KR20120115029A - Acrylonitrile copolymer for pan based carbon fiber precursor - Google Patents

Acrylonitrile copolymer for pan based carbon fiber precursor Download PDF

Info

Publication number
KR20120115029A
KR20120115029A KR1020110032942A KR20110032942A KR20120115029A KR 20120115029 A KR20120115029 A KR 20120115029A KR 1020110032942 A KR1020110032942 A KR 1020110032942A KR 20110032942 A KR20110032942 A KR 20110032942A KR 20120115029 A KR20120115029 A KR 20120115029A
Authority
KR
South Korea
Prior art keywords
carbon fiber
pan
acrylonitrile
resin composition
copolymer resin
Prior art date
Application number
KR1020110032942A
Other languages
Korean (ko)
Other versions
KR101252789B1 (en
Inventor
김기영
박우리
신동근
한진욱
정용식
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020110032942A priority Critical patent/KR101252789B1/en
Publication of KR20120115029A publication Critical patent/KR20120115029A/en
Application granted granted Critical
Publication of KR101252789B1 publication Critical patent/KR101252789B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/10Filtering or de-aerating the spinning solution or melt
    • D01D1/103De-aerating
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics

Abstract

PURPOSE: An acrylonitrile copolymer resin composition for a PAN-based carbon fiber precusor is provided to obtain the carbon fiber precursor of high function, which minimizes structural defect. CONSTITUTION: An acrylonitrile copolymer resin composition for a PAN-based carbon fiber precursor contains a repetitive unit of chemical formula 1. In chemical formula 1, m is 99-99.9 mole% and n is 0.1-1 mole%. The weight-average molecular weight of acrylonitrile-based acrylonitrile copolymer resin composition is 60,000-150,000. The carbonyl group anion of chemical formula 1 binds with dicyclohexyl ammonium 2-cyanoacrylate, Li, Na, K, Cs, ammonium cation, or pyridinium cation. The carbon fiber is fabricated using the composition.

Description

PAN계 탄소섬유 프리커서용 아크릴로니트릴계 공중합수지조성물{Acrylonitrile Copolymer For PAN Based Carbon Fiber Precursor}Acrylonitrile Copolymer For PAN Based Carbon Fiber Precursor}

본 발명은 탄소섬유를 제조하기 위한 PAN계 탄소섬유 전구체용 아크릴로니트릴계 공중합수지조성물에 관한 것이다.
The present invention relates to an acrylonitrile-based copolymer resin composition for a PAN-based carbon fiber precursor for producing carbon fibers.

탄소섬유는 유기섬유 전구체 (precursor)를 가열하여 얻은 탄소 함유율 92% 이상이고 비흑연 상태의 탄소질 섬유상 재료를 말한다. 1880년 Thomas Edison의 백열전구용 탄소섬유 필라멘트 발명 이 후, Rayon, Pitch, PAN (Polyacrylonitrile) 등 다양한 형태의 전구체가 개발되어 탄소섬유제조에 사용되었다. Carbon fiber refers to a carbonaceous fibrous material having a carbon content of 92% or more and a non-graphite state obtained by heating an organic fiber precursor (precursor). After Thomas Edison's invention of carbon fiber filaments for incandescent lamps in 1880, various types of precursors such as Rayon, Pitch, and Polyacrylonitrile (PAN) were developed and used in the manufacture of carbon fibers.

Rayon계 전구체는 구조적으로 44.4%의 탄소 함량을 지녔으나, 반응이 복잡하고 탄소섬유의 수율이 25~30%로 낮은 단점이 있다. 이에 반해 Pitch계 전구체는 85% 이상의 높은 수율을 지니면서 탄소섬유의 탄성률 또한 우수하다. 그러나 PAN계 탄소섬유에 비해 압축성과 이방성이 낮다고 알려져 있다. PAN계 탄소섬유의 전구체 물질인 아크릴로니트릴 (acrylonitrile)은 67.9%의 탄소 함량을 지녔으나, PAN 고분자가 연속적인 탄소 주쇄로 이루어져 있으며, 니트릴 그룹이 고리화 반응을 일으키는데 가장 이상적인 구조로 위치해 습식방사하여 얻는 PAN계 전구체는 pitch계 전구체에 비해 낮은 이론적 탄소 함량에도 불구하고 50~55%의 탄소 수율을 지니며, 고강도, 고탄성률를 갖는 고성능 탄소섬유의 생산이 가능하다.Rayon-based precursors have a carbon content of 44.4% structurally, but the reactions are complicated and the yield of carbon fibers is low as 25-30%. On the other hand, the pitch-based precursor has a high yield of more than 85% and also excellent elastic modulus of the carbon fiber. However, it is known that compressibility and anisotropy are lower than those of PAN-based carbon fibers. Acrylonitrile, a precursor material of PAN-based carbon fibers, has a carbon content of 67.9%, but PAN polymer is composed of a continuous carbon main chain, and the nitrile group is the ideal structure for causing a cyclization reaction. The PAN precursor obtained by the present invention has a carbon yield of 50 to 55% despite a theoretical theoretical carbon content lower than that of the pitch precursor, and is capable of producing high-performance carbon fibers having high strength and high elastic modulus.

현재 탄소섬유 시장의 90% 이상을 차지하고 있는 PAN계 탄소섬유는 우수한 강도와 탄성률, 내열성, 내충격성, 내화학성 등의 뛰어난 물성을 바탕으로 항공우주산업, 자동차, 토목건축, 전기전자산업 분야의 고성능 산업용 소재로 사용될 뿐만 아니라 경량성의 장점을 활용하여 테니스 라켓, 골프채, 자전거 프레임 등의 스포츠 소재로도 사용되어지고 있다.PAN-based carbon fiber, which currently accounts for more than 90% of the carbon fiber market, has high performance in aerospace, automotive, civil engineering, and electrical and electronic industries based on its excellent strength, elastic modulus, heat resistance, impact resistance, and chemical resistance. In addition to being used as an industrial material, it is also used as a sports material such as tennis rackets, golf clubs, bicycle frames by taking advantage of light weight.

