KR20120115809A - Nizncu ferrite and preparation method thereof - Google Patents
Nizncu ferrite and preparation method thereof Download PDFInfo
- Publication number
- KR20120115809A KR20120115809A KR1020110033350A KR20110033350A KR20120115809A KR 20120115809 A KR20120115809 A KR 20120115809A KR 1020110033350 A KR1020110033350 A KR 1020110033350A KR 20110033350 A KR20110033350 A KR 20110033350A KR 20120115809 A KR20120115809 A KR 20120115809A
- Authority
- KR
- South Korea
- Prior art keywords
- terms
- mol
- weight
- parts
- permeability
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/342—Oxides
- H01F1/344—Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/265—Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3279—Nickel oxides, nickalates, or oxide-forming salts thereof
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
본 발명은 110㎒의 주파수 대역에서 낮은 투자손실과 높은 투자율 특성을 구현할 수 있는 NiZnCu 페라이트 및 이의 제조방법에 관한 것이다.
The present invention relates to NiZnCu ferrite and a method for manufacturing the same which can realize low permeability and high permeability characteristics in the frequency band of 110 MHz.
휴대 전화와 같은 통신 기기를 포함한 각종 전자 기기에 포함된 안테나, 예컨대 FM 방송용 안테나의 경우 88-110㎒의 가용 주파수 대역에서 고이득으로 기능할 것이 전제되며, 최근 전자 기기의 소형화 및 고속화에 수반하여 안테나도 소형화 및 저배(低背)화될 것이 요구된다.Antennas, such as FM broadcasting antennas, included in various electronic devices, including communication devices such as mobile phones, are supposed to function with high gain in the available frequency band of 88-110 MHz, and with the recent miniaturization and high speed of electronic devices, Antennas are also required to be miniaturized and reduced in size.
이러한 통신 기기에 적용되는 안테나의 소형화 및 저배화를 위하여 유전체를 이용하는 방법이 제안되어 왔다. 구체적으로, 주파수 대역을 일정하게 유지하는 경우 유전율이 더 높은 유전체를 이용함으로써 안테나의 소형화를 달성할 수 있다.A method of using a dielectric has been proposed for miniaturization and reduction of antennas applied to such communication devices. Specifically, miniaturization of the antenna can be achieved by using a dielectric having a higher permittivity when the frequency band is kept constant.
또한, 유전체 이외에 안테나에 투자율이 큰 자성체를 이용하는 방법이 제안되었다.In addition, a method of using a magnetic material having a high permeability for an antenna other than a dielectric has been proposed.
자성체로서 육방 결정 구조를 갖는 헥사 페라이트는 스피넬 페라이트의 주파수 한계를 넘은 주파수 대역, 예컨대 110㎒ 이상의 고주파 대역까지 낮은 투자손실을 유지할 수 있으나 10 이상의 높은 투자율을 구현하기 어렵다.Hex ferrite having a hexagonal crystal structure as a magnetic substance can maintain a low permeability up to a frequency band beyond the frequency limit of spinel ferrite, for example, a high frequency band of 110 MHz or more, but it is difficult to realize a high permeability of 10 or more.
반면, 자성체로서 NiZn계, NiMn계 등의 스피넬 페라이트는 110㎒의 주파수 대역에서 20 이상의 투자율을 구현할 수 있으나 스뇌크(Snoek)의 한계가 있고 위 주파수 대역에서 투자손실이 증가되는 특성이 있다. 이로 인하여, 안테나에 적용 시 이의 특성을 저하시켜 적용이 어렵다.
On the other hand, spinel ferrites such as NiZn-based and NiMn-based magnetic materials can realize permeability of 20 or more in the frequency band of 110 MHz, but there is a limit of Snoek and the investment loss is increased in the above frequency band. For this reason, when applied to the antenna it is difficult to reduce the characteristics thereof.
본 발명은 110㎒의 주파수 대역에서 낮은 투자손실을 유지하면서도 높은 투자율 특성을 구현할 수 있는 NiZnCu 페라이트를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a NiZnCu ferrite that can implement a high permeability characteristics while maintaining a low permeability loss in the frequency band of 110MHz.
또한, 본 발명은 상기 NiZnCu 페라이트의 제조방법을 제공하는 것을 다른 목적으로 한다.
