KR20120121996A - 3-D Wakerake considering Fluid Flow and Corrosion for High Velocity Measurement - Google Patents

3-D Wakerake considering Fluid Flow and Corrosion for High Velocity Measurement Download PDF

Info

Publication number
KR20120121996A
KR20120121996A KR1020110039936A KR20110039936A KR20120121996A KR 20120121996 A KR20120121996 A KR 20120121996A KR 1020110039936 A KR1020110039936 A KR 1020110039936A KR 20110039936 A KR20110039936 A KR 20110039936A KR 20120121996 A KR20120121996 A KR 20120121996A
Authority
KR
South Korea
Prior art keywords
support
wake
corrosion
flow
present
Prior art date
Application number
KR1020110039936A
Other languages
Korean (ko)
Inventor
안종우
문일성
김건도
김경열
Original Assignee
한국해양연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양연구원 filed Critical 한국해양연구원
Priority to KR1020110039936A priority Critical patent/KR20120121996A/en
Publication of KR20120121996A publication Critical patent/KR20120121996A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/14Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid
    • G01P5/16Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid using Pitot tubes, e.g. Machmeter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PURPOSE: A 3D wake measuring device for measuring a high-speed flow considering a fluid flow and corrosion is provided to obtain durability required for a device performing a wake measurement in a large cavitation tunnel because corrosion is not generated even though a surface damage of a support is generated. CONSTITUTION: A 3D wake measuring device for measuring a high-speed flow considering a fluid flow and corrosion comprises support stands. A lateral shape of the support stand is formed into a streamlined shape. The support stand is formed into a brass material. A model ship is installed in a large cavitaion tunnel. A wake measuring device measures a 3D wake distribution of an astern of the model ship at a high speed more than 7.0m/s. The wake measuring device has a structure capable of being utilized in a high-speed flow. [Reference numerals] (AA) Pressure convertor; (BB) Vinyl tube; (CC) Servo motor; (DD) Rotary shaft pipe; (EE) Support stand; (FF) 5 hole-pitot tube

Description

유체유동 및 부식을 고려한 고속유동 계측용 3차원 반류계측장치{3-D Wakerake considering Fluid Flow and Corrosion for High Velocity Measurement}3-D Wakeake Considering Fluid Flow and Corrosion for High Velocity Measurement}

본 발명은 대형캐비테이션터널에서 반류계측을 수행하기 위한 장치에 관한 것이다.The present invention relates to an apparatus for performing wake measurement in a large cavitation tunnel.

기존 수조에서 모형선 후류의 3차원 반류를 측정하기 위하여 사용하는 반류계측장치는 도 1과 같이 모형선 하류 프로펠러 면에 설치되며, 5개의 5공 피토관들이 설치된다.In the existing water tank, the counterflow measurement device used to measure the three-dimensional wake of the model ship downstream is installed on the propeller surface downstream of the model ship as shown in FIG. 1, and five five-hole pitot tubes are installed.

각각의 5공 피토관에서 압력전달을 위하여 연결되는 비닐튜브들은 선미 유동장에 노출된 채 반류계측장치 후면에서 모형선 내부로 연결하는 비교적 간단한 구조를 가지고 있다.The vinyl tubes connected to each other for pressure transfer in each 5-hole pitot tube have a relatively simple structure connected to the inside of the model ship at the back of the wake measuring device while being exposed to the stern flow field.

그런데, 이러한 기존의 반류계측장치는 다음과 같은 문제점을 가지고 있다.
However, such a conventional wake measuring apparatus has the following problems.

1. One. 캐비테이션Cavitation 발생 Occur

기존의 반류계측장치에서 5개의 5공 피토관을 지지하는 알루미늄 지지대는 반류계측의 정도를 높이고 유동에 방해를 주지 않기 위하여 유동방향에 대하여 길이가 짧은 구조를 가지고 있지만, 유동이 매끄럽게 빠져나갈 수 있는 유선형은 아니다(도 2).In the conventional countermeasurement device, the aluminum supporter supporting five 5-hole pitot tubes has a short structure in the direction of flow in order to increase the degree of countermeasurement and not interfere with the flow, but has a streamlined structure in which the flow can flow out smoothly. Not (FIG. 2).

