KR20120118240A - A functionalization method of porous metal-organic framework materials, solid acid catalysts using the same materials and methods to dehydrate alcohols with the same catalysts - Google Patents

A functionalization method of porous metal-organic framework materials, solid acid catalysts using the same materials and methods to dehydrate alcohols with the same catalysts Download PDF

Info

Publication number
KR20120118240A
KR20120118240A KR1020110035698A KR20110035698A KR20120118240A KR 20120118240 A KR20120118240 A KR 20120118240A KR 1020110035698 A KR1020110035698 A KR 1020110035698A KR 20110035698 A KR20110035698 A KR 20110035698A KR 20120118240 A KR20120118240 A KR 20120118240A
Authority
KR
South Korea
Prior art keywords
porous metal
amino
group
organic
metal
Prior art date
Application number
KR1020110035698A
Other languages
Korean (ko)
Inventor
황진수
장종산
쿠마 미스라 드니쉬
강인중
주바르 하산
나쯔물 아베딘 칸
정성화
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020110035698A priority Critical patent/KR20120118240A/en
Priority to PCT/KR2012/002618 priority patent/WO2012144758A2/en
Priority to CN201210114890XA priority patent/CN102744105A/en
Publication of KR20120118240A publication Critical patent/KR20120118240A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic System
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • B01J35/618
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds

Abstract

PURPOSE: A functionalizing method of porous metal-organic backbone materials, a solid catalyst using the same and a hydration method using the same are provided to effectively dehydrate alcohol as being operated as solid acid catalyst. CONSTITUTION: A functionalizing method of porous metal-organic backbone materials comprises the following steps: manufacturing suspended solution by mixing a compound which concurrently has thiol group and a location which can be coordinated with the porous metal - organic backbone material; heating the suspended solution from the first step; oxidizing the heated suspended solution with an oxidizer or oxidizing solid material obtained by solid-liquid separating the heated suspended solution by using the oxidizer; separating the solid from the reactant; and drying the separated solid.

Description

다공성 금속-유기 골격 물질의 기능화 방법, 이를 이용한 고체산 촉매 및 이 고체산 촉매를 이용한 알코올의 탈수 방법{A functionalization method of porous metal-organic framework materials, solid acid catalysts using the same materials and methods to dehydrate alcohols with the same catalysts}Functionalization method of porous metal-organic framework materials, solid acid catalysts using the same materials and methods to dehydrate alcohols with the same catalysts}

본 발명은 다공성 금속-유기 골격 물질의 기능화 방법에 관한 것으로, 보다 상세하게는 다공성 금속-유기 골격 물질을 활성화하여 불포화 배위자리를 발생하도록 하고 배위 결합을 할 수 있는 원소와 타이올기(-SH)를 동시에 함유한 화합물을 배위 결합시켜 기능화된 다공성 금속-유기 골격 물질 제조한 후 타이올기를 산화하여 설폰 산기(-SO3H)로 전환하여 고체산 촉매를 얻는 기술에 관한 것이다.The present invention relates to a method for functionalizing a porous metal-organic framework material, and more particularly, an element and a thiol group (-SH) capable of activating a porous metal-organic framework material to generate unsaturated coordination sites and capable of coordinating bonds. The present invention relates to a technique for preparing a functionalized porous metal-organic framework by coordinating a compound containing the same, and then oxidizing a thiol group to convert to a sulfonic acid group (-SO 3 H) to obtain a solid acid catalyst.

또한 본 발명은 상기 얻어진 고체산 촉매를 이용하여 알코올을 탈수하는 방법에 관한 것이다.The present invention also relates to a method of dehydrating alcohol using the obtained solid acid catalyst.

다공성 금속-유기 골격 물질은 중심금속 이온이 유기리간드와 결합하여 형성된 다공성 유무기 고분자 화합물로 정의될 수 있으며, 골격 구조 내에 유기물과 무기물을 모두 포함하고 분자크기 또는 나노크기의 세공구조를 갖는 결정성 화합물을 의미한다. 다공성 금속-유기 골격 물질은 보다 광범위한 의미의 다공성 유무기혼성체 (porous organic inorganic hybrid materials) (Chem. Commun., 4780, 2006) 및 다공성 배위고분자 (porous coordination polymers) (Angew. Chem. Intl. Ed., 43, 2334. 2004)등과 큰 구분 없이 사용되며 최근에 많은 연구가 이루어지고 있다(Chem. Soc. Rev., 37, 191, 2008). The porous metal-organic framework material may be defined as a porous organic-inorganic polymer compound formed by combining a central metal ion with an organic ligand, and include both organic and inorganic materials in the skeleton structure and have a crystalline structure having a molecular size or a nano-sized pore structure. Means a compound. Porous metal-organic backbone materials have broader meanings of porous organic inorganic hybrid materials (Chem. Commun., 4780, 2006) and porous coordination polymers (Angew. Chem. Intl. Ed. , 43, 2334. 2004) and many others have been studied recently (Chem. Soc. Rev., 37, 191, 2008).

다공성 금속-유기 골격 물질에 대한 연구는 분자배위결합과 재료과학의 접목에 의해 최근에 새롭게 발전하기 시작하였으며, 이 물질들은 표면적과 세공부피가 매우 클 뿐만 아니라 분자크기 또는 나노크기의 세공을 갖고 있어 흡착제, 기체 저장, 센서, 멤브레인, 기능성 박막, 촉매 및 촉매 담체 등에 사용되고 세공크기보다 작은 게스트 분자를 포접하거나 세공을 이용하여 분자들의 크기에 따라 분자들을 분리하는데 사용될 수 있기 때문에 매우 활발히 연구되고 있다. Research into porous metal-organic frameworks has recently begun to develop in recent years by incorporating molecular coordination bonds and materials science, which have very large surface areas and pore volumes, as well as molecular or nanoscale pores. It is very actively studied because it is used in adsorbents, gas storage, sensors, membranes, functional thin films, catalysts and catalyst carriers and can be used to encapsulate guest molecules smaller than the pore size or to separate molecules according to the size of the molecules using pores.

또한 다공성 금속-유기 골격 물질은 무기물 외에 유기물 성분을 함유하고 있으므로 비록 열적 안정성이 무기물에 비해 약하나 다양한 응용 가능성을 가지고 있다. In addition, since the porous metal-organic framework material contains an organic component in addition to the inorganic material, although the thermal stability is weaker than the inorganic material, it has various application possibilities.

