for engine mounts aims at improving the overall physical properties required for automotive engine mounts through the selection of base polymers and compound designs.

이에 더하여, EPDM 고무의 물성은 EPDM 등급(grade)과 가류시스템(vulcanization system)에 의해서도 크게 영향을 받는다. In addition, the physical properties of EPDM rubber are greatly influenced by EPDM grades and vulcanization systems.

EPDM의 가류시스템은 크게 가황법(sulfur vulcanization)와 가과산화물법(peroxide vulcanization)으로 나눌 수 있다. EPDM's vulcanization systems can be broadly divided into sulfur vulcanization and peroxide vulcanization.

가황법(Sulfur vulcanization)을 적용한 EPDM은 황의 함량과, ENB함량에 따라 내열성과  내구성능이 결정되는데, 황의 사용을 적게 하면 내열성이 향상되나 내구성능의 저하를 가져오므로 촉진제와 배합비율을 적절히 조절하여야만 한다. EPDM applied by Sulfur vulcanization determines heat resistance and durability according to sulfur content and ENB content. Less sulfur is used to improve heat resistance, but the durability is lowered. Therefore, accelerator and compounding ratio must be properly adjusted. do.

또한, ENB 함량이 감소할 경우 내열성은 향상되나 가교점 감소로 인해 기계적 물성인 내구성능이 감소함으로 가교밀도를 향상시킬 수 있도록 적절한 조절이 필요하다. In addition, when the ENB content is reduced, the heat resistance is improved, but due to the decrease in the crosslinking point, it is necessary to adjust appropriately to improve the crosslinking density by reducing the durability of mechanical properties.

반면, 가과산화물법(Peroxide vulcanization)은 가황법에 비해 내열성과 영구압축성(compression set)이 우수하나 낮은 기계적 물성과 인열강도를 나타내고 있다. On the other hand, the peroxide vulcanization method has better heat resistance and compression set than the vulcanization method, but shows low mechanical properties and tear strength.

따라서, 엔진마운트용 방진고무로 EPDM을 사용하기 위해서는 기계적물성과 내열성, 내크리프성을 동시에 만족시키기 위해서 최적의 가류시스템 개발이 필요하며, 본 발명에서는 이를 위해 가황법과 가과산화물법을 병행하는 하이브리드 방식을 채택하였다. Therefore, in order to use EPDM as an anti-dust rubber for engine mount, it is necessary to develop an optimum vulcanization system to satisfy mechanical properties, heat resistance, and creep resistance at the same time, and in the present invention, a hybrid method using a vulcanization method and a peroxide method for this purpose. Was adopted.

아울러, 본 발명에 따른 EPDM 고무는 KEP(금호폴리켐)사의 서로 다른 2개의 등급(grade)을 블렌딩(blending)하여 사용되며, ENB(ethylidene norbornene) 함량은 4~6wt%, 에틸렌(ethylene) 함량은 50~70wt%, 무니 점성도(mooney viscosity)는 50~60ML인 것이 사용된다. In addition, EPDM rubber according to the present invention is used by blending two different grades of KEP (Kumho Polychem), ENB (ethylidene norbornene) content is 4 ~ 6wt%, ethylene (ethylene) content Silver 50 ~ 70wt%, Mooney viscosity (mooney viscosity) of 50 ~ 60ML is used.

이때, 1등급(grade)의 오일(oil)이 100PHr이 첨가된 고무를 의미한다.. In this case, the first grade (oil) means a rubber to which 100PHr is added.

이러한 EPDM 고무는 우수한 기계적 성질을 달성하기 위해 높은 분자량과 에틸렌 함량을 가지고 있으며, 또한 본 발명에서 가황속도와 촉진제 선택폭을 다양하게 하기 위해 ENB 타입의 디엔 모노머를 사용한다. These EPDM rubbers have high molecular weight and ethylene content in order to achieve excellent mechanical properties, and also use ENB type diene monomer in order to vary the vulcanization rate and accelerator selection range.

이때, 상기 ENB 타입의 디엔 모노머는 내열성을 향상을 위해 ENB 함량이 적은 고무가 바람직하다. In this case, the ENB type diene monomer is preferably a rubber with a low ENB content to improve the heat resistance.