이런 구조는 저속유동에서는 큰 문제가 없지만 고속유동의 경우 유동이 지지대 하류로 빠져나가면서 보오텍스 및 국부적인 캐비테이션을 발생시켜 진동을 유발하면서 계측의 정도를 떨어트린다.This structure is not a problem for low speed flows, but in high speed flows the flow exits downstream of the support, causing vortexing and local cavitation, causing vibration and lowering the accuracy of the measurement.

따라서 고속유동에서 사용하기 위해서는 피토관을 지지하는 구조대는 유동이 매끄럽게 빠져나갈 수 있는 유선형 구조로 제작되어야 한다.
Therefore, in order to use in high speed flow, the support for supporting the pitot pipe should be made of a streamlined structure that can flow out smoothly.

2. 부식의 발생2. Generation of corrosion

기존의 반류계측장치에서 5개의 5공 피토관을 지지하는 지지대는 알루미늄으로 제작되며, 부식방지를 위하여 표면을 산화처리(Anodizing)한다. 산화처리한 지지대는 표면 손상을 입지 않는 경우 부식에 문제가 없지만, 손상이 있는 경우 부식이 발생된다.In the conventional countermeasurement device, the support for supporting the five 5-hole pitot tube is made of aluminum, and the surface is oxidized to prevent corrosion. Oxidized supports do not cause corrosion if they are not damaged, but corrosion does occur.

대형캐비테이션터널에서 반류계측을 수행하려면 설치 및 계측시간이 수조보다는 긴 시간이 요구된다. 수조의 경우 반류계측장치를 외부에서 설치하여 예인전차와 연결하면 실험준비가 끝나지만, 대형캐비테이션터널에서는 반류계측장치를 모형선에 설치한 후 모형선을 대형터널에 설치하고 원활한 유동장 생성을 위하여 모형선과 대형터널 벽면 사이에 흘수판을 부착하게 된다.In large cavitation tunnels, reflux measurements require longer installation and measurement times than tanks. In the case of the tank, the experiment preparation is completed when the reflux measuring device is installed from the outside and connected to the towing tank, but in the large cavitation tunnel, after installing the reflux measuring device on the model ship, the model ship is installed in the large tunnel and the model ship and A draft plate is attached between the walls of the large tunnel.

따라서 대형캐비테이션터널에서 반류계측을 수행하려면 이러한 복잡한 설치과정으로 인하여 피토관을 지지하는 지지대의 표면손상이 일어날 가능성이 수조보다 매우 높다. 또한 고속에서 실험이 수행됨에 따라 캐비테이션이 발생하게 되면 침식으로 인한 표면손상이 일어날 가능성도 있다.Therefore, in order to perform the reflux measurement in a large cavitation tunnel, the surface damage of the support for supporting the pitot pipe is much higher than that of the tank due to this complicated installation process. In addition, as the experiments are carried out at high speeds, cavitation may cause surface damage due to erosion.

따라서 지지대의 표면손상이 일어날 가능성을 대비하여 부식이 발생하지 않는 재료로 지지대가 제작되어야 한다.Therefore, the support should be made of a material that does not cause corrosion in preparation for the possibility of surface damage.

본 발명은 상기와 같은 문제점을 해결하기 위해 제안된 것으로, 대형캐비테이션터널에서 반류계측을 수행하기 위한 장치로서, 피토관을 지지하는 지지대가 유동이 매끄럽게 빠져나갈 수 있는 유선형 구조로 제작될 뿐만 아니라 부식이 발생하지 않는 재료로 제작되는 것을 특징으로 하는 고속유동 계측용 3차원 반류계측장치를 제공하는 것을 목적으로 한다.The present invention has been proposed to solve the above problems, as a device for performing the reflux measurement in a large cavitation tunnel, the support for supporting the pitot pipe is made of a streamlined structure that can flow out smoothly as well as corrosion is An object of the present invention is to provide a three-dimensional countercurrent measuring device for high-speed flow measurement, which is made of a material which does not occur.

본 발명의 기타 목적 및 장점들은 하기에 설명될 것이며, 이는 본 발명의 청구범위에 기재된 사항 및 그 실시예의 개시 내용뿐만 아니라, 이들로부터 용이하게 추고할 수 있는 범위 내의 수단 및 조합에 의해 보다 넓은 범위로 포섭될 것임을 첨언한다.Other objects and advantages of the present invention will be described below, which are not limited to the matters set forth in the claims and the disclosure of the embodiments thereof, but also to the broader ranges by means and combinations within the range readily recited therefrom. Add that it will be included.