산성 혹은 염기성을 함유한 다공성 금속-유기 골격 물질은 산 혹은 염기 촉매 및 유해물 제거 등의 다양한 용도를 가짐에도 불구하고 산성 혹은 염기성을 함유한 금속-유기 골격 물질은 흔하지 않고 이들을 제조하기 위해 계속 연구 중이다. 염기성을 함유한 금속-유기 골격 물질 구조는 아미노기를 함유한 유기물을 유기링커로 사용하여 합성을 통해 직접 얻을 수 있다. 예를 들자면 아미노테레프탈산을 링커로 사용하여 염기성을 갖는 IRMOF-3, MIL-47-NH2 및 MIL-53-NH2를 제조하였다Chem. Soc. Rev., 2011, 40, 498??519; J. Catal., 261, 75, 2009; Inorg. Chem. 48, 3057, 2009). Although acidic or basic porous metal-organic backbones have a variety of uses, such as acid or base catalysts and pest removal, acidic or basic metal-organic backbones are not common and are still being studied to make them. . The basic metal-organic framework material structure can be obtained directly through synthesis using an organic group containing an amino group as an organic linker. For example, aminoterephthalic acid was used as a linker to prepare basic IRMOF-3, MIL-47-NH 2 and MIL-53-NH 2 . Soc. Rev., 2011, 40, 498 ?? 519; J. Catal., 261, 75, 2009; Inorg. Chem. 48, 3057, 2009).

그러나 아미노기를 함유한 링커는 매우 비싸며 아미노기의 염기성이 합성에 영향을 미쳐 합성이 어려워지는 문제점이 발생될 수 있다. However, a linker containing an amino group is very expensive, and the basicity of the amino group affects the synthesis, thus making it difficult to synthesize.

또한 금속-유기 골격 물질의 기능화를 위해 공유 결합을 이용하는 방법이 공개되어 있으나 이 또한 원료의 값이 비싸고 특히 제조 공정이 매우 복잡하다는 단점이 있다(Chem. Soc. Rev., 2011, 40, 498-519). In addition, a method using covalent bonds for the functionalization of metal-organic framework materials has been disclosed, but this also has disadvantages such as expensive raw materials and particularly complicated manufacturing processes (Chem. Soc. Rev., 2011, 40, 498-). 519).

MIL-100(Cr) 및 MIL-100(Fe) 이라고 불리는 크롬-벤젠트리카복실레이트 (Angew. Chem. Int. Ed., 43, 6296, 2004) 및 철-벤젠트리카복실레이트(Chem. Commun., 2820, 2007)와 MIL-101(Cr)이라고 불리는 크롬-테레프탈레이트 (Science, 309, 2040, 2005)는 탈수 후 배위 불포화 자리(coordinatively unsaturated site; CUS) 혹은 열린 금속 자리(open metal site)를 가지며 이들을 이용하여 기능화할 수 있다. Cu-BTC(Science, 283, 1148, 1999)도 탈수를 통해 CUS를 유도할 수 있으며 이를 활용한 기능화가 가능하다. 즉, 배위할 수 있는 원소를 가진 물질을 이용하여 배위 결합을 할 수 있고 이 결합하는 물질을 이용하여 금속-유기 골격 물질을 기능화 할 수 있다. 기능화하는 물질로 배위 결합 자리를 가진 화합물, 특히 아미노기를 가진 화합물 등을 사용할 수 있으며 아미노 기능기가 양쪽 끝에 존재하는 에틸렌디아민을 사용하면 염기 촉매로 적용될 수 있음이 보고된 바 있다(Angew. Chem. Int. Ed., 47, 4144, 2008).  Chromium-benzenetricarboxylate (Angew. Chem. Int. Ed., 43, 6296, 2004) and iron-benzenetricarboxylate (Chem. Commun., Called MIL-100 (Cr) and MIL-100 (Fe)) 2820, 2007) and chromium-terephthalate (Science, 309, 2040, 2005), called MIL-101 (Cr), have coordinatively unsaturated sites (CUS) or open metal sites after dehydration. These can be used for functionalization. Cu-BTC (Science, 283, 1148, 1999) can also induce CUS through dehydration and functionalization using it. That is, a coordination bond can be made using a material having a coordinating element, and the binding material can be used to functionalize a metal-organic framework material. As a functionalizing substance, compounds having coordination bond sites, in particular, compounds having amino groups can be used, and it has been reported that ethylenediamine having amino functional groups present at both ends can be applied as a base catalyst (Angew. Chem. Int Ed., 47, 4144, 2008).

이에 본 발명자들은 산성 특성을 갖는 다공성 금속-유기 골격 물질을 얻기 위한 기능화 반응의 개발을 위해 부단히 노력하던 중 기능화하는 물질로 배위 결합 자리 외에 타이올(-SH) 기가 있으면 기능화 한 후 산화 반응 등의 적당한 후처리를 통해 산성을 도입할 수 있으며 이를 이용하여 고체산 촉매 및 산성 흡착제 등으로 활용할 수 있다는 사실을 발견하여 본 발명을 완성할 수 있었다. Accordingly, the present inventors are working hard to develop a functionalization reaction for obtaining a porous metal-organic skeleton having acidic properties. As a functionalizing material, if there is a thiol (-SH) group in addition to the coordination bond site, the functionalization is carried out. Acidity can be introduced through suitable post-treatment, and the present invention can be completed by discovering that it can be used as a solid acid catalyst and an acid adsorbent.

또한 이러한 기능화된 다공성 금속-유기 골격 물질을 적용한 고체산 촉매를 개발하여 촉매 성능이 안정적인 알코올의 탈수 공정을 개발하여 본 발명을 완성할 수 있었다. In addition, by developing a solid acid catalyst to which the functionalized porous metal-organic framework material was applied, the present invention was completed by developing a dehydration process of alcohol with stable catalytic performance.

본 발명은 다양한 용도로 사용가능한 다공성 금속-유기 골격 물질의 새로운 기능화방법을 제공하며 이를 이용한 산성을 가진 고체산 촉매를 제공한다.The present invention provides a novel method for functionalizing porous metal-organic backbone materials that can be used for a variety of applications and provides a solid acid catalyst having an acid using the same.

또한 고체산 촉매를 이용한 알코올의 탈수방법을 제공하고자 한다. It is also an object of the present invention to provide a method for dehydrating alcohol using a solid acid catalyst.

본 발명은 다공성 금속-유기 골격 물질의 효율적인 기능화 방법에 관한 것으로서, 본 발명의 일면은 1) 불포화 배위자리를 갖는 다공성 금속-유기 골격 물질과 배위가능한 자리 및 타이올기를 동시에 갖는 화합물을 혼합하여 현탁액을 제조하는 단계; 및 2) 1)단계의 현탁액을 가열하는 단계를 포함하여 다공성 금속-유기 골격 물질의 기능화방법을 제공한다.The present invention relates to a method for efficient functionalization of a porous metal-organic skeleton material, and an aspect of the present invention relates to a suspension of 1) a mixture of a porous metal-organic skeleton material having an unsaturated coordination site and a compound having a coordinating site and a thiol group at the same time Preparing a; And 2) heating the suspension of step 1) to provide a functionalization method of the porous metal-organic framework material.