이를 위해, EPDM의 구조 인자중 하나인 ENB(5-ethylkdene-2-norbornene)는 함량이 증가할 수록 유황가류시 가교점이 증가하여 스코치(scorch) 안정성, 내열성, 내오존성 등의 물성 저하를 야기할 수 있음으로 ENB 함량이 낮은 것을 선택하였고, 또한 에틸렌과 프로필렌의 조성비는 미가황 고무의 가공성과 가황고무의 물성에 미치는 영향이 아주 큰 인자로서, 에틸렌 함량이 50wt% 미만일때는 기계적 물성의 저하가 발생하고, 70wt% 초과할 경우에는 저온동적 특성이 저하되므로 기계적 강도와 충진성을 최대한 증가시키기 위해 EPDM 자체의 100중량% 대비 에틸렌이 50~70wt% 함유된 EPDM을 원료고무로 선택하였다. To this end, ENB (5-ethylkdene-2-norbornene), one of the structural factors of EPDM, increases the crosslinking point during sulfur vulcanization as the content increases, causing deterioration of properties such as scorch stability, heat resistance and ozone resistance. The low ENB content was selected, and the composition ratio of ethylene and propylene is a factor that greatly affects the processability of unvulcanized rubber and the physical properties of vulcanized rubber. When the ethylene content is less than 50wt%, the mechanical properties decrease. In addition, when it exceeds 70wt%, the low temperature dynamic characteristics are deteriorated, so EPDM containing 50 to 70wt% of ethylene is selected as the raw material rubber to increase the mechanical strength and the filling property as much as possible.

아울러, EPDM 고무의 서로 다른 등급 두 개(EPDM 1, EPDM 2)를 블렌딩하여 본 발명에 따른 조성물(compound)를 구성함으로써 단일 EPDM이 가지는 단점과 한계성을 보완하고, 가교 설계를 더 자유롭게 하며, 자동차용 엔진마운트가 요구하는 성능을 만족시킬 수 있게 된다. In addition, blending two different grades of EPDM rubber (EPDM 1, EPDM 2) to compose the composition according to the present invention complements the disadvantages and limitations of a single EPDM, frees cross-linking design, It is possible to satisfy the performance required by the engine mount.

본 발명에서는 고무 조성물이 항상 140℃ 이상에서 사용할 수 있어야 하며, 동시에 동특성이 향상되어 동배율을 낮출 수 있고, 내구성도 동시에 만족시켜야 한다. In the present invention, the rubber composition should always be available at 140 ° C. or higher, and at the same time, the dynamic properties may be improved to lower the dynamic ratio, and at the same time, durability should be satisfied.

이 경우, EPDM 1은 오일을 함유하지 않은 것이고, EPDM 2는 오일을 함유한 것으로서, 이들은 EPDM 1 : EPDM 2가 1:3의 중량비율로 배합되는 것이 바람직하다. 이를테면, EPDM 1을 40g 선택한다면 EPDM 2는 120g이 선택되어 서로 배합됨으로써 본 발명에서 사용하는 다른 배합성분들의 기준이 되는 원료고무인 EPDM을 구성하게 된다는 의미이다.In this case, EPDM 1 does not contain oil, and EPDM 2 contains oil, and it is preferable that they are blended in a weight ratio of EPDM 1: EPDM 2 1: 3. For example, if 40g of EPDM 1 is selected, 120g of EPDM 2 is selected and blended with each other to constitute EPDM, which is a raw material rubber, which is a standard of other compounding components used in the present invention.

여기에서, 블렌딩 비율은 EPDM 1과 EPDM 2가 중량비로 1:3을 유지함이 바람직하며, 이렇게 블렌딩된 EPDM 원료고무 100중량부에 대하여 다음과 같이 첨가제를 첨가하였다. Here, the blending ratio of EPDM 1 and EPDM 2 is preferably maintained at 1: 3 by weight, and additives were added as follows with respect to 100 parts by weight of the EPDM raw material rubber thus blended.

이때, 첨가되는 첨가제는 본 발명이 속한 분야에서 사용되고 있는 용어로, 가교제, 촉진제, 충진제(보강제), 연화제, 활성제, 가황조제, 노화방지제(노방제) 등을 말한다. At this time, the additive to be added is a term used in the field to which the present invention belongs, and refers to a crosslinking agent, an accelerator, a filler (reinforcement agent), a softener, an active agent, a vulcanizing aid, an anti-aging agent (an agent) and the like.