Another object of the present invention is to provide a method for producing the NiZnCu ferrite.
1. 주성분으로 Fe를 Fe2O3 환산으로 47-50몰%, Ni를 NiO 환산으로 27-39몰%, Zn을 ZnO 환산으로 10-17몰% 및 Cu를 CuO 환산으로 3-8몰% 포함하고, 상기 주성분 100중량부에 대하여 첨가제로 Bi를 Bi2O3 환산으로 0.1-1.5중량부 및 Co를 Co3O4 환산으로 1.7-3.7중량부 포함하는 NiZnCu 페라이트.1. As a main component, 47-50 mol% of Fe in terms of Fe 2 O 3 , 27-39 mol% in terms of NiO, 10-17 mol% in terms of ZnO and 3-8 mol% in terms of CuO NiZnCu ferrite comprising, 0.1-1.5 parts by weight of Bi in terms of Bi 2 O 3 and 1.7-3.7 parts by weight of Co in terms of Co 3 O 4 as additives based on 100 parts by weight of the main component.
2. 위 1에 있어서, 110㎒의 주파수 대역에서 10 이상의 투자율과 0.03 이하의 투자손실을 갖는 NiZnCu 페라이트.2. NiZnCu ferrite having the magnetic permeability of 10 or more and the loss of 0.03 or less in the frequency band of 110 MHz.
3. 위 1에 있어서, 주성분으로 Fe를 Fe2O3 환산으로 48몰%, Ni를 NiO 환산으로 28몰%, Zn을 ZnO 환산으로 16몰% 및 Cu를 CuO 환산으로 8몰% 포함하는 NiZnCu 페라이트.3. In the above 1, NiZnCu containing as a main component 48 mol% in terms of Fe 2 O 3 Fe, 28 mol% in terms of NiO, 16 mol% in terms of ZnO and 8 mol% in terms of CuO Cu ferrite.
4. 위 3에 있어서, Co가 Co3O4 환산으로 2-3중량부 포함되는 NiZnCu 페라이트.4. In the above 3, Co is NiZnCu ferrite containing 2-3 parts by weight in terms of Co 3 O 4 .
5. 위 4에 있어서, 110㎒의 주파수 대역에서 20-40의 투자율과 0.03 이하의 투자손실을 갖는 NiZnCu 페라이트.5. NiZnCu ferrite according to the above 4, having a magnetic permeability of 20-40 and a magnetic permeability of less than 0.03 in the frequency band of 110 MHz.
6. Fe가 Fe2O3 환산으로 47-50몰%, Ni가 NiO 환산으로 27-39몰%, Zn가 ZnO 환산으로 10-17몰% 및 Cu가 CuO 환산으로 3-8몰% 포함된 주성분 100중량부에 Bi가 Bi2O3 환산으로 0.1-1.5중량부 및 Co가 Co3O4 환산으로 1.7-3.7중량부 포함된 첨가제를 습식 혼합하는 제1공정; 습식 혼합에 의해 제조된 슬러리를 건조 및 해쇄시키는 제2공정; 및 해쇄된 분말을 800-850℃에서 3-5시간 동안 하소시키는 제3공정을 포함하는 NiZnCu 페라이트의 제조방법.6.Fe contains 47-50 mol% in terms of Fe 2 O 3 , Ni is 27-39 mol% in terms of NiO, 10-17 mol% in terms of ZnO and 3-8 mol% in Cu is CuO A first step of wet mixing an additive including 0.1 to 1.5 parts by weight of Bi in terms of Bi 2 O 3 and 1.7 to 3.7 parts by weight of Co in terms of Co 3 O 4 ; A second step of drying and pulverizing the slurry prepared by wet mixing; And a third step of calcining the pulverized powder at 800-850 ° C. for 3-5 hours.
7. 위 6에 있어서, 제2공정의 건조는 150-200℃에서 12-15시간 동안 수행되는 NiZnCu 페라이트의 제조방법.7. In the above 6, the drying of the second process NiZnCu ferrite manufacturing method is carried out at 150-200 ℃ for 12-15 hours.
8. 위 6에 있어서, 하소된 분말을 습식 분쇄하는 제4공정을 추가로 포함하는 NiZnCu 페라이트의 제조방법.8. According to the above 6, NiZnCu ferrite manufacturing method further comprising the fourth step of wet grinding the calcined powder.