또한 본 발명의 다른 일면은 In addition, another aspect of the present invention

1) 불포화 배위자리를 갖는 다공성 금속-유기 골격 물질과 배위가능한 자리 및 타이올기를 동시에 갖는 화합물을 혼합하여 현탁액을 제조하는 단계; 1) preparing a suspension by mixing a porous metal-organic backbone material having an unsaturated coordination site with a compound having a coordinable site and a thiol group at the same time;

2) 1)단계의 현탁액을 가열하는 단계;2) heating the suspension of step 1);

3) 2)단계의 가열한 현탁액을 산화제로 산화하거나 2)단계의 가열한 현탁액을 고액 분리하여 얻어진 고체를 산화제로 산화하는 단계;3) oxidizing the heated suspension of step 2) with an oxidant or solidifying the solid obtained by solid-liquid separation of the heated suspension of step 2);

4) 3)단계의 반응물에서 고체를 분리하는 단계; 및4) separating the solids from the reactants of step 3); And

5) 분리된 고체를 건조하는 단계를 포함하여 다공성 금속-유기 골격 물질의 기능화하는 방법을 제공한다.5) providing a method of functionalizing a porous metal-organic backbone material, including drying the separated solid.

본 발명은 다공성 금속-유기 골격 물질의 효율적인 기능화 방법에 관한 것으로서, 배위 가능한 자리 및 타이올기를 동시에 가지는 화합물을 이용하여 타이올기를 도입하고 도입 후 타이올 기를 산화하여 설폰산기를 갖도록 기능화하는 것을 특징으로 한다.The present invention relates to a method for efficient functionalization of a porous metal-organic framework material, by introducing a thiol group using a compound having a coordinating site and a thiol group at the same time and oxidizing the thiol group after the introduction to functionalize the sulfonic acid group. It is done.

본 발명에 따른 기능화 방법에 의해 기능화되는 다공성 금속-유기 골격 물질은 분말상이거나, 박막 또는 멤브레인 형태일 수 있다.The porous metal-organic framework material functionalized by the functionalization method according to the invention may be in powder form or in the form of a thin film or membrane.

또한 본 발명은 다공성 금속-유기 골격 물질의 기능화방법에 관한 것으로, 다공성 금속-유기 골격 물질은 어떠한 구조 혹은 조성이라도 적용 가능하다. 즉, 다공성 금속-유기 골격 물질은 금속 물질과 유기 물질을 포함하는 것으로서, 하나의 구성원소인 금속 물질은 제한되지 않지만, 좋게는 예를 들면, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Mg, Ca, Sr, Ba, Sc, Y, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb 또는 Bi 에서 선택된 하나 이상의 금속 또는 그 금속 화합물일 수 있다.The present invention also relates to a method for functionalizing a porous metal-organic framework material, and the porous metal-organic framework material can be applied to any structure or composition. That is, the porous metal-organic framework material includes a metal material and an organic material, and the metal material, which is one member element, is not limited, but preferably, for example, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Mg, Ca, Sr, Ba, Sc, Y, It may be at least one metal selected from Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb or Bi or a metal compound thereof.

특히 물 등의 작은 화합물이 배위되어 가열 혹은 진공 처리 등의 수단에 의해 배위된 물 등의 화합물의 탈착이 가능한 구조의 금속-유기 골격 물질이 적당하다. Particularly suitable are metal-organic framework materials having a structure in which small compounds such as water are coordinated and desorption of compounds such as water coordinated by means such as heating or vacuum treatment.

본 발명에서 다공성 금속-유기 골격 물질에서 불포화 배위자리를 부여하는 방법은 25 ~ 500 ℃에서 진공으로 처리하여 물 등의 배위물질을 탈리하여 제조된다.  In the present invention, the method for imparting an unsaturated coordination site in the porous metal-organic framework material is prepared by decoupling a coordination material such as water by treating with vacuum at 25 to 500 ° C.

또한 본 발명에 따른 기능화 방법에 의해 기능화되는 다공성 금속-유기 골격 물질은 유기물질은 카본산기, 카본산 음이온기, 아미노기(-NH2), 이미노기(

Figure pat00001
), 아미드기(-CONH2), 설폰산기(-SO3H), 설폰산 음이온기(-SO3 -), 메탄디티오산기(-CS2H), 메탄디티오산 음이온기(-CS2 -), 피리딘기 또는 피라진기에서 선택되는 하나 이상의 작용기를 가지는 화합물 또는 그 혼합물일 수 있다.In addition, the porous metal-organic framework material functionalized by the functionalization method according to the present invention is an organic material is a carboxylic acid group, carboxylic acid anion group, amino group (-NH 2 ), imino group (
Figure pat00001
), Amide group (-CONH 2), a sulfonic acid group (-SO 3 H), sulfonic acid anion group (-SO 3 -), methane dithiol Osan group (-CS 2 H), methane dithiol Osan anion group (-CS 2 -), may be a pyridine group or having at least one functional group selected from the compound pyrazine group or a mixture thereof.

다공성 금속-유기 골격 물질 중 배위 불포화자리를 가질 수 있는 구조이면 어떠한 것으로 제한되지는 않는다. 이러한 다공성 금속-유기 골격 물질의 대표적인 구조로는 MIL-101(Cr), MIL-100(Cr), MIL-100(Fe), Cu-BTC, MOF-505 (Angew. Chem. Int. Ed., 2005, 44, 4745), MOF-4(J. Am. Chem. Soc., 2000, 122, 1391), Mn-BTT (J. Am. Chem. Soc., 2008, 130, 5854), SLUG-22(J. Am. Chem. Soc., 2010, 132, 7202), SLUG-21(Chem. Mater., 2010, 22, 2027), MOF-74(J. Am. Chem. Soc., 2006, 128, 3494), UMCM-150(J. Am. Chem. Soc., 2009, 131, 18198) 등이 있으나 이에 국한되지는 않는다. 대표적인 다공성 금속-유기 골격 물질은 MIL-101(Cr), MIL-100(Cr), MIL-100(Fe) 및 Cu-BTC와 같은 금속-카복실레이트, 금속-테레프탈레이트 및 금속-벤젠트리카복실레이트이며 큰 다공성과 화학적 안정성을 가진 MIL-100(Fe, Cr), MIL-101(Cr) 및 Cu-BTC (혹은 HKUST-1라고 불림)이라고 불리는 철 혹은 크롬-벤젠트리카복실레이트, 크롬-테레프탈레이트, 구리-벤젠트리카복실레이트가 보다 바람직하다.The structure is not limited to any structure as long as it can have coordination unsaturated sites in the porous metal-organic framework material. Representative structures of such porous metal-organic frameworks include MIL-101 (Cr), MIL-100 (Cr), MIL-100 (Fe), Cu-BTC, MOF-505 (Angew. Chem. Int. Ed., 2005, 44, 4745), MOF-4 (J. Am. Chem. Soc., 2000, 122, 1391), Mn-BTT (J. Am. Chem. Soc., 2008, 130, 5854), SLUG-22 (J. Am. Chem. Soc., 2010, 132, 7202), SLUG-21 (Chem. Mater., 2010, 22, 2027), MOF-74 (J. Am. Chem. Soc., 2006, 128, 3494), UMCM-150 (J. Am. Chem. Soc., 2009, 131, 18198), and the like. Representative porous metal-organic backbone materials include metal-carboxylates, metal-terephthalates and metal-benzenetricarboxylates such as MIL-101 (Cr), MIL-100 (Cr), MIL-100 (Fe), and Cu-BTC. And iron or chromium-benzenetricarboxylate, chromium-terephthalate, called MIL-100 (Fe, Cr), MIL-101 (Cr) and Cu-BTC (or HKUST-1), with great porosity and chemical stability. And copper-benzene tricarboxylate are more preferable.