그리고, 기존의 황으로만 가황된 EPDM은 소재의 경우, 기계적 물성과 피로성능에서는 쉽게 요구성능을 만족하지만 내열성과, 영구압축성(compression set)의 요구조건을 충족시키기 어려운 반면, 과산화물로 가교된 EPDM 소재는 내열성과, 영구압축성(compression set)은 요구 조건을 만족하지만 기계적 물성과 피로성능에서 요구조건을 만족하지 못한다. In addition, EPDM, which is vulcanized only with conventional sulfur, easily meets the required performance in terms of mechanical properties and fatigue performance, but it is difficult to meet the requirements of heat resistance and compression set. The material is heat resistant and the compression set satisfies the requirements, but not the mechanical properties and fatigue performance.

그러므로, 기계적 물성, 피로성능, 내열성, 영구압축성(compression set) 등을 모두 만족시킬 수 있도록 최적점을 찾을 수 있는 하이브리드 가교시스템(hybrid vulcanization system)을 이용해서 엔진마운트용 방진고무 조성물을  제조하는데, 본 발명의 주된 특징이 있다. Therefore, to manufacture the anti-vibration rubber composition for the engine mount using a hybrid vulcanization system that can find the optimum point to satisfy all mechanical properties, fatigue performance, heat resistance, compression set, etc. There is a major feature of the present invention.

이에, 하이브리드 가교시스템에서 가황법에 따른 가황가교시스템 부분은 EPDM 고무의 내열성 향상을 위해 폴리설파이드 크로스링크(polysulfide crosslnk)(%) 함량이 증가하면 내열성이 떨어지므로 모노설파이드 크로스링크(monosulfide crosslink)(%) 함량을 증가시킬 수 있도록 황을 블렌딩된 EPDM 원료고무 100중량부에 대하여 0.4~1.5 중량부 첨가하였는데, 이 경우 모노설파이드 크로스링크(%) 함량이 증가하면서 생기는 단점인 피로성능을 개선하기 위해서 촉진제로 CZ(N-Cyclohexyl-2-benzothiazyl-sulfenamide)와 TT(Tetra methylthiuram disulfide)를 각각 0.5~3.5 중량부로 조정하여 배합한다. Therefore, in the hybrid crosslinking system, the vulcanization crosslinking system part according to the vulcanization method is monosulfide crosslink (monosulfide crosslink) because the heat resistance decreases when the polysulfide crosslnk (%) content is increased to improve the heat resistance of EPDM rubber. %) 0.4 to 1.5 parts by weight of sulfur was added to 100 parts by weight of the blended EPDM rubber in order to increase the content.In this case, to improve the fatigue performance, which is a disadvantage caused by the increase of the monosulfide crosslink (%) content. As an accelerator, CZ (N-Cyclohexyl-2-benzothiazyl-sulfenamide) and TT (Tetra methylthiuram disulfide) are adjusted to 0.5 to 3.5 parts by weight, respectively.

이는 촉진제 함량이 3.5 중량부를 초과하여 투입시에는 스코치 안정성이 떨어져 가공성이 나빠지고, 0.5 중량부 미만으로 사용시에는 가류시간이 너무 길어져 생산성이 떨어지므로 상기 범위로 한정해야 하며, 아울러, 황의 경우에는 0.4 중량부 미만으로 사용시 고무의 내구성능이 저하되어 요구 수준을 만족시키지 못하며, 1.5 중량부를 초과하여 배합시에는 요구되는 사용 한계 온도에 대한 내열성능을 만족시키지 못하게 된다. It should be limited to the above range because the accelerator content is less than 3.5 parts by weight, the scorch stability is poor and the workability is poor, and when the content is less than 0.5 parts by weight, the vulcanization time is too long and the productivity is lowered. When it is used in parts by weight, the durability of the rubber is lowered to satisfy the required level, and when it exceeds 1.5 parts by weight, it does not satisfy the heat resistance to the required use limit temperature.