PAN계 탄소섬유의 상용화이후, 탄소섬유의 물성을 향상시키기 위한 다양한 접근법이 시도되었으며, 그 중 PAN 전구체의 화학적 조성 변화를 통한 물성 향상 및 공정 개선이 이루어졌다. 공기분위기하 200~300℃의 비교적 높은 온도에서 산화안정화공정시, PAN 고분자의 고리화, 산화, 탈수소화 반응에 의한 발열 반응이 짧은 시간 동안 갑작스럽게 발생하여 조절하기 어렵다고 알려져 있다. 이러한 발열 반응은 PAN 고분자 사슬의 절단을 야기할 수 있고, 결과적으로 탄소섬유의 물성을 저하시킬 수 있다. 그러나 itaconic acid (IA), methacrylic acid (MAA)와 같은 공단량체의 도입은 이러한 발열 반응을 적절히 조절할 수 있도록 해주며 반응의 개시 온도를 낮추어준다. 이는 PAN 단독중합체의 고리화 반응이 라디칼 메커니즘에 의해 개시되는 것에 비해, acid기를 가지고 있는 PAN 공중합체는 이온 메커니즘으로 보다 낮은 온도에서 고리화 반응이 개시되기 때문이다. After the commercialization of the PAN-based carbon fiber, various approaches have been attempted to improve the physical properties of the carbon fiber, among which improved physical properties and process improvement through the chemical composition of the PAN precursor. During the oxidation stabilization process at a relatively high temperature of 200-300 ° C. under an air atmosphere, it is known that exothermic reactions due to cyclization, oxidation, and dehydrogenation of PAN polymers occur suddenly for a short time and are difficult to control. This exothermic reaction may cause breakage of the PAN polymer chain and consequently lower the physical properties of the carbon fiber. However, the introduction of comonomers such as itaconic acid (IA) and methacrylic acid (MAA) can be used to control these exothermic reactions and lower the initiation temperature of the reaction. This is because the cyclization reaction of the PAN homopolymer is initiated by the radical mechanism, whereas the PAN copolymer having acid groups initiates the cyclization reaction at a lower temperature by the ionic mechanism.

또한 methyl acrylate (MA), methyl methacrylate (MMA)의 공단량체는 공중합체 내에서 가소제의 역할을 한다. 이것은 분자의 구조를 느슨하게 만들어 방사 용매에 더욱 잘 용해되도록 하며, 방사성 및 염료의 균염성 등을 향상시킨다. 이러한 공단량체의 사용은 PAN 전구체의 안정화 공정 및 이후 공정에 대한 경제적 효율을 증가시킬 뿐만 아니라 최종적인 탄소 섬유의 품질에도 영향을 미칠 수 있다.In addition, the comonomers of methyl acrylate (MA) and methyl methacrylate (MMA) act as plasticizers in the copolymer. This loosens the structure of the molecule, making it more soluble in spinning solvents, and improving the radioactivity and dye leveling properties. The use of such comonomers can increase the economic efficiency for the stabilization process and subsequent processes of the PAN precursor, as well as affect the quality of the final carbon fiber.

이렇듯 현재까지 알려진 PAN 공중합체에 사용 가능한 공단량체의 종류 중 가장 일반적이고 니트릴기의 올리고머화에 가장 효과적이라고 알려진 공단량체는 두 개의 카르복시산을 가지고 있는 이타콘산(itaconic acid)이다. 두 개의 카르복시산이 존재함으로써 acrylonitrile의 니트릴기와의 상호작용이 일어날 가능성이 증가한다. 따라서 itaconic acid는 안정화 단계시, PAN homopolymer보다 공중합체의 고리화 반응의 개시 온도를 낮추고, 열발생량을 감소시켜 안정화 공정의 효율을 향상시킨다. 하지만 공단량체의 낮은 열안정성으로 전구체 고분자의 안정화 공정시 열분해에 의해 탄소섬유의 강도를 저하시키는 문제점을 안고 있다.
As such, the most common comonomers available for PAN copolymers known to date and the most effective comonomers for oligomerization of nitrile groups are itaconic acid having two carboxylic acids. The presence of two carboxylic acids increases the likelihood of interaction of acrylonitrile with nitrile groups. Therefore, itaconic acid lowers the initiation temperature of the cyclization reaction of the copolymer and decreases the amount of heat generated during the stabilization step, thereby improving the efficiency of the stabilization process. However, the low thermal stability of the comonomer has a problem of lowering the strength of the carbon fiber by thermal decomposition during the stabilization process of the precursor polymer.

그러므로 본 발명은 탄소섬유의 제조 시 산화안정화공정에서 급격한 발열반응을 완화할 수 있고, 고리화 반응의 반응 개시 온도를 낮출 수 있는 새로운 공단량체 및 PAN 공중합수지조성물과 제조방법을 제공하는 것을 기술적과제로 한다.Therefore, the present invention is to provide a new comonomer and PAN copolymer resin composition and a manufacturing method that can alleviate the rapid exothermic reaction in the oxidation stabilization process in the production of carbon fiber, and lower the reaction start temperature of the cyclization reaction. Shall be.

이에 본 발명에서는 고리화 반응의 개시온도와 발열량을 낮추고, 탄화수율을 향상시키기 위해 단위 분자당 하나의 니트릴기와 카르보닐기 음이온을 갖는 공단량체를 합성하고 이를 이용하여 PAN 공중합체를 제공함으로써 이를 탄소섬유 전구체로 적용 가능한 특성을 확인하여 본 발명을 완성하였다.
In the present invention, in order to lower the initiation temperature and calorific value of the cyclization reaction, and to improve the carbonization yield, a comonomer having one nitrile group and a carbonyl group anion per unit molecule is synthesized and a PAN copolymer is used to provide a carbon fiber precursor. By confirming the applicable characteristics to complete the present invention.

본 발명은 하기 화학식 1로 표시되는 반복단위를 포함하는 PAN계 탄소섬유 프리커서용 아크릴로니트릴계 공중합수지조성물이 제공된다.The present invention provides an acrylonitrile-based copolymer resin composition for a PAN-based carbon fiber precursor comprising a repeating unit represented by the following formula (1).

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

이하 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명의 PAN계 탄소섬유 프리커서용 아크릴로니트릴계 공중합수지조성물은 하기 화학식 1로 표시되는 반복단위를 포함하는 아크릴로니트릴계 공중합수지조성물이다.The acrylonitrile-based copolymer resin composition for PAN-based carbon fiber precursor of the present invention is an acrylonitrile-based copolymer resin composition containing a repeating unit represented by the following formula (1).

[화학식 1][Formula 1]

Figure pat00002
Figure pat00002

본 발명은 PAN계 전구체로 탄소섬유를 제조함에 있어서 산화안정화공정시 고리화 반응의 개시가 효과적으로 행해지도록 함으로써 반응이 쉽게 일어남과 동시에 고리화 반응의 성장을 지속시켜 산화안정화공정에서 PAN계 탄소섬유 전구체의 수율을 증가시키기 위한 아크릴로니트릴계 공중합수지조성물에 관한 것이다.In the present invention, in the preparation of carbon fiber with PAN precursor, the reaction is easily initiated by oxidative stabilization process, so that the reaction occurs easily and the growth of cyclization reaction is continued. It relates to an acrylonitrile-based copolymer resin composition for increasing the yield of.

상기 화학식 1의 반복단위를 가지는 아크릴로니트릴계 공중합수지조성물은 아크릴로니트릴단량체와 시아노아크릴레이트단량체의 공중합체로서 카르복시기와 아크릴로니트릴 단량체와 유사한 구조를 가지는 cyano기를 도입하여 산화안정화공정시 고리화반응이 쉽게 일어남과 동시에 고리화 반응의 성장을 지속시킨다.Acrylonitrile-based copolymer resin composition having a repeating unit of Formula 1 is a copolymer of acrylonitrile monomer and cyanoacrylate monomer, and introduces a cyano group having a structure similar to a carboxyl group and acrylonitrile monomer to give a ring during oxidation stabilization process. The reaction occurs easily and at the same time continues the growth of the cyclization reaction.