다음으로 본 발명의 배위가능한 자리 및 타이올기를 동시에 갖는 화합물에 대하여 설명한다.Next, the compound which has a coordinable site and a thiol group of this invention simultaneously is demonstrated.

상기 배위가능한 자리 및 타이올기를 동시에 갖는 화합물은 특별히 한정이 있는 것은 아니나, 구하기 용이하고 저렴할 뿐만 아니라 분자 구조가 간단하여 다공성 금속-유기 골격 물질로의 확산이 용이한 측면에 있어서 시스테아민, 3-아미노-1-프로판타이올, 2-아미노-1-프로판타이올, 1-아미노-1-프로판타이올, 4-아미노-1-부탄타이올, 3-아미노-1-부탄타이올, 2-아미노-1-부탄타이올, 1-아미노-1-부탄타이올, 5-아미노-1-펜탄타이올, 4-아미노-1-펜탄타이올, 3-아미노-1-펜탄타이올, 2-아미노-1-펜탄타이올 및 1-아미노-1-펜탄타이올중에서 선택되는 어느 하나가 바람직하다.The compound having both the coordinating site and the thiol group is not particularly limited, but is easy to obtain and inexpensive, and the molecular structure is simple to allow for easy diffusion into the porous metal-organic framework material. -Amino-1-propanethiol, 2-amino-1-propanethiol, 1-amino-1-propanethiol, 4-amino-1-butanethiol, 3-amino-1-butanethiol, 2 -Amino-1-butanethiol, 1-amino-1-butanethiol, 5-amino-1-pentanethiol, 4-amino-1-pentanethiol, 3-amino-1-pentanethiol, 2 Preferred is any one selected from -amino-1-pentanethiol and 1-amino-1-pentanethiol.

다음으로 본 발명의 기능화 방법에 대하여 구체적으로 설명한다.Next, the functionalization method of this invention is demonstrated concretely.

본 발명에서 기능화란 상기 현탁액을 가열하거나 또는 가열한 후 산화하여 기능성을 부여한 것을 모두 포함한다. 본 발명의 다공성 금속-유기 골격 물질의 기능화방법에 있어서, 기능화 온도 즉, 2)단계의 가열온도는 실제적으로 제한되지는 않으나 실온보다 높고 배위가능한 자리 및 타이올기를 동시에 갖는 화합물의 비점 보다는 낮은 온도가 바람직하다. 더욱 좋게는 35℃에서 200℃, 더욱 좋게는 50~120℃가 더욱 좋다. 너무 온도가 낮으면 기능화 속도가 느리고 기능화효율도 떨어지며, 기능화 온도가 너무 높으면 부반응이 발생하고, 장치가 복잡해지는 단점이 있고 기능화 반응기의 구성이 비경제적이다. In the present invention, the functionalization includes all of those which have been functionalized by heating or heating and then oxidizing the suspension. In the functionalization method of the porous metal-organic framework material of the present invention, the functionalization temperature, i.e., the heating temperature of step 2) is not practically limited, but is higher than room temperature and lower than the boiling point of the compound having both coordinating sites and thiol groups. Is preferred. More preferably, the temperature is 35 ° C to 200 ° C, more preferably 50 to 120 ° C. If the temperature is too low, the functionalization rate is slow and the functionalization efficiency is also low. If the functionalization temperature is too high, side reactions occur, the device is complicated, and the configuration of the functionalization reactor is uneconomical.

기능화 반응은 용매 없이도 가능하나 용매 존재 하에서 더욱 용이하다. 용매가 존재하면 반응물의 혼합 및 온도 제어가 쉬워진다. 용매는 어떠한 용매라도 가능하나 배위가능한 자리 및 타이올기를 동시에 갖는 화합물을 일부라도 녹일 수 있는, 특히 구하기 쉬운 저렴한 가격이면 어떠한 용매라도 가능하다. Functionalization reactions are possible without solvents but are easier in the presence of solvents. The presence of the solvent facilitates mixing of the reactants and temperature control. The solvent may be any solvent, but any solvent can be used as long as the compound can dissolve any part of the compound having a coordinating moiety and a thiol group.

기능화 반응은 회분식은 물론이고 연속식으로도 수행 가능하다. 회분식 기능화반응기는 시간당 생산량이 낮아 소량의 금속-유기 골격 물질을 기능화하는데 적합하며 연속식 반응기는 투자비가 많이 들어가나 대량의 기능화에 적합하다. 기능화반응 시간은 회분식의 경우 1분 내지 100시간 정도가 적합하며 너무 기능화반응 시간이 길면 불순물이 혼입되기 쉽고 에너지 효율이 낮다. 너무 기능화반응시간이 짧으면 기능화 효율이 낮다. 기능화반응 시간은 1분 내지 24시간이 더욱 적합하며 초음파 혹은 마이크로파를 추가로 조사하여 기능화 시간의 감축을 달성될 수 있다. 연속식 기능화반응기의 체류시간은 1분 내지 1시간 정도가 적합하다. 너무 체류시간이 길면 생산성이 낮고 부반응이 일어나기 쉬우며 체류시간이 너무 짧으면 기능화반응 전환율이 낮다. 체류시간은 1분 내지 20분이 더욱 적당하다. 회분식 반응 중에는 반응물을 교반할 수도 있으며 교반 속도는 100-1000rpm이 적당하나 교반 과정 없이도 수행 가능하다. 초음파를 이용한 기능화반응은 초음파에 의한 현탁액의 혼합이 잘 일어나므로 교반 과정이 없이도 기능화가 효과적으로 일어날 수 있다.
The functionalization reaction can be carried out batchwise as well as continuously. Batch functionalization reactors are suitable for functionalizing small amounts of metal-organic backbone materials, with low output per hour, while continuous reactors are expensive and are suitable for large-scale functionalization. The functionalization time is suitably 1 minute to 100 hours in the case of batch type, and if the functionalization time is too long, impurities are easily mixed and energy efficiency is low. If the functionalization reaction time is too short, the functionalization efficiency is low. The functionalization time is more preferably 1 minute to 24 hours, and further reduction of the functionalization time can be achieved by further irradiation with ultrasonic waves or microwaves. The residence time of the continuous functionalization reactor is suitably about 1 minute to 1 hour. Too long residence time results in low productivity and easy side reactions, and too short residence time results in low conversion of functionalization reactions. The residence time is more preferably 1 to 20 minutes. During the batch reaction, the reactants may be agitated and the stirring speed may be 100-1000 rpm, but may be performed without stirring. In the functionalization reaction using ultrasonic waves, the mixing of the suspension by ultrasonic waves occurs well, so that the functionalization can be effectively performed without the stirring process.