9. 위 8에 있어서, 습식 분쇄에 의해 제조된 슬러리를 150-200℃에서 12-15시간 동안 건조 및 해쇄시키는 제5공정을 추가로 포함하는 NiZnCu 페라이트의 제조방법.
9. According to the above 8, NiZnCu ferrite manufacturing method further comprises a fifth step of drying and pulverizing the slurry prepared by wet grinding at 150-200 ℃ for 12-15 hours.
본 발명은 110㎒의 주파수 대역에서 0.03 이하의 투자손실을 유지하면서도 10 이상, 바람직하게 20-40의 투자율을 구현할 수 있는 NiZnCu 페라이트 및 이의 제조방법을 제공할 수 있다.The present invention can provide NiZnCu ferrite and its manufacturing method which can realize a permeability of 10 or more, preferably 20-40 while maintaining a permeability of 0.03 or less in a frequency band of 110 MHz.
또한, 본 발명은 페라이트의 주성분인 Ni 및 Zn의 함량과 첨가제인 Co의 함량을 조절함으로써 손쉽게 110㎒의 주파수 대역에서 투자율 및 투자손실을 제어할 수 있다.In addition, the present invention can easily control the permeability and the investment loss in the frequency band of 110MHz by adjusting the content of Ni and Zn, the main component of the ferrite and the content of Co, an additive.
또한, 본 발명의 페라이트는 88-110㎒의 주파수 대역에서 고이득으로 기능할 것이 요구되는 안테나, 특히 FM 방송용 안테나에 바람직하게 적용되어 이들을 소형화 및 저배화시킬 수 있다.Further, the ferrite of the present invention is preferably applied to antennas, particularly FM broadcasting antennas, which are required to function with high gain in the frequency band of 88-110 MHz, so that they can be miniaturized and reduced in size.
또한, 본 발명의 페라이트는 칩 인덕터, 칩 비드 등의 수동 소자에도 적용 가능하다.
In addition, the ferrite of the present invention can be applied to passive elements such as chip inductors and chip beads.
도 1은 Co3O4의 함량에 따른 주파수별 투자율 특성을 나타낸 그래프이고,
도 2는 Co3O4의 함량에 따른 주파수별 투자손실 특성을 나타낸 그래프이며,
도 3은 실시예 1, 2, 4 및 6에서 제조된 NiZnCu 페라이트의 주파수별 투자율 특성을 나타낸 그래프이고,
도 4는 실시예 1, 2, 4 및 6에서 제조된 NiZnCu 페라이트의 주파수별 투자손실 특성을 나타낸 그래프이다.1 is a graph showing the permeability characteristics of each frequency according to the content of Co 3 O 4 ,
2 is a graph showing the investment loss characteristics for each frequency according to the content of Co 3 O 4 ,
3 is a graph showing the magnetic permeability characteristics of the NiZnCu ferrite prepared in Examples 1, 2, 4 and 6,
Figure 4 is a graph showing the investment loss characteristics for each frequency of NiZnCu ferrite prepared in Examples 1, 2, 4 and 6.
본 발명은 110㎒의 주파수 대역에서 낮은 투자손실과 높은 투자율 특성을 구현할 수 있는 NiZnCu 페라이트 및 이의 제조방법에 관한 것이다.
The present invention relates to NiZnCu ferrite and a method for manufacturing the same which can realize low permeability and high permeability characteristics in the frequency band of 110 MHz.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 NiZnCu 페라이트는 주성분으로 Fe를 Fe2O3 환산으로 47-50몰%, Ni를 NiO 환산으로 27-39몰%, Zn을 ZnO 환산으로 10-17몰% 및 Cu를 CuO 환산으로 3-8몰% 포함하고, 상기 주성분 100중량부에 대하여 첨가제로 Bi를 Bi2O3 환산으로 0.1-1.5중량부 및 Co를 Co3O4 환산으로 1.7-3.7중량부 포함하는 것을 특징으로 한다.NiZnCu ferrite of the present invention as a main component of 47-50 mol% in terms of Fe 2 O 3 Fe, 27-39 mol% in terms of NiO, 10-17 mol% in terms of ZnO and Zn 3 in CuO It comprises -8 mol%, and 0.1 to 1.5 parts by weight of Bi in terms of Bi 2 O 3 and 1.7 to 3.7 parts by weight of Co in terms of Co 3 O 4 as an additive with respect to 100 parts by weight of the main component.