본 발명의 아크릴로니트릴계 공중합수지조성물은 상기 m, n의 합을 100몰%로 가정할 때, m은 99 ~ 99.9 몰%, n은 0.1 ~ 1몰%인 것이 바람직하다. In the acrylonitrile copolymer resin composition of the present invention, assuming that the sum of m and n is 100 mol%, m is preferably 99 to 99.9 mol%, and n is 0.1 to 1 mol%.

본 발명의 아크릴로니트릴계 공중합수지조성물의 공단량체는 상기 [화학식 1]의 카르보닐 음이온과 이온 결합할 수 있는 1족 및 2족 (Li, Na, K, Cs 등)의 유기금속 화합물, 또는 양이온을 형성하는 유기 암모늄 양이온 (organic ammonium cation)이나 양이온을 형성하는 피리디늄 양이온 (pyridinium cation) 중 어느 하나와 이온 결합하는 것이 바람직하다. 상기 유기 암모늄 양이온이나 피리디늄 양이온은 알킬기, 시클로알킬기, 아릴기, 페닐기 등에 의해 치환될 수 있으며, 이와 같은 예로는 디메틸암모늄 (dimethylammonium), 디시클로헥실암모늄 (dicyclohexylammonium), 테트라부틸암모늄 (tetra-n-butylammonium)중 어느 하나일 수 있으며, 양이온을 형성하는 피리디늄 양이온은 피리딘 옥사이드 (pyridine-N oxide), 세틸피리디늄 (cetylpyridinium)과 같은 알킬화 (alkylation)된 피리디늄 중 어느 하나일 수 있다. The comonomer of the acrylonitrile-based copolymer resin composition of the present invention is an organometallic compound of Groups 1 and 2 (Li, Na, K, Cs, etc.) capable of ionically bonding with the carbonyl anion of [Formula 1], or It is preferable to ionically bond with either an organic ammonium cation forming a cation or a pyridinium cation forming a cation. The organic ammonium cation or pyridinium cation may be substituted with an alkyl group, a cycloalkyl group, an aryl group, a phenyl group, and the like, and examples thereof include dimethylammonium, dicyclohexylammonium, and tetrabutylammonium (tetra-n). It may be any one of -butylammonium, and the pyridinium cation forming the cation may be any one of alkylated pyridinium such as pyridine-N oxide, cetylpyridinium.

산화안정화공정시 고리화, 산화, 탈수소화반응에 의한 발열 반응은 짧은 시간 동안 갑작스럽게 발생하기 때문에 그 조절이 어려우며, 이러한 발열 반응은 PAN 고분자 사슬의 절단을 야기할 수 있고, 결과적으로 탄소섬유의 물성을 저하시킬 수 있다. 그러나 본 발명의 아크릴로니트릴계 공중합수지조성물은 카르보닐기 음이온과 시아노기를 각각 가지고 있기 때문에 상기 음이온 작용기가 이온 메커니즘에 의해 아크릴로니트릴의 니트릴기의 고리화 반응을 보다 낮은 온도에서 고리화를 개시시킴으로서 기존의 탄소섬유 전구체용 아크릴로니트릴 공중합물의 산화안정화 공정보다 낮은 온도에서 안정화시킬 수 있으며, 시아노기의 존재로 인해 고리화 반응의 성장을 지속시켜 PAN 단독중합체의 발열반응을 조절함과 동시에 이타콘산이 함유된 공중합수지조성물보다 높은 고리화정도와 낮은 발열량을 가질 수 있어 반응이 시작되는데 필요한 활성화 에너지 및 발열량을 낮추게 되어 전구체의 안정화 반응의 효율과 탄소섬유의 수율을 증가시키고 생산공정의 에너지 효율 및 생산성을 향상시킬 수 있다. Exothermic reactions by cyclization, oxidation, and dehydrogenation during oxidative stabilization processes are difficult to control because they occur abruptly for a short time, and these exothermic reactions can cause breakage of PAN polymer chains, resulting in carbon fiber It may lower the physical properties. However, since the acrylonitrile copolymer resin composition of the present invention has carbonyl anion and cyano group, the anion functional group initiates the cyclization reaction of the nitrile group of acrylonitrile at lower temperature by the ionic mechanism. It can be stabilized at a lower temperature than the oxidative stabilization process of the conventional acrylonitrile copolymer for carbon fiber precursors, and it is possible to control the exothermic reaction of the PAN homopolymer by continuing the growth of the cyclization reaction due to the presence of cyano groups. It can have higher degree of cyclization and lower calorific value than the acid-containing copolymer resin composition, which lowers the activation energy and calorific value required for the reaction to be started, thereby increasing the efficiency of precursor stabilization reaction, yield of carbon fiber, and energy efficiency and productivity of the production process. Can improve .

본 발명에 의한 폴리아크릴로니트릴계 중합체의 질소 분위기 하 시차주사열량분석에 의한 고리화 반응의 발열 개시 온도는 10℃/min의 승온속도일 경우 230℃에서 240℃의 온도 범위를 포함하고 있으며, 동일 조건에서 공기 분위기 하에서의 산화안정화 공정 시 150℃에서 180℃ 범위의 매우 낮은 발열 개시 온도를 나타냄을 보인다. The exothermic onset temperature of the cyclization reaction by differential scanning calorimetry under a nitrogen atmosphere of the polyacrylonitrile-based polymer according to the present invention includes a temperature range of 230 ° C. to 240 ° C. at a heating rate of 10 ° C./min. It is shown that under the same conditions, an oxidative stabilization process under an air atmosphere exhibits a very low exothermic onset initiation temperature ranging from 150 ° C to 180 ° C.

본 발명에 의한 폴리아크릴로니트릴계 중합체의 질소와 산소 분위기하 열중량분석 결과에 의하면, 상온에서 600℃의 온도 상온에서 높은 열안정성을 보여준다. 이러한 높은 열안정성으로써 산화안정화반응에서 안정한 탄소구조 생성할 수 있으며 탄소구조내의 결함을 최소화하여 고강도의 탄소섬유를 제공할 수 있다.According to the thermogravimetric analysis of the polyacrylonitrile-based polymer according to the present invention under nitrogen and oxygen atmosphere, it shows high thermal stability at room temperature of 600 ° C. at room temperature. This high thermal stability can produce a stable carbon structure in the oxidative stabilization reaction and can provide a high-strength carbon fiber by minimizing defects in the carbon structure.