본 발명은 기능화된 다공성 금속-유기 골격 물질의 기능화방법에 있어서, 산화제는 특별히 한정이 있는 것은 아니나 저렴한 가격과 간단한 분자구조를 갖는 과산화수소, 산소, 공기 및 t-부틸하이드로퍼옥사이드등의 과산화물이 바람직하다.In the present invention, in the functionalized method of functionalized porous metal-organic framework material, the oxidizing agent is not particularly limited, but peroxides such as hydrogen peroxide, oxygen, air, and t-butylhydroperoxide having low molecular weight and simple molecular structure are preferable. Do.

또한 본 발명은 본 발명에 따라 제조된 기능화된 다공성 금속-유기 골격 물질을 제공하며 이러한 기능화된 다공성 금속-유기 골격 물질을 사용하여 중금속을 흡착 제거하는 방법을 제공한다.The present invention also provides a functionalized porous metal-organic framework material prepared according to the present invention and provides a method for adsorbing and removing heavy metals using such functionalized porous metal-organic framework materials.

또한 본 발명은 상기 기능화된 다공성 금속-유기 골격 물질을 산촉매로 사용하여 알코올을 탈수하는 방법을 제공한다.The present invention also provides a method for dehydrating alcohol using the functionalized porous metal-organic framework material as an acid catalyst.

탈수될 수 있는 알코올은 특별히 한정이 없으나 예를 들면 솔비톨, 만니톨, 자이리톨, 아라비니톨, 프로판올 및 부탄올이 바람직하다.The alcohol that can be dehydrated is not particularly limited, but for example, sorbitol, mannitol, ziritol, arabinitol, propanol and butanol are preferable.

본 발명에 따른 다공성 금속-유기 골격 물질의 기능화 방법은 간단하면서도 효과적이다. The process for functionalizing porous metal-organic framework materials according to the invention is simple and effective.

또한 본 발명에 따른 기능화된 다공성 금속-유기 골격 물질은 고체산 촉매로 작용하여 알코올을 효과적으로 탈 수 시킬 수 있으며 산성을 가져 촉매, 촉매 담체 및 흡착제 등으로 활용될 수 있다.In addition, the functionalized porous metal-organic framework material according to the present invention can effectively dehydrate the alcohol by acting as a solid acid catalyst, and can be used as a catalyst, a catalyst carrier and an adsorbent due to acidity.

본 발명의 상기 기능화된 금속-유기 골결 물질은 다공성일 때 더욱 효과적이다.The functionalized metal-organic aggregate material of the present invention is more effective when porous.

도 1은 본 발명의 기능화방법에 따라 기능화된 MIL-101(Cr)의 X-선 회절(XRD) 패턴으로 도 1의 a, b 및 c는 각각 정제된 MIL-101(Cr), MIL-101(Cr)-SH 및 MIL-101(Cr)-SO3H에 대한 것이다.
도 2는 본 발명의 기능화방법에 따라 기능화된 MIL-101(Cr)의 FTIR 패턴으로 도 2의 a, b 및 c는 각각 정제된 MIL-101(Cr), MIL-101(Cr)-SH 및 MIL-101(Cr)-SO3H에 대한 것이다.
도 3은 본 발명의 기능화방법에 따라 얻어진 MIL-101(Cr)-SO3H을 사용한 프로판올, 2-부탄올 및 1-부탄올의 탈수 반응 결과를 보여 주는 것이다.
1 is an X-ray diffraction (XRD) pattern of MIL-101 (Cr) functionalized according to the functionalization method of the present invention, a, b and c of Figure 1 are purified MIL-101 (Cr), MIL-101, respectively For (Cr) -SH and MIL-101 (Cr) -SO 3 H.
Figure 2 is a FTIR pattern of MIL-101 (Cr) functionalized according to the functionalization method of the present invention a, b and c of Figure 2 are purified MIL-101 (Cr), MIL-101 (Cr) -SH and For MIL-101 (Cr) -SO 3 H.
Figure 3 shows the results of dehydration of propanol, 2-butanol and 1-butanol using MIL-101 (Cr) -SO 3 H obtained according to the functionalization method of the present invention.

이하, 구체적인 실시예를 통해 본 발명을 상세히 설명하나 이러한 구체적인 실시예가 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to specific examples, but these specific examples do not limit the scope of the present invention.

[실시예 1] (MIL-101(Cr)의 기능화)Example 1 (functionalization of MIL-101 (Cr))

MIL-101(Cr)-AS을 합성하고(Crystal Growth Design, 10, 1860, 2010) 이 물질을 이용하여 유리 시험관에 0.3 g의 MIL-101(Cr)-AS을 넣고 20mL의 DMF를 가하여 현탁액으로 만들었다. 70 oC로 가열 후 초음파 발생기 (VC×750, Sonic & materials)를 이용하여 시험관 속의 현탁액에 초음파를 60분간 조사하였다. 냉각 후 고체를 필터하여 회수하였고 100 oC에서 5시간 건조하여 정제된 MIL-101(Cr) 0.25g을 얻었다. 2회 정제하여 모은 MIL-101(Cr) 0.3 g을 0.8 기압의 진공하에서 150 ℃에서 건조 후 냉각하고 시스테아민 0.096 g (1.25 mmol)을 에탄올 30 mL에 첨가한 후 80 oC에서 8시간 동안 가열 환류 시켰다. 그 후 필터링하고 건조 후 MIL-101(Cr) (MIL-101(Cr)-SH라고 함) 0.3 g을 얻었다. 이와 같은 방법으로 합성한 MIL-101(Cr)-SH 0.4 g을 H2O2 20 mL(15 %)로 45 oC에서 2시간동안 산화시켰다. 산화 종료 15분을 남기고 최종적으로 0.2 M 황산 10 mL를 첨가하여 산성화를 완결하였고 필터, 건조 후 최종적으로 얻어진 기능화된 물질(MIL-101(Cr)-SO3H라고 명명) 약 0.4 g을 얻었다. Synthesis of MIL-101 (Cr) -AS (Crystal Growth Design, 10, 1860, 2010) Using this material, 0.3 g of MIL-101 (Cr) -AS was added to a glass test tube and 20 mL of DMF was added to the suspension. made. After heating to 70 ° C., ultrasonic waves were irradiated to the suspension in the test tube for 60 minutes using an ultrasonic generator (VC × 750, Sonic & materials). After cooling, the solid was collected by filtration and dried at 100 ° C. for 5 hours to obtain 0.25 g of purified MIL-101 (Cr). 0.3 g of MIL-101 (Cr), which was collected and purified twice, was dried at 150 ° C. under a vacuum of 0.8 atm, cooled, and 0.096 g (1.25 mmol) of cysteamine was added to 30 mL of ethanol for 8 hours at 80 ° C. Heated to reflux. Then filtered and after drying 0.3 g of MIL-101 (Cr) (called MIL-101 (Cr) -SH) was obtained. 0.4 g of MIL-101 (Cr) -SH synthesized in this manner was oxidized with 20 mL (15%) of H 2 O 2 at 45 ° C. for 2 hours. After 15 minutes of oxidation, 10 mL of 0.2 M sulfuric acid was finally added to complete acidification, and about 0.4 g of the final functionalized material (named MIL-101 (Cr) -SO 3 H) obtained after drying was obtained.