본 발명에서는 NiZnCu 페라이트를 구성하는 금속 성분의 함량을 산화물을 기준으로 하여 환산하여 나타내었으나, 산화물 이외의 다른 종류의 화합물이 사용되는 경우에는 그에 따라 환산될 수 있음도 당연한 것이다.In the present invention, the content of the metal component constituting the NiZnCu ferrite is expressed in terms of oxides, but it is also natural that other types of compounds other than oxides may be converted accordingly.
본 발명의 NiZnCu 페라이트는 주성분으로 Fe, Ni, Zn 및 Cu를 포함하며, 이들의 함량이 최적화되도록 구성되는데 특징이 있다. 구체적으로, 페라이트를 구성하는 주성분 총 100몰%에 대하여 Fe는 Fe2O3 환산으로 47-50몰%, Ni는 NiO 환산으로 27-39몰%, Zn은 ZnO 환산으로 10-17몰% 및 Cu는 CuO 환산으로 3-8몰% 포함된다.NiZnCu ferrite of the present invention contains Fe, Ni, Zn and Cu as a main component, it is characterized in that the content is configured to optimize. Specifically, Fe is 47-50 mol% in terms of Fe 2 O 3 , Ni is 27-39 mol% in terms of NiO, Zn is 10-17 mol% in terms of ZnO and 100 mol% of the main components constituting the ferrite. Cu is contained 3-8 mol% in CuO conversion.
주성분 중 Ni과 Zn의 몰비는 각각 NiO 및 ZnO 환산으로 1.75:1(28몰%:16몰%)인 경우, 즉 주성분 Fe가 Fe2O3 환산으로 48몰%, Ni이 NiO 환산으로 28몰%, Zn이 ZnO 환산으로 16몰% 및 Cu가 CuO 환산으로 8몰% 포함되는 경우 동일 주파수 대역에서 투자율 및 투자손실 특성이 가장 우수하다는 점에서 바람직하다.The molar ratio of Ni and Zn in the main component is 1.75: 1 (28 mol%: 16 mol%) in terms of NiO and ZnO, that is, 48 mol% in terms of Fe 2 O 3 , and 28 mol in terms of NiO %, Zn is preferably 16 mol% in terms of ZnO and Cu is 8 mol% in terms of CuO is preferred in that the permeability and permeability characteristics are the best in the same frequency band.
본 발명의 ZnCu 페라이트는 위 주성분과 함께 첨가제로서 Bi 및 Co를 포함하되, 이들의 함량이 최적화되도록 구성되는데 특징이 있다. 구체적으로, 위 주성분 100중량부에 대하여 Bi는 Bi2O3 환산으로 0.1-1.5중량부, Co는 Co3O4 환산으로 1.7-3.7중량부, 바람직하게 2-3중량부 포함된다.ZnCu ferrite of the present invention includes Bi and Co as an additive together with the above main components, and is characterized in that the content thereof is configured to be optimized. Specifically, the above
보다 구체적으로, Bi2O3의 첨가에 의해 페라이트의 결정립(grain) 성장이 유도됨과 동시에 Co3O4의 첨가에 의해 자기이방성을 적게 조절함으로써 주파수 특성을 향상시킬 수 있게 된다. 이를 통하여, 본 발명에서와 같은 투자율 및 투자손실 특성의 구현을 용이하게 할 수 있다.More specifically, the grain growth of ferrite is induced by the addition of Bi 2 O 3 , and the frequency characteristic can be improved by controlling the magnetic anisotropy by the addition of Co 3 O 4 . Through this, it is possible to facilitate the implementation of the permeability and loss characteristics as in the present invention.
