KR20120119931A - Method for manufacturing the functional silica magnetic nano-paticle immobilized the cystene protein G and the functional silica magnetic nano-paticle is manufactured thereby - Google Patents

Method for manufacturing the functional silica magnetic nano-paticle immobilized the cystene protein G and the functional silica magnetic nano-paticle is manufactured thereby Download PDF

Info

Publication number
KR20120119931A
KR20120119931A KR1020110035413A KR20110035413A KR20120119931A KR 20120119931 A KR20120119931 A KR 20120119931A KR 1020110035413 A KR1020110035413 A KR 1020110035413A KR 20110035413 A KR20110035413 A KR 20110035413A KR 20120119931 A KR20120119931 A KR 20120119931A
Authority
KR
South Korea
Prior art keywords
protein
cysteine
silica
silane
magnetic nanoparticles
Prior art date
Application number
KR1020110035413A
Other languages
Korean (ko)
Other versions
KR101251603B1 (en
Inventor
장정호
이지호
최홍경
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020110035413A priority Critical patent/KR101251603B1/en
Publication of KR20120119931A publication Critical patent/KR20120119931A/en
Application granted granted Critical
Publication of KR101251603B1 publication Critical patent/KR101251603B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/5436Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand physically entrapped within the solid phase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/552Glass or silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE: A method for preparing cysteine protein G-fixed magnetic silica nanoparticles is provided to improve sensitivity and to simplify the process by one-step. CONSTITUTION: A cysteine protein G-fixed magnetic silica nanoparticle is prepared by substituting chlorosilane onto the surface of silica-coated magnetic silica nanoparticles and conjugating cysteine protein G to a chloro group of the nanoparticles. The nanomagentic material is magnetite(Fe_3O_4), hematite(alpha-Fe_2O_3), maghemite(gamma-Fe_2O_3), nickel, cobalt, or compounds thereof. The cysteine protein G is a cysteine functional group-tagged protein G multimer.

Description

클로로계 실란을 이용하여 시스테인계 단백질 G가 고정화된 기능성 실리카 자성나노입자의 제조방법 및 그 자성나노입자{Method for manufacturing the functional silica magnetic nano-paticle immobilized the cystene protein G and the functional silica magnetic nano-paticle is manufactured thereby}Method for manufacturing the functional silica magnetic nano-paticle immobilized the cystene protein G and the functional silica magnetic nano-paticle is manufactured thereby}

본 발명은 단백질 G가 고정화 된 실리카 자성나노입자 및 그 제조방법에 관한 것으로서, 보다 상세하게는 실리카 코팅된 자성나노입자(Fe3O4@SiO2)의 표면에 클로로(chloro) 실란을 도입하여 제조되는 기능성 실리카 자성나노입자(Cl-Fe3O4@SiO2)의 표면에 시스테인계단백질 G를 고정화시키는 방법에 관한 것이다.
The present invention relates to a silica magnetic nanoparticle having protein G immobilized thereon and a method for producing the same, and more particularly, by introducing a chloro silane to the surface of the silica-coated magnetic nanoparticle (Fe 3 O 4 @SiO 2) It relates to a method of immobilizing cysteine-based protein G on the surface of the prepared functional silica magnetic nanoparticles (Cl-Fe 3 O 4 @SiO 2 ).

항원-항체 반응을 이용한 면역센서, 진단키트 등의 응용 분야에서 대부분은 항체는 다양한 무기성(inorganic) 고체 물질 표면에 고정화된 형태로 사용된다. 항체의 고유한 결합 특성 및 활성을 손상시키지 않으면서 항체의 활성 부위가 표면에 잘 노출될 수 있도록 다양한 고체기판에 항체를 단분자막 형태 및 배향성을 조절하면서 고정화시키는 기술은 칩이나 센서의 검출 감도와 직접적으로 연결되므로 매우 중요하다. 특히 항체에서 항원에 대한 결합 부위는 Fab 영역에 존재하기 때문에 항체의 Fab 영역을 외부로 노출시키도록 항체를 고정화시키는 것은 항체의 성능과 감도를 높이는데 매우 중요하며 Fab 영역이 노출되지 않은 항체는 항체의 고정화에도 불구하고 그 기능을 상실하게 되어 고정화 양과 상관없이 센서 및 검출에는 아무런 효과가 없다. 결국 항체의 고정화시 고정화양만이 중요한 것이 아니라 배향성이 확보된 고정화가 중요한 요소가 되는 것이다.In applications such as immune sensors and diagnostic kits using antigen-antibody reactions, antibodies are mostly used in the form of immobilized on the surface of various inorganic solid materials. The technology to immobilize the antibody on various solid substrates while controlling the shape and orientation of the monolayer film so that the active site of the antibody can be easily exposed to the surface without impairing the inherent binding characteristics and activity of the antibody is directly related to the detection sensitivity of the chip or sensor. It is very important because it is connected to. In particular, since the binding site to the antigen in the antibody exists in the Fab region, immobilizing the antibody to expose the Fab region of the antibody to the outside is very important to increase the performance and sensitivity of the antibody. In spite of the immobilization of, the function is lost, so there is no effect on the sensor and detection regardless of the amount of immobilization. In the end, when the antibody is immobilized, not only the amount of immobilization is important, but the immobilization in which orientation is secured becomes an important factor.

또 다른 고려할 요소는, 항체의 단분자막으로부터 항원-항체 반응을 감도 높게 측정하기 위해서는 항원-항체간의 결합 반응이 입체제한(steric hindrance)을 최소로 하는 조건에서 높은 수준으로 이루어져야 한다. 입체 제한은 주로 고체 표면에 고정화된 항체분자의 밀도에 의해 발생하며 밀도가 높은 경우 항원 결합 효율이 심각하게 떨어지게 된다. 따라서 고체 표면에서 항체 분자의 밀도를 조절하는 기술이나 혹은 항체 분자의 고정화 밀도가 항원-항체 결합반응에 미치는 효과를 최소화할 수 있는 새로운 단분자막 제조기술이 개발되어야한다. 최근에 이런 기술을 개발하고자 하는 연구가 많이 진행되고 있지만 성과는 아직 미비하고 초보적인 수준에 그치고 있다.Another factor to consider is that in order to measure the antigen-antibody reaction with high sensitivity from the monomolecular membrane of the antibody, the antigen-antibody binding reaction must be made at a high level under conditions that minimize steric hindrance. Steric restriction is mainly caused by the density of antibody molecules immobilized on a solid surface, and when the density is high, the antigen binding efficiency is severely degraded. Therefore, a technology for controlling the density of antibody molecules on a solid surface or a new monomolecular membrane manufacturing technology that can minimize the effect of the immobilization density of antibody molecules on the antigen-antibody binding reaction must be developed. Recently, a lot of research has been conducted to develop such a technology, but the results are still incomplete and are only at a rudimentary level.