그림 1과 2는 기능화 단계에 따른 X-선 회절 형태 및 FTIR 스펙트럼을 보여 주고 있으며 기능화 단계에 따라 결정구조는 붕괴되지 않고 유지되고 기능화에 따라 C-N 결합을 가짐을 보여 주고 있다. MIL-10(Cr), MIL-101(Cr)-SH 및 MIL-101(Cr)-SO3H는 각각 3084, 1908, 1592 m2/g의 BET 표면적을 보이며 뛰어난 다공성을 유지함을 알 수 있다.
Figures 1 and 2 show the X-ray diffraction patterns and FTIR spectra according to the functionalization step, and show that the crystal structure remains undisrupted and has CN bonds depending on the functionalization step. MIL-10 (Cr), MIL-101 (Cr) -SH, and MIL-101 (Cr) -SO 3 H show 3084, 1908, 1592 m 2 / g BET surface area and maintain excellent porosity. .

[실시예 2] (MIL-101(Cr)-SOExample 2 (MIL-101 (Cr) -SO 33 H을 사용한 솔비톨 탈수 반응)Sorbitol dehydration using H)

실시예 1에서 얻어진 MIL-101(Cr)-SO3H 촉매를 사용하여 솔비톨의 탈수 반응을 진행하였다. 솔비톨 10 g과 MIL-101(Cr)-SO3H 촉매 0.2g을 마이크로파 반응기에 담은 후 MARS-5 마이크로파 오븐에서 180 oC에서 3시간 반응시켰다. 냉각 후 HPLC로 분석한 결과, 비록 진공처리 등 생성된 물을 제거한 공정이 없었으나 솔비톨 전환율은 100%이고 이소소바이드 수율은 49.6%였다. 얻어진 이소소바이드는 HPLC로 확인하였다.
The dehydration reaction of sorbitol was conducted using the MIL-101 (Cr) -SO 3 H catalyst obtained in Example 1. 10 g of sorbitol and 0.2 g of MIL-101 (Cr) -SO 3 H catalyst were placed in a microwave reactor and reacted for 3 hours at 180 ° C. in a MARS-5 microwave oven. As a result of HPLC analysis after cooling, the sorbitol conversion rate was 100% and the isosorbide yield was 49.6%, although there was no process to remove the generated water such as vacuum treatment. The obtained isosorbide was confirmed by HPLC.

[실시예 3] (MIL-101(Cr)-SOExample 3 (MIL-101 (Cr) -SO 33 H을 사용한 2-butanol 탈수 반응)2-butanol dehydration using H)

실시예 1에서 얻은 MIL-101(Cr)-SO3H 촉매 0.1 g을 사용하여 기상으로 2-butanol 탈수 반응을 진행하였다. 반응물 공간속도는 1h-1였으며 촉매는 300 oC에서 탈수하였고 반응온도는 275 oC 였다. 그림 3과 같이 탈수 반응으로 부텐류를 용이하게 얻어 수 있음을 GC로 확인하였고 촉매 성능은 4시간 이상 안정적이었다.
2-butanol dehydration was carried out in the gas phase using 0.1 g of MIL-101 (Cr) -SO 3 H catalyst obtained in Example 1. The reactant space velocity was 1 h −1 , the catalyst was dehydrated at 300 ° C., and the reaction temperature was 275 ° C. As shown in Figure 3, it was confirmed by GC that butenes could be easily obtained by dehydration reaction, and the catalyst performance was stable for more than 4 hours.

[비교예 1] (MIL-101(Cr)을 사용한 솔비톨 탈수 반응)Comparative Example 1 (Sorbitol Dehydration Reaction Using MIL-101 (Cr))

기능화 하지 않고 정제만 한 MIL-101(Cr)을 촉매로 사용한 것을 제외하고는 실시예 2와 동일하게 탈수 반응을 수행하였다. The dehydration reaction was carried out in the same manner as in Example 2, except that MIL-101 (Cr), which was purified without functionalization, was used as a catalyst.

솔비톨 전환율은 10% 이내이고 이소소바이드 수율은 매우 낮음을 알 수 있었다.
Sorbitol conversion was within 10% and isosorbide yield was very low.

[비교예 2] (MIL-101(Cr)을 사용한 2-butanol 탈수 반응)Comparative Example 2 (2-butanol dehydration reaction using MIL-101 (Cr))

기능화 하지 않고 정제만 한 MIL-101(Cr)을 촉매로 사용한 것을 제외하고는 실시예 3고 동일하게 탈수 반응을 수행하였다.The dehydration reaction was carried out in the same manner as in Example 3, except that MIL-101 (Cr), which was purified without functionalization, was used as a catalyst.

2- 부탄올 전환율은 10% 이내로 매우 낮음을 알 수 있었다.
2-butanol conversion was found to be very low within 10%.

실시예와 비교예의 결과로부터 본 발명에 따라 아미노타이올류를 이용하여 배위결합을 유도하고 이어서 산화하여 산성을 갖게 하는 다공성 금속-유기 골격 물질의 기능화방법은 용이하게 다공성 금속-유기 골격 물질을 기능성을 부여할 수 있는 경제적이고 효과적인 기능화 방법임을 알 수 있다. According to the present invention, the functionalization method of the porous metal-organic skeleton material which induces coordination bond using aminothiols and then oxidizes to give acidity according to the present invention results in easy functionalization of the porous metal-organic skeleton material. It can be seen that it is an economical and effective method of functionalization that can be given.

또한 이러한 산성을 갖는 촉매는 솔비톨 혹은 2-부탄올 같은 알코올의 탈수에 성공적으로 적용될 수 있는 것을 알 수 있다.It can also be seen that these acidic catalysts can be successfully applied to the dehydration of alcohols such as sorbitol or 2-butanol.