도 1 및 2는 각각 Fe2O3, NiO, ZnO 및 CuO의 비율이 48몰%:28몰%:16몰%:8몰%인 조건에서 Co3O4의 함량에 따른 주파수별 투자율 및 투자손실 특성을 나타낸 그래프이다. Co3O4의 함량이 증가함에 따라 투자율은 다소 저하되고, 투자손실은 점점 낮아지는 것을 알 수 있다. 따라서, 주성분 100중량부에 대하여 Co는 Co3O4 환산으로 1.7-3.7중량부, 바람직하게 2-3중량부로 포함되는 것이 110㎒의 주파수 대역에서 10 이상, 바람직하게 20-40의 투자율을 유지하면서도 0.03 이하의 낮은 투자손실을 확보할 수 있다는 점에서 바람직하다.1 and 2 show the ratios of Fe 2 O 3 , NiO, ZnO, and CuO in 48 mol%: 28 mol%: 16 mol%: 8 mol%, respectively. It is a graph showing the permeability and the loss characteristics of each frequency according to the content of Co 3 O 4 . As the content of Co 3 O 4 increases, the permeability decreases slightly, and the investment loss gradually decreases. Therefore, a
이와 같이 구성되는 본 발명의 NiZnCu 페라이트는 주성분을 구성하는 Fe, Ni, Zn 및 Cu의 함량을 위 범위로 조절함과 동시에 첨가제인 Co의 함량을 최적의 범위로 조절함으로써 가장 바람직한 투자율 및 투자손실 특성, 구체적으로 110㎒의 주파수 대역에서 10 이상, 바람직하게 20-40의 투자율과 0.03 이하의 투자손실 특성을 구현할 수 있다.NiZnCu ferrite of the present invention configured as described above is the most desirable permeability and investment loss characteristics by controlling the content of Fe, Ni, Zn and Cu constituting the main component in the above range and the content of Co as an additive in the optimum range Specifically, in the frequency band of 110 MHz, the magnetic permeability of 10 or more, preferably 20-40, and the magnetic permeability of 0.03 or less can be realized.
본 발명의 NiZnCu 페라이트는 다음과 같은 방법으로 제조된다.NiZnCu ferrite of the present invention is prepared by the following method.
NiZnCu 페라이트의 제조방법은 원료를 습식 혼합하는 제1공정; 습식 혼합에 의해 제조된 슬러리를 건조 및 해쇄시키는 제2공정; 및 해쇄된 분말을 하소시키는 제3공정을 포함한다.NiZnCu ferrite manufacturing method comprises the first step of wet mixing the raw materials; A second step of drying and pulverizing the slurry prepared by wet mixing; And a third step of calcining the pulverized powder.
먼저, Fe가 Fe2O3 환산으로 47-50몰%, Ni이 NiO 환산으로 27-39몰%, Zn가 ZnO 환산으로 10-17몰% 및 Cu가 CuO 환산으로 3-8몰% 포함된 주성분 100중량부와 Bi가 Bi2O3 환산으로 0.1-1.5중량부 및 Co가 Co3O4 환산으로 1.7-3.7중량부 포함된 첨가제로 구성된 원료를 준비한 후 이들을 습식 혼합하여 슬러리로 제조한다(제1공정). 습식 혼합은, 예컨대 이온교환필터로 정수한 물(이온교환수)을 원료에 첨가한 후 볼밀(ball mill)을 이용하여 수행될 수 있으며, 6시간 이상, 바람직하게는 20-24시간 동안 수행될 수 있다.First, Fe is 47-50 mol% in terms of Fe 2 O 3 , Ni is 27-39 mol% in terms of NiO, Zn is 10-17 mol% in terms of ZnO and Cu is 3-8 mol% in terms of
그 다음, 습식 혼합에 의해 제조된 슬러리를 150-200℃에서 12-30시간, 바람직하게 15-25시간 동안 건조시킨 후 해쇄시킨다(제2공정). 해쇄방법은 특별히 한정되지 않는다.The slurry produced by wet mixing is then dried at 150-200 ° C. for 12-30 hours, preferably 15-25 hours, followed by disintegration (second step). The disintegration method is not particularly limited.
그 다음, 해쇄된 분말을 대기 분위기 중에서 800-850℃로 2-5시간 동안 하소시킨다(제3공정). 하소 온도가 위 범위에 속하지 않는 경우 페라이트의 결정 구조가 온전히 형성되지 않아 투자율이 달라질 수 있다.The pulverized powder is then calcined at 800-850 ° C. for 2-5 hours in an atmospheric atmosphere (third step). If the calcination temperature is not in the above range, the ferrite crystal structure may not be formed completely, and the permeability may vary.