그리고, 과산화물가교시스템으로서 과산화물로 가교시킨 고무재료는 비교적 가교 반응이 간단하고, 높은 모듈러스, 낮은 영구압축율, 그리고 높은 내열성을 가지고 있다.As a peroxide crosslinking system, a rubber material crosslinked with a peroxide has a relatively simple crosslinking reaction, has high modulus, low permanent compression rate, and high heat resistance.

이와 관련된 일반적인 과산화물의 종류에는 DCP(Dicumyl peroxdie), DTBPH(2,5-dimethyl-2, 5-di-t-butyl peroxyhane), TBPDB(Di-t-butyl peroxy di-siopropyl benzene) 등이 있으나, 고온가황과 블루밍(blooming) 현상이 없고 내열성이 우수한 TBPDB를 사용하였는데, 함량이 2중량부 미만일 경우에는 가교밀도 감소로 인해 내열성과 영구압축성 향상을 도모할 수 없고, 8 중량부를 초과할 경우에는 동특성이 나빠져 방진성능이 감소하므로, 2-8 중량부로 한정되어야 한다. Common types of peroxides include DCP (Dicumyl peroxdie), DTBPH (2,5-dimethyl-2, 5-di-t-butyl peroxyhane) and TBPDB (Di-t-butyl peroxy di-siopropyl benzene). TBPDB, which has no high temperature vulcanization and blooming, and has excellent heat resistance, is used. If the content is less than 2 parts by weight, it is impossible to improve heat resistance and permanent compressibility due to the decrease in crosslinking density. Since it worsens the dust-proof performance, it should be limited to 2-8 parts by weight.

덧붙여, 가황활성제로 활성화 아연을 사용할 수 있는데, 이는 기존의 산화아연보다 입자사이즈가 작고, 활성효과가 큰 것으로, 가교밀도를 증가시킬 수 있으나 함량이 2중량부 미만 일때는 생산성 저하를 초래하고, 7 중량부를 초과할 경우에는 스코치 안정성을 저해하여 가공성에 문제를 일으키므로 2~7 중량부를 첨가하는 것이 적당하다.In addition, activated zinc may be used as a vulcanizing activator, which has a smaller particle size and a greater active effect than conventional zinc oxide, which may increase the crosslinking density, but when the content is less than 2 parts by weight, it causes a decrease in productivity. When it exceeds 7 parts by weight, it is appropriate to add 2 to 7 parts by weight since it inhibits scorch stability and causes a problem in workability.

또한, 상기와 같은 촉진제 외에 충진제(=보강제)를 더 사용해야 하는데, 바람직한 충진제로는 카본블랙을 들 수 있고, 이들도 등급에 따라 동배율과 손실계수에 큰 영향을 주기 때문에 저 동배율과 고 감쇄를 위해 적절한 등급의 선택이 매우 중요하다. In addition, a filler (= reinforcing agent) should be used in addition to the above-mentioned accelerator, and preferred fillers include carbon black, and these also have a low copper magnification and high attenuation since they have a large influence on the copper magnification and loss coefficient depending on the grade. The selection of the appropriate grade is very important.

충진제로 사용되는 카본블랙은 고무의 기계적 물성과 동특성을 결정하는 중요한 인자로 입자경, 구조(structure), 표면활성에 따라 상이한 특성을 가진다. Carbon black, which is used as a filler, is an important factor in determining the mechanical and dynamic properties of rubber and has different properties depending on particle diameter, structure, and surface activity.

특히, 카본블랙의 경우 구조가 작고 입자경이 클수록 동배율, tanδ가 작아지고, 카본의 종류와 양에 상관없이 로스(loss)를 크게 하면 동배율이 크게 된다는 서로 상반되는 경향을 나타내고 있다. In particular, in the case of carbon black, the smaller the structure and the larger the particle size, the smaller the magnification and tanδ, and the higher the magnification of the loss, the larger the magnification, regardless of the type and amount of carbon.

따라서, 본 발명에서는 저 동배율을 얻는데 유리한 구조발달이 적고, 입자경이 큰 SRF(Semi Reinforcing Furnace)와, 기계적 물성을 보완하기 위해 입자경이 작고 구조가 발달한 FEF(Fast Extruding Furnace)를 사용함으로써 한 등급이 가지는 단점을 극복할 수 있게 된다. Therefore, in the present invention, it is possible to use SRF (Semi Reinforcing Furnace) having a low structure development, a large particle size, and FEF (Fast Extruding Furnace) having a small particle diameter and a developed structure to complement mechanical properties. The disadvantages of ratings can be overcome.