기존 연구를 살펴보면 단순 흡착을 이용한 항체의 고정화에서 배향성을 조절하는 방법으로 이동하고 있으며 그 기본은 항체의 Fc 영역에 많이 존재하는 아미노그룹을 이용하여 고체표면에 알데하이드 혹은 카르복실 그룹을 이용하여 고정화하는 방법이다. 이 방법의 경우 항체의 고정화양은 많아지지만 상기에서 명시한 입체제한이 나타나며 배향성에서 있어서 특정 tag나 리간드를 사용하는 것보다는 배향성에 대한 효율이 크지 않은 단점이 있다. 통상적으로 많이 사용되는 다른 방법은 스트렙타비딘-비오틴(streptavidin-biotin) 결합을 이용하는 것으로 스트렙타비딘은 저분자 비타민인 비오틴 4개와 결합할 수 있는 입체구조를 갖고 있으며 비오틴의 아민기는 항체의 고정영역(Fc)에 위치한 탄수화물 부분을 산화시켜 부착시킬 수 있으므로, 고체물질 표면에 고정화된 스트렙타비딘과 항체에 부착된 비오틴이 결합되어 배향성 고정화를 할 수 있다. 하지만 스트렙타비딘 및 비오틴은 비교적고가의 시료라서 대량 생산 및 상업화에 단점으로 작용한다.Looking at the existing studies, it is moving from immobilization of antibodies using simple adsorption to a method of controlling orientation, and the basis of which is to immobilize using an aldehyde or carboxyl group on a solid surface using amino groups that are abundant in the Fc region of the antibody. That's the way. In this method, the amount of immobilization of the antibody increases, but the steric limitation specified above appears, and there is a disadvantage in that the efficiency of orientation is not greater than that of using a specific tag or ligand in terms of orientation. Another commonly used method is streptavidin-biotin binding. Streptavidin has a conformational structure capable of binding to four low-molecular vitamins, biotin, and the amine group of biotin is the fixed region of the antibody ( Since the carbohydrate portion located at Fc) can be oxidized and attached, streptavidin immobilized on the surface of the solid material and biotin attached to the antibody are combined to perform orientation immobilization. However, streptavidin and biotin are relatively expensive samples, so they act as a disadvantage for mass production and commercialization.

한편 항체의 Fc 영역에 특이적으로 결합하는 단백질A (protein A)와 단백질G (protein G)를 이용하여 항체의 배향성을 확보하는 방법도 소개되고 있다. 항체와 특이적으로 결합하는 미생물 유래 항체결합단백질(단백질A, 단백질G, 단백질A/G, 또는 단백질L)을 이용한 항체고정화 기술은 항원-항체 반응에 참여하지 않는 항체의 특정부위에 강하게 결합하여 해당 항체를 고체기판에 고정함으로써 항원의 접근성을 용이하게 한다(Danczyk R et al., Biotechnol Bioeng 84:215-223, 2003). 상기 단백질들과 항체와의 결합에는 화학적 수식이 필요하지 않으므로 항체의 고유기능을 해치지 않는 장점이 있다. 그러나 항체결합 단백질을 고체기판에 고정하는 과정에서 단백질의 배향성 조절이 어려워 항체의 고정 효율을 최적화하는데 문제가 되어 왔다.On the other hand, a method of securing the orientation of the antibody by using protein A and protein G that specifically binds to the Fc region of the antibody has also been introduced. Antibody immobilization technology using microbial-derived antibody-binding proteins (protein A, protein G, protein A/G, or protein L) that specifically binds to the antibody strongly binds to a specific site of the antibody that does not participate in the antigen-antibody reaction. The antibody is immobilized on a solid substrate to facilitate antigen access (Danczyk R et al., Biotechnol Bioeng 84:215-223, 2003). Since chemical modification is not required for the binding of the proteins to the antibody, there is an advantage of not impairing the intrinsic function of the antibody. However, in the process of immobilizing the antibody-binding protein on a solid substrate, it is difficult to control the orientation of the protein, which has been a problem in optimizing the immobilization efficiency of the antibody.

최근에 발표된 방법은 골드결합단백질을 코딩하는 유전자와 프로테인에 이와 지 (protein A, G)를 코딩하는 유전자를 함유하는 재조합벡터로 형질전환된 미생물에 의해서 발현된 재조합 융합단백질을 고체상에 고정하여 항체의 배향성을 확보하는 방법이 소개되었다 (대한민국 특허 등록번호 10-0965480).The recently published method is to fix a recombinant fusion protein expressed by a microorganism transformed with a recombinant vector containing a gene encoding a gold-binding protein and a gene encoding protein A and G (protein A, G) on a solid phase. A method of securing the orientation of the antibody was introduced (Korean Patent Registration No. 10-0965480).

기존의 단백질 G를 자성나노입자의 표면에 고정화하기 위한 방법으로 cross-linking 시약인 sulfo succinimidyl 4-(N-maleimi-domethyl) cyclohexane-1-carboxylate (sulfo-SMCC)를 사용하였지만 이는 반응이 복잡하며 고가의 시약이 사용되어 생산 단가를 올리게 되는 문제점이 있다.
Sulfo succinimidyl 4-(N-maleimi-domethyl) cyclohexane-1-carboxylate (sulfo-SMCC), a cross-linking reagent, was used as a method for immobilizing the existing protein G on the surface of magnetic nanoparticles, but this reaction is complicated. There is a problem in that expensive reagents are used, which increases the production cost.

본 발명이 해결하고자 하는 과제는 면역검출에서 고민감도 검출을 위한 민감도 향상을 위한 것으로, 항체의 배향성 확보를 통한 민감도 향상뿐만 아니라 구조적 배열을 통한 입체제한 극복을 동시에 해결하기 위하여 항체의 Fc 영역에 특이적으로 결합하는 시스테인계단백질 G가 고효율로 고정화되는 자성실리카 나노입자를 one-step, 저비용으로 제조하는 방법을 제공하는 것이다.
The problem to be solved by the present invention is to improve the sensitivity for high-sensitivity detection in immunodetection, and to improve sensitivity through securing the orientation of the antibody as well as overcome steric limitations through structural arrangement. It is to provide a one-step, low-cost manufacturing method of magnetic silica nanoparticles in which cysteine-based protein G, which is effectively bound, is immobilized with high efficiency.

상기 과제를 해결하기 위하여 본 발명의 시스테인계단백질 G가 고정화된 기능성 실리카 자성나노입자는 중심핵(core)으로 나노자성체 산화물을 사용하고 나노자성체 산화물의 표면을 실리카로 코팅 처리 후 다시 클로로계 실란으로 실리카 표면처리를 하는 것으로, 상기 클로로계 실란이 치환된 실리카 코팅 자성나노입자의 클로로기에 시스테인계단백질 G를 결합시켜 고정화되어 있는 것을 특징으로 한다.To solve the above problems, the functional silica magnetic nanoparticles immobilized with cysteine protein G of the present invention use a nanomagnetic oxide as a core, and the surface of the nanomagnetic oxide is coated with silica, and then again, silica is used as a chlorosilane. It is characterized in that the surface treatment is performed by binding cysteine-based protein G to the chloro group of the silica-coated magnetic nanoparticles substituted with the chloro-based silane and immobilized thereon.