그 다음, 하소된 분말을 예컨대 볼밀 등을 이용하여 20-24시간 동안 습식 분쇄시켜 슬러리로 제조한다(제4공정). 이때, 습식 분쇄된 입자의 크기가 0.8㎛ 이하, 바람직하게 0.1-0.4㎛, 보다 바람직하게 0.1-0.2㎛가 되도록 수행할 수 있다. 분쇄 공정을 통해 입자 크기의 조절, 네킹(necking)의 제거 및 첨가제의 분산성을 향상시킬 수 있다.The calcined powder is then wet milled for 20-24 hours using a ball mill or the like to prepare a slurry (fourth step). At this time, the size of the wet pulverized particles can be carried out to 0.8 ㎛ or less, preferably 0.1-0.4 ㎛, more preferably 0.1-0.2 ㎛. The grinding process can improve particle size control, necking removal and additive dispersibility.
그 다음, 습식 분쇄에 의해 제조된 150-200℃에서 12-15시간 동안 건조시킨 후 위에서와 동일한 방법으로 해쇄시킨다(제5공정).Then, it is dried for 12-15 hours at 150-200 ° C. prepared by wet grinding, and then disintegrated in the same manner as above (fifth step).
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 이들 실시예는 본 발명을 예시하는 것일 뿐 첨부된 특허청구범위를 제한하는 것이 아니며, 본 발명의 범주 및 기술사상 범위 내에서 실시예에 대한 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
Hereinafter, preferred examples are provided to aid the understanding of the present invention, but these examples are merely illustrative of the present invention and are not intended to limit the scope of the appended claims. It is apparent to those skilled in the art that various changes and modifications can be made to the present invention, and such modifications and changes belong to the appended claims.
실시예Example
실시예 1-6, 비교예 1-6Example 1-6, Comparative Example 1-6
주성분인 Fe2O3(DAE SANG), NiO(IN CO), ZnO(DAE JUNG) 및 CuO(JUNSEI)와, 이 주성분의 총 함량 100중량부에 대하여 첨가제인 Bi2O3(JUNSEI) 및 Co3O4(JUNSEI)를 각각 하기 표 1과 같이 칭량한 후 이온교환수를 첨가하고, 볼밀을 이용하여 20시간 동안 습식 혼합하였다.Fe 2 O 3 (DAE SANG), NiO (IN CO), ZnO (DAE JUNG) and CuO (JUNSEI) as the main ingredients, and Bi 2 O 3 (JUNSEI) and Co as additives based on 100 parts by weight of the total content of the main ingredients 3 O 4 (JUNSEI) was weighed as shown in Table 1 below, and ion-exchanged water was added thereto, followed by wet mixing for 20 hours using a ball mill.
습식 혼합에 의해 제조된 슬러리를 150℃에서 완전 건조 및 해쇄시켰다.The slurry prepared by wet mixing was completely dried and crushed at 150 ° C.
해쇄된 분말을 840℃에서 4시간 동안 하소시켜 스피넬 결정상을 생성시켰다.The disintegrated powder was calcined at 840 ° C. for 4 hours to produce a spinel crystal phase.
하소된 분말에 이온교환수를 첨가한 후 볼밀을 이용하여 20시간 동안 습식 분쇄시켰다.Ion-exchanged water was added to the calcined powder and wet milled for 20 hours using a ball mill.
습식 분쇄에 의해 제조된 슬러리를 다시 150℃에서 완전 건조 및 해쇄시켰다.
The slurry produced by wet milling was again completely dried and crushed at 150 ° C.
시험예Test Example
1. 투자율 및 투자손실 측정1. Measurement of Permeability and Loss
실시예 및 비교예에서 제조된 NiZnCu 페라이트의 자기적 특성을 측정하기 위하여, 제조된 NiZnCu 페라이트 분말 100중랑부에 대하여 폴리비닐알코올(PVA) 수지 3중량부를 혼합하고, 이 혼합물을 외경 18㎜, 내경 6㎜, 높이 3㎜의 토로이덜 형태의 소결체로 제조하였다.In order to measure the magnetic properties of the NiZnCu ferrites prepared in Examples and Comparative Examples, 3 parts by weight of a polyvinyl alcohol (PVA) resin was mixed with 100 parts of the prepared NiZnCu ferrite powders, and the mixture was made with an outer diameter of 18 mm and an inner diameter. The sintered compact of 6 mm and 3 mm height was manufactured.