상기한 목적을 달성하기 위하여 본 발명은, 대형캐비테이션터널에 모형선을 설치하고 7.0㎧ 이상의 고속에서 모형선 선미의 3차원 반류분포를 계측하기 위한 실험장치에 있어서,In order to achieve the above object, the present invention, in the experimental apparatus for installing a model ship in a large cavitation tunnel and to measure the three-dimensional reflux distribution of the model ship stern at high speed of 7.0㎧ or more,

지지대의 측면 형상이 유선형 형상인 것을 특징으로 하는 고속유동 계측용 3차원 반류계측장치와,3D reflux measuring device for high-speed flow measurement, characterized in that the side shape of the support is streamlined,

지지대가 황동 재질로 이루어지는 것을 특징으로 하는 고속유동 계측용 3차원 반류계측장치를 제시한다.The present invention proposes a three-dimensional flow measurement device for high-speed flow measurement, characterized in that the support is made of brass.

본 발명은 대형캐비테이션터널에서 반류계측을 수행함에 있어서 다음과 같은 유리한 효과를 갖는다.The present invention has the following advantageous effects in performing the reflux measurement in a large cavitation tunnel.

첫째, 피토관을 지지하는 지지대가 유선형으로 제작되므로, 유동이 지지대 하류로 매끄럽게 빠져나가면서 보오텍스 및 국부적인 캐비테이션을 발생시키지 않고 진동을 유발하지도 않아 계측의 정도를 높일 수 있다.First, since the support for supporting the pitot tube is made in a streamlined form, the flow can be smoothly escaped downstream of the support, thereby not causing vortex and local cavitation and causing no vibration, thereby increasing the degree of measurement.

둘째, 지지대의 표면손상이 일어나더라도 부식이 발생하지 않아 대형캐비테이션터널에서 반류계측을 수행하는 장치에 요구되는 내구성을 확보할 수 있다.Second, even if the surface damage of the support does not occur, it is possible to secure the durability required for the device to perform the return measurement in the large cavitation tunnel.

본 발명의 다른 효과는, 이상에서 설명한 실시예 및 본 발명의 청구범위에 기재된 사항뿐만 아니라, 이들로부터 용이하게 추고할 수 있는 범위 내에서 발생할 수 있는 효과 및 산업 발전에 기여하는 잠정적 장점의 가능성들에 의해 보다 넓은 범위로 포섭될 것임을 첨언한다.Other effects of the present invention, as well as those described in the above-described embodiments and claims of the present invention, as well as potential effects that may occur within the range that can be easily estimated therefrom and potential advantages that contribute to industrial development It will be added that it will be covered by a wider scope.

도 1은 기존 예인수조용 반류계측장치.
도 2는 기존 예인수조용 반류계측장치의 지지대 측면형상.
도 3은 본 발명에 따른 고속유동 계측용 3차원 반류계측장치의 개념도.
도 4는 본 발명에 따른 지지대의 내부 및 외부 형상.
도 5는 5공 피토관의 동압공(5개) 및 정압공 위치.
도 6은 본 발명에 따른 지지대 및 피토관의 형상.
도 7은 CFD 모델링 화면.
도 8은 본 발명에 따른 모형선 주위 유동장의 축방향 유속분포.
도 9는 본 발명에 따른 모형선 주위 유동장의 수직방향 유속분포.
1 is a counter-measurement device for an existing towing tank.
Figure 2 is a side shape of the support of the conventional tow measuring counterweight device.
3 is a conceptual diagram of a three-dimensional flow measurement device for high-speed flow measurement in accordance with the present invention.
4 is an inner and outer shape of the support according to the present invention.
5 is a dynamic pressure hole (five) and the positive pressure position of the five-hole pitot tube.
6 is a shape of the support and the pitot tube according to the present invention.
7 is a CFD modeling screen.
8 is an axial flow rate distribution of the flow field around the model ship according to the present invention.
9 is a vertical flow velocity distribution of a flow field around a model ship according to the present invention.

이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. 또한, 이하에서 본 발명의 바람직한 실시예를 설명할 것이나, 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear. In addition, the preferred embodiments of the present invention will be described below, but it is needless to say that the technical idea of the present invention is not limited thereto and can be variously modified by those skilled in the art.