이를 위해, 상기 SRF는 15~30 중량부, 그리고 FEF는 10~20 중량부가 투입되어야 한다.To this end, the SRF is 15 to 30 parts by weight, and the FEF should be added 10 to 20 parts by weight.

그리고, 연화제가 더 첨가되는데, 연화제는 내열성 향상을 위해 파라핀계 오일로, 점도가 높고 아로메틱 함량이 적은 것을 사용하였고, 블렌딩된 EPDM 원료고무 100중량부에 대하여 4-6중량부 첨가한다. Further, a softener is further added. The softener is a paraffinic oil for improving heat resistance, and a high viscosity and low aromatic content is used, and 4-6 parts by weight is added to 100 parts by weight of the blended EPDM raw material rubber.

이외에, 본 발명에서 첨가될 수 있는 첨가제는 이를 테면 활성제, 가황조제 및 노방제(노화방지제) 등이 있으며, 이는 종래 함량 범위 내에서 그대로 첨가할 수 있다. In addition, additives that may be added in the present invention include, for example, active agents, vulcanizing aids and preservatives (antiaging agents) and the like, which may be added as it is within the conventional content range.

예컨대, 가황조제로는 스테아릭산(Stearic acid) 1~3 중량부가 바람직한데 1중량부 미만일 경우에는 가교반응이 늦어지고, 3 초과시에는 가교반응이 빨라짐으로 스코치 안정성이 떨어진다.For example, 1 to 3 parts by weight of stearic acid (Stearic acid) is preferable as the vulcanizing aid, if less than 1 part by weight, the crosslinking reaction is delayed, and when it is more than 3, the crosslinking reaction is accelerated, resulting in poor scorch stability.

그리고, 노화방지제로는 SUN682(sunprax로서 제품명임)는 1~2 중량부가 바람직한데, 1 미만일 경우에는 내오존성에 문제를 일으키고, 2 초과일 때는 내오존성 효과향상을 기대 할 수 없다.In addition, SUN682 (product name as sunprax) is preferably 1 to 2 parts by weight, but when it is less than 1, ozone resistance is a problem, and when it is more than 2, an improvement in ozone resistance cannot be expected.

아울러, 노방제로는 13C(N-Phenyl-N'-isopropyl-p-phenylenediamine), 가 2~4 중량부가 적당한데 2 미만일 경우에는  내열성에 문제를 일으킬 수 있으며, 4 초과일 때는 내열성향상 효과를 기대하기 어렵다.In addition, 13C (N-Phenyl-N'-isopropyl-p-phenylenediamine), 2,4 parts by weight is suitable as a defoaming agent. Difficult to do

덧붙여, 본 발명의 EPDM 고무 조성물은 이 분야에서 통상적으로 사용되는 제조방법에 따라 제조가 가능하며, 일예로 통상의 기계적 혼련법에 의하여 제조할 수 있다.
In addition, the EPDM rubber composition of the present invention can be prepared according to a manufacturing method commonly used in this field, and can be prepared by, for example, a conventional mechanical kneading method.

이하, 실시예에 대하여 설명한다. Hereinafter, examples will be described.

본 발명에 따른 조성물의 특성 확인을 위해 하기한 표 1과 같이 조성한 고무 조성물로 이루어진 시편을 만들고, 이들을 특성을 비교 분석하였다.In order to confirm the properties of the composition according to the present invention, specimens made of a rubber composition prepared as shown in Table 1 were prepared, and these were compared and analyzed.

Figure pat00001
Figure pat00001

이때, 시편 제조는 EPDM을 Banbury mixer을 이용하여 3분간 소련후 카본블랙, 가황활성제, 가황조제, 노방제, 연화제를 동시에 혼합하여 3분간 혼련 후 클리닝 1분으로 최종 CMB(미가황 고무)를 제조한 후 CMB를 ROLL mixer를 이용하여 가류제와 촉진제를 혼합하였다. At this time, the specimen is prepared by mixing carbon black, vulcanizing activator, vulcanizing aid, vulcanizing agent, and softener at the same time with EPDM using Banbury mixer for 3 minutes, mixing for 3 minutes to prepare final CMB (unvulcanized rubber). After the CMB was mixed with a vulcanizing agent and a promoter using a ROLL mixer.