제조된 소결체의 투자율(permeability, μ)과 투자손실(permeability loss, Tanδ)을 임피던스 애널라이저를 사용하여 측정하였다.Permeability (μ) and permeability loss (Tanδ) of the prepared sintered compacts were measured using an impedance analyzer.
위 표 2 및 도 3-4에 나타낸 바와 같이, 본 발명의 NiZnCu 페라이트는 종래의 페라이트에 비해 전반적으로 투자손실이 현저히 낮고, 투자손실이 이와 같이 유지되는 범위에서 투자율도 높은 것을 확인할 수 있었다.As shown in Table 2 and Figures 3-4, NiZnCu ferrite of the present invention was confirmed that the investment loss is significantly lower than the conventional ferrite, and the permeability is also high in the range that the investment loss is maintained in this way.
또한, Co3O4의 함량이 본 발명의 범위 내에서 증가할수록 투자손실이 더 낮아지는 바, 투자손실을 현저히 낮추기 위해서는 이들의 함량을 많게 조절하는 것이 바람직하였다.In addition, as the content of Co 3 O 4 increases within the scope of the present invention, the investment loss is lower. Therefore, in order to significantly reduce the investment loss, it is preferable to adjust the content thereof in a large amount.
Claims (9)
상기 주성분 100중량부에 대하여 첨가제로 Bi를 Bi2O3 환산으로 0.1-1.5중량부 및 Co를 Co3O4 환산으로 1.7-3.7중량부 포함하는 NiZnCu 페라이트.
As the main component contains 47-50 mol% of Fe in terms of Fe 2 O 3, 27-39 mol% Ni as NiO, 10-17 mol% of Zn in terms of ZnO and 3-8 mole% of the Cu in terms of CuO ,
NiZnCu ferrite containing 0.1 to 1.5 parts by weight of Bi in terms of Bi 2 O 3 and 1.7 to 3.7 parts by weight of Co in terms of Co 3 O 4 as additives based on 100 parts by weight of the main component.
The NiZnCu ferrite of claim 1 having a permeability of at least 10 and a permeability of at most 0.03 in a frequency band of 110 MHz.
2. The NiZnCu ferrite according to claim 1, comprising 48 mol% of Fe in terms of Fe 2 O 3 , 28 mol% of Ni in terms of NiO, 16 mol% of Zn in terms of ZnO, and 8 mol% of Cu in terms of CuO as main components.
The NiZnCu ferrite according to claim 3, wherein Co is contained in an amount of 2-3 parts by weight in terms of Co 3 O 4 .
The NiZnCu ferrite of claim 4 having a permeability of 20-40 and a permeability of less than 0.03 in the frequency band of 110 MHz.
습식 혼합에 의해 제조된 슬러리를 건조 및 해쇄시키는 제2공정; 및
해쇄된 분말을 800-850℃에서 3-5시간 동안 하소시키는 제3공정을 포함하는 NiZnCu 페라이트의 제조방법.
Main component 100 containing 47-50 mol% of Fe in terms of Fe 2 O 3 , 27-39 mol% of Ni in terms of NiO, 10-17 mol% of Zn in terms of ZnO, and 3-8 mol% of Cu in terms of CuO parts by weight of Bi is 0.1 to 1.5 parts by weight in terms of Bi 2 O 3 and Co, the first step of wet mixing the additive comprises 1.7 to 3.7 parts by weight in terms of Co 3 O 4;
A second step of drying and pulverizing the slurry prepared by wet mixing; And
Method for producing NiZnCu ferrite comprising the third step of calcining the pulverized powder at 800-850 ℃ for 3-5 hours.
The method of claim 6, wherein the drying of the second process is performed at 150-200 ° C. for 12-15 hours.