본 발명은 대형캐비테이션터널에 모형선을 설치하고 7.0㎧ 이상의 고속에서 모형선 선미의 3차원 반류분포를 계측하기 위한 실험장치로서 고속유동에서 사용이 가능한 구조를 가지고 있다.The present invention has a structure that can be used in high speed flow as an experimental apparatus for installing a model ship in a large cavitation tunnel and measuring the three-dimensional return distribution of the model ship stern at high speed of 7.0㎧ or more.

기존 예인수조에서 사용하던 반류계측장치는 간단한 구조를 가지고 있어 사용이 편리한 반면에 고속유동에서 사용하기에는 부적합하다.The reflux measuring device used in the conventional towing tank has a simple structure and is convenient to use, but it is not suitable for use in high speed flow.

따라서 이하에서 설명하는 바와 같이, 본 발명에 따른 대형캐비테이션터널에서 사용할 3차원 반류계측장치는 고속유동에 적합하도록 설계되었으며, 다음과 같은 특성을 가지고 있다.
Therefore, as described below, the three-dimensional reflux measurement apparatus to be used in the large cavitation tunnel according to the present invention is designed to be suitable for high speed flow, and has the following characteristics.

1. 유선형 형상1. Streamlined shape

본 발명은 지지대의 유동방향으로 유동이 매끄럽게 빠져나가게 하기 위하여 지지대의 측면 형상을 도 6과 같이 유선형 형상으로 제작하였다.In the present invention, the side shape of the support is manufactured in a streamlined shape as shown in FIG. 6 in order to smoothly escape the flow in the flow direction of the support.

따라서 지지대 후류에서 보오텍스 및 캐비테이션 발생이 없어 진동을 유발하지 않으므로 지지대 진동으로 인한 계측값의 오차를 최소화 할 수 있다.
Therefore, since there is no vortex and cavitation in the wake of the support, it does not cause vibration, thereby minimizing the error of the measured value caused by the support vibration.

2. 부식에 적합한 재료2. Material suitable for corrosion

대형캐비테이션터널에서 반류계측을 수행함에 있어서는 지지대의 표면손상 가능성이 높으므로, 본 발명에서는 지지대의 표면손상에 따른 부식을 방지하기 위하여 지지대를 황동으로 제작하였다.
In carrying out the reflux measurement in a large cavitation tunnel, the surface damage of the support is high. Therefore, in the present invention, the support is made of brass to prevent corrosion due to the surface damage of the support.

3. 고속유동에 적합한 구조3. Structure suitable for high speed flow

본 발명의 경우 고속에서 반류갈퀴(Wakerake)(지지대)를 사용하자면 수조에서 사용하는 반류갈퀴와는 달리 압력전달을 위한 비닐튜브들이 유동장에 노출되어서는 안 된다.In the case of the present invention, when using the Wakeake (support) at a high speed, unlike the reflow rake used in the water tank, the vinyl tubes for pressure transfer should not be exposed to the flow field.

따라서 본 발명에서는 도 4와 같이, 5공 피토관 지지대 내부에 각각 6개의 비닐튜브들이 설치될 수 있는 경로를 만들고 지지대에 연결된 회전축 파이프 안쪽으로 총 30개의 비닐튜브들을 통과시킴으로써(도 3), 피토관에 연결된 비닐튜브들이 유동장에 노출되지 않도록 설치하였다. 도 4에서 (a)는 지지대의 내부 형상을, (b)는 지지대의 외부 형상을 보여주고 있다.Therefore, in the present invention, as shown in Figure 4, by creating a path that can be installed in each of the six-hole pitotto support 6 vinyl tubes and through the total 30 vinyl tubes inside the rotating pipe connected to the support (FIG. 3), The connected vinyl tubes were installed so that they would not be exposed to the flow field. In Figure 4 (a) shows the internal shape of the support, (b) shows the external shape of the support.

한편, 5공 피토관에는 도 5에 나타난 것과 같이 3방향 유속을 계측하기 위하여 피토관 앞쪽에 5개의 동압공이 있으며, 유동이 안정되는 위치에 정압공을 위치하여 총 6개의 비닐튜브가 압력변환기로 연결된다.Meanwhile, the five-hole pitot tube has five dynamic pressure holes in front of the pitot tube to measure the three-way flow velocity as shown in FIG. 5, and a total of six vinyl tubes are connected to the pressure transducer by placing the positive pressure holes at a position where the flow is stable. .