이렇게 만들어진 고무 조성물을 레오메터(Rheometer ,대경엔지니어링)을 이용하여 적정 가류 시간을 측정한 뒤 프레스를 이용하여 160kgf/cm2으로 가열 가압하여 가황 시편을 제조하였다. The rubber composition thus prepared was measured using a rheometer (Rheometer, large diameter engineering) to measure the appropriate cure time, and then heated and pressurized to 160 kgf / cm 2 using a press to prepare a vulcanized specimen.

그리고, 상기와 같이 제조된 고무 시편 및 제품을 평가하기 위하여 다음과 같은 항목들에 대해 시험을 행하여 그 결과를 비교 평가 하였다. In addition, to evaluate the rubber specimens and products manufactured as described above, the following items were tested to evaluate the results.

- 경도 : KS M 6784에 따라 아령형 3호로 측정-Hardness: measured with dumbbell type 3 according to KS M 6784

- 인장강도 및 신율 : KS M 6782에 따라 아령형3호로 측정 -Tensile strength and elongation: measured with dumbbell type 3 in accordance with KS M 6782

- 노화 물성 평가 : 140℃에서 1000시간 노화 후 물성변화를 기록-Evaluation of aging properties: Record changes of properties after aging 1000 hours at 140 ℃

- Compression set : KS M 6518에 따라 100℃에서 22시간 노화 후 변화율 측정 -Compression set: Change rate after 22 hours aging at 100 ℃ according to KS M 6518

- 노화 후 내구성 평가 : 조성으로 엔진마운트를 제작하여 120℃, 130℃, 140℃에서 50 시간 노화 후 내구성능을 평가
-Evaluation of durability after aging: The engine mount is manufactured with composition to evaluate durability after 50 hours of aging at 120 ℃, 130 ℃ and 140 ℃.

아울러, 평가 결과는 표 2와 같았다.In addition, the evaluation result was as Table 2.

Figure pat00002
Figure pat00002

상기 표 2에서와 같이, 하이브리드 가교시스템(hybrid vulcanization system)이 적용된 실시예 3이 기존의 천연고무 조성물(종래예)과 단일 EPDM 조성물(비교예)는 물론 실시예 1,2에  비해서도 월등이 향상된  내열성과 내구성, 영구압축성(compression set)을 나타냄을 확인하였다.As shown in Table 2, Example 3 to which a hybrid vulcanization system is applied is improved in comparison with those of Examples 1 and 2 as well as the existing natural rubber composition (conventional example) and a single EPDM composition (comparative example). It was confirmed that it exhibits heat resistance, durability, and a compression set.

특히, 단일 EPDM 조성물(비교예)보다  SRF 함량이 함량이 증가할 수록 조성물의 동배율이 개선되었음을 확인할 수 있었고, 하이브리드 가교시스템(hybrid vulcanization systme)을 적용한 실시예1~3은 내열성, 영구압축성(compression set)이 상당히 개선됨을 알 수 있었다. In particular, as the SRF content increased compared to a single EPDM composition (comparative example), it was confirmed that the composition ratio of the composition was improved. Examples 1 to 3 applying the hybrid crosslinking system (hybrid vulcanization systme) showed heat resistance and permanent compression resistance ( It can be seen that the compression set is significantly improved.

이를 통해, 기존 EPDM 고무의 단점인 기계적 물성과 동특성의 보완이 가능함과 동시에 고내열성 엔진 마운트로 적용이 가능함을 최종적으로 확인할 수 있었다.
Through this, it was possible to finally confirm that the mechanical properties and dynamic characteristics of the existing EPDM rubber can be complemented and can be applied as a high heat resistant engine mount.