The method of claim 6, further comprising a fourth step of wet milling the calcined powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110033350A KR20120115809A (en) | 2011-04-11 | 2011-04-11 | Nizncu ferrite and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110033350A KR20120115809A (en) | 2011-04-11 | 2011-04-11 | Nizncu ferrite and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20120115809A true KR20120115809A (en) | 2012-10-19 |
Family
ID=47284367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110033350A KR20120115809A (en) | 2011-04-11 | 2011-04-11 | Nizncu ferrite and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20120115809A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018035027A (en) * | 2016-08-30 | 2018-03-08 | Tdk株式会社 | Ferrite composition, ferrite sintered body, electronic component and chip coil |
CN109485399A (en) * | 2018-12-20 | 2019-03-19 | 贵州振华红云电子有限公司 | NiCuZn ferrite magnetic sheet for NFC and wireless charging |
CN110655398A (en) * | 2018-06-28 | 2020-01-07 | 宁波高新区兆丰微晶新材料有限公司 | Ni-Zn-Cu-Co ferrite material, preparation method thereof and ferrite sintered body |
-
2011
- 2011-04-11 KR KR1020110033350A patent/KR20120115809A/en not_active Application Discontinuation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018035027A (en) * | 2016-08-30 | 2018-03-08 | Tdk株式会社 | Ferrite composition, ferrite sintered body, electronic component and chip coil |
CN110655398A (en) * | 2018-06-28 | 2020-01-07 | 宁波高新区兆丰微晶新材料有限公司 | Ni-Zn-Cu-Co ferrite material, preparation method thereof and ferrite sintered body |
CN109485399A (en) * | 2018-12-20 | 2019-03-19 | 贵州振华红云电子有限公司 | NiCuZn ferrite magnetic sheet for NFC and wireless charging |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2784044B1 (en) | Magnetoplumbite-type hexagonal ferrite | |
JP6668040B2 (en) | Method for increasing the magnetic properties of hexagonal ferrite by incorporating additional oxides, enhanced hexagonal ferrite, and high frequency antenna | |
JP5256612B2 (en) | Hexagonal ferrite and antenna and communication equipment using the same | |
KR20200142499A (en) | Textured planar M-type hexagonal ferrite and method of use thereof | |
US11945753B2 (en) | Low loss power ferrites and method of manufacture | |
CN102311260A (en) | Novel MnZn-doped ferrite material and preparation method thereof | |
KR20160033037A (en) | Ferrite composition for radio wave absorber and radio wave absorber | |
KR20120115809A (en) | Nizncu ferrite and preparation method thereof | |
KR101714895B1 (en) | Ferrite composition for radio wave absorber and radio wave absorber | |
KR101255155B1 (en) | NiZnCu FERRITE AND PREPARATION METHOD THEREOF | |
KR101282194B1 (en) | Y-type ferrite and molded article manufactured with the same | |
KR20120036535A (en) | Nizncu ferrite composition, method of preparing the same, and multi layered chip materials comprising the same | |
CN102030527B (en) | BaO-TiO2 microwave capacitor dielectric material and preparation method thereof | |
CN110746188A (en) | Microwave dielectric ceramic composition, preparation method and application thereof, microwave dielectric ceramic, preparation method and application thereof, and microwave device | |
JP2016037445A (en) | Composition, rf device, modified nickel zinc ferrite composition and method for fine tuning nickel-zinc ferrite material | |
KR101255154B1 (en) | Z-type ferrite and electronic part comprising the same | |
CN103803967B (en) | Microwave-medium ceramics and preparation method thereof | |
KR101619808B1 (en) | Ferrite sheet, manufacturing method of the same, and complex antenna module including the same | |
KR101255153B1 (en) | Z-type ferrite and electronic part comprising the same | |
JP7547445B2 (en) | Magnetoplumbite-type hexagonal ferrite magnetic powder for radio wave absorbers and its manufacturing method, and radio wave absorbers and its manufacturing method | |
CN109206132A (en) | A kind of high-dielectric constant microwave-medium ceramics material and its preparation method and application | |
KR101282195B1 (en) | NiZnCu FERRITE, PREPARATION METHOD THEREOF AND ELECTRONIC PART COMPRISING THE SAME | |
JP2024152255A (en) | Magnetic powder containing metal oxide with M-type hexagonal ferrite as the main phase, sintered body thereof, and high-frequency magnetic component | |
CN113149628A (en) | Microwave ceramic dielectric material capable of improving anti-reduction capability and preparation method thereof | |
CN110655395A (en) | Ni-Zn-Cu-Co ferrite particles and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |