KR20120115939A - Method for purifying sewage-pollution water using zero valent iron/magnetite mixture - Google Patents

Method for purifying sewage-pollution water using zero valent iron/magnetite mixture Download PDF

Info

Publication number
KR20120115939A
KR20120115939A KR1020120025032A KR20120025032A KR20120115939A KR 20120115939 A KR20120115939 A KR 20120115939A KR 1020120025032 A KR1020120025032 A KR 1020120025032A KR 20120025032 A KR20120025032 A KR 20120025032A KR 20120115939 A KR20120115939 A KR 20120115939A
Authority
KR
South Korea
Prior art keywords
iron
magnetite
fenton
reaction
wastewater treatment
Prior art date
Application number
KR1020120025032A
Other languages
Korean (ko)
Other versions
KR101358855B1 (en
Inventor
박재우
윤동민
장준원
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of KR20120115939A publication Critical patent/KR20120115939A/en
Application granted granted Critical
Publication of KR101358855B1 publication Critical patent/KR101358855B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/15Treatment of sludge; Devices therefor by de-watering, drying or thickening by treatment with electric, magnetic or electromagnetic fields; by treatment with ultrasonic waves

Abstract

PURPOSE: A sewage and wastewater treatment method is provided to shorten times needed for the entire treatment processes by collecting iron sludge and magnetite using magnetism. CONSTITUTION: A sewage and wastewater treatment method includes a process in which a fenton oxidation process is implemented using a mixed catalyst containing zerovalent iron and magnetite at the weight ratio of 1:3 to 1:4.5. The zerovalent iron and the magnetite are simultaneously introduced to implement the fenton oxidation process. Sludge generated from the fenton oxidation process is magnetism-based separated using an electromagnet.

Description

영가철 및 자철석 혼합 촉매를 이용한 오폐수 처리 방법 {Method for purifying sewage-pollution water using zero valent iron/magnetite mixture}Method for purifying sewage using mixed catalysts of ferrous iron and magnetite {Method for purifying sewage-pollution water using zero valent iron / magnetite mixture}

본 발명은 펜톤산화공정을 이용한 오폐수 처리 방법에 관한 것으로서, 보다 구제적으로 영가철과 자철석의 혼합 촉매을 이용하여 효과적이고 신속하게 오폐수를 처리하는 방법에 관한 것이다.The present invention relates to a wastewater treatment method using a fenton oxidation process, and more particularly, to a method for effectively and quickly treating wastewater using a mixed catalyst of ductile iron and magnetite.

H.J.H. Fenton (1984)에 의해 발견된 펜톤 반응은 현재까지도 산화공정에 널리 사용되고 있다. 1930년대에 Haber와 Weiss (1934)에 의해 펜톤 반응의 주산화제로 제시된 하이드록시 라디칼(OH)은 기본적으로 다음과 같은 식에서 발생된다. H.J.H. The Fenton reaction, discovered by Fenton (1984), is still widely used in oxidation processes. The hydroxy radicals (OH), presented by Haber and Weiss (1934) as main oxidants in the Fenton reaction, basically occur in the following equation.

Fe2 + + H2O2 → Fe3 + + OH + OH- (1) Fe 2 + + H 2 O 2 → Fe 3 + + OH + OH - (1)

하이드록시 라디칼(OH)은 강력한 산화제이며, 기준 산화환원 포텐셜(E°)는 -2.8 Volts이고, 하이드록시 라디칼의 다른 유기 화합물과의 반응 속도는 약 109 ~ 1010mol-1sec-1이다(Haag and Yao, 1992). 유기 화합물이 같이 존재할 때 하이드록시 라디칼은 수소원자 제거 반응(H abstraction reaction) 혹은 전자친화적 첨가 반응(electrophilic addition reaction)을 진행시킬 수 있다. 따라서 하이드록시 라디칼은 질소 치환된 방향족 화합물, 염소화된 방향족 화합물, 알켄 및 지방족 화합물을 포함한 유해한 유기 화합물을 산화시키는 능력을 가지고 있다. The hydroxy radical (OH) is a powerful oxidant, the reference redox potential (E °) is -2.8 Volts, and the rate of reaction of the hydroxy radical with other organic compounds is about 10 9-10 10 mol -1 sec -1 . (Haag and Yao, 1992). When the organic compounds are present together, the hydroxy radicals can undergo a H abstraction reaction or an electrophilic addition reaction. The hydroxy radicals therefore have the ability to oxidize harmful organic compounds including nitrogen substituted aromatics, chlorinated aromatics, alkenes and aliphatic compounds.