도 3에 나타나 것과 같이 회전축 파이프는 모형선 내부에 설치된 서보모터에 연결된다. 서버모터 후미에서 빠져나온 비닐튜브들은 압력변환기로 연결된다.As shown in FIG. 3, the shaft pipe is connected to a servomotor installed inside the model ship. The vinyl tubes exiting the rear of the server motor are connected to a pressure transducer.

본 발명에서는 이처럼 비닐튜브들이 고속유동장에 노출되지 않음으로써 반류분포 계측실험 시 비닐튜브들이 떨어져 나가거나 고속유동장에서 유발될 수 있는 진동전달이 없어 피토관에서 계측된 압력을 정도 높게 압력변환기로 전달할 수 있다.
In the present invention, since the vinyl tubes are not exposed to the high speed flow field, there is no vibration propagation that may occur during the reflux distribution measurement experiment, or the high speed flow field may transmit the pressure measured in the pitot tube to the pressure transducer to a high degree. .

4. 4. 반류계측에On countercurrent measurement 영향이 없는 형상 Unaffected geometry

본 발명에서처럼 비닐튜브들을 지지대 내부에 설치하고, 지지대를 유선형 형상으로 만들게 되면 지지대가 커질 수밖에 없다. 지지대가 커지게 되면 전체 유동장에 영향을 주어 5공 피토관 압력계측점에서 유속분포를 변화시킬 수 있다.When the vinyl tubes are installed in the support as in the present invention, and the support is made in a streamlined shape, the support is inevitably large. Larger supports can affect the overall flow field and change the velocity distribution at the five-hole pit pressure gauge.

따라서 본 발명의 실시예에서는 지지대가 유동장에 주는 영향을 검토하기 위하여 모형선 주위 유동장에 대하여 난류 및 점성유동을 고려한 수치해석을 수행하고 결과로서 유속분포를 구할 수 있는 CFD(Computational Fluid Dynamics) 계산을 수행하였다.Therefore, in the embodiment of the present invention, in order to examine the influence of the support on the flow field, a numerical analysis considering turbulent and viscous flow is performed for the flow field around the model ship, and as a result, a CFD (Computational Fluid Dynamics) calculation is performed. Was performed.

즉, 도 7과 같이 모형선에 반류갈퀴(지지대)가 설치된 상태와 설치되지 않은 상태에서 선체 주위 유동장을 수치해석 할 수 있는 CFD 해석 프로그램을 이용하여 유동장을 계산하고, 5공 피토관 계측 위치에서 2가지 계산결과를 비교하였다.That is, the flow field is calculated by using a CFD analysis program that can numerically analyze the flow field around the hull in the state with and without the return rake (support) on the model ship as shown in Figure 7, The results of the branches were compared.

그 결과, 본 발명의 경우 도 8 및 도 9의 축방향 및 수직방향 유속분포에서 나타났듯이 반류갈퀴가 유동장에 주는 영향은 없는 것으로 확인되었다.
As a result, in the case of the present invention, as shown in the axial and vertical flow velocity distribution of Figs.

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.It will be apparent to those skilled in the art that various modifications, substitutions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims. will be. Accordingly, the embodiments disclosed in the present invention and the accompanying drawings are not intended to limit the technical spirit of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by the embodiments and the accompanying drawings. . The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (2)

대형캐비테이션터널에 모형선을 설치하고 7.0㎧ 이상의 고속에서 모형선 선미의 3차원 반류분포를 계측하기 위한 실험장치에 있어서,
지지대의 측면 형상이 유선형 형상인 것을 특징으로 하는 고속유동 계측용 3차원 반류계측장치.
In the experimental apparatus for installing the model ship in the large cavitation tunnel and measuring the three-dimensional return distribution of the model ship stern at high speed of 7.0㎧ or higher,
A three-dimensional countercurrent measuring device for high speed flow measurement, characterized in that the side shape of the support is streamlined.
대형캐비테이션터널에 모형선을 설치하고 7.0㎧ 이상의 고속에서 모형선 선미의 3차원 반류분포를 계측하기 위한 실험장치에 있어서,
지지대가 황동 재질로 이루어지는 것을 특징으로 하는 고속유동 계측용 3차원 반류계측장치.
In the experimental apparatus for installing the model ship in the large cavitation tunnel and measuring the three-dimensional return distribution of the model ship stern at high speed of 7.0㎧ or higher,
3D reflux measurement device for high-speed flow measurement, characterized in that the support is made of brass.
KR1020110039936A 2011-04-28 2011-04-28 3-D Wakerake considering Fluid Flow and Corrosion for High Velocity Measurement KR20120121996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110039936A KR20120121996A (en) 2011-04-28 2011-04-28 3-D Wakerake considering Fluid Flow and Corrosion for High Velocity Measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110039936A KR20120121996A (en) 2011-04-28 2011-04-28 3-D Wakerake considering Fluid Flow and Corrosion for High Velocity Measurement