또한, 본 발명의 화학식 1의 반복단위를 가지는 아크릴로니트릴계 공중합수지조성물의 중량평균분자량은 60,000 ~ 150,000이고, 다분산지수(Mw/Mn)는 1.5 ~ 4.0인 것이 바람직하다. 2성분 공중합의 특성상 공단량체의 증가는 분자량의 감소와 다분산지수의 증가를 초래하며, 중합 후 공정과 최종 탄소 섬유의 물성을 고려하는 측면에서 60,000 ~ 150,000인 중량평균분자량과 1.5 ~ 4.0의 다분산지수가 바람직하다.In addition, the weight average molecular weight of the acrylonitrile-based copolymer resin composition having a repeating unit of the formula (1) of the present invention is 60,000 to 150,000, the polydispersity index (Mw / Mn) is preferably 1.5 to 4.0. Due to the nature of the two-component copolymerization, the increase of the comonomer leads to a decrease in molecular weight and an increase in the polydispersity index. The weight average molecular weight is 60,000 to 150,000 and 1.5 to 4.0 in consideration of the post-polymerization process and the properties of the final carbon fiber. Dispersion index is preferred.

또한, 본 발명에서는 상기 PAN계 탄소섬유 프리커서용 아크릴로니트릴계 공중합수지조성물을 사용하여 제조한 탄소섬유가 제공될 수 있다.In addition, the present invention may provide a carbon fiber prepared using the acrylonitrile-based copolymer resin composition for the PAN-based carbon fiber precursor.

본 발명의 PAN계 탄소섬유 프리커서용 아크릴로니트릴계 공중합수지조성물의 바람직한 제조예에 관해 설명한다.The preferable manufacture example of the acrylonitrile-type copolymer resin composition for PAN type carbon fiber precursor of this invention is demonstrated.

본 발명에서의 PAN계 탄소섬유 프리커서용 아크릴로니트릴계 공중합수지조성물을 합성하기 위한 단량체의 한 예인 디시클로헥실암모늄 2-시아노아크릴레이트(dicyclohexylammonium 2-cyanoacrylate)는 시아노아세트산(cyanoacetic acid), 파라폼알데하이드(paraformaldehyde), 디시클로헥실아민(dicyclohexylamine), 트리에틸아민(triethylamine)을 벤젠에 녹인 다음 20분 동안 가열, 교반하면서 Dean-Stark을 이용해서 물을 제거하여 합성한다. 반응이 종결된 후, 용액을 필터링하여 반응된 고분자 조각을 제거하고 진공 건조한 후, 헥산(Hexane)과 벤젠으로 재결정한 후 디시클로헥실암모늄 2-시아노아크릴레이트를 제조한다.Dicyclohexylammonium 2-cyanoacrylate, which is an example of a monomer for synthesizing the acrylonitrile-based copolymer resin composition for the PAN-based carbon fiber precursor in the present invention, is cyanoacetic acid. , Paraformaldehyde (diformaldehyde), dicyclohexylamine, triethylamine (triethylamine) is dissolved in benzene and then heated and stirred for 20 minutes to remove water using Dean-Stark. After the reaction was terminated, the solution was filtered to remove the reacted polymer pieces and dried in vacuo, and then recrystallized with hexane and benzene to prepare dicyclohexylammonium 2-cyanoacrylate.

아크릴로니트릴은 수분을 제거한 후, 사용 직전에 상압 증류하여 사용한다. 공중합은 반응기에 용매 DMSO를 넣고, 교반하면서 반응온도 60℃까지 상승시키는데, 교반시 질소를 purge하면서 용매 및 반응기 내의 산소를 제거한다. 반응온도에 도달하면 아크릴로니트릴단량체과 시아노아크릴레이트단량체를 각각 넣고 일정시간 교반시킨 후 AIBN을 첨가하고, 질소 기류 하에서 16시간 동안 중합한다. 용액 중합에 사용되는 용매로는 디메틸설폭사이드, 디메틸포름아마이드, 디메틸아세트아마이드 등과 같은 폴리아크릴로니트릴 중합체에 대해 가용성인 용매가 적당하며, 그 중 연쇄 이동 상수(Chain transfer constant, Cs)가 가장 작고 강한 극성력에 의한 용해성이 뛰어난 디메틸설폭사이드가 가장 바람직하다. 중합 개시제로는 용액 중합의 특성상 용매에 대한 용해성 및 중합 효율성 등과 관련하여 분해시에 중합을 저해하는 산소 발생의 우려가 없는 유용성 아조계 화합물이 바람직하며, 취급성과 단량체의 비점과 관계하여 라디칼 발생 온도가 40℃ 내지 80℃의 범위의 라디칼 중합 개시제가 바람직하다. 중합 개시제의 구체적인 예로는 2,2-아조비스(2,4-디메틸발레로니트릴)(라디칼 발생 온도 51℃), 2,2-아조비스(아이소부티로니트릴)(라디칼 발생 온도 65℃) 등을 들 수 있으며, 명시된 중합개시제에만 한정되는 것은 아니다. 또한 상기의 중합개시제를 단독 혹은 복수의 개시제와 혼합하여 사용할 수도 있으며, 최대의 라디칼량을 발생시키기 위하여 중합 온도를 조절할 수도 있다.Acrylonitrile is removed by atmospheric distillation immediately after use to remove moisture. In the copolymerization, solvent DMSO is added to the reactor and the reaction temperature is raised to 60 ° C. while stirring, and the solvent and oxygen in the reactor are removed while purge nitrogen. When the reaction temperature is reached, the acrylonitrile monomer and the cyanoacrylate monomer are each added, stirred for a predetermined time, and then AIBN is added thereto, followed by polymerization for 16 hours under a nitrogen stream. Solvents used for solution polymerization are suitable solvents which are soluble to polyacrylonitrile polymers such as dimethyl sulfoxide, dimethylformamide, dimethylacetamide, etc., of which the chain transfer constant (Cs) is the smallest. Most preferred is dimethyl sulfoxide having excellent solubility due to strong polarity. As a polymerization initiator, an oil-soluble azo compound which does not have a possibility of generating oxygen which inhibits polymerization at the time of decomposition in terms of solubility in solvents and polymerization efficiency due to the nature of solution polymerization is preferable, and the radical generation temperature is related to the handleability and the boiling point of monomers. The radical polymerization initiator of the range of 40 degreeC-80 degreeC is preferable. As a specific example of a polymerization initiator, 2, 2- azobis (2, 4- dimethylvaleronitrile) (radical generation temperature 51 degreeC), 2, 2- azobis (isobutyronitrile) (radical generation temperature 65 degreeC), etc. And it is not limited only to the polymerization initiator specified. In addition, the polymerization initiator may be used alone or in combination with a plurality of initiators, and the polymerization temperature may be adjusted to generate the maximum amount of radicals.

본 발명의 폴리아크릴로니트릴계 중합체의 제조 방법의 바람직한 형태에 따르면, 용매에 대한 단량체의 농도를 5 ~ 30 중량%로 제어하고, 여기에 단량체 농도의 1~5 중량%에 해당하는 중합개시제를 혼합하여 질소 기류 하에서 55 ~ 65℃의 중합 온도 조건에서 16시간 이상 중합한다. 중합 온도는 단량체와 용매, 중합 개시제의 종류에 따라 달라질 수 있으나, 40℃에서 80℃ 이하의 온도가 바람직하다. 30℃ 이하의 온도에서 디메틸설폭사이드를 용매로 사용할 경우, 용매의 높은 어는점으로 인해 불균일 중합이 이루어질 수 있으며, 저온에서 라디칼을 발생시키는 중합 개시제의 보관 (-10℃ 이하)도 어렵다. 또한 아크릴로니트릴의 비점이 78℃이므로 중합 온도가 80℃를 초과하면 중합 시간의 지연 등 폴리아크릴로니트릴계 중합체의 제조에 문제가 발생할 수 있다.According to a preferred embodiment of the method for producing a polyacrylonitrile-based polymer of the present invention, the concentration of the monomer in the solvent is controlled to 5 to 30% by weight, and a polymerization initiator corresponding to 1 to 5% by weight of the monomer concentration is added thereto. The mixture is polymerized for 16 hours or more under a nitrogen gas stream under a polymerization temperature of 55 to 65 ° C. The polymerization temperature may vary depending on the type of monomer, solvent, and polymerization initiator, but a temperature of 40 ° C. to 80 ° C. or less is preferable. When dimethylsulfoxide is used as a solvent at a temperature of 30 ° C. or lower, heterogeneous polymerization may occur due to the high freezing point of the solvent, and storage of a polymerization initiator that generates radicals at low temperature (below −10 ° C.) is also difficult. In addition, since the boiling point of acrylonitrile is 78 ° C., if the polymerization temperature exceeds 80 ° C., problems may occur in the production of polyacrylonitrile polymers such as delay in polymerization time.

중합 후 중합물을 진공조건에 의해 탈포하여 중합물 내의 기체를 제거하고, 증류수에 천천히 부어 실 형태로 고화시킨다. 증류수로 수 회 수세하여 미반응 단량체 및 용매를 제거한 후 분쇄하고, 다시 증류수로 여러 번 수세하여 진공 건조하여 공중합을 완료한다.
After the polymerization, the polymer is degassed under vacuum conditions to remove the gas in the polymer, and slowly poured into distilled water to solidify in a yarn form. Water washed several times with distilled water to remove the unreacted monomer and solvent, then pulverized, washed again with distilled water several times and dried under vacuum to complete the copolymerization.

본 발명에 따르면 시아노아크릴레이트를 폴리아크릴로니트릴 중합체의 공단량체로 사용함으로써, 산화안정화 공정의 개시 온도와 발열량을 낮출 수 있어 탄소섬유 제조시 구조적 결함을 최소화할 수 있는 고성능 탄소섬유 전구체를 제공할 수 있다.According to the present invention, by using the cyanoacrylate as a comonomer of the polyacrylonitrile polymer, it is possible to lower the onset temperature and calorific value of the oxidative stabilization process to provide a high-performance carbon fiber precursor that can minimize structural defects in the production of carbon fiber can do.

또한, 본 발명은 시아노아크릴레이트의 함량에 따라 전구체를 최적화할 수 있으며, 기존의 중합, 방사, 산화, 탄화장치를 사용할 수 있어 설비의 보완 없이 경제성이 높은 탄소섬유 전구체를 제공할 수 있으며, 기존의 공단량체인 methyl acrylate (MA), methyl methacrylate (MMA), itaconic acid (IA)을 대체하여 새로운 공단량체을 제공할 수 있으며, 높은 열안정성과 안정화 특성으로 안정화공정의 온도와 시간을 단축시키고 탄소섬유의 수율를 증가시켜 생산성을 향상시킬 수 있다.
In addition, the present invention can optimize the precursor according to the content of the cyanoacrylate, it is possible to use the existing polymerization, spinning, oxidation, carbonization apparatus can provide a carbon fiber precursor with high economical efficiency without supplementary equipment, New comonomers can be provided by replacing the existing comonomers such as methyl acrylate (MA), methyl methacrylate (MMA) and itaconic acid (IA). Productivity can be improved by increasing the yield of the fiber.

도 1은 실시예 및 비교예의 폴리아크릴로니트릴계 공중합수지조성물의 공기분위기하의 열중량분석결과를 나타내는 그래프이다.1 is a graph showing the results of thermogravimetric analysis under the air atmosphere of the polyacrylonitrile-based copolymer resin compositions of Examples and Comparative Examples.

이하에서는, 실시예를 통하여 본 발명을 상세히 설명한다. 하기 실시예는 본 발명을 설명하기 위한 일 실시예일 뿐, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. The following examples are only examples for describing the present invention, but the present invention is not limited thereto.

[실시예 1~4 및 비교예 1~2][Examples 1-4 and Comparative Examples 1-2]

1. Dicyclohexylammonium 2-cyanoacrylate의 합성1.Synthesis of Dicyclohexylammonium 2-cyanoacrylate

1) 시 약1) Reagent

시아노아세트산(Cyanoacetic acid (99%, Aldrich)), 파라폼알데하이드분말(paraformaldehyde powder (95%, Aldrich)), 디시클로헥실아민(dicyclohexylamine (99%, Acros)), 트리에틸렌아민(triethylamine (Junsei)), 헥산(hexane (95%, Samchun)), 벤젠(benzene (99.5%, Daejung))은 별도의 정제 없이 그대로 사용하였다.
Cyanoacetic acid (99%, Aldrich), paraformaldehyde powder (95%, Aldrich), dicyclohexylamine (99%, Acros), triethylamine (Junsei) ), Hexane (hexane (95%, Samchun)), benzene (benzene (99.5%, Daejung)) was used as it is without further purification.

2) Dicyclohexylammonium 2-cyanoacrylate의 합성 2) Synthesis of Dicyclohexylammonium 2-cyanoacrylate

시아노아세트산, 파라폼알데하이드, 디시클로헥실아민, 트리에틸렌아민을 벤젠에 녹인 다음, 20분 동안 90에서 100℃로 가열, 교반하면서 Dean-Stark 장치를 이용하여 물을 제거하였다. 반응이 종결된 후, 용액을 필터링하여 고분자 조각을 제거하고 진공 건조하여 용매를 제거하였다. Hexane으로 재결정한 후, 얻어진 화합물을 다시 benzene을 이용하여 재결정하여 dicyclohexylammonium 2-cyanoacrylate를 합성하였다.
Cyanoacetic acid, paraformaldehyde, dicyclohexylamine and triethyleneamine were dissolved in benzene, and then water was removed using a Dean-Stark apparatus while heating and stirring at 90 to 100 ° C. for 20 minutes. After the reaction was completed, the solution was filtered to remove the polymer pieces and vacuum dried to remove the solvent. After recrystallization with hexane, the obtained compound was recrystallized with benzene again to synthesize dicyclohexylammonium 2-cyanoacrylate.

2 아크릴로니트릴계 공중합체의 중합2 Polymerization of Acrylonitrile Copolymer

1) 시 약1) Reagent

아크릴로니트릴 (AN, 95%, Daejung)은 molecular sieve 4A를 사용하여 수분을 제거한 후, 사용 직전 90℃에서 상압 증류하여 사용하였다. Dimethyl sulfoxide (DMSO, 99%, Junsei)는 molecular sieve 4A를 사용하여 수분을 제거한 후, 70℃, 10~12 Torr 조건에서 감압 증류하여 사용하였다. 중합 개시제인 2,2'-azobis(isobutyronitrile) (AIBN, 99%, Daejung)은 methanol으로 2회 재결정하였다. 공지의 Acrylonitrile / itaconic acid 공중합체의 중합에 사용된 itaconic acid (IA, 99%, Junsei)는 증류수로 2회 재결정하여 사용하였다.
Acrylonitrile (AN, 95%, Daejung) was removed by atmospheric distillation at 90 ℃ immediately after use to remove moisture using molecular sieve 4A. Dimethyl sulfoxide (DMSO, 99%, Junsei) was used to remove water using molecular sieve 4A, and then distilled under reduced pressure at 70 ℃, 10 ~ 12 Torr conditions. The polymerization initiator 2,2'-azobis (isobutyronitrile) (AIBN, 99%, Daejung) was recrystallized twice with methanol. Itaconic acid (IA, 99%, Junsei) used for polymerization of known Acrylonitrile / itaconic acid copolymer was used by recrystallization twice with distilled water.

2) 공중합2) copolymerization

Heidolph사의 RZR 2052 overhead 교반기, 콘덴서, 온도계, purge needle이 달린 double-jacket 반응기에 용매 DMSO를 넣고, 100 rpm으로 교반하면서 반응온도 60℃까지 상승시켰다. 교반 시, 질소를 purge하면서 용매 및 반응기 내의 산소를 제거하였다. 반응온도에 도달하면 하기 표 1에 표시된 바와 같이 단량체를 각각 넣고 일정시간 교반시킨 후, 0.5 wt%의 AIBN을 첨가하였다. 이후 질소 기류 하, 60℃, 200 rpm의 조건으로 16시간 동안 중합하였다. The solvent DMSO was added to a double-jacket reactor equipped with a Heidolph RZR 2052 overhead stirrer, a condenser, a thermometer, and a purge needle, and the reaction temperature was raised to 60 ° C. while stirring at 100 rpm. Upon stirring, the solvent and oxygen in the reactor were removed while purge nitrogen. When the reaction temperature was reached, the monomers were added as shown in Table 1 below, and the mixture was stirred for a while, and 0.5 wt% of AIBN was added thereto. Then, the polymerization was carried out for 16 hours under conditions of 60 ° C. and 200 rpm under a nitrogen stream.

중합 후, 중합물을 진공조건에 의해 2시간동안 탈포하여 중합물 내의 기체를 제거하고, 증류수에 천천히 부어 실 형태로 고화시켰다. 증류수로 수 회 수세하여 미반응 단량체 및 용매를 제거한 후 분쇄하고, 다시 증류수로 여러 번 수세하여 60℃에서 24시간 동안 진공 건조하였다.After the polymerization, the polymer was degassed under vacuum conditions for 2 hours to remove the gas in the polymer, and slowly poured into distilled water to solidify in a yarn form. Water washed several times with distilled water to remove the unreacted monomer and solvent, then pulverized, washed with distilled water several times and dried in vacuo at 60 ℃ for 24 hours.

구 분division 아크릴로니트릴 (mol%)Acrylonitrile (mol%) 시아노아크릴레이트
(mol%)
Cyanoacrylate
(mol%)
이타콘산
(mol%)
Itaconic acid
(mol%)
실시예 1
(AC-0.19)
Example 1
(AC-0.19)
99.8199.81 0.190.19 --
실시예 2
(AC-0.38)
Example 2
(AC-0.38)
99.6299.62 0.380.38 --
실시예 3
(AC-0.58)
Example 3
(AC-0.58)
99.4299.42 0.580.58 --
실시예 4
(AC-0.78)
Example 4
(AC-0.78)
99.2299.22 0.780.78 --
비교예 1
(PAN-homo)
Comparative Example 1
(PAN-homo)
100.00100.00 -- --
비교예 2
(AI-0.82)
Comparative Example 2
(AI-0.82)
99.1899.18 -- 0.820.82

3. 분 석3. Analysis

1) Intrinsic viscosity1) Intrinsic viscosity

SCHOTT사의 AVS 360 Ubbelohde 점도계를 사용하였으며, 용매는 dimethyl formamide (DMF)를 사용하였다. 점도 용액의 농도는 0.5 g/dl로 제조하였으며, 30± 0.1의 온도에서 측정하였다. 용매의 t0 및 초기 농도 용액과 희석 용액의 통과 시간 (t)는 5회 측정하여 평균값을 사용하였으며, 다음의 식을 사용하여 점도 평균 분자량 (Mv)을 계산하였다.SCHOTT AVS 360 Ubbelohde viscometer was used, and dimethyl formamide (DMF) was used as a solvent. The concentration of the viscous solution was prepared at 0.5 g / dl and measured at a temperature of 30 ± 0.1. The t 0 of the solvent and the passage time (t) of the initial concentration solution and the dilute solution were measured five times, and an average value was used. The viscosity average molecular weight (Mv) was calculated using the following equation.

[η] = 2.86 × 10-4 Mv0.733[η] = 2.86 × 10 -4 M v 0.733

2) GPC2) GPC

실시예 및 비교예의 중합체의 수 평균 (Mn), 중량 평균 (Mw) 분자량 측정은 TOSOH사의 HLC-8320GPC를 사용하였으며 용매는 lithium bromide (LiBr)가 포함되어 있는 dimethyl formamide (DMF)를 사용하였다.
The number average (Mn) and weight average (Mw) molecular weights of the polymers of Examples and Comparative Examples were measured using TLCOH HLC-8320GPC and dimethyl formamide (DMF) containing lithium bromide (LiBr).

3) DSC3) DSC

실시예 및 비교예의 중합체의 열적 거동을 확인하기 위해 TA Instrument사의 Q200을 사용하였다. 10℃/min의 승온 속도로 질소 및 공기기류 하에서 450℃까지 승온시켰다. DSC 측정으로부터 얻은 thermogram은 TA사의 Universal analysis 2000 소프트웨어를 사용하여 온도 및 열량 분석을 하였으며, 공기 기류 하에서 중첩되어 나타나는 각 반응을 분리하기 위하여 GRAMS/32 소프트웨어를 사용하였다.
Q200 from TA Instrument was used to confirm the thermal behavior of the polymers of the Examples and Comparative Examples. It heated up to 450 degreeC under nitrogen and air stream at the temperature increase rate of 10 degreeC / min. Thermograms from DSC measurements were analyzed for temperature and calorimetry using TA's Universal analysis 2000 software, and GRAMS / 32 software was used to isolate each reaction that appears to overlap under air streams.

4) TGA4) TGA

열중량분석은 NETZSCH사의 STA 409PC를 사용하여 질소 및 공기기류 하에서 10/min의 속도로 승온시키면서 600℃까지 측정하였다.
Thermogravimetric analysis was measured up to 600 ° C. using NETZSCH STA 409PC while raising the temperature at a rate of 10 / min under nitrogen and air streams.

4. 결과 및 고찰4. Results and Discussion

1. 공중합체의 분석1. Analysis of Copolymers

실시예 1 내지 4 및 비교예 1 내지 2에서 제조된 폴리아크릴로니트릴계 공중합수지조성물의 물성을 표 2에 기재하였다. 공단량체 조성에 따른 중량평균분자량, 다분산지수, 고유점도, 점도에 의한 분자량을 알려준다.Table 2 shows the physical properties of the polyacrylonitrile copolymer resin compositions prepared in Examples 1 to 4 and Comparative Examples 1 and 2. It shows the weight average molecular weight, polydispersity index, intrinsic viscosity, and molecular weight by viscosity according to the comonomer composition.

상기 결과로부터 본 발명의 실시예 1 내지 4에서 제조된 전구체 고분자는 중량평균분자량은 6만에서 10만, 점도는 0.78에서 13.38 dl/g을 알려준다.From the above results, the precursor polymers prepared in Examples 1 to 4 of the present invention showed a weight average molecular weight of 60,000 to 100,000, and a viscosity of 0.78 to 13.38 dl / g.

Sample codeSample code Monomer in Feed
(mol%)
Monomer in feed
(mol%)
Conversion
(wt%)
Conversion
(wt%)
Mw a
(×104)
M w a
(× 10 4 )
PDIa
(Mw/Mn)
PDI a
(M w / M n )
Mv b
(×104)
M v b
(× 10 4 )
[η]b
(dℓ/g)
[η] b
(dℓ / g)
ANAN IAIA CACA 실시예 1Example 1 99.8199.81 -- 0.190.19 88.388.3 9.999.99 2.092.09 13.3813.38 1.631.63 실시예 2Example 2 99.6299.62 -- 0.380.38 78.478.4 9.119.11 2.262.26 8.988.98 1.221.22 실시예 3Example 3 99.4299.42 -- 0.580.58 77.177.1 8.378.37 2.612.61 7.887.88 1.111.11 실시예 4Example 4 99.2299.22 -- 0.780.78 74.174.1 6.266.26 3.193.19 4.874.87 0.780.78 비교예 1Comparative Example 1 100100 -- -- 77.577.5 11.1211.12 2.042.04 19.4619.46 2.152.15 비교예 2Comparative Example 2 99.1899.18 0.820.82 -- 77.677.6 13.7613.76 1.811.81 24.2324.23 2.532.53

2. 고리화 반응 및 열안정성2. Cyclization Reaction and Thermal Stability

실시예 1 내지 4 및 비교예 1내지 2에서 제조된 폴리아크릴로니트릴계 공중합수지조성물의 공기분위기하의 시차주사열량분석의 시험결과를 표 3에 기재하였다. 본 발명의 실시예 1 내지 4에서 단독 폴리아크릴로니트릴 고분자 비교예 1보다 낮은 고리화 개시온도와 발열량이 확인하였고, 비교예 2와 유사한 특성을 보인다.Table 3 shows the test results of the differential scanning calorimetry under the air atmosphere of the polyacrylonitrile-based copolymer resin compositions prepared in Examples 1 to 4 and Comparative Examples 1 to 2. In Examples 1 to 4 of the present invention, the lower cyclization onset temperature and the calorific value than the polyacrylonitrile polymer Comparative Example 1 alone were confirmed, and showed similar characteristics as those of Comparative Example 2.

Sample codeSample code Ti a(℃)T i a (℃) Tf b(℃)T f b (℃) △Tc(℃)ΔT c (° C.) Tpk d(℃)T pk d (℃) △He
(J/g)
△ H e
(J / g)
△H/△T
(J/g×min)
△ H / △ T
(J / g × min)
실시예 1Example 1 184.4184.4 430.2430.2 245.8245.8 308.5308.5 40944094 166.6166.6 실시예 2Example 2 168.3168.3 415.9415.9 247.6247.6 307.2307.2 39033903 157.6157.6 실시예 3Example 3 160.5160.5 409.7409.7 249.2249.2 305.6305.6 34643464 139139 실시예 4Example 4 160.1160.1 410.1410.1 250250 304.3304.3 29142914 116.6116.6 비교예 1Comparative Example 1 209.1209.1 445.3445.3 236.2236.2 318.8318.8 39603960 167.7167.7 비교예 2Comparative Example 2 180.6180.6 411411 230.4230.4 279.7279.7 29932993 129.9129.9

실시예 1 내지 4 및 비교예 1내지 2에서 제조된 폴리아크릴로니트릴계 공중합수지조성물을 가지고 공기분위기하의 열중량분석을 수행하여 도 1에 나타내었다. It was shown in Figure 1 by performing a thermogravimetric analysis under an air atmosphere with a polyacrylonitrile-based copolymer resin composition prepared in Examples 1 to 4 and Comparative Examples 1 to 2.

본 발명의 공중합수지 조성물의 높은 열안정성을 확인하였다. 낮은 고리화 개시온도와 발열량 및 높은 열안정성을 통해 이를 탄소섬유 전구체로 적용 가능한 특성을 확인할 수 있다.
The high thermal stability of the copolymer resin composition of the present invention was confirmed. Low cyclization onset temperature, calorific value and high thermal stability can confirm the properties that can be applied to the carbon fiber precursor.

Claims (5)

하기 화학식 1로 표시되는 반복단위를 포함하는 PAN계 탄소섬유 프리커서용 아크릴로니트릴계 공중합수지조성물.
[화학식 1]
Figure pat00003

Acrylonitrile-based copolymer resin composition for a PAN-based carbon fiber precursor comprising a repeating unit represented by the formula (1).
[Formula 1]
Figure pat00003

제 1항에 있어서,
상기 m, n의 합을 100몰%로 가정할 때, m은 99 ~ 99.9 몰%, n은 0.1 ~ 1몰%인 PAN계 탄소섬유 프리커서용 아크릴로니트릴계 공중합수지조성물.
The method of claim 1,
Assuming that the sum of m and n is 100 mol%, m is 99 to 99.9 mol%, and n is 0.1 to 1 mol% acrylonitrile copolymer resin composition for a PAN-based carbon fiber precursor.
제 1항에 있어서,
상기 아크릴로니트릴계 공중합수지조성물은 중량평균분자량 60,000 ~ 150,000이고, 다분산지수(Mw/Mn)는 1.5 ~ 4.0인 PAN계 탄소섬유 프리커서용 아크릴로니트릴계 공중합수지조성물.
The method of claim 1,
The acrylonitrile copolymer resin composition has a weight average molecular weight of 60,000 ~ 150,000, polydispersity index (Mw / Mn) is 1.5 ~ 4.0 acrylonitrile copolymer copolymer composition for PAN carbon fiber precursor.
제 1항에 있어서,
상기 [화학식 1]의 카르보닐기 음이온과 디시클로헥실암모늄 2-시아노아크릴레이트, Li, Na, K, Cs, 암모늄 양이온 및 피리디늄 양이온 중 어느 하나와 이온결합하는 PAN계 탄소섬유 프리커서용 아크릴로니트릴계 공중합수지조성물.
The method of claim 1,
Acrylo for PAN-based carbon fiber precursors that ionically bond with any of the carbonyl group anion of [Formula 1] and dicyclohexyl ammonium 2-cyanoacrylate, Li, Na, K, Cs, ammonium cation and pyridinium cation Nitrile Copolymer Resin Composition.
제 1항 내지 제 4항 중 어느 한 항 기재의 PAN계 탄소섬유 프리커서용 아크릴로니트릴계 공중합수지조성물을 사용하여 제조한 탄소섬유.The carbon fiber manufactured using the acrylonitrile-type copolymer resin composition for PAN type carbon fiber precursor of any one of Claims 1-4.
KR1020110032942A 2011-04-08 2011-04-08 Acrylonitrile Copolymer For PAN Based Carbon Fiber Precursor KR101252789B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110032942A KR101252789B1 (en) 2011-04-08 2011-04-08 Acrylonitrile Copolymer For PAN Based Carbon Fiber Precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110032942A KR101252789B1 (en) 2011-04-08 2011-04-08 Acrylonitrile Copolymer For PAN Based Carbon Fiber Precursor

Publications (2)

Publication Number Publication Date
KR20120115029A true KR20120115029A (en) 2012-10-17
KR101252789B1 KR101252789B1 (en) 2013-04-09

Family

ID=47284045

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110032942A KR101252789B1 (en) 2011-04-08 2011-04-08 Acrylonitrile Copolymer For PAN Based Carbon Fiber Precursor

Country Status (1)

Country Link
KR (1) KR101252789B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097602A1 (en) * 2016-11-23 2018-05-31 주식회사 엘지화학 Method for producing polyacrylonitrile-based fiber, and polyacrylonitrile-based copolymer used therein
US10647844B2 (en) 2013-12-23 2020-05-12 Cytec Industries Inc. Polyacrylonitrile (PAN) polymers with low polydispersity index (PDI) and carbon fibers made therefrom
CN112778160A (en) * 2021-01-13 2021-05-11 南昌大学 Method for producing acrylonitrile by using 3-cyanopropionic acid as raw material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022531343A (en) * 2019-05-02 2022-07-06 サイテック インダストリーズ インコーポレイテッド Process for preparing carbon fibers from low polydispersity polyacrylonitrile

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3933712B2 (en) * 1997-08-27 2007-06-20 三菱レイヨン株式会社 Acrylonitrile-based precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber
TW446767B (en) * 1998-07-22 2001-07-21 Mitsubishi Rayon Co Acrylonitrile-based precursor fiber for carbon fiber and production thereof
US20060134413A1 (en) 2004-12-20 2006-06-22 Kenneth Wilkinson Amidines as initiators for converting acrylic fibers into carbon fibers
KR20100073760A (en) * 2008-12-23 2010-07-01 주식회사 효성 Method for preparing carbon fiber precursor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10647844B2 (en) 2013-12-23 2020-05-12 Cytec Industries Inc. Polyacrylonitrile (PAN) polymers with low polydispersity index (PDI) and carbon fibers made therefrom
WO2018097602A1 (en) * 2016-11-23 2018-05-31 주식회사 엘지화학 Method for producing polyacrylonitrile-based fiber, and polyacrylonitrile-based copolymer used therein
JP2019529736A (en) * 2016-11-23 2019-10-17 エルジー・ケム・リミテッド Method for producing polyacrylonitrile fiber and polyacrylonitrile copolymer used therefor
US11535957B2 (en) 2016-11-23 2022-12-27 Lg Chem, Ltd. Method for producing polyacrylonitrile-based fiber and polyacrylonitrile-based copolymer used therein
CN112778160A (en) * 2021-01-13 2021-05-11 南昌大学 Method for producing acrylonitrile by using 3-cyanopropionic acid as raw material
CN112778160B (en) * 2021-01-13 2022-02-11 南昌大学 Method for producing acrylonitrile by using 3-cyanopropionic acid as raw material

Also Published As

Publication number Publication date
KR101252789B1 (en) 2013-04-09

Similar Documents

Publication Publication Date Title
CN101358385B (en) Modified polybenzoxazole fiber and preparation method thereof
KR101252789B1 (en) Acrylonitrile Copolymer For PAN Based Carbon Fiber Precursor
CN102199248B (en) Acrylonitrile ternary interpolymer and preparation method thereof
CN102199249B (en) High molecular weight acrylonitrile terpolymer and preparation method thereof
US11427659B2 (en) Method of preparing acrylonitrile-based polymer for producing carbon fiber
US11702769B2 (en) Stabilized fiber, method of producing the same, and method of producing carbon fiber
KR101365142B1 (en) Polyacrylonitrile based copolymers for carbon fiber precursors and the method of preparation thereof
JP7166233B2 (en) Flame-resistant fiber, method for producing same, and method for producing carbon fiber
KR102161029B1 (en) Method for preparing acrylonitrile based polymer for preparing carbon fiber
KR102634640B1 (en) Method for manufacturing polyacrylonitrile-based carbon fiber precursor, polyacrylonitrile-based carbon fiber thereby and method for manufacturing polyacrylonitrile-based carbon fiber
KR102458927B1 (en) Method for producing polyacrylonitrile polymer
KR102472048B1 (en) Manufacturing method of polyacrylonitrile
KR101345646B1 (en) Method for preparing of polyamide copolymer
KR102339256B1 (en) Method for preparing polyamide and polyamide prepared by using the same
US11046792B2 (en) Method of preparing (meth)acrylonitrile-based polymer for preparing carbon fiber
JP2020117634A (en) Carbon material precursor molding, method for producing the same, and method for producing carbon material using the same
US20190292056A1 (en) Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using these
KR20210029045A (en) Method for preparing acrylonitrile based polymer
WO2019218991A1 (en) Novel polyacrylonitrile copolymer and method for preparing spinning dope thereof
JP2019167516A (en) Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using these
JP2019167271A (en) Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using these
JP6150334B2 (en) Carbon fiber precursor fiber and carbon fiber
JP7168909B2 (en) Precursor material for producing carbon material and method for producing carbon material using the same
JP2018053389A (en) Carbon fiber precursor fiber and method for producing carbon fiber
KR101246102B1 (en) Polyamide copolymer and the method for preparing the coplymer

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160328

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170327

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170803

Year of fee payment: 19