Claims (3)

오일을 포함하지 않는 EPDM 1과, 오일을 포함하는 EPDM 2를 1:3의 중량비율로 블렌딩한 EPDM 배합물 100 중량부에 대하여;
황: 0.4-1.5 중량부,
CZ, TT: 각각 0.5-3.5 중량부,
과산화물 가교제: 2-8 중량부,
SRF(Semi Reinforcing Furnace): 15-30 중량부,
FEF(Fast Extruding Furnace): 10-20 중량부,
파라핀오일: 4-6 중량부;를 포함하고,
기타 첨가제로, 활성화아연: 2-7중량부, 스테아릭산: 1-3중량부, SUN682(sunprax): 1-2중량부, 13C(N-Phenyl-N'-isopropyl-p-phenylenediamine): 2-4중량부가 첨가되어 조성된 것을 특징으로 하는 EPDM에 하이브리드 가류시스템를 적용한 자동차 엔진마운트용 고무 조성물.
100 parts by weight of the EPDM blend blending EPDM 1 without oil and EPDM 2 with oil in a weight ratio of 1: 3;
Sulfur: 0.4-1.5 parts by weight,
CZ, TT: 0.5-3.5 parts by weight, respectively
Peroxide crosslinking agent: 2-8 parts by weight,
Semi Reinforcing Furnace (SRF): 15-30 parts by weight,
Fast Extruding Furnace (FEF): 10-20 parts by weight,
Paraffin oil: 4-6 parts by weight;
As other additives, activated zinc: 2-7 parts by weight, stearic acid: 1-3 parts by weight, SUN682 (sunprax): 1-2 parts by weight, 13C (N-Phenyl-N'-isopropyl-p-phenylenediamine): 2 Rubber composition for automobile engine mount applying a hybrid vulcanization system to EPDM, characterized in that -4 parts by weight is added.
제 1 항에 있어서;
상기 EPDM은 EPDM 전체 중량 대비, ENB(ethylidene norbornene) 4-6wt%, 에틸렌 50-70wt%를 포함하고, 무니 점성도(mooney viscosity)는 50~60ML인 것을 사용하는 것을 특징으로 하는 EPDM에 하이브리드 가류시스템를 적용한 자동차 엔진마운트용 고무 조성물.
The method of claim 1, further comprising:
The EPDM includes 4-6 wt% of ethylidene norbornene (ENB) and 50-70 wt% of ethylene, and a Mooney viscosity of 50-60 ml based on the total weight of EPDM, using a hybrid vulcanization system in EPDM. Rubber composition for automotive engine mount applied.
제 1 항에 있어서;
상기 과산화물 가교제는 TBPDB(Di-t-butyl peroxy di-siopropyl benzene)인 것을 특징으로 하는 EPDM에 하이브리드 가류시스템를 적용한 자동차 엔진마운트용 고무 조성물.
The method of claim 1, further comprising:
The peroxide crosslinking agent is TBPDB (Di-t-butyl peroxy di-siopropyl benzene) rubber composition for an automobile engine mount applying a hybrid vulcanization system to EPDM, characterized in that.
KR1020110043758A 2011-05-11 2011-05-11 Rubber compound for car engine mount enhanced vds by mixing epdm with hybrid vulcanization system KR101338005B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110043758A KR101338005B1 (en) 2011-05-11 2011-05-11 Rubber compound for car engine mount enhanced vds by mixing epdm with hybrid vulcanization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110043758A KR101338005B1 (en) 2011-05-11 2011-05-11 Rubber compound for car engine mount enhanced vds by mixing epdm with hybrid vulcanization system

Publications (2)

Publication Number Publication Date
KR20120126165A true KR20120126165A (en) 2012-11-21
KR101338005B1 KR101338005B1 (en) 2013-12-06

Family

ID=47511539

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110043758A KR101338005B1 (en) 2011-05-11 2011-05-11 Rubber compound for car engine mount enhanced vds by mixing epdm with hybrid vulcanization system

Country Status (1)

Country Link
KR (1) KR101338005B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101499214B1 (en) * 2012-12-17 2015-03-05 현대자동차주식회사 Rubber composition improving heat-resisting and vibration-proof
CN107446245A (en) * 2017-07-21 2017-12-08 厦门市金汤橡塑有限公司 Elastomeric material that a kind of cooperated with LED uses and preparation method thereof
CN112940402A (en) * 2019-12-11 2021-06-11 现代自动车株式会社 Rubber composition with improved electrical insulation properties for reducing galvanic corrosion
US20220089851A1 (en) * 2020-09-21 2022-03-24 Hyundai Motor Company Rubber composition for fuel-cell cooling hose and fuel-cell cooling hose using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230034596A (en) 2021-09-03 2023-03-10 현대자동차주식회사 Automotive rubber bushing composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100246140B1 (en) * 1997-11-29 2000-03-15 정몽규 A composition of epdm rubber by using waste tires of vehicle
KR20040000852A (en) * 2002-06-26 2004-01-07 현대자동차주식회사 Rubber Compound for engine mount
KR20050035327A (en) * 2003-10-10 2005-04-18 현대자동차주식회사 Hybrid crosslinking system adapted insulator composition of superior endurance for automobile
KR100590976B1 (en) * 2004-09-09 2006-06-19 현대자동차주식회사 A rubber composition for engine mount with improved heat and age resistance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101499214B1 (en) * 2012-12-17 2015-03-05 현대자동차주식회사 Rubber composition improving heat-resisting and vibration-proof
CN107446245A (en) * 2017-07-21 2017-12-08 厦门市金汤橡塑有限公司 Elastomeric material that a kind of cooperated with LED uses and preparation method thereof
CN107446245B (en) * 2017-07-21 2020-04-17 厦门市金汤橡塑有限公司 Rubber material used in cooperation with LED and preparation method thereof
CN112940402A (en) * 2019-12-11 2021-06-11 现代自动车株式会社 Rubber composition with improved electrical insulation properties for reducing galvanic corrosion
US20220089851A1 (en) * 2020-09-21 2022-03-24 Hyundai Motor Company Rubber composition for fuel-cell cooling hose and fuel-cell cooling hose using same
US11795313B2 (en) * 2020-09-21 2023-10-24 Hyundai Motor Company Rubber composition for fuel-cell cooling hose and fuel-cell cooling hose using same

Also Published As

Publication number Publication date
KR101338005B1 (en) 2013-12-06

Similar Documents

Publication Publication Date Title
US5710218A (en) Ethylene-propylene-diene rubber, elastomer composition and vulcanized rubber thereof
KR101558734B1 (en) EPDM rubber composition for the scale of the muffler hanger with high temperature and low dynamic ratio
KR101338005B1 (en) Rubber compound for car engine mount enhanced vds by mixing epdm with hybrid vulcanization system
KR101000593B1 (en) Vibration-proof rubber composition of engine mount
CA2042607C (en) Ethylene-propylene-diene rubber, elastomer composition and vulcanized rubber thereof
KR101745213B1 (en) Anti-vibration rubber composition for absorbing vibration of engine
JP4906172B2 (en) Anti-vibration rubber composition
US20230078357A1 (en) Rubber composition for suspension bush with improved fatigue durability and rubber for vehicle suspension bush including the same
KR101280838B1 (en) Rubber compound for car engine mount enhanced dynamic characteristics by mixing epdm with silica
JP4556281B2 (en) Anti-vibration rubber composition
KR100715718B1 (en) Pcr tread compound for pneumatic tire
KR101491166B1 (en) Weather strip compositions
JP2006057003A (en) Heat-resistant rubber composition
KR20120130634A (en) A Rubber Composition for Engine Mount
JP6051043B2 (en) Rubber composition
KR102153181B1 (en) Rubber composition for suspention bush of automobile having improved heat resistance and rubber for suspention bush of automobile using the same
KR101846707B1 (en) Anti vibration rubber composition improved vibration isolation and Anti vibration rubber
KR102150247B1 (en) Rubber composition of fuel cell cooling hose and cooling hose using the same
US5698639A (en) Ethylene-propylene-diene rubber, elastomer composition and vulcanized rubber thereof
CN109642052B (en) Vibration-isolating rubber composition and vibration-isolating rubber
KR101776413B1 (en) Nano zinc oxide filled weather strip rubber composition and weather strip for car using the same
JP2979700B2 (en) Rubber composition for anti-vibration rubber
JP2007131808A (en) Rubber composition
JP2001181458A (en) Epdm-based rubber composition and epdm-based vulcanized rubber
KR20050035327A (en) Hybrid crosslinking system adapted insulator composition of superior endurance for automobile

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161201

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171129

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181203

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191202

Year of fee payment: 7