이러한 펜톤산화공정에서 산화철 촉매를 사용하는 방법에 관한 발명은 이와 관련하여 한국특허등록 제10-0495765호에는 펜톤산화처리에 효과적인 산화철 촉매를 제조하는 방법에 있어서, 이온성 철을 알칼리제로 처리하여 수산화철을 제조한 후 100 내지 1000℃ 사이의 온도에서 2 내지 8시간 동안 소성시키는 것을 특징으로 하는 펜톤산화처리용 철산화물 촉매의 제조방법이 기재되어 있으며, 이에 의해 제조된 철산화물 촉매를 이용하여 난분해성 유기물을 함유하는 폐수처리 또는 음용수처리에 이용하는 방법이 개시되어 있다. The invention related to the method of using the iron oxide catalyst in the fenton oxidation process is related to the Korean Patent Registration No. 10-0495765 in the method for producing an iron oxide catalyst effective for fenton oxidation treatment, by treating the ionic iron with an alkali chemicals iron hydroxide After the preparation is described a method for producing an iron oxide catalyst for fenton oxidation treatment, which is calcined for 2 to 8 hours at a temperature between 100 to 1000 ℃, it is difficult to decompose using the iron oxide catalyst prepared by Disclosed is a method for treating wastewater or drinking water containing organic matter.

또한 한국등록특허 10-0168280호에는 난분해성 폐수의 펜톤처리공정에서 발생되는 펜톤 무기 슬러지의 처리 방법에 관한 발명이 개시되어 있다. In addition, Korean Patent No. 10-0168280 discloses a method for treating a Fenton inorganic sludge generated in the Fenton treatment process of difficult-decomposable wastewater.

통상 펜톤의 산화효과는 pH 가 3.5 부근일 때 가장 강력한 것으로 알려져 있다. 기존의 펜톤고도산화처리공정의 경우 크게 pH조절, 중화공정, 응집공정, 침전공정으로 나눌 수 있으며 중화공정에서 많은 양의 철슬러지가 발생하고, 이렇게 발생하는 철슬러지는 후단 응집 및 침전조가 항상 필요함으로, 공간적인 제약 및 폐수의 체류시간이 늘어나는 단점이 있다. 특히 이러한 종래 처리기법에서의 야기되는 문제점은 다량의 철슬러지의 발생한다는 사실과 철촉매로 인해 발생하는 철이온에 의해 철색도를 유발할 수 있다는 것이다. 따라서 이러한 문제를 해결할 수 있는 오폐수 처리 방법의 개발이 요구되고 있다.Usually the oxidizing effect of fenton is known to be the strongest when the pH is around 3.5. Conventional Fenton advanced oxidation treatment process can be divided into pH control, neutralization process, coagulation process, and precipitation process, and a large amount of iron sludge is generated in the neutralization process. As a result, there is a disadvantage in that the space and the residence time of the waste water increase. In particular, the problems caused by this conventional treatment technique is the fact that a large amount of iron sludge is generated and the iron color can be caused by the iron ions generated by the iron catalyst. Therefore, the development of wastewater treatment method that can solve this problem is required.

본 발명의 목적은 영가철과 자철석의 혼합 촉매를 사용함으로써, 기존 펜톤반응의 효율을 유지하면서 철촉매로 인해 발생하는 철색도를 효과적으로 감소시킬 수 있으며, 또한 자철석의 자성을 이용하여 흡착된 철슬러지의 분리가 용이하고 전체 처리시간이 감소된 효과적인 오폐수 처리 방법을 제공하는 것이다.It is an object of the present invention to effectively reduce the iron color generated by the iron catalyst while maintaining the efficiency of the existing Fenton reaction, by using a mixed catalyst of ductile iron and magnetite, and also iron sludge adsorbed using magnetite magnetite It is to provide an effective wastewater treatment method which is easy to separate and reduces the total treatment time.

상기 기술적 과제를 해결하기 위하여, 본 발명은 영가철과 자철석을 1:3 ~ 1:4.5의 중량비로 포함하는 혼합 촉매를 이용하여 펜톤산화반응을 수행하는 단계를 포함하는 오폐수 처리 방법을 제공한다. In order to solve the above technical problem, the present invention provides a wastewater treatment method comprising the step of performing a phenton oxidation reaction using a mixed catalyst containing a ductile iron and magnetite in a weight ratio of 1: 3 to 1: 4.5.

본 발명의 일실시예에 의하면, 영가철과 자철석을 동시에 투입하여 펜톤산화반응을 수행하는 것이 바람직하다. According to one embodiment of the present invention, it is preferable to perform a phenton oxidation reaction by simultaneously adding a duct iron and magnetite.

또한 본 발명의 일실시예에 따르면, 상기 혼합 촉매의 펜톤산화반응 이후에 생성된 슬러지를 자성 분리하는 단계를 더 포함할 수 있으며, 상기 자성 분리는 전자석을 이용하여 수행될 수 있다.In addition, according to an embodiment of the present invention, the method may further include magnetic separation of the sludge produced after the Fenton oxidation reaction of the mixed catalyst, the magnetic separation may be performed using an electromagnet.