Publications (1)

Publication Number Publication Date
KR20120121996A true KR20120121996A (en) 2012-11-07

Family

ID=47508323

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110039936A KR20120121996A (en) 2011-04-28 2011-04-28 3-D Wakerake considering Fluid Flow and Corrosion for High Velocity Measurement

Country Status (1)

Country Link
KR (1) KR20120121996A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105488808A (en) * 2015-12-30 2016-04-13 江苏阳明船舶装备制造技术有限公司 Device and method of field measurement of folding pipes on the basis of three-dimensional space shooting positioning technology
CN109238639A (en) * 2018-09-14 2019-01-18 南京理工大学 Supercavitating vehicle tail portion vacuole radium computing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105488808A (en) * 2015-12-30 2016-04-13 江苏阳明船舶装备制造技术有限公司 Device and method of field measurement of folding pipes on the basis of three-dimensional space shooting positioning technology
CN105488808B (en) * 2015-12-30 2018-02-02 江苏阳明船舶装备制造技术有限公司 Gathering pipe field measurement apparatus and method based on three dimensions shooting location technology
CN109238639A (en) * 2018-09-14 2019-01-18 南京理工大学 Supercavitating vehicle tail portion vacuole radium computing method

Similar Documents

Publication Publication Date Title
Suryanarayana et al. Experimental evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel
Suryanarayana et al. Performance evaluation of an underwater body and pumpjet by model testing in cavitation tunnel
CN102507133B (en) Experimental device for detachable multifunctional bent river channel water circulating system
CN104573226A (en) Propeller thrust modeling method for underwater vehicle
CN107167295A (en) Vertical bearing temperature is adjustable experiment water hole
Gong et al. Analysis of waterjet-hull interaction and its impact on the propulsion performance of a four-waterjet-propelled ship
Olivieri et al. Scars and vortices induced by ship bow and shoulder wave breaking
KR20120121995A (en) 3-D Wakerake with Built-in Pressure Transfer Tubes for High Velocity Measurement
Lee et al. PIV measurements of hull wake behind a container ship model with varying loading condition
KR20120121996A (en) 3-D Wakerake considering Fluid Flow and Corrosion for High Velocity Measurement
Li et al. Experimental study on dynamic structure of propeller tip vortex
Bhushan et al. Detached eddy simulations and tomographic PIV measurements of flows over surface combatant 5415 at straight-ahead and static drift conditions
Yu et al. Effect of skew on the tonal noise characteristics of a full-scale submarine propeller
Heinke et al. Investigation of scale effects on ships with a wake equalizing duct or with vortex generator fins
CN204313902U (en) The Ultrasonic water meter with rectification function measures pipeline section
Guo et al. Working mechanism of pre-swirl stator based on stereoscopic particle image velocimetry
CN114427889B (en) Dragging type warm salt depth probe capable of eliminating pressure oscillation phenomenon
Hong et al. Numerical simulation of the structure of propeller's tip vortex and wake
CN203745015U (en) Pipeline flowmeter
Zhihua et al. Method to control unsteady force of submarine propeller based on the control of horseshoe vortex
Ottens et al. Benchmark study on thruster-hull interaction in current on a semi-submersible crane vessel
Sakamoto et al. 2016S-GS3-14 Numerical Towing Tank Procedure for JBC in Self-propulsion with Rotating Propeller and Energy Saving Duct
Matsuzaki et al. Visualization of three-dimensional flow structures in the wake of an inclined circular cylinder
Egeberg et al. Vortex shedding from a ship hull by means of tomographic PIV
Obreja Experimental techniques in the wind tunnel of naval architecture faculty

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application