여기서, 상기 나노자성체는 자철광(magnetite; Fe3O4), 헤마타이트(hematite; α-Fe2O3), 마그헤마이트(maghemite; γ-Fe2O3), 니켈, 코발트 및 그들의 화합물로부터 이루어진 군에서 선택된 1종인 것을 특징으로 한다. Here, the nanomagnetic material is from magnetite (Fe 3 O 4 ), hematite (α-Fe 2 O 3 ), maghemite (γ-Fe 2 O 3 ), nickel, cobalt, and compounds thereof. It characterized in that it is one selected from the group consisting of.

여기서, 상기 자성나노입자는 30 ~ 200㎚의 크기를 가지는 것을 특징으로 한다. Here, the magnetic nanoparticles are characterized in that they have a size of 30 ~ 200nm.

여기서, 상기 단백질 G 다합체는 말단에 시스테인 기능기가 태크된 삼중(tri-)의 단백질G 다합체인 것을 특징으로 한다. Here, the protein G multimer is characterized in that it is a tri- protein G multimer in which a cysteine functional group is tagged at the terminal.

여기서, 상기 클로로계 실란은 ((chloromethyl)phenylethyl -trimethoxysilane),
chloromethylphenethyltris(trimethylsiloxy)silane, (p-Chloromethyl)phenyltrimethoxysilane,
chloromethyltriethoxysilane, chloromethyltrimethoxysilane, chloromethyltrimethylsilane,
chloromethyltris(trimethylsiloxy)silane, chlorophenyltriethoxysilane,
p-Chlorophenyltriethoxysilane, p-Chlorophenyltrimethylsilane, 3-Chloropropyltriethoxysilane,
3-Chloropropyltrimethoxysilane, 3-Chloropropyltrimethylsilane, 3-Chloropropyltris
(trimethylsiloxy) -silane, chlorosilane, 2-(4-Chlorosulfonylphenyl)ethyltrimethoxy -silane,
(dichloromethyl)trimethylsilane, triethylchlorosilane, trimethylchlorosilane,
2-(Trimethylsilyl)ethoxymethyl chloride, tris -(trimethylsiloxy)chlorosilane,
vinyldiphenylchlorosilane, trivinyl -chlorosilane으로 이루어진 군에서 선택되는 것을 특징으로 한다.
Here, the chloro-based silane is ((chloromethyl)phenylethyl -trimethoxysilane),
chloromethylphenethyltris(trimethylsiloxy)silane, (p-Chloromethyl)phenyltrimethoxysilane,
chloromethyltriethoxysilane, chloromethyltrimethoxysilane, chloromethyltrimethylsilane,
chloromethyltris(trimethylsiloxy)silane, chlorophenyltriethoxysilane,
p-Chlorophenyltriethoxysilane, p-Chlorophenyltrimethylsilane, 3-Chloropropyltriethoxysilane,
3-Chloropropyltrimethoxysilane, 3-Chloropropyltrimethylsilane, 3-Chloropropyltris
(trimethylsiloxy) -silane, chlorosilane, 2-(4-Chlorosulfonylphenyl)ethyltrimethoxy -silane,
(dichloromethyl)trimethylsilane, triethylchlorosilane, trimethylchlorosilane,
2-(Trimethylsilyl)ethoxymethyl chloride, tris -(trimethylsiloxy)chlorosilane,
It is characterized in that it is selected from the group consisting of vinyldiphenylchlorosilane and trivinyl-chlorosilane.

또한, 본 발명에서는 중심핵(core)으로 나노자성체 산화물에 실리카 코팅된 자성 실리카 나노입자를 준비하고, 상기 실리카 코팅된 나노입자의 표면에 클로로계 실란을 치환시키고, 상기 클로로기가 치환된 실리카 코팅 자성나노입자의 클로로기에 시스테인계 단백질 G를 결합시켜 고정화키는 과정을 포함하여 되는 것을 특징으로 하는 시스테인계 단백질 G가 고정화된 기능성 실리카 자성나노입자의 제조방법을 제공한다. In addition, in the present invention, magnetic silica nanoparticles coated with silica on the nanomagnetic oxide as a core are prepared, chloro-based silane is substituted on the surface of the silica-coated nanoparticles, and silica-coated magnetic nanoparticles in which the chloro group is substituted. It provides a method for producing functional silica magnetic nanoparticles to which cysteine protein G is immobilized, comprising a process of immobilizing cysteine protein G by binding to a chloro group of the particle.

상기 클로로계 실란은
((Chloromethyl)phenylethyltrimethoxy silane); ((chloromethyl)phenylethyl -trimethoxysilane);
chloromethylphenethyltris(trimethylsiloxy)silane; (p-Chloromethyl)phenyltrimethoxysilane;
chloromethyltriethoxysilane; chloromethyltrimethoxysilane; chloromethyltrimethylsilane;
chloromethyl tris(trimethylsiloxy)silane; chlorophenyltriethoxysilane;
p-Chlorophenyltriethoxysilane; p-Chlorophenyltrimethylsilane; 3-Chloropropyltriethoxysilane;
3-Chloropropyltrimethoxysilane; 3-Chloropropyltrimethylsilane; 3-Chloropropyltris
(trimethylsiloxy)-silane; chlorosilane; 2-(4-Chlorosulfonylphenyl)ethyltrimethoxy-silane;
(dichloromethyl)trimethylsilane; triethylchlorosilane; trimethylchlorosilane;
2-(Trimethylsilyl)ethoxymethyl chloride; tris -(trimethylsiloxy)chlorosilane;
vinyldiphenylchlorosilane; trivinyl-chlorosilane으로 이루어진 군에서 선택되는 것을
특징으로 한다.
The chloro-based silane is
((Chloromethyl)phenylethyltrimethoxy silane); ((chloromethyl)phenylethyl -trimethoxysilane);
chloromethylphenethyltris(trimethylsiloxy)silane; (p-Chloromethyl)phenyltrimethoxysilane;
chloromethyltriethoxysilane; chloromethyltrimethoxysilane; chloromethyltrimethylsilane;
chloromethyl tris(trimethylsiloxy)silane; chlorophenyltriethoxysilane;
p-Chlorophenyltriethoxysilane; p-Chlorophenyltrimethylsilane; 3-Chloropropyltriethoxysilane;
3-Chloropropyltrimethoxysilane; 3-Chloropropyltrimethylsilane; 3-Chloropropyltris
(trimethylsiloxy)-silane; chlorosilane; 2-(4-Chlorosulfonylphenyl)ethyltrimethoxy-silane;
(dichloromethyl)trimethylsilane; triethylchlorosilane; trimethylchlorosilane;
2-(Trimethylsilyl)ethoxymethyl chloride; tris-(trimethylsiloxy)chlorosilane;
vinyldiphenylchlorosilane; selected from the group consisting of trivinyl-chlorosilane
It is characterized.