본 발명에 따른 영가철와 자철석의 혼합 촉매를 이용하면 기존 펜톤반응의 효율을 유지하면서 철촉매로 인해 발생하는 색도(철이온 및 잔류 수산화철)를 효과적으로 감소시킬 수 있다. 또한 펜톤반응으로 생성된 수산화철들은 조금씩 자철석 표면에 흡착되면서 이러한 철슬러지와 자철석 모두 자성을 이용하여 회수할 수 있다. 이에 따라 펜톤산화공정 다음에 철슬러지 처리를 위한 응집 및 침전조 사용이 필요하지 않으며, 전체적인 처리시간을 상당히 단축시킬 수 있다. Using a mixed catalyst of ductile iron and magnetite according to the present invention can effectively reduce the color (iron ions and residual iron hydroxide) generated by the iron catalyst while maintaining the efficiency of the existing Fenton reaction. In addition, iron hydroxides produced by the Fenton reaction are adsorbed onto the magnetite surface little by little, and both iron sludge and magnetite can be recovered using magnetism. This eliminates the need for agglomeration and sedimentation tanks for iron sludge treatment following the fenton oxidation process and can significantly shorten the overall treatment time.

도 1은 본 발명에 따른 오폐수 처리 장치의 개요도이다.
도 2는 철색도를 감소시키기 영가철과 자철석의 최적의 혼합비율을 보여주는 그래프이다.
도 3은 펜톤반응에 사용된 철촉매들의 X-선 회절(XRD) 분석결과로서, (a) 순수 자철석, (b) 순수 영가철, (c) 영가철 펜톤반응 이후 철촉매 및 (d) 영가철/자철석 혼합 펜톤반응 이후, ●:자철석, ○:영가철 및 ★:수산화철을 나타낸다.
도 4는 시간별 펜톤반응에 의한 메틸오렌지 산화분해사진이며, 왼쪽부터 샘플 (1), (2) 대조군, (3), (4) 영가철과 자철석 동시사용, (5) 영가철 펜톤, (6) 영가철의 경우를 나타낸다.
도 5는 (1) 각 철촉매 시스템에 따른 시간별 메틸오렌지 산화분해 결과 및 (2) 철 슬러지 발생량을 나타내는 그래프이다.
도 6은 펜톤산화반응 완료 후 슬러지 자성분리사진으로서, 왼쪽부터 (1) 영가철 단독 반응 후 자철석을 재차 반응시켜 철 슬러지 흡착 실험, (2) 영가철과 자철석을 반응 초기부터 동시사용, (3) 일반적인 펜톤용 철촉매 사용 (염화제2철), (4) 영가철을 단독 사용한 경우를 나타낸다.
1 is a schematic diagram of a wastewater treatment apparatus according to the present invention.
2 is a graph showing the optimum mixing ratio of ductile iron and magnetite to reduce the iron color.
Figure 3 shows the results of X-ray diffraction (XRD) analysis of the iron catalysts used in the Fenton reaction, (a) pure magnetite, (b) pure ductile iron, (c) iron catalyst after the pentone reaction and (d) zero value After the iron / magnet mixed Fenton reaction, ●: magnetite, ○: permanent iron and ★: iron hydroxide.
Figure 4 is an oxidized decomposition picture of methyl orange by hourly Fenton reaction, from the left side of the sample (1), (2) control, (3), (4) simultaneous use of ferrous iron and magnetite, (5) ferric iron Fenton, (6 ) Indicates the case of zero iron.
5 is a graph showing (1) methyl orange oxidative decomposition results and (2) iron sludge generation amount according to each iron catalyst system.
6 is a sludge magnetic separation picture after the completion of the fenton oxidation reaction, from the left side (1) iron magnet sludge adsorption experiment by reacting the magnetite again after the reaction of the magnetite iron alone, (2) simultaneous use of the iron and magnetite from the initial reaction, (3 ) It shows the case of using iron catalyst for general Fenton (ferric chloride) and (4) using ferric iron alone.

이하 실시예를 통해 본 발명을 보다 상세히 설명한다. The present invention will be described in more detail with reference to the following examples.

본 발명에 따른 오폐수 처리 방법은 영가철과 자철석을 1:3 ~ 1:4.5의 중량비로 포함하는 혼합물을 이용하여 펜톤산화반응을 수행하는 단계를 포함하는 것이 특징이다. 본 발명의 일구현예에 의하면, 영가철과 자철석을 동시에 투입하여 펜톤산화반응을 수행하는 것이 바람직하다. Wastewater treatment method according to the invention is characterized in that it comprises the step of performing a phenton oxidation reaction using a mixture containing a ductile iron and magnetite in a weight ratio of 1: 3 to 1: 4.5. According to one embodiment of the present invention, it is preferable to perform a phenton oxidation reaction by simultaneously adding a duct iron and magnetite.

또한 본 발명의 일구현예에 따르면, 상기 혼합물의 펜톤산화반응 이후에 생성된 슬러지를 자성 분리하는 단계를 더 포함할 수 있으며, 상기 자성 분리는 전자석을 이용하여 수행될 수 있다.
In addition, according to one embodiment of the present invention, the method may further include a magnetic separation of the sludge produced after the fenton oxidation of the mixture, the magnetic separation may be performed using an electromagnet.

실시예Example

본 발명에서 시약은 325 메쉬 (<44 ㎛) 이하의 상용 영가철 파우더(Acros co.)와 5㎛ 이하의 자철석 파우더(Sigma co.)를 동시에 사용하였으며 수산화나트륨과 황산을 이용하여 pH를 조절하였다. 펜톤반응을 시작하기 위하여 과산화수소를 넣어주었다. 대상오염물질로는 메틸오렌지를 선택하였다.In the present invention, the reagent was used at the same time the commercial iron powder (Acros co.) Of less than 325 mesh (<44 ㎛) and magnetite powder (Sigma co.) Of less than 5 ㎛ and the pH was adjusted using sodium hydroxide and sulfuric acid. . Hydrogen peroxide was added to start the Fenton reaction. Methyl orange was chosen as the target pollutant.

비교조건으로 영가철만 사용한 펜톤산화, 자철석과 영가철을 동시사용한 혼합펜톤산화로 진행하였으며, 영가철과 자철석의 최적비율을 찾기 위하여 자철석양을 다양한 조건으로 조절하였다. 이때 과수의 양은 동일한 조건에서 실시하였다.
As a comparison condition, we proceeded with fenton oxidation using only ferrous iron and mixed fenton oxidation using magnetite and noble iron simultaneously. At this time, the amount of fruit was carried out under the same conditions.

실시예 1: 영가철과 자철석 혼합비율 결정Example 1 Determination of Mixed Ratio of Young's Iron and Magnetite

철색도를 감소시키기 위한 영가철과 자철석의 최적의 혼합비율을 확인하기 위해 실험 200 mL 광구병에 0.1g 영가철과 0.01g부터 0.6g까지 자철석을 다양하게 넣어준 다음 23 μM 과산화수소를 넣어 주어서 반응 실시하였다. 하기 표 1에는 영가철과 자철석 혼합비율 결정 실험 결과가 기재되어 있다. To determine the optimal mixing ratio of ferrous and magnetite to reduce iron color, add 0.1 g of ferrous iron and 0.01 g to 0.6 g of magnetite in an experimental 200 mL photosphere bottle and add 23 μM hydrogen peroxide. Was carried out. Table 1 below shows the results of experiments to determine the ratio of the mixed iron and magnetite.

영가철 중량 (mg)Young's Iron Weight (mg) 과산화수소 농도 (μM)Hydrogen Peroxide Concentration (μM) 자철석 중량 (mg)Magnetite weight (mg) 부유물질 농도 (mg/L)Suspended solids concentration (mg / L) 총 용존 철이온 농도
(mg/L)
Total dissolved iron ion concentration
(mg / L)
100100 2323 00 9.239.23 14.214.2 100100 2323 1010 7.597.59 14.314.3 100100 2323 2020 5.175.17 13.713.7 100100 2323 100100 2.312.31 13.913.9 100100 2323 200200 0.600.60 13.713.7 100100 2323 300300 0.070.07 13.813.8 100100 2323 400400 0.020.02 13.713.7 100100 2323 500500 0.200.20 13.513.5 100100 2323 600600 0.400.40 14.214.2

표 1은 영가철과 자철석 혼합비율 결정 실험 결과이다. 모든 조건에서 총 용존 철이온 농도는 13.5 mg/L에서 14.3 mg/L 의 분포로, 평균 13.90 ± 0.26 mg/L 이였으며, 비슷한 결과 값을 보여주었다. 이 결과는 자철석 중량범위 0.1g부터 0.6g까지 증가는 총 용존 철이온 농도에 영향을 주지 않는다는 것을 보여준다. 또한 자철석의 중량이 0.4g까지 증가함에 따라 펜톤 반응의 결과로 생기는 부유물질의 농도가 지속적으로 감소하였으며 자철석의 중량이 0.5g 및 0.6g일때는 부유물질의 농도가 오히려 증가하였다. 따라서 최적의 부유물질 감소를 보여주는 결과는 영가철과 자철석의 혼합 비율이 1:3 내지 1:4.5 중량비일 때 철색도가 현저하게 감소되는 것을 확인할 수 있었다.
Table 1 shows the results of experiments on the determination of the mixed ratio of ductile iron and magnetite. The total dissolved iron ion concentration in all conditions ranged from 13.5 mg / L to 14.3 mg / L, with an average of 13.90 ± 0.26 mg / L, showing similar results. The results show that increasing the magnetite weight range from 0.1 g to 0.6 g does not affect the total dissolved iron ion concentration. In addition, as the weight of magnetite increased to 0.4g, the concentration of suspended solids as a result of Fenton's reaction continuously decreased. When the weight of magnetite was 0.5g and 0.6g, the concentration of suspended solids increased. Therefore, the result showing the optimum suspended matter reduction was confirmed that the iron color is significantly reduced when the mixing ratio of iron and magnetite is 1: 3 to 1: 4.5 weight ratio.

실시예 2: 다양한 철촉매간의 펜톤 비교 실험Example 2: Fenton comparison experiment between various iron catalysts

오염물질을 메틸오렌지로 하여 영가철 단독 사용 펜톤산화반응, 영가철/자철석 혼합시스템 펜톤산화반응, 일반적인 철염을 이용한 펜톤산화반응 비교 실험을 수행하였으며, 이때 과수농도는 상기 실시예 1에 명시된 것과 같다. 이때 오염물질 제거 농도는 흡광광도계를 이용하여 측정하였으며 수산화철의 생성량은 부유물질 측정 장비를 이용하여 0.45 ㎛ 멤브레인에 의해 걸러진 질량을 비교하여 측정하였다. 도 3은 펜톤반응에 사용된 철촉매들의 X-선 회절(XRD) 분석결과로서, (a) 순수 자철석, (b) 순수 영가철, (c) 영가철 펜톤반응 이후 철촉매 및 (d) 영가철/자철석 혼합 펜톤반응 이후, ●:자철석, ○:영가철 및 ★:수산화철을 나타낸다. (c) 영가철 펜톤반응 이후 영가철의 픽의 강도가 (b) 순수한 영가철에 비해 현저히 감소하였으며, 자철석의 픽도 발생되었다. 이 결과는 영가철을 이용한 펜톤 산화 결과 영가철이 최종적으로 자철석으로 변한다는 것을 알 수 있다. (d) 영가철/자철석 혼합 펜톤반응 이후도 마찬가지로 영가철과 자철석의 픽이 공존 하는 것으로 확인되었다.
Methane was used as a contaminant for the comparison of Fenton's oxidation using the ferrous iron alone, Fenton's oxidation system using the ferrous iron / magnet mixture system, and the Fenton's oxidation reaction using common iron salts. . At this time, the pollutant removal concentration was measured by using an absorbance spectrophotometer, and the amount of iron hydroxide produced was measured by comparing the mass filtered by the 0.45 μm membrane using a suspended matter measuring device. Figure 3 shows the results of X-ray diffraction (XRD) analysis of the iron catalysts used in the Fenton reaction, (a) pure magnetite, (b) pure ductile iron, (c) iron catalyst after the pentone reaction and (d) zero value After the iron / magnet mixed Fenton reaction, ●: magnetite, ○: permanent iron and ★: iron hydroxide. (c) After the Fenton reaction, the intensity of the iron pick was significantly reduced compared to that of the pure iron, and the magnetite pick was also generated. This result shows that the ductile oxide finally turns into magnetite as a result of fenton oxidation using the ductile iron. (d) After the mixed ferrite / magnetite Fenton reaction, the pick of the ferrite and magnetite coexisted.

실시예 3: 철슬러지의 자성회수실험Example 3 Magnetic Recovery Experiment of Iron Sludge

영가철만을 사용하여 오염물질 제거실험 후 자철석 첨가실험과 영가철과 자철석의 동시첨가하여 펜톤반응 후 자성회수의 비교실험을 수행하였다. 대조군으로는 자철석과 과산화수소를 혼합하여 반응시킨 후의 자성회수이다. 이 실험을 통해 영가철/자철석 혼합시스템 사용시 자철석의 첨가시점을 판단하며, 자철석에 의한 수산화철의 흡착여부 판단 가능하다. 도 4는 시간별 펜톤반응에 의한 메틸오렌지 산화분해사진이며, 왼쪽부터 샘플 (1), (2) 대조군, (3), (4) 영가철과 자철석 동시사용, (5) 영가철 펜톤, (6) 영가철의 경우를 나타낸다. 영가철, 자철석, 과산화수소의 농도를 조절해 가면서 실험하였으며, 메틸오렌지 분해 시 반응별 조건은 하기 표 2와 같다. After the removal of contaminants using only zero iron, the magnetite addition test and the simultaneous addition of magnetite and magnetite were performed to compare the magnetic recovery after the Fenton reaction. As a control, magnetic recovery after mixing and reacting magnetite and hydrogen peroxide. Through this experiment, it is possible to determine the point of addition of magnetite when using the magnetite / magnetite mixing system, and to determine the adsorption of iron hydroxide by magnetite. Figure 4 is an oxidized decomposition picture of methyl orange by hourly Fenton reaction, from the left side of the sample (1), (2) control, (3), (4) simultaneous use of ferrous iron and magnetite, (5) ferric iron Fenton, (6 ) Indicates the case of zero iron. Experiments were carried out while controlling the concentrations of ferrous iron, magnetite, and hydrogen peroxide.

구분division (1)(One) (2)(2) (3)(3) (4)(4) (5)(5) (6)(6) 영가철 중량 (g)Young's Iron Weight (g) 00 00 0.10.1 0.10.1 0.10.1 0.10.1 자철석 중량 (g)Magnetite Weight (g) 0.4620.462 0.4620.462 0.4620.462 0.4620.462 00 00 과산화수소 농도 (μM)Hydrogen Peroxide Concentration (μM) 57.657.6 28.828.8 57.657.6 28.828.8 28.828.8 00

영가철을 넣어주지 않은 대조군 (1)과 (2)에서는 자철석만으로는 반응이 충분히 일어나지 않고, 영가철이 존재하는 조건 (3)부터 (6)까지는 반응이 진행되었다. 영가철이 존재하고 과수가 존재하지 않는 조건 (6)에서는 반응이 매우 천천히 일어나는 것을 확인 할 수 있으며, 45분 지난 후에 메틸오렌지 농도는 더 이상 분해되지 않았다. (5) 영가철과 과산화수소만 존재할 경우에는 반응시작 5분 후 메틸오렌지 분해가 완료되었으나 반응 종료 후 철색도가 나타나기 시작하여 45분 후에는 상당수의 용존물질(철색도)가 생성되었다. 영가철과 자철석 동시첨가 후 펜톤반응의 경우 과산화수소의 농도가 57.6 μM인 실험이 과산화수소의 농도가 28.8 μM인 실험보다 반응속도가 느린 것을 확인 할 수 있다. 펜톤산화 실험에서는 다량의 과산화수소는 실험에 중단제(scavenger)로 작용한다는 것은 기존에 널리 알려진 사실이므로 펜톤 실험에 있어서 적정 과산화농도를 찾는 것은 의미 있는 결과이다. 따라서 본 실험에서의 최적의 조건으로는 메틸오렌지 10 mg/L 에 대하여 영가철 100mg, 자철석 462 mg, 과산화수소 23 μM 일 때 반응속도 및 철색도 제거가 확실하게 보장된다는 것을 확인하였다. 이에 따라 영가철과 자철석의 중량비가 1: 4.5 일 경우도 철색도는 충분히 제거된다는 사실을 알 수 있다.
In the controls (1) and (2) without adding iron, the reaction did not occur sufficiently with magnetite alone, and the reaction proceeded from the conditions (3) to (6) where the iron was present. Under conditions (6) where zero iron is present and no fruit is present, it can be seen that the reaction occurs very slowly, and after 45 minutes, the methyl orange concentration is no longer decomposed. (5) In the presence of only zero iron and hydrogen peroxide, methyl orange decomposition was completed 5 minutes after the start of the reaction, but after the completion of the reaction, iron color began to appear, and 45 minutes later, a large amount of dissolved substance (iron color) was produced. In the case of Fenton reaction after co-addition of ferrous iron and magnetite, the experiment with 57.6 μM hydrogen peroxide concentration was slower than the experiment with 28.8 μM hydrogen peroxide concentration. In the Fenton oxidation experiment, it is well known that a large amount of hydrogen peroxide acts as a scavenger in the experiment. Therefore, finding a suitable peroxide concentration in the Fenton experiment is a meaningful result. Therefore, the optimum conditions in this experiment were confirmed that the reaction rate and iron color removal are surely ensured at 100 mg of iron, 462 mg of magnetite, and 23 μM of hydrogen peroxide for 10 mg / L of methyl orange. Accordingly, it can be seen that the iron color is sufficiently removed even when the weight ratio of ductile iron and magnetite is 1: 4.5.

도 5은 도 4의 실험 결과 중 (4), (5), (6)의 경우를 그래프로 정리한 것이며 반응 시간은 180분까지 보여준다. 과산화수소 없이 영가철만 존재할 경우 메틸오렌지 반응속도가 현저하게 떨어지며, 반응 종료 이후 철색도까지 나타나기 시작한다. 영가철과 과산화수소만 있는 경우는 반응속도는 보장되지만 반응 종료 후 철색도가 나타나기 시작하여 실용성에 문제가 있다. 하지만 자철석이 포함되면 반응속도 보장되며 반응 종료 후 철색도 발현을 저지하는 것을 확인하였다.FIG. 5 is a graph summarizing the cases of (4), (5) and (6) among the experimental results of FIG. 4 and shows a reaction time up to 180 minutes. When only zero iron is present without hydrogen peroxide, the reaction rate of methyl orange drops markedly, and after the end of the reaction, iron color starts to appear. The reaction rate is guaranteed when there are only zero iron and hydrogen peroxide, but the iron color starts to appear after the completion of the reaction, which causes problems in practicality. However, if the magnetite is included, the reaction rate is guaranteed, and after completion of the reaction, the iron color was confirmed to inhibit the expression.

도 6은 펜톤산화반응 완료 후 슬러지 자성분리사진으로서, 왼쪽부터 (1) 영가철 단독 반응 후 자철석을 재차 반응시켜 철 슬러지 흡착 실험 (2) 영가철과 자철석 반응 초기부터 동시사용, (3) 일반적인 펜톤용 철촉매 사용 (염화제2철), (4) 영가철 단독 실험이다. 폐수 처리 공정상 자철석의 순서를 확인하기 위하여 (1) 실험을 실히 하였으며. 자철석이 반응 종료 후 투입되었을시 철 색도를 60% 제거하는 경향이 있지만 영가철과 자철석을 초기부터 동시 사용한 경우인 (2)번 보다는 효율성이 많이 떨어지게 되며, 일반적인 펜톤용 철촉매인 염화제2철 및 영가철을 단독으로 사용한 경우는 철색도를 자성으로 분리하지 못하는 것을 확인할 수 있다.
Figure 6 is a sludge magnetic separation picture after the completion of the fenton oxidation reaction, from the left side (1) iron sludge adsorption experiment by reacting magnetite again after the reaction of the magnetite iron alone (2) simultaneous use from the beginning of the ferrous iron and magnetite reaction, (3) general Use of iron catalysts for Fenton (ferric chloride), (4) ferrous iron alone experiment. (1) The experiment was carried out to confirm the order of magnetite in the wastewater treatment process. When magnetite is added after completion of the reaction, the iron color tends to be removed 60%, but the efficiency is lower than that of (2), which is the same as when iron and magnetite are used at the same time, and ferric chloride, a common Fenton iron catalyst. And it can be confirmed that the iron can not be separated magnetically when the iron is used alone.

Claims (4)

영가철과 자철석을 1:3 ~ 1:4.5의 중량비로 포함하는 혼합 촉매을 이용하여 펜톤산화반응을 수행하는 단계를 포함하는 오폐수 처리 방법.Wastewater treatment method comprising the step of performing a fenton oxidation reaction using a mixed catalyst containing a duct iron and magnetite in a weight ratio of 1: 3 to 1: 4.5. 제1항에 있어서,
상기 영가철과 자철석을 동시에 투입하여 펜톤산화반응을 수행하는 것을 특징으로 하는 오폐수 처리 방법.
The method of claim 1,
Wastewater treatment method characterized in that the phenton oxidation reaction is carried out by simultaneously adding the ferrous iron and magnetite.
제1항에 있어서,
상기 혼합 촉매의 펜톤산화반응 이후에 생성된 슬러지를 자성 분리하는 단계를 더 포함하는 것을 특징으로 하는 오폐수 처리 방법.
The method of claim 1,
And further separating the sludge produced after the phenton oxidation of the mixed catalyst.
제1항에 있어서,
상기 자성 분리는 전자석을 이용하여 수행되는 것을 특징으로 하는 오폐수 처리 방법.
The method of claim 1,
The magnetic separation is a wastewater treatment method, characterized in that performed using an electromagnet.
KR1020120025032A 2011-04-11 2012-03-12 Method for purifying sewage-pollution water using zero valent iron/magnetite mixture KR101358855B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110033329 2011-04-11
KR20110033329 2011-04-11

Publications (2)

Publication Number Publication Date
KR20120115939A true KR20120115939A (en) 2012-10-19
KR101358855B1 KR101358855B1 (en) 2014-02-06

Family

ID=47284461

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120025032A KR101358855B1 (en) 2011-04-11 2012-03-12 Method for purifying sewage-pollution water using zero valent iron/magnetite mixture

Country Status (1)

Country Link
KR (1) KR101358855B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107417035A (en) * 2017-05-18 2017-12-01 大连理工大学 A kind of Fenton Anaerobic Treatment equipment and technologies utilized based on ferrikinetics
CN109928593A (en) * 2019-03-26 2019-06-25 江苏大学 A kind of method of sludge pyrohydrolysis coupling framework material depth
CN110746088A (en) * 2019-10-29 2020-02-04 安庆师范大学 CSW/nZVI composite activator and application thereof
CN111617761A (en) * 2020-06-11 2020-09-04 浙江省生态环境科学设计研究院 Magnetic sewage peat heterogeneous Fenton catalyst and preparation method thereof
CN112645427A (en) * 2019-10-11 2021-04-13 杭州特种纸业有限公司 Zero-valent iron-ferrous catalysis-based Fenton-like oxidation wastewater treatment method
CN115779903A (en) * 2022-12-06 2023-03-14 南京环保产业创新中心有限公司 Fenton reaction catalyst for industrial sewage treatment and preparation method and application thereof
CN117466426A (en) * 2023-11-23 2024-01-30 安徽九辰环境科技有限公司 Fenton reactor for waste liquid treatment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105645633B (en) * 2016-01-07 2018-08-24 南京大学 A kind of highly concentrated nitrobenzene wastewater pretreatment unit and processing method
CN109133533B (en) * 2018-10-12 2021-03-23 青岛理工大学 Integrated treatment method for high-concentration liquid crystal wastewater