Claims (14)

1) 불포화 배위자리를 갖는 다공성 금속-유기 골격 물질과 배위가능한 자리 및 타이올기를 동시에 갖는 화합물을 혼합하여 현탁액을 제조하는 단계; 및
2) 1)단계의 현탁액을 가열하는 단계를 포함하는 다공성 금속-유기 골격 물질의 기능화방법.
1) preparing a suspension by mixing a porous metal-organic backbone material having an unsaturated coordination site with a compound having a coordinable site and a thiol group at the same time; And
2) A method of functionalizing a porous metal-organic backbone material comprising heating the suspension of step 1).
1) 불포화 배위자리를 갖는 다공성 금속-유기 골격 물질과 배위가능한 자리 및 타이올기를 동시에 갖는 화합물을 혼합하여 현탁액을 제조하는 단계;
2) 1)단계의 현탁액을 가열하는 단계;
3) 2)단계의 가열한 현탁액을 산화제로 산화하거나 2)단계의 가열한 현탁액을 고액 분리하여 얻어진 고체를 산화제로 산화하는 단계;
4) 3)단계의 반응물에서 고체를 분리하는 단계; 및
5) 분리된 고체를 건조하는 단계를 포함하는 다공성 금속-유기 골격 물질의 기능화방법.
1) preparing a suspension by mixing a porous metal-organic backbone material having an unsaturated coordination site with a compound having a coordinable site and a thiol group at the same time;
2) heating the suspension of step 1);
3) oxidizing the heated suspension of step 2) with an oxidant or solidifying the solid obtained by solid-liquid separation of the heated suspension of step 2);
4) separating the solids from the reactants of step 3); And
5) A method of functionalizing a porous metal-organic framework material comprising drying the separated solid.
제 1항 또는 제 2항에 있어서,
금속-유기 골격 물질은 금속 성분이 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Mg, Ca, Sr, Ba, Sc, Y, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb 또는 Bi 에서 선택된 하나 이상의 금속 또는 그 금속 화합물이고, 유기물이 카본산기, 카본산 음이온기, 아미노기(-NH2), 이미노기(
Figure pat00002
), 아미드기(-CONH2), 설폰산기(-SO3H), 설폰산 음이온기(-SO3 -), 메탄디티오산기(-CS2H), 메탄디티오산 음이온기(-CS2 -), 피리딘기 또는 피라진기에서 선택되는 하나 이상의 작용기를 가지는 화합물 또는 그 혼합물인 다공성 금속-유기 골격 물질의 기능화 방법.
3. The method according to claim 1 or 2,
Metal-organic frameworks are composed of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu At least one metal selected from Ag, Au, Zn, Cd, Hg, Mg, Ca, Sr, Ba, Sc, Y, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb or Bi, or The metal compound, and the organic substance is a carboxylic acid group, a carboxylic acid anion group, an amino group (-NH 2 ), an imino group (
Figure pat00002
), Amide group (-CONH 2), a sulfonic acid group (-SO 3 H), sulfonic acid anion group (-SO 3 -), methane dithiol Osan group (-CS 2 H), methane dithiol Osan anion group (-CS 2 -A method of functionalizing a porous metal-organic framework material which is a compound having at least one functional group selected from pyridine group or pyrazine group or a mixture thereof.
제 1항 또는 제 2항에 있어서,
배위가능한 자리 및 타이올기를 동시에 갖는 화합물은 시스테아민, 3-아미노-1-프로판타이올, 2-아미노-1-프로판타이올, 1-아미노-1-프로판타이올, 4-아미노-1-부탄타이올, 3-아미노-1-부탄타이올, 2-아미노-1-부탄타이올, 1-아미노-1-부탄타이올, 5-아미노-1-펜탄타이올, 4-아미노-1-펜탄타이올, 3-아미노-1-펜탄타이올, 2-아미노-1-펜탄타이올 및 1-아미노-1-펜탄타이올중에서 선택되는 어느 하나인 다공성 금속-유기 골격 물질의 기능화 방법.
3. The method according to claim 1 or 2,
Compounds having coordinating sites and thiol groups at the same time are cysteamine, 3-amino-1-propanethiol, 2-amino-1-propanethiol, 1-amino-1-propanethiol, 4-amino-1 -Butanethiol, 3-amino-1-butanethiol, 2-amino-1-butanethiol, 1-amino-1-butanethiol, 5-amino-1-pentanethiol, 4-amino-1 A method for functionalizing a porous metal-organic framework material, which is any one selected from -pentanethiol, 3-amino-1-pentanethiol, 2-amino-1-pentanethiol, and 1-amino-1-pentanethiol.
제 1항 또는 제 2항에 있어서,
불포화 배위자리는 다공성 금속-유기 골격 물질을 진공하에서 25 ~ 500 ℃에서 처리 또는 진공으로 처리하여 생성되는 것인 다공성 금속-유기 골격 물질의 기능화 방법.
3. The method according to claim 1 or 2,
Unsaturated coordination sites are produced by treating or vacuuming a porous metal-organic backbone material at 25 to 500 ° C. under vacuum.
제 1항 또는 제 2항에 있어서,
불포화 배위자리를 가질 수 있는 다공성 금속-유기 골격 물질은 MIL-100(Cr), MIL-100(Fe), MIL-101(Cr), Cu-BTC, MOF-505, MOF-4, Mn-BTT, SLUG-22, SLUG-21, MOF-74 및 UMCM-150중에서 선택되는 하나인 다공성 금속-유기 골격 물질의 기능화 방법.
3. The method according to claim 1 or 2,
Porous metal-organic backbone materials that may have unsaturated coordination sites include MIL-100 (Cr), MIL-100 (Fe), MIL-101 (Cr), Cu-BTC, MOF-505, MOF-4, Mn-BTT , SLUG-22, SLUG-21, MOF-74 and UMCM-150 is a method of functionalizing a porous metal-organic framework material.
제 1항 또는 제 2항에 있어서,
2)단계의 가열은 35 내지 200℃의 온도에서 수행되는 다공성 금속-유기 골격 물질의 기능화 방법.
3. The method according to claim 1 or 2,
Heating of step 2) is carried out at a temperature of 35 to 200 ° C.
제 2항에 있어서,
산화제는 과산화수소, 산소, 공기 및 t-부틸하이드로퍼옥사이드인 다공성 금속-유기 골격 물질의 기능화 방법.
The method of claim 2,
The oxidizing agent is hydrogen peroxide, oxygen, air and t-butylhydroperoxide.
제 1항 및 제 3항 내지 제 8항중에서 선택되는 어느 한 항에 따라 제조된 기능화된 금속-유기 골격 물질.Functionalized metal-organic backbone material prepared according to any one of claims 1 and 3 to 8. 제 2항 내지 제 8항중에서 선택되는 어느 한 항에 의해 제조된 기능화된 금속-유기 골격 물질.A functionalized metal-organic backbone material prepared by any one of claims 2 to 8. 제 10항의 기능화된 금속-유기 골격 물질을 산촉매로 사용하여 알코올을 탈수하는 방법.A method of dehydrating an alcohol using the functionalized metal-organic backbone material of claim 10 as an acid catalyst. 제 10항에 있어서,
알코올이 솔비톨, 만니톨, 자이리톨, 아라비니톨, 프로판올 및 부탄올중에서 선택되는 하나인 알코올을 탈수하는 방법.
The method of claim 10,
A method of dehydrating an alcohol, wherein the alcohol is one selected from among sorbitol, mannitol, xylitol, arabinitol, propanol and butanol.
제 9항에 따른 기능화된 다공성 금속-유기 골격 물질을 사용하여 중금속을 흡착 제거하는 방법.Method for adsorption and removal of heavy metals using the functionalized porous metal-organic framework material according to claim 9. 제 10항에 따른 기능화된 다공성 금속-유기 골격 물질을 사용하여 중금속을 흡착 제거하는 방법.Process for adsorption and removal of heavy metals using the functionalized porous metal-organic framework material according to claim 10.
KR1020110035698A 2011-04-18 2011-04-18 A functionalization method of porous metal-organic framework materials, solid acid catalysts using the same materials and methods to dehydrate alcohols with the same catalysts KR20120118240A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020110035698A KR20120118240A (en) 2011-04-18 2011-04-18 A functionalization method of porous metal-organic framework materials, solid acid catalysts using the same materials and methods to dehydrate alcohols with the same catalysts
PCT/KR2012/002618 WO2012144758A2 (en) 2011-04-18 2012-04-06 Method for functionalizing porous metal-organic framework materials, solid acid catalyst using same, and method for evaporating alcohol using the solid acid catalyst
CN201210114890XA CN102744105A (en) 2011-04-18 2012-04-18 Method for functionalizing porous metal-organic framework materials, solid acid catalyst using same, and method for evaporating alcohol using the solid acid catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110035698A KR20120118240A (en) 2011-04-18 2011-04-18 A functionalization method of porous metal-organic framework materials, solid acid catalysts using the same materials and methods to dehydrate alcohols with the same catalysts

Publications (1)

Publication Number Publication Date
KR20120118240A true KR20120118240A (en) 2012-10-26

Family

ID=47285764

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110035698A KR20120118240A (en) 2011-04-18 2011-04-18 A functionalization method of porous metal-organic framework materials, solid acid catalysts using the same materials and methods to dehydrate alcohols with the same catalysts

Country Status (1)

Country Link
KR (1) KR20120118240A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007889A (en) * 2012-12-31 2013-04-03 湖南大学 Preparation method of metal-organic frame material La-BDC adsorbing CO2 and modified product of metal-organic frame material La-BDC
CN105750537A (en) * 2016-02-19 2016-07-13 中国科学院合肥物质科学研究院 Gold@metal organic frame material nano-particle array and preparation method and application thereof
CN105921117A (en) * 2016-05-25 2016-09-07 湖北大学 Metal organic framework material and preparing method and application thereof
CN112275315A (en) * 2020-10-30 2021-01-29 黑龙江新和成生物科技有限公司 Sulfur-modified metal-loaded molecular sieve catalyst, preparation method thereof and application thereof in preparation of isosorbide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007889A (en) * 2012-12-31 2013-04-03 湖南大学 Preparation method of metal-organic frame material La-BDC adsorbing CO2 and modified product of metal-organic frame material La-BDC
CN103007889B (en) * 2012-12-31 2014-08-13 湖南大学 Preparation method of metal-organic frame material La-BDC adsorbing CO2 and modified product of metal-organic frame material La-BDC
CN105750537A (en) * 2016-02-19 2016-07-13 中国科学院合肥物质科学研究院 Gold@metal organic frame material nano-particle array and preparation method and application thereof
CN105921117A (en) * 2016-05-25 2016-09-07 湖北大学 Metal organic framework material and preparing method and application thereof
CN112275315A (en) * 2020-10-30 2021-01-29 黑龙江新和成生物科技有限公司 Sulfur-modified metal-loaded molecular sieve catalyst, preparation method thereof and application thereof in preparation of isosorbide
CN112275315B (en) * 2020-10-30 2022-08-16 黑龙江新和成生物科技有限公司 Sulfur-modified metal-loaded molecular sieve catalyst, preparation method thereof and application thereof in preparation of isosorbide

Similar Documents

Publication Publication Date Title
Polyzoidis et al. Continuous microreactor synthesis of ZIF-8 with high space–time-yield and tunable particle size
WO2012144758A2 (en) Method for functionalizing porous metal-organic framework materials, solid acid catalyst using same, and method for evaporating alcohol using the solid acid catalyst
JP5689903B2 (en) Method for producing porous organic-inorganic hybrid body
EP2152414B1 (en) Preparation of surface functionalized porous organic-inorganic hybrid materials with coordinatively unsaturated metal sites and catalytic applications thereof
Rostamnia et al. Nanoarchitecturing of open metal site Cr-MOFs for oxodiperoxo molybdenum complexes [MoO (O2) 2@ En/MIL-100 (Cr)] as promising and bifunctional catalyst for selective thioether oxidation
Lili et al. Catalysis by metal–organic frameworks: proline and gold functionalized MOFs for the aldol and three-component coupling reactions
US9777029B2 (en) Process for obtaining metal-organic materials with structure type MIL-101 (Cr) and MIL-101-Cr-MX+
Peng et al. Application of metal organic frameworks M (bdc)(ted) 0.5 (M= Co, Zn, Ni, Cu) in the oxidation of benzyl alcohol
Li et al. Mesoporous SBA-15 material functionalized with ferrocene group and its use as heterogeneous catalyst for benzene hydroxylation
Liu et al. Selective photocatalytic oxidation of thioanisole on DUT-67 (Zr) mediated by surface coordination
Vardhan et al. Iridium complex immobilization on covalent organic framework for effective C—H borylation
Yue et al. H 5 PV 2 Mo 10 O 40 encapsulated into Cu 3 (BTC) 2 as an efficient heterogeneous nanocrystalline catalyst for styrene epoxidation
He et al. Suspending ionic single-atom catalysts in porphyrinic frameworks for highly efficient aerobic oxidation at room temperature
KR101569664B1 (en) Porous 3-dimensional structure in which holey graphene oxides are interlayer-linked and preparation thereof
KR20120118240A (en) A functionalization method of porous metal-organic framework materials, solid acid catalysts using the same materials and methods to dehydrate alcohols with the same catalysts
Mutiah et al. Immobilisation of L-proline onto mixed-linker zirconium MOFs for heterogeneous catalysis of the aldol reaction
Amayuelas et al. Highly thermally stable heterogeneous catalysts: study of 0D and 3D porphyrinic MOFs
KR101091875B1 (en) A purification method of porous metal-organic framework materials
Nandigama et al. Rapid synthesis of mono/bimetallic (Zn/Co/Zn–Co) zeolitic imidazolate frameworks at room temperature and evolution of their CO 2 uptake capacity
KR100895413B1 (en) A method for preparing porous organic-inorganic hybrid materials, porous organic-inorganic hybrid materials obtained by the method and catalytic uses of the materials
KR101094075B1 (en) Novel organic­inorganic hybrid nano porous material and method for preparing thereof
Karimi et al. Highly dispersed palladium nanoparticles supported on an imidazolium-based ionic liquid polymer: an efficient catalyst for oxidation of alcohols
KR101082832B1 (en) Method for preparing organic-inorganic hybrid nano porous material, organic-inorganic hybrid nano porous materials obtained by said method and use as an absorbent
CN111732736A (en) Ni (II) -Salen ligand metal organic framework crystal material and preparation method and application thereof
KR100912790B1 (en) A method for preparing porous organic-inorganic hybrid materials, porous organic-inorganic hybrid materials obtained by the method and catalytic uses of the materials

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
WITB Written withdrawal of application