여기서, 상기 나노자성체는 자철광(magnetite; Fe3O4), 헤마타이트(hematite; α-Fe2O3), 마그헤마이트(maghemite; γ-Fe2O3), 니켈, 코발트 및 그들의 화합물로부터 이루어진 군에서 선택된 1종인 것을 특징으로 한다.Here, the nanomagnetic material is one selected from the group consisting of magnetite (Fe3O4), hematite (α-Fe2O3), maghemite (γ-Fe2O3), nickel, cobalt, and compounds thereof. do.

상기 단백질 G 다합체는 말단에 시스테인 기능기가 태크된 삼중(tri-)의 단백질G 다합체인 것을 특징으로 한다.
The protein G multimer is characterized in that it is a tri-protein G multimer in which a cysteine functional group is tagged at the terminal.

본 발명에서 제공되는 클로로계 실란처리된 자성나노입자에 고정된 시스테인계 단백질 G는 항체의 배향성을 확보하면서 동시에 입체제한을 극복할 수 있는 방법으로 면역검출에 있어서 가장 중요한 민감도를 향상시킬 수 있다. 즉, 기존 단백질 G의 경우 많은 단백질 G를 표면에 결합시킨다고 해도 입체적인 제한 때문에 대부분의 단백질 G가 항체고정화에 사용되지 못하고 도리어 입체제한 때문에 민감도를 떨어뜨리는 결과를 낳게 되지만 클로로계 실란처리된 자성나노입자에 고정된 시스테인계 단백질 G를 사용하면 입체적인 제한을 극복하면서 2차원 배열이 아닌 3차원 배열을 통한 항체 고정화로 민감도를 현저히 증가시킬 수 있는 효과를 가진다.The cysteine protein G immobilized on the chloro-silane-treated magnetic nanoparticles provided in the present invention can improve the sensitivity, which is the most important in immunodetection, as a method capable of overcoming steric limitations while securing the orientation of the antibody. In other words, in the case of conventional protein G, even if many proteins G are bound to the surface, most of the protein G cannot be used for antibody immobilization due to steric limitations, but due to steric restriction, the sensitivity is lowered, but chlorosilane-treated magnetic nanoparticles The use of the cysteine-based protein G immobilized on has an effect that can significantly increase the sensitivity by immobilizing antibodies through a three-dimensional array rather than a two-dimensional array, while overcoming steric limitations.

또한 제조 공정이 one-step으로 간단하며 cross-linking 시약을 사용하지 않으므로 제조 단가를 낮출 수 있게 된다.
In addition, since the manufacturing process is simple as one-step and does not use cross-linking reagents, the manufacturing cost can be lowered.

도 1은 본 발명에 일실시예에 따라, 클로로계 실란이 발현된 실리카코팅 자성나노입자의 제작 과정을 도시한 것이다.
도 2는 본 발명의 일실시예에 따라, 클로로계 실란이 발현된 실리카코팅 자성나노입자에 시스테인 단백질 G를 고정화 시키는 과정을 도시한 것이다.
도 3은 본 발명에 따른 실리카코팅 자성나노입자의 표면에 클로로계 실란을 치환 처리한 전후의 FT-IR 스펙트라를 나타낸 것이다.
도 4는 본 발명에 따른 시스테인계 단백질 G의 각 농도에 따른 결합효율에 대한 결과를 나타낸 것이다.
도 5는 본 발명에 따른 시스테인계 단백질 G의 결합에 대한 SDS-폴리아크릴 아미노겔 전기영동분석 결과를 도시한 것이다.
1 is a diagram illustrating a process of manufacturing silica-coated magnetic nanoparticles expressing a chloro-based silane according to an embodiment of the present invention.
2 is a diagram illustrating a process of immobilizing cysteine protein G on silica-coated magnetic nanoparticles expressing chloro-based silane according to an embodiment of the present invention.
Figure 3 shows the FT-IR spectra before and after the chlorosilane is substituted on the surface of the silica-coated magnetic nanoparticles according to the present invention.
Figure 4 shows the results of the binding efficiency according to each concentration of the cysteine-based protein G according to the present invention.
Figure 5 shows the results of SDS-polyacrylic aminogel electrophoresis analysis on the binding of cysteine-based protein G according to the present invention.

이하, 본 발명을 보다 상세히 설명하기로 한다. Hereinafter, the present invention will be described in more detail.

첨부 도면 도 1은 본 발명의 일실시예에 따라, 클로로계 실란이 발현된 실리카코팅 자성나노입자의 제작 과정을 도시한 것이다, 도 2는 본 발명의 일실시예에 따라, 클로로계 실란이 발현된 실리카코팅 자성나노입자에 시스테인계 단백질 G를 고정화시키는 일련의 과정을 도시한 것이며, 도 3을 본 발명에 따른 실리카코팅 자성입자의 표면에 클로로계 실란을 치환 처리한 전후의 FT-IR 스펙트라를 나타낸 것이며, 도 4는 본 발명에 따른 시스테인계 단백질 G의 각 농도에 따른 결합 효율에 대한 결과를 나타낸 것이며, 도 5는 본 발명에 따른 시스테인계 단백질 G의 결합에 대한 SDS-폴리아크릴 아미노겔 전기영동분석 결과를 도시한 것이다.1 is a diagram illustrating a manufacturing process of silica-coated magnetic nanoparticles expressing a chloro-based silane according to an embodiment of the present invention. FIG. 2 is a chloro-based silane expression according to an embodiment of the present invention. It shows a series of processes of immobilizing cysteine-based protein G on the silica-coated magnetic nanoparticles, and FIG. 3 shows FT-IR spectra before and after substitution treatment with chloro-based silane on the surface of the silica-coated magnetic particles according to the present invention. 4 shows the results of binding efficiency according to each concentration of cysteine-based protein G according to the present invention, and FIG. 5 is an SDS-polyacrylic aminogel electrophoresis for binding of cysteine-based protein G according to the present invention. It shows the results of the electrophoretic analysis.