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4345493B2 (en) 2004-01-16 2009-10-14 東洋インキ製造株式会社 Soil purification agent and soil purification method
KR20100100538A (en) * 2009-03-06 2010-09-15 서울대학교산학협력단 Removal system of 1,4-dioxane by zero ion iron and irradiation of uv-c using concentration of zero ion iron and ph range
MY158781A (en) * 2009-09-18 2016-11-15 Texas A & M Univ Sys Zero valent iron/iron oxide mineral/ferrous iron composite for treament of a contaminated fluid
KR100970689B1 (en) * 2010-01-15 2010-07-15 (주)에코원테크놀로지 Waste water treatment process using the electromagnet powder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107417035A (en) * 2017-05-18 2017-12-01 大连理工大学 A kind of Fenton Anaerobic Treatment equipment and technologies utilized based on ferrikinetics
CN109928593A (en) * 2019-03-26 2019-06-25 江苏大学 A kind of method of sludge pyrohydrolysis coupling framework material depth
CN109928593B (en) * 2019-03-26 2022-05-03 江苏大学 Method for deep dehydration of sludge hot water decoupling combined framework material
CN112645427A (en) * 2019-10-11 2021-04-13 杭州特种纸业有限公司 Zero-valent iron-ferrous catalysis-based Fenton-like oxidation wastewater treatment method
CN110746088A (en) * 2019-10-29 2020-02-04 安庆师范大学 CSW/nZVI composite activator and application thereof
CN111617761A (en) * 2020-06-11 2020-09-04 浙江省生态环境科学设计研究院 Magnetic sewage peat heterogeneous Fenton catalyst and preparation method thereof
CN115779903A (en) * 2022-12-06 2023-03-14 南京环保产业创新中心有限公司 Fenton reaction catalyst for industrial sewage treatment and preparation method and application thereof
CN117466426A (en) * 2023-11-23 2024-01-30 安徽九辰环境科技有限公司 Fenton reactor for waste liquid treatment

Also Published As

Publication number Publication date
KR101358855B1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
KR101358855B1 (en) Method for purifying sewage-pollution water using zero valent iron/magnetite mixture
Li et al. Cobalt ferrite nanoparticles supported on drinking water treatment residuals: An efficient magnetic heterogeneous catalyst to activate peroxymonosulfate for the degradation of atrazine
Xu et al. Atrazine degradation using Fe3O4-sepiolite catalyzed persulfate: Reactivity, mechanism and stability
Kang et al. Advanced oxidation and adsorptive bubble separation of dyes using MnO2-coated Fe3O4 nanocomposite
Khuntia et al. Oxidation of As (III) to As (V) using ozone microbubbles
Mashayekh-Salehi et al. Use of mine waste for H2O2-assisted heterogeneous Fenton-like degradation of tetracycline by natural pyrite nanoparticles: Catalyst characterization, degradation mechanism, operational parameters and cytotoxicity assessment
Legube et al. Catalytic ozonation: a promising advanced oxidation technology for water treatment
Ghosh et al. Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation
Kordestani et al. A new study on photocatalytic degradation of meropenem and ceftriaxone antibiotics based on sulfate radicals: Influential factors, biodegradability, mineralization approach
US8709259B2 (en) Method for treating a variety of wastewater streams
US20070119785A1 (en) Metal mediated aeration for water and wastewater purification
Zhang et al. Reducing bromate formation with H+-form high silica zeolites during ozonation of bromide-containing water: Effectiveness and mechanisms
Yoon et al. Photochemical oxidation of As (III) by vacuum-UV lamp irradiation
Lee et al. Degradation of phenol with Fenton-like treatment by using heterogeneous catalyst (modified iron oxide) and hydrogen peroxide
Redouane-Salah et al. Simulated sunlight photodegradation of 2-mercaptobenzothiazole by heterogeneous photo-Fenton using a natural clay powder
JP2006239507A (en) Organic arsenic compound-containing water treatment method and apparatus
CN109437386B (en) Method for removing metal thallium in wastewater
Vilve et al. Effects of reaction conditions on nuclear laundry water treatment in Fenton process
KR20020080521A (en) Treatment of wastewater with heavy metals by used iron oxide catalyst
EP3604234A1 (en) Removal of stable metal-cyanide complexes and metallic ions from water effluent
CA3002594A1 (en) Method for removal of recalcitrant selenium species from wastewater
Rahmani et al. Removal of dexamethasone from aqueous solutions using sono-nanocatalysis process
Quiñones-Murillo et al. Some kinetic and synergistic considerations on the oxidation of the azo compound Ponceau 4R by solar-mediated heterogeneous photocatalytic ozonation
Valdés et al. Advanced treatment of benzothiazole contaminated waters: comparison of O3, AC, and O3/AC processes
Heidari et al. Removal of cyanide from synthetic wastewater by combined coagulation and advanced oxidation process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161227

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190102

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 7