본 발명은 항체의 Fc 영역에 친화성을 갖는 단백질 G로 구성된 다합체를 제공하며 상기 시스테인계 단백질 G는 유전자 재조합 기술을 통해 단백질 G 코딩 유전자를 적절한 발현 벡터에 클로닝하여 발현 벡터를 제작하며, 이때 단백질 G 삼중체는 단백질 Gdp 대한 코딩 유전자를 3회 반복 연결한 발현 벡터를 제작하여, 상기 발현 벡터를 이용하여 적절한 미생물을 형질전환시키고, 상기 형질전환된 미생물을 배양하여 단백질 G 삼중체를 생산한 후 세포 외벽을 파괴하고 컬럼을 통해 합성된 단백질 G 삼중체를 분리한다. 이때 단백질 G 의 하단에 시스테인잔기가 부착되도록 발현시키게 된다.The present invention provides a multimer composed of protein G having affinity to the Fc region of an antibody, and the cysteine protein G is produced by cloning a protein G coding gene into an appropriate expression vector through gene recombination technology. For the protein G triplet, an expression vector in which a gene encoding a protein Gdp was repeatedly ligated three times was prepared, and an appropriate microorganism was transformed using the expression vector, and the transformed microorganism was cultivated to produce a protein G triplet. After that, the outer cell wall is destroyed and the synthesized protein G triplet is separated through a column. At this time, it is expressed so that a cysteine residue is attached to the bottom of the protein G.

본 발명에 사용되는 실리카 코팅 자성나노입자는 첨부도면 도 1에 도시된 바와 같이 자성나노입자의 표면에 실리카를 코팅시켜 제조된다.The silica-coated magnetic nanoparticles used in the present invention are prepared by coating silica on the surface of the magnetic nanoparticles as shown in FIG. 1 of the accompanying drawings.

클로로 실란으로 치환된 실리카코팅 자성나노입자를 분산시킨 후 시스테인계 단백질 G와 혼합하여 반응시킨 후 영구자석을 통해 분리하여 세척한다. 이를 통해 시스테인계 단백질 G가 고정화된 실리카코팅 자성나노입자를 제작하게 된다. After dispersing the silica-coated magnetic nanoparticles substituted with chlorosilane, they are mixed with cysteine-based protein G to react, and then separated and washed through a permanent magnet. Through this, silica-coated magnetic nanoparticles to which cysteine-based protein G is immobilized are produced.

본 발명에서는 중심핵(core)으로 자성체 철 산화물을 사용하고, 자성체 철 산화물에 실리카 코팅하고, 표면에 클로로계 실란이 도출되어 치환되고, 상기 치환된 클로로계 실란에 시스테인계 단백질 G를 고정화 시키는 방법을 제공한다. In the present invention, a method of using a magnetic iron oxide as a core, coating a magnetic iron oxide with silica, deriving and replacing a chlorosilane on the surface, and immobilizing cysteine protein G on the substituted chlorosilane. to provide.

상기 나노자성체는 자성에 반응하는 물질이면 어느 것을 사용하여도 좋으나, 바람직하게는 자철광(magnetite; Fe3O4 , 헤마타이트(hematite; α-Fe2O3), 마게마이트(maghemite; γ-Fe2O3), 니켈, 코발트 및 그들의 화합물로부터 이루어진 군에서 선택된 1종을 사용하는 것이 바람직하다.The nanomagnetic material may be any material as long as it reacts to magnetism, but preferably magnetite (Fe 3 O 4 , hematite; α-Fe 2 O 3 ), maghemite (γ-Fe) It is preferable to use one selected from the group consisting of 2 O 3 ), nickel, cobalt, and compounds thereof.

상기 자성나노입자는 30 ~ 200nm 의 크기를 가지는 것을 사용하는 것이 좋다.It is preferable to use the magnetic nanoparticles having a size of 30 ~ 200nm.

상기 시스테인계 단백질 G는 말단에 시스테인기가 결합되어 있고, 삼중(tri-)의 단백질 G 다합체인 것을 특징으로 한다.The cysteine-based protein G is characterized in that a cysteine group is bonded to the terminal thereof and is a tri-protein G multimer.

본 발명에 따르면, 첨부도면 도 2에 예시된 바와 같이 상기 개시된 시스테인계 단백질 G가 고정화된 실리카 코팅된 자성나노입자는 첨부 도면 도 1에 도시된 바와 같은 자성체 나노입자의 표면에 실리카 코팅처리된 자성나노입자의 표면에 클로로기 실란을 치환시키는 단계와 클로로기 실란이 표면에 부착된 실리카코팅 자성나노입자에 상기 시스테인 단백질 G를 고정화시키는 단계로 이루어진 과정에 의해 시스테인 단백질 G가 자성실리카 나노입자에 고정 결합된다.According to the present invention, the silica-coated magnetic nanoparticles to which the disclosed cysteine-based protein G is immobilized as illustrated in FIG. 2 is coated with silica on the surface of the magnetic nanoparticles as illustrated in FIG. 1. Cysteine protein G is fixed to magnetic silica nanoparticles by a process consisting of substituting chlorosilane on the surface of nanoparticles and immobilizing the cysteine protein G on silica-coated magnetic nanoparticles with chlorosilane attached to the surface Are combined.

이하, 본 발명을 바람직한 실시예를 통하여 보다 상세히 설명하기로 한다. 단, 하기의 실험예로 본 발명이 한정되는 것이 아니며, 이상의 상술한 바와 같이 적의 선택된 구성들에 따라 다양한 형태로 변형 가능한 것은 자명한 것이다.
Hereinafter, the present invention will be described in more detail through preferred embodiments. However, the present invention is not limited to the following experimental examples, and it is obvious that it can be modified in various forms according to the enemy selected configurations as described above.

실시예 1: 클로로 실란이 치환된 실리카 코팅 자성나노입자(Cl-Fe3O4@SiO2)의 제작
Example 1: Preparation of chlorosilane-substituted silica-coated magnetic nanoparticles (Cl-Fe 3 O 4 @SiO 2 )

실시예 1-1: 실리카층의 코팅Example 1-1: Coating of silica layer

침전법으로 얻은 자철광을 이용하여 실리카 코팅된 자성나노입자를 제작하기 위하여 계면활성제인 Igepal CO-520 0.22g을 사이클로헥산 4.5mL에 녹인 용액을 준비하고, magnetite와 olieic acid를 사이클로헥산 용액에 넣고 1시간가량 초음파 처리를 하여 분산시킨 후 기 준비된 Igepal이 들어있는 사이클로헥산 용액에 넣고 교반시킨다. 이때 수산화암모늄, TEOS(Tetraethyl orthosilicate)를 넣고 추가적으로 20시간을 더 교반시킨 후 메탄올을 넣어서 세척하여 최종적으로 실리카 코팅 자성나노입자를 얻게 된다.
To prepare silica-coated magnetic nanoparticles using magnetite obtained by precipitation, a solution of 0.22 g of Igepal CO-520, a surfactant, dissolved in 4.5 mL of cyclohexane, was prepared, and magnetite and olieic acid were added to the cyclohexane solution. After dispersing by sonicating for about a period of time, it was put in a cyclohexane solution containing Igepal and stirred. At this time, ammonium hydroxide and TEOS (tetraethyl orthosilicate) are added and stirred for an additional 20 hours, followed by washing with methanol to finally obtain silica-coated magnetic nanoparticles.

실시예 1-2: 실리카 코팅 자성나노입자(Fe3O4@SiO2)에 기능기 합성Example 1-2: Synthesis of functional groups on silica-coated magnetic nanoparticles (Fe 3 O 4 @SiO 2)

실리카 코팅된 자성나노입자를 Toluene에 분산시키고 1시간가량 초음파 처리를 하여 분산시킨 후 실온에서 2시간가량 교반을 시킨다. 교반 후 ((Chloromethyl)phenylethyl-trimethoxysilane)을 넣고 질소 분위기에서 100℃로 8시간 reflux 시킨다. 이후 Toluene으로 세척을 하여 최종적으로 염소그룹이 치환된 실리카 코팅 자성나노입자(이하, "Cl-Fe3O4@SiO2라 약칭함)얻게 된다. 염소그룹이 치환된 실리카 코팅 자성나노입자의 특성을 확인하기 위해 FT-IR(도 3) 분석을 하였다.
Silica-coated magnetic nanoparticles are dispersed in Toluene, ultrasonicated for about 1 hour, dispersed, and stirred at room temperature for about 2 hours. After stirring, ((Chloromethyl)phenylethyl-trimethoxysilane) was added and refluxed at 100℃ for 8 hours in a nitrogen atmosphere. After washing with Toluene, silica-coated magnetic nanoparticles (hereinafter, abbreviated as "Cl-Fe 3 O 4 @SiO 2 ") with a chlorine group substituted are finally obtained. Characteristics of silica-coated magnetic nanoparticles substituted with chlorine groups FT-IR (Fig. 3) was analyzed to confirm.

실시예 2: Cl-Fe3O4@SiO2에 시스테인-태그된 단백질 G 다합체(cysteine-tagged multimer protein G)의 합성 및 정제 (도 2 참조)Example 2: Synthesis and purification of cysteine-tagged multimer protein G in Cl-Fe 3 O 4 @SiO 2 (see FIG. 2)

5mg의 Cl-Fe3O4@SiO2에 (주) 중겸에서 받은 시스테인계 단백질 G의 농도를 각각 100, 125, 150, 175, 200, 300㎍/㎖가 되도록 추가하여 0.1% 트윈20을 최종농도로 하여 10mM PBS버퍼로 재현탁한다. 각 시료를 교반하고, 1시간 동안 로터리쉐이킹하여 인큐베이트한다. 상기 재현탁을 한 다음, 10분간 자성을 띠게 한 후, 자석을 이용하여 시스테인계 단백질 G가 고정된 Cl-Fe3O4@SiO2 입자를 정제하고, 정제한 후에 1.5㎖ 10mM PBS버퍼(pH 7.4)로 3회 세척한다.
0.1% Tween 20 was added to 5 mg of Cl-Fe 3 O 4 @SiO 2 so that the concentration of cysteine protein G received from Junggyeom Co., Ltd. was 100, 125, 150, 175, 200, 300㎍/㎖, respectively. Resuspended in 10 mM PBS buffer at the concentration. Each sample is stirred and incubated by rotary shaking for 1 hour. After the resuspension was performed, magnetically for 10 minutes, Cl-Fe 3 O 4 @SiO 2 particles to which the cysteine protein G was immobilized were purified using a magnet. After purification, a 1.5 ml 10 mM PBS buffer (pH Wash 3 times with 7.4).

이상의 과정에서 첨부도면 도 2에 도시된 바와 같이 시스테인계 단백질 G가 자성 나노입자에 고정된다. 각각의 농도별 시스테인계 단백질 G가 Cl-Fe3O4@SiO2 입자에 고정화된 효율을 확인하기 위해 BCA test를 진행하였다. 도 4는 시스테인계 단백질 G의 각 농도에 따른 결합효율에 대한 결과를 나타낸 것이다. 도 5는 5mg의 Cl-Fe3O4@SiO2 입자에 시스테인계 단백질 G 의 농도가 100, 300㎍/㎖일 때 시스테인 단백질 G가 Cl-Fe3O4@SiO2 입자에 고정화된 후 고정화되지 않고 씻겨서 나온 상층액을 측정한 SDS-PAGE 분석결과이다.
In the above process, cysteine-based protein G is immobilized on the magnetic nanoparticles, as shown in FIG. 2 of the accompanying drawings. The BCA test was performed to confirm the efficiency of each concentration of cysteine-based protein G immobilized on Cl-Fe 3 O 4 @SiO 2 particles. 4 shows the results of binding efficiency according to each concentration of cysteine-based protein G. FIG. 5 shows that cysteine protein G is immobilized on Cl-Fe 3 O 4 @SiO 2 particles when the concentration of cysteine protein G is 100, 300 μg/ml in 5 mg of Cl-Fe 3 O 4 @SiO 2 particles. This is the result of SDS-PAGE analysis of the supernatant that was washed out without being washed.

이상의 결과로 본 발명에서는 기존의 단백질 G를 고정화하기 위한 기능성 입자를 만들기 위한 방법보다 간단하고 경제적으로 시스테인계 단백질 G를 고정화하기 위한 기능성 자성나노입자 Cl-Fe3O4@SiO2를 제조 하였고, 제조된 Cl-Fe3O4@SiO2 입자의 시스테인계 단백질 G의 고정화가 뛰어남을 확인 하였고, 5mg의 Cl-Fe3O4@SiO2 입자를 사용하였을 때 시스테인계 단백질 G의 농도가 100㎍/㎖일 때 포화상태가 됨을 확인하였다.
As a result of the above, in the present invention, functional magnetic nanoparticles Cl-Fe 3 O 4 @SiO 2 for immobilizing cysteine-based protein G were prepared more economically and simpler than the conventional method for making functional particles for immobilizing protein G, It was confirmed that the immobilization of cysteine protein G of the prepared Cl-Fe 3 O 4 @SiO 2 particles was excellent. When 5 mg of Cl-Fe 3 O 4 @SiO 2 particles were used, the concentration of cysteine protein G was 100 μg. When it was /ml, it was confirmed that it became saturated.

Claims (9)

중심핵(core)으로 나노자성체 산화물에 실리카 코팅된 자성 실리카 나노입자의 표면에 클로로계 실란을 치환시키고, 상기 클로로계 실란이 치환된 실리카 코팅 자성나노입자의 클로로기에 시스테인계 단백질 G를 결합시켜 고정화되어 있는 것을 특징으로 하는 시스테인계 단백질 G가 고정화된 기능성 실리카 자성나노입자.
As a core, a chloro-based silane is substituted on the surface of the magnetic silica nanoparticles coated with silica on the nanomagnetic oxide, and the cysteine-based protein G is bonded to the chloro group of the silica-coated magnetic nanoparticles substituted with the chloro-based silane. Functional silica magnetic nanoparticles immobilized with cysteine protein G, characterized in that there is.
제 1 항에 있어서,
상기 나노자성체는 자철광(magnetite; Fe3O4), 헤마타이트(hematite; α-Fe2O3), 마그헤마이트(maghemite; γ-Fe2O3), 니켈, 코발트 및 그들의 화합물로부터 이루어진 군에서 선택된 1종인 것을 특징으로 하는 기능성 실리카 자성나노입자.
The method of claim 1,
The nanomagnetic material is one selected from the group consisting of magnetite (Fe3O4), hematite (α-Fe2O3), maghemite (γ-Fe2O3), nickel, cobalt, and their compounds. Silica magnetic nanoparticles.
제 1 항에 있어서,
상기 시스테인계 단백질 G는 말단에 시스테인 기능기가 태크된 삼중(tri-)의 단백질G 다합체인 것을 특징으로 하는 시스테인계 단백질 G가 고정화된 기능성 실리카 자성나노입자.
The method of claim 1,
The cysteine-based protein G is a functional silica magnetic nanoparticle immobilized with cysteine-based protein G, characterized in that it is a tri-protein G multimer in which a cysteine functional group is tagged at the terminal.
제 1 항에 있어서,
상기 자성나노입자는 30 ~ 200㎚의 크기를 가지는 것을 특징으로 하는 시스테인계 단백질 G가 고정화된 기능성 실리카 자성나노입자.
The method of claim 1,
The magnetic nanoparticles are functional silica magnetic nanoparticles immobilized with cysteine-based protein G, characterized in that they have a size of 30 to 200 nm.
제 1 항에 있어서,
상기 클로로계 실란은 ((Chloromethyl)phenylethyl-trimethoxy silane);
((chloromethyl)phenylethyl-trimethoxysilane); chloromethylphenethyltris(trimethylsiloxy)silane;
(p-Chloromethyl)phenyltrimethoxysilane; chloromethyltriethoxysilane; chloromethyltrimethoxysilane;
chloromethyltrimethylsilane; chloromethyltris(trimethylsiloxy)silane; chlorophenyltriethoxysilane;
p-Chlorophenyltriethoxysilane; p-Chlorophenyltrimethylsilane; 3-Chloropropyltriethoxysilane;
3-Chloropropyltrimethoxysilane; 3-Chloropropyltrimethylsilane; 3-Chloropropyltris(trimethylsiloxy)-
silane; chlorosilane; 2-(4-Chlorosulfonylphenyl)ethyltrimethoxy-silane;
(dichloromethyl)trimethylsilane; triethylchlorosilane; trimethylchlorosilane;
2-(Trimethylsilyl)ethoxymethyl chloride; tris -(trimethylsiloxy)chlorosilane;
vinyldiphenylchlorosilane; trivinyl -chlorosilane으로 이루어진 군에서 선택되는 것을 특징으로 하는
시스테인계 단백질 G가 고정화된 기능성 실리카 자성나노입자.
The method of claim 1,
The chloro-based silane is ((Chloromethyl)phenylethyl-trimethoxy silane);
((chloromethyl)phenylethyl-trimethoxysilane); chloromethylphenethyltris(trimethylsiloxy)silane;
(p-Chloromethyl)phenyltrimethoxysilane; chloromethyltriethoxysilane; chloromethyltrimethoxysilane;
chloromethyltrimethylsilane; chloromethyltris(trimethylsiloxy)silane; chlorophenyltriethoxysilane;
p-Chlorophenyltriethoxysilane; p-Chlorophenyltrimethylsilane; 3-Chloropropyltriethoxysilane;
3-Chloropropyltrimethoxysilane; 3-Chloropropyltrimethylsilane; 3-Chloropropyltris(trimethylsiloxy)-
silane; chlorosilane; 2-(4-Chlorosulfonylphenyl)ethyltrimethoxy-silane;
(dichloromethyl)trimethylsilane; triethylchlorosilane; trimethylchlorosilane;
2-(Trimethylsilyl)ethoxymethyl chloride; tris-(trimethylsiloxy)chlorosilane;
vinyldiphenylchlorosilane; trivinyl-chlorosilane, characterized in that selected from the group consisting of
Functional silica magnetic nanoparticles immobilized with cysteine protein G.
중심핵(core)으로 나노자성체 산화물에 실리카 코팅된 자성 실리카 나노입자를 준비하고, 상기 실리카 코팅된 나노입자의 표면에 클로로계 실란을 치환시키고,
상기 클로로기가 치환된 실리카 코팅 자성나노입자의 클로로기에 시스테인계 단백질 G를 결합시켜 고정화키는 과정을 포함하여 되는 것을 특징으로 하는 시스테인계 단백질 G가 고정화된 기능성 실리카 자성나노입자의 제조방법.
Prepare magnetic silica nanoparticles coated with silica on the nanomagnetic oxide as a core, and substitute chloro-based silane on the surface of the silica-coated nanoparticles,
A method for producing functional silica magnetic nanoparticles immobilized with cysteine-based protein G, comprising the step of immobilizing cysteine-based protein G by binding to a chloro group of the silica-coated magnetic nanoparticles substituted with the chloro group.
제 6 항에 있어서,
상기 클로로계 실란은 ((Chloromethyl)phenylethyl-trimethoxy silane); ((chloromethyl)phenylethyl- trimethoxysilane); chloromethylphenethyltris(trimethylsiloxy)silane;
(p-Chloromethyl)phenyltrimethoxysilane; chloromethyltriethoxysilane;
chloromethyltrimethoxysilane; chloromethyltrimethylsilane; chloromethyltris(trimethylsiloxy)
silane; chlorophenyltriethoxysilane; p-Chlorophenyltriethoxysilane;
p-Chlorophenyltrimethylsilane; 3-Chloropropyltriethoxysilane; 3-Chloropropyltrimethoxysilane;
3-Chloropropyltrimethylsilane; 3-Chloropropyltris(trimethylsiloxy)-silane; chlorosilane;
2-(4-Chlorosulfonylphenyl)ethyltrimethoxy-silane; (dichloromethyl)trimethylsilane;
triethylchlorosilane; trimethylchlorosilane; 2-(Trimethylsilyl)ethoxymethyl chloride;
tris -(trimethylsiloxy)chlorosilane; vinyldiphenylchlorosilane; trivinyl -chlorosilane으로
이루어진 군에서 선택되는 것을 특징으로 하는 시스테인계 단백질 G가 고정화된 기능성 실리카
자성나노입자의 제조방법.
The method of claim 6,
The chloro-based silane is ((Chloromethyl)phenylethyl-trimethoxy silane); ((chloromethyl)phenylethyl-trimethoxysilane); chloromethylphenethyltris(trimethylsiloxy)silane;
(p-Chloromethyl)phenyltrimethoxysilane; chloromethyltriethoxysilane;
chloromethyltrimethoxysilane; chloromethyltrimethylsilane; chloromethyltris(trimethylsiloxy)
silane; chlorophenyltriethoxysilane; p-Chlorophenyltriethoxysilane;
p-Chlorophenyltrimethylsilane; 3-Chloropropyltriethoxysilane; 3-Chloropropyltrimethoxysilane;
3-Chloropropyltrimethylsilane; 3-Chloropropyltris(trimethylsiloxy)-silane; chlorosilane;
2-(4-Chlorosulfonylphenyl)ethyltrimethoxy-silane; (dichloromethyl)trimethylsilane;
triethylchlorosilane; trimethylchlorosilane; 2-(Trimethylsilyl)ethoxymethyl chloride;
tris-(trimethylsiloxy)chlorosilane; vinyldiphenylchlorosilane; with trivinyl-chlorosilane
Cysteine-based protein G-immobilized functional silica, characterized in that selected from the group consisting of
Method for producing magnetic nanoparticles.
제 6 항에 있어서,
상기 나노자성체는 자철광(magnetite; Fe3O4), 헤마타이트(hematite; α-Fe2O3), 마그헤마이트(maghemite; γ-Fe2O3), 니켈, 코발트 및 그들의 화합물로부터 이루어진 군에서 선택된 1종인 것을 특징으로 하는 시스테인계 단백질 G가 고정화된 기능성 실리카 자성나노입자의 제조방법.
The method of claim 6,
The nanomagnetic material is cysteine, characterized in that it is one selected from the group consisting of magnetite (Fe3O4), hematite (α-Fe2O3), maghemite (γ-Fe2O3), nickel, cobalt, and compounds thereof. Method for producing functional silica magnetic nanoparticles with immobilized protein G.
제 6 항에 있어서,
상기 단백질 G 다합체는 말단에 시스테인 기능기가 태크된 삼중(tri-)의 단백질G 다합체인 것을 특징으로 하는 시스테인계 단백질 G가 고정화된 기능성 실리카 자성나노입자의 제조방법.
The method of claim 6,
The protein G multimer is a method for producing functional silica magnetic nanoparticles immobilized with cysteine protein G, characterized in that the protein G multimer is a tri- protein G multimer in which a cysteine functional group is tagged at the terminal.
KR1020110035413A 2011-04-15 2011-04-15 Method for manufacturing the functional silica magnetic nano-paticle immobilized the cystene protein G and the functional silica magnetic nano-paticle is manufactured thereby KR101251603B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110035413A KR101251603B1 (en) 2011-04-15 2011-04-15 Method for manufacturing the functional silica magnetic nano-paticle immobilized the cystene protein G and the functional silica magnetic nano-paticle is manufactured thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110035413A KR101251603B1 (en) 2011-04-15 2011-04-15 Method for manufacturing the functional silica magnetic nano-paticle immobilized the cystene protein G and the functional silica magnetic nano-paticle is manufactured thereby

Publications (2)

Publication Number Publication Date
KR20120119931A true KR20120119931A (en) 2012-11-01
KR101251603B1 KR101251603B1 (en) 2013-04-08

Family

ID=47506993

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110035413A KR101251603B1 (en) 2011-04-15 2011-04-15 Method for manufacturing the functional silica magnetic nano-paticle immobilized the cystene protein G and the functional silica magnetic nano-paticle is manufactured thereby

Country Status (1)

Country Link
KR (1) KR101251603B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140073215A (en) * 2012-12-06 2014-06-16 삼성전자주식회사 A composition and a kit for seperating a cell, and a method for seperating a cell using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060061494A (en) * 2004-12-02 2006-06-08 요업기술원 Functionalized silica magnetic nanoparticles for separating-purifying nucleic acid(dna/rna) and method for preparing the same
KR100927886B1 (en) * 2007-06-18 2009-11-23 한국생명공학연구원 Protein shock-oligonucleotide conjugates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140073215A (en) * 2012-12-06 2014-06-16 삼성전자주식회사 A composition and a kit for seperating a cell, and a method for seperating a cell using the same

Also Published As

Publication number Publication date
KR101251603B1 (en) 2013-04-08

Similar Documents

Publication Publication Date Title
Tang et al. Magnetic‐core/porous‐shell CoFe2O4/SiO2 composite nanoparticles as immobilized affinity supports for clinical immunoassays
KR101273964B1 (en) Magnetic nanoparticles the protein multimer G bound that silica was coated and methods for producing thereof and an immunosensor using thereof and an immunity detecting methods using the said immunosensor
Ikeda et al. Oriented immobilization of antibodies on a silicon wafer using Si-tagged protein A
JP5300205B2 (en) Target substance detection element, target substance detection method, and method for manufacturing target substance detection element
CN101441210B (en) Nano magnetic particle chromatography test paper detection method
CN104034881B (en) The magnetic sensing recognition methods of the low abundance biomolecule of high flux multichannel
US20080241964A1 (en) Material for improving sensitivity of magnetic sensor and method thereof
US20160187327A1 (en) Diagnostic assay using particles with magnetic properties
IE870658L (en) Coated chromium dioxide particles for use in immunoassay
Wang et al. Nanobody and nanozyme‐enabled immunoassays with enhanced specificity and sensitivity
Chung et al. Immunosensor with a controlled orientation of antibodies by using NeutrAvidin–protein A complex at immunoaffinity layer
CN104634973B (en) A kind of preparation method and application of nm of gold composite immunosensor
Choi et al. Cerium oxide-deposited mesoporous silica nanoparticles for the determination of carcinoembryonic antigen in serum using inductively coupled plasma-mass spectrometry
CN102507942A (en) Method for detecting microcystin in water
CN102411051A (en) Immunodetection method of organophosphorus pesticide multi-residue
Zhao et al. Selective and sensitive fluorescence detection method for pig IgG based on competitive immunosensing strategy and magnetic bioseparation
Gabrovska et al. Immunofluorescent analysis with magnetic nanoparticles for simultaneous determination of antibiotic residues in milk
Wang et al. Antibody-functionalized magnetic nanoparticles for electrochemical immunoassay of α-1-fetoprotein in human serum
US20190018011A1 (en) Quantification Method of Autoantibody
Chen et al. Real-time multicolor antigen detection with chemoresponsive diffraction gratings of silicon oxide nanopillar arrays
KR20060061494A (en) Functionalized silica magnetic nanoparticles for separating-purifying nucleic acid(dna/rna) and method for preparing the same
KR100962286B1 (en) A Manufacturing Method of Magnetic Gold Nanoparticle for Detecting Food-borne Pathogens and, Detecting Method Food-borne Pathogens of using a Magnetic Gold Nanoparticle
Lang et al. Fabrication of self-healing magnetic nanoreceptors for glycoprotein via integrating boronate-affinity-oriented and sequential surface imprinting
CN106680345A (en) Magnetic composite nanomaterial, electrochemical biosensor and preparation and construction method
KR101251603B1 (en) Method for manufacturing the functional silica magnetic nano-paticle immobilized the cystene protein G and the functional silica magnetic nano-paticle is manufactured thereby

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160404

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170403

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee