KR20120111530A - Method for preparing polyolefin and polyolefin therefrom - Google Patents

Method for preparing polyolefin and polyolefin therefrom Download PDF

Info

Publication number
KR20120111530A
KR20120111530A KR1020110030050A KR20110030050A KR20120111530A KR 20120111530 A KR20120111530 A KR 20120111530A KR 1020110030050 A KR1020110030050 A KR 1020110030050A KR 20110030050 A KR20110030050 A KR 20110030050A KR 20120111530 A KR20120111530 A KR 20120111530A
Authority
KR
South Korea
Prior art keywords
polyolefin
reactor
molecular weight
producing
group
Prior art date
Application number
KR1020110030050A
Other languages
Korean (ko)
Other versions
KR101412846B1 (en
Inventor
황산악
권혁주
이동길
박철영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020110030050A priority Critical patent/KR101412846B1/en
Publication of KR20120111530A publication Critical patent/KR20120111530A/en
Application granted granted Critical
Publication of KR101412846B1 publication Critical patent/KR101412846B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0031Making articles having hollow walls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/001Multistage polymerisation processes characterised by a change in reactor conditions without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/07Heteroatom-substituted Cp, i.e. Cp or analog where at least one of the substituent of the Cp or analog ring is or contains a heteroatom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE: A manufacturing method of polyolefin is provided to able to provide polyolefin which is especially suitable for blow molding because of low polymer melt index(MI), high polydispersity(PDI) and high full notch creep test to density or polymer melt index. CONSTITUTION: A manufacturing method of polyolefin comprises a step of polymerizing olefin under the presence of a metallocene catalyst and a molecular weight controller. The polymerization is conducted in a cascade-CSTR reactor. The cascade-CSTR reactor comprises a first reactor, a second reactor and a post reactor. Polyolefin is manufactured by the manufacturing method, has multi-modal molecular weight distribution, and has weight average molecular weight of 100,000-700,000. [Reference numerals] (AA) First reactor; (BB) Second reactor; (CC) Post reactor

Description

폴리올레핀의 제조방법 및 이로부터 제조된 폴리올레핀{Method For Preparing Polyolefin And Polyolefin Therefrom}Method for preparing polyolefin and polyolefin made therefrom {Method For Preparing Polyolefin And Polyolefin Therefrom}

본 발명은 폴리올레핀의 제조방법 및 이로부터 제조된 폴리올레핀에 관한 것으로, 보다 상세하게는 일반적인 블로우몰딩용 폴리올레핀에 비하여 고분자 용융지수인 MI(5kg 기준)는 낮고, 다분산도인 PDI는 높으며, 또한 밀도나 고분자 용융지수 대비 내응력 균열성(Full Notch Creep Test; FNCT)가 높아 블로우몰딩 성형에 특히 적합한 폴리올레핀의 제조방법 등에 관한 것이다.
The present invention relates to a method for producing polyolefin and a polyolefin prepared therefrom. More specifically, the polymer melt index MI (5 kg basis) is low, polydispersity PDI is high, and the density is higher than that of general blow molding polyolefin. The present invention relates to a method for producing a polyolefin, which is particularly suitable for blow molding molding due to a high stress notch creep test (FNCT) compared to a polymer melt index.

4족 전이금속을 이용한 메탈로센 촉매는 기존의 지글러-나타 촉매에 비하여 촉매 활성이 우수하고, 분자량 및 그 분산도 등을 제어하기 쉬워 다양한 유기 반응 및 고분자 반응에 이용되고 있다.Metallocene catalysts using Group 4 transition metals have excellent catalytic activity and are easy to control the molecular weight and the degree of dispersion thereof compared to the existing Ziegler-Natta catalysts and are used in various organic reactions and polymer reactions.

일반적으로 메탈로센 촉매로 중합된 고분자는 분자량 분포가 좁고, 공단량체의 분포가 균일한 특징이 있어 지글러-나타 촉매로 중합된 고분자 보다 기계적 물성 및 투명성이 우수하고 용매 추출성분이 적으나, 좁은 분자량 분포로 인해 가공성이 크게 떨어지는 문제가 있다.In general, polymers polymerized with a metallocene catalyst have a narrow molecular weight distribution and a uniform distribution of comonomers, resulting in better mechanical properties and transparency and less solvent extraction than polymers polymerized with a Ziegler-Natta catalyst. Due to the molecular weight distribution, there is a problem in that workability is greatly reduced.

일반적으로 분자량 분포가 넓을수록 전단속도(shear rate)에 따른 점도저하 정도가 커져 가공영역에서 우수한 가공성을 나타내는데, 메탈로센 촉매로 중합된 고분자, 특히 폴리에틸렌은 높은 전단속도에서 점도가 높아 압출시 부하나 압력이 많이 걸리게 되어 압출 생산성이 저하되고, 또한 블로우몰딩 가공시 버블 안정성이 크게 떨어지며, 제조된 블로우몰딩 성형품 표면이 불균일해져 투명성 저하 등을 초래한다. In general, the wider the molecular weight distribution, the greater the degree of viscosity decrease according to the shear rate, which shows excellent processability in the processing area. Polymers polymerized with metallocene catalysts, especially polyethylene, have high viscosity at high shear rates, which causes However, the pressure is excessively high, the extrusion productivity is reduced, the bubble stability during blow molding processing is greatly reduced, the surface of the manufactured blow molded molded article is uneven, resulting in a decrease in transparency.

따라서, 메탈로센 촉매를 이용한 우수한 기계적 물성이 유지되고 가공성이 크게 개선된 폴리올레핀의 제조방법의 개발이 시급한 실정이다.
Therefore, there is an urgent need to develop a method for producing a polyolefin having excellent mechanical properties using a metallocene catalyst and having greatly improved processability.

상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 일반적인 블로우몰딩용 폴리올레핀에 비하여 고분자 용융지수인 MI(5kg 기준)는 낮고, 다분산도인 PDI는 높으며, 또한 밀도나 고분자 용융지수 대비 내응력 균열성(Full Notch Creep Test; FNCT)이 높아 블로우몰딩 성형에 특히 적합한 폴리올레핀의 제조방법 등을 제공하는 것을 목적으로 한다. In order to solve the problems of the prior art as described above, the present invention has a low polymer melt index MI (5 kg basis), a polydispersity PDI is high, and a stress resistance compared to a density or polymer melt index as compared to a general blow molding polyolefin. It is an object of the present invention to provide a method for producing a polyolefin which is particularly suitable for blow molding molding due to its high notch creep test (FNCT).

본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
The above and other objects of the present invention can be achieved by the present invention described below.

상기의 목적을 달성하기 위하여, 본 발명은 올레핀을 메탈로센 촉매 및 분자량 조절제(Chain Propagation Agent; CPA) 하에서 중합하는 것을 특징으로 하는 폴리올레핀의 제조방법 및 이로부터 제조된 폴리올레핀을 제공한다.
In order to achieve the above object, the present invention provides a method for producing a polyolefin characterized in that the olefin is polymerized under a metallocene catalyst and a chain propagation agent (CPA) and a polyolefin prepared therefrom.

상기에서 살펴본 바와 같이, 본 발명에 따르면 일반적인 블로우몰딩용 폴리올레핀에 비하여 고분자 용융지수인 MI(5kg 기준)는 낮고, 다분산도인 PDI는 높으며, 또한 밀도나 고분자 용융지수 대비 내응력 균열성(Full Notch Creep Test; FNCT)가 높아 블로우몰딩 성형에 특히 적합한 폴리올레핀의 제조방법 등을 제공하는 효과가 있다.
As described above, according to the present invention, the polymer melt index MI (5 kg basis) is low, the polydispersity PDI is high, and the stress crack resistance (Full) is higher than the density or polymer melt index, compared to the general blow molding polyolefin. Notch Creep Test (FNCT) has a high effect of providing a method for producing a polyolefin particularly suitable for blow molding molding.

도 1은 본 발명의 폴리올레핀 제조방법의 구체적인 일례를 개략적으로 도시한 공정도이다.
도 2는 실시예 1과 비교예 1에서 제조된 폴리에틸렌의 분자량 분포를 도시한 그래프이다.
1 is a process diagram schematically showing a specific example of the polyolefin production method of the present invention.
Figure 2 is a graph showing the molecular weight distribution of the polyethylene prepared in Example 1 and Comparative Example 1.

이하 본 발명을 상세하게 설명한다. Hereinafter, the present invention will be described in detail.

본 발명의 폴리올레핀 제조방법은 올레핀을 메탈로센 촉매 및 분자량 조절제(Chain Propagation Agent; CPA) 하에서 중합하는 것을 특징으로 한다.
The polyolefin production method of the present invention is characterized in that the olefin is polymerized under a metallocene catalyst and a chain propagation agent (CPA).

상기 중합은 다단-CSTR 반응기(Cascade-CSTR Reactor)에서 실시되는 것이 바람직하다. The polymerization is preferably carried out in a Cascade-CSTR Reactor.

상기 다단-CSTR 반응기는 제1 반응기, 제2 반응기 및 포스트 반응기(Post Reactor)를 포함하여 이루어지는 것이 바람직하다. The multi-stage-CSTR reactor preferably comprises a first reactor, a second reactor and a post reactor.

상기 제1 반응기에 메탈로센 촉매 및 올레핀이 투입되고, 상기 제2 반응기에 분자량 조절제가 투입되는 것이 바람직하다. Preferably, the metallocene catalyst and the olefin are introduced into the first reactor, and the molecular weight regulator is introduced into the second reactor.

상기 제2 반응기의 온도는 상기 제1 반응기의 온도에 비하여 +20 ℃ 내지 -40 ℃인 것이 바람직하고, 보다 바람직하게는 +10 ℃ 내지 -30 ℃인 것이고, 보다 바람직하게는 +0 ℃ 내지 -20 ℃인 것인데, 이 범위 내에서 제1 반응기에서 제2 반응기로의 슬러리 이송이 용이하고 제2 반응기에서 생성되는 폴리올레핀의 분자량 조절이 용이하다.The temperature of the second reactor is preferably from +20 ℃ to -40 ℃, more preferably from +10 ℃ to -30 ℃, more preferably from +0 ℃ to-than the temperature of the first reactor It is 20 ℃, within this range it is easy to transfer the slurry from the first reactor to the second reactor and the molecular weight of the polyolefin produced in the second reactor is easy.

상기 제2 반응기의 압력은 상기 제1 반응기의 압력에 비하여 +1 내지 -5 bar인 것이 바람직하고, 보다 바람직하게는 +0.5 내지 -4 bar인 것이고, 가장 바람직하게는 +0 내지 -3 bar인 것인데, 이 범위 내에서 제1 반응기에서 제2 반응기로의 슬러리 이송이 용이하고 압력 저하에 따른 반응 활성 저하가 최소화되는 효과가 있다.The pressure of the second reactor is preferably +1 to -5 bar, more preferably +0.5 to -4 bar, and most preferably +0 to -3 bar compared to the pressure of the first reactor. In this range, it is easy to transfer the slurry from the first reactor to the second reactor and there is an effect of minimizing the decrease in reaction activity due to the pressure drop.

상기 제2 반응기에 공단량체로 상기 올레핀과 다른 α-올레핀이 추가 투입되는 것이 바람직하다.It is preferable that the olefin and another α-olefin are further added to the second reactor as a comonomer.

상기 α-올레핀은 프로필렌, 1-부텐, 1-헥센, 1-옥텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이코센, 노보넨, 노보나디엔, 에틸리덴노보넨, 비닐노보넨, 디씨클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠 및 3-클로로메틸스티렌 등으로 이루어진 군으로부터 선택된 1종 이상이 바람직하고, 보다 바람직하게는 1-부텐, 1-헥센, 1-옥텐 또는 이들의 혼합물인데, 이 경우 내응력 균열성이 뛰어난 효과가 있다. The α-olefins are propylene, 1-butene, 1-hexene, 1-octene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-decene, 1-undecene, 1- Dodecene, 1-tetradecene, 1-hexadecene, 1-ikocene, norbornene, norbonadiene, ethylidenenorbornene, vinylnorbornene, dcclopentadiene, 1,4-butadiene, 1,5-penta At least one selected from the group consisting of dienes, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene, and the like is preferable, more preferably 1-butene, 1-hexene, 1-octene or a mixture thereof, in this case has an excellent stress cracking resistance.

상기 α-올레핀은 상기 올레핀 총 100 중량부를 기준으로 0.01 내지 30 중량부이고, 바람직하게는 0.1 내지 5 중량부인데, 이 범위 내에서 블로우 몰딩 제품에 적합한 밀도 범위 내에서 내응력 균열성이 뛰어난 효과가 있다.The α-olefin is 0.01 to 30 parts by weight, preferably 0.1 to 5 parts by weight based on 100 parts by weight of the total olefins, and has excellent stress cracking resistance within a density range suitable for blow molding products within this range. There is.

상기 중합은 알킬 알루미늄 화합물을 더 포함하여 실시되는 것이 바람직한데, 일반적으로 메탈로센 촉매에 대한 조촉매로 사용될 수 있는 알킬 알루미늄 화합물인 경우 특별히 제한되지 않는다. The polymerization is preferably carried out by further including an alkyl aluminum compound, and generally is not particularly limited in the case of an alkyl aluminum compound that can be used as a promoter for a metallocene catalyst.

상기 올레핀은 에틸렌, 프로필렌, 1-부텐, 1-헥센, 1-옥텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-데센, 1-운데센, 1-도데센, 노보넨, 에틸리덴노보넨, 스티렌, 알파-메틸스티렌 및 3-클로로메틸스티렌 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 에틸렌이다. The olefins are ethylene, propylene, 1-butene, 1-hexene, 1-octene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-decene, 1-undecene, 1- It may be at least one selected from the group consisting of dodecene, norbornene, ethylidenenorbornene, styrene, alpha-methylstyrene, 3-chloromethylstyrene, and the like, and preferably ethylene.

상기 메탈로센 촉매는 제1 메탈로센 화합물, 제2 메탈로센 화합물 및 담체를 포함하여 이루어진 혼성 담지 메탈로센 촉매인 것이 바람직하다.The metallocene catalyst is preferably a hybrid supported metallocene catalyst including a first metallocene compound, a second metallocene compound, and a carrier.

상기 혼성 담지 메탈로센 촉매는 알킬알루미녹산, 보레이트 화합물 또는 이들을 더 포함하는 것이 바람직한데, 이 경우 제조되는 폴리올레핀의 활성이 향상되고 분자량 분포가 균일해지는 효과가 있다.Preferably, the hybrid supported metallocene catalyst further includes an alkylaluminoxane, a borate compound, or the like. In this case, the activity of the produced polyolefin is improved and the molecular weight distribution is uniform.

상기 제1 및 제2 메탈로센 화합물은 시클로펜타디엔 골격을 갖는 것이 바람직하고, 보다 바람직하게는 상기 시클로펜타디엔에 알킬, 아릴, 아미드 또는 알콕사이드 기가 연결된 구조를 갖는 것이 바람직한데 이 경우 촉매 활성이 우수한 효과가 있다.The first and second metallocene compounds preferably have a cyclopentadiene skeleton, and more preferably, have a structure in which an alkyl, aryl, amide or alkoxide group is linked to the cyclopentadiene. Excellent effect.

상기 분자량 조절제는 유기금속 착화합물(organometallic complex)인 것이 바람직하고, 보다 바람직하게는 유기이금속 착화합물(organobimetallic complex)이며, 가장 바람직하게는 하기 화학식 1로 표시되는 시클로펜타디에닐 금속 화합물과 하기 화학식 2로 표시되는 유기 알루미늄 화합물을 반응시켜 제조된 유기금속 착화합물인 것인데, 이 경우 고분자 용융지수를 낮추고, 분자량 및 다분산도를 높이며, 밀도나 고분자 용융지수 대비 내응력 균열성을 향상시키는 효과가 크다.The molecular weight modifier is preferably an organometallic complex, more preferably an organometallic complex, most preferably a cyclopentadienyl metal compound represented by the following Chemical Formula 1 and the following Chemical Formula 2. It is an organometallic complex prepared by reacting the organoaluminum compound to be displayed. In this case, the polymer melt index is lowered, the molecular weight and polydispersity are increased, and the stress cracking resistance is higher than the density or polymer melt index.

[화학식 1][Formula 1]

Cp 1Cp 2MX2 C p 1 C p 2 MX 2

상기 Cp 1 및 Cp 2는 리간드로서 독립적으로 시클로펜타디에닐기, 인데닐기, 플루오레닐기 또는 이들의 유도체이고, M은 주기율표상의 IV족 원소이며, X는 할로겐 원소이다.The C p 1 and C p 2 are independently a cyclopentadienyl group, indenyl group, fluorenyl group or derivatives thereof, M is a Group IV element on the periodic table, and X is a halogen element.

상기 IV족 원소는 티탄, 지르코늄 또는 하프늄인 것이 바람직하다.The group IV element is preferably titanium, zirconium or hafnium.

상기 시클로펜타디에닐 금속 화합물은 구체적인 예로, 비스시클로펜타디에닐티타늄 디클로라이드, 비스시클로펜타디에닐지르코늄 디클로라이드, 비스시클로펜타디에닐하프늄 디클로라이드, 비스인데닐티타늄 디클로라이드 및 비스플로레닐티타늄 디클로라이드 등으로 이루어진 군으로부터 선택된 1종 이상인 것이 바람직하다.Specific examples of the cyclopentadienyl metal compound include biscyclopentadienyl titanium dichloride, biscyclopentadienyl zirconium dichloride, biscyclopentadienyl hafnium dichloride, bisindenitanium dichloride, and bisfluorenyl titanium dichloride. At least one selected from the group consisting of chlorides and the like is preferable.

[화학식 2][Formula 2]

R1R2R3AlR 1 R 2 R 3 Al

상기 R1, R2 또는 R3는 독립적으로 C1~C20 알킬 치환체 또는 할로겐일 수 있으며, 질소 또는 산소와 같은 헤테로 원소를 포함할 수 있다.The R 1 , R 2 or R 3 may be independently a C 1 ~ C 20 alkyl substituent or halogen, it may include a hetero element such as nitrogen or oxygen.

상기 유기 알루미늄 화합물은 트리메틸 알루미늄, 트리에틸 알루미늄, 트리프로필알루미늄, 트리이소프로필알루미늄, 트리이소부틸 알루미늄, 트리헥실알루미늄, 트리옥틸 알루미늄, 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 디프로필알루미늄 클로라이드, 디이소부틸알루미늄 클로라이드, 디헥실알루미늄 클로라이드, 디메틸알루미늄 디클로라이드, 에틸알루미늄 디클로라이드, 프로필알루미늄 디클로라이드, 이소부틸알루미늄 디클로라이드 및 에틸알루미늄 세스퀴클로라이드 등으로 이루어진 군으로부터 선택된 1종 이상인 것이 바람직하다.The organoaluminum compound is trimethyl aluminum, triethyl aluminum, tripropyl aluminum, triisopropyl aluminum, triisobutyl aluminum, trihexyl aluminum, trioctyl aluminum, dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, diiso It is preferably at least one member selected from the group consisting of butylaluminum chloride, dihexylaluminum chloride, dimethylaluminum dichloride, ethylaluminum dichloride, propylaluminum dichloride, isobutylaluminum dichloride, ethylaluminum sesquichloride and the like.

상기 시클로펜타디에닐 금속 화합물(M)과 유기 알루미늄 화합물 (Al)의 몰비(M/Al)는 1:0.1 내지 1:100인 것을 바람직하다.It is preferable that the molar ratio (M / Al) of the said cyclopentadienyl metal compound (M) and an organoaluminum compound (Al) is 1: 0.1-1: 100.

상기 분자량 조절제는 상기 올레핀 총 100 중량부를 기준으로 10-7 내지 10-1 중량부인 것이 바람직하고, 보다 바람직하게는 10-5 내지 10-2 중량부인데, 이 범위 내에서 고분자 용융지수가 낮고, 다분산도가 높으며, 밀도나 고분자 용융지수 대비 내응력 균열성이 크게 향상된다.The molecular weight modifier is preferably 10 -7 to 10 -1 parts by weight, more preferably 10 -5 to 10 -2 parts by weight, based on 100 parts by weight of the total olefins, the polymer melt index is low in this range, Polydispersity is high, and stress cracking resistance is greatly improved compared to the density or polymer melt index.

또한, 상기 분자량 조절제는 상기 올레핀 1 kg(반응기 전체에 투입되는 양)을 기준으로 유기 금속 착화합물의 M의 함량이 0.001 내지 1000 μmol되는 양으로 투입될 수 있고, 바람직하게는 0.01 내지 100 μmol되는 양으로 투입되는 것이며, 보다 바람직하게는 0.1 내지 50 μmol되는 양으로 투입되는 것이고, 가장 바람직하게는 1 내지 20 μmol되는 양으로 투입되는 것인데, 이 범위 내에서 고분자 용융지수가 낮고, 다분산도가 높으며, 밀도나 고분자 용융지수 대비 내응력 균열성이 크게 향상된다.In addition, the molecular weight modifier may be added in an amount of 0.001 to 1000 μmol of M in the organometallic complex based on 1 kg of the olefin (amount charged into the entire reactor), preferably 0.01 to 100 μmol. It is to be added, more preferably in an amount of 0.1 to 50 μmol, most preferably in an amount of 1 to 20 μmol, the polymer melt index is low, polydispersity within this range, In addition, the stress cracking resistance is significantly improved compared to the density and the polymer melt index.

본 발명의 폴리올레핀은 상기 폴리올레핀의 제조방법에 따라 제조된 것을 특징으로 한다.The polyolefin of the present invention is characterized in that it is prepared according to the production method of the polyolefin.

상기 폴리올레핀은 이봉 또는 다봉 분자량 분포를 가지는 것이 바람직하다.It is preferable that the polyolefin has a bimodal or polymodal molecular weight distribution.

상기 폴리올레핀은 중량평균분자량이 100,000 내지 700,000인 것이 바람직하고, 보다 바람직하게는 150,000 내지 350,000이며, 가장 바람직하게는 200,000 내지 250,000인데, 이 범위 내에서 가공영역에서의 가공성이 뛰어난 효과가 있다.The polyolefin preferably has a weight average molecular weight of 100,000 to 700,000, more preferably 150,000 to 350,000, most preferably 200,000 to 250,000, and has an effect of excellent workability in the processing region within this range.

상기 폴리올레핀은 블로우몰딩용으로 사용되는 것이 바람직한데, 이 경우 블로우몰딩에 적합한 모든 물성을 만족시킬 수 있다.The polyolefin is preferably used for blow molding, in which case it can satisfy all the physical properties suitable for blow molding.

상기 폴리올레핀은 필름용, 파이프용, 보틀캡용 등으로 사용될 수 있다.
The polyolefin may be used for films, pipes, bottle caps, and the like.

본 발명의 중공 성형체는 상기 폴리올레핀으로 이루어지는 것을 특징으로 한다.
The hollow molded article of the present invention is characterized in that it comprises the polyolefin.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the present invention. Such variations and modifications are intended to be within the scope of the appended claims.

[실시예][Example]

<제조예 1> ([t-Bu-O-(CHProduction Example 1 ((t-Bu-O- (CH 22 )) 66 -C-C 55 HH 44 ]] 22 ZrClZrCl 22 의 합성)Synthesis)

6-클로로헥사놀(6-chlorohexanol)을 사용하여 문헌(Tetrahedron Lett. 2951 (1988))에 제시된 방법으로 t-Butyl-O-(CH2)6-Cl을 제조하고, 여기에 NaC5H5를 반응시켜 t-Butyl-O-(CH2)6-C5H5를 얻었다(수율 60%, b.p. 80℃/0.1 mmHg). 6-Chlorohexanol was used to prepare t-Butyl-O- (CH 2 ) 6 -Cl using the method presented in Tetrahedron Lett. 2951 (1988), wherein NaC 5 H 5 Was reacted to obtain t-Butyl-O- (CH 2 ) 6 -C 5 H 5 (yield 60%, bp 80 ° C./0.1 mmHg).

상기 t-Butyl-O-(CH2)6-C5H5 2.0 g(9.0 mmol)를 -78 ℃에서 THF에 녹이고, 여기에 노르말 부틸리튬(n-BuLi)을 1.0 당량 천천히 가한 후, 실온으로 승온시킨 다음, 8 시간 동안 반응시켰다. 이 반응 용액을 -78 ℃에서 ZrCl4(THF)2(1.70g, 4.50m㏖)/THF(30㎖)의 서스펜젼(suspension) 용액에 천천히 가한 다음, 실온에서 6 시간 동안 더 반응시켜 최종 반응 생성액을 얻었다. 2.0 g (9.0 mmol) of t-Butyl-O- (CH 2 ) 6 -C 5 H 5 was dissolved in THF at -78 ° C, and 1.0 equivalent of normal butyllithium (n-BuLi) was slowly added thereto, followed by room temperature. The reaction mixture was heated to 8 hours and then reacted for 8 hours. The reaction solution was slowly added to a suspension solution of ZrCl 4 (THF) 2 (1.70 g, 4.50 mmol) / THF (30 mL) at −78 ° C., followed by further reaction at room temperature for 6 hours to give a final The reaction product was obtained.

상기 반응 생성액을 진공 건조시켜 휘발성 물질을 모두 제거한 다음, 남은 오일성 액체 물질에 헥산(hexane)을 가한 후 슐렝크 글라스 필터(schlenk glass filter)를 이용하여 여과하였다. 여과된 용액을 진공 건조시켜 헥산을 제거한 다음, 여기에 다시 헥산을 가해 저온(-20℃)에서 침전을 유도하였다. 얻어진 침전물을 저온에서 걸러내어 흰색 고체의 [t-Bu-O-(CH2)6-C5H4]2ZrCl2 화합물을 92%의 수율로 수득하였다. 수득된 [t-Bu-O-(CH2)6-C5H4]2ZrCl2의 측정된 1H NMR 및 13C NMR 데이터는 다음과 같았다.The reaction product was dried in vacuo to remove all volatiles, and then hexane was added to the remaining oily liquid and then filtered using a Schlenk glass filter. The filtered solution was dried in vacuo to remove hexane, and then hexane was added thereto to induce precipitation at low temperature (-20 ° C). The precipitate obtained was filtered at low temperature to give a white solid [t-Bu-O- (CH 2 ) 6 -C 5 H 4 ] 2 ZrCl 2 compound in a yield of 92%. The measured 1H NMR and 13C NMR data of [t-Bu-O- (CH 2 ) 6 -C 5 H 4 ] 2 ZrCl 2 obtained were as follows.

1 H NMR(300MHz, CDCl3): 6.28 (t, J=2.6Hz, 2H), 6.19 (t, J=2.6Hz, 2H), 3.31 (t, J=6.6Hz, 2H), 2.62 (t, J=8Hz, 2H), 1.7-1.3 (m, 8H), 1.17 (s, 9H).1 H NMR (300 MHz, CDCl 3 ): 6.28 (t, J = 2.6 Hz, 2H), 6.19 (t, J = 2.6 Hz, 2H), 3.31 (t, J = 6.6 Hz, 2H), 2.62 (t, J = 8 Hz, 2H), 1.7-1.3 (m, 8H), 1.17 (s, 9H).

13 C NMR(CDCl3): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14, 29.18, 27.58, 26.00.
13 C NMR (CDCl 3 ): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14, 29.18, 27.58, 26.00.

<제조예 2> ([methyl(6-t-buthoxyhexyl)silyl(η5-tetramethylCp) (t-Butylamido)]TiClProduction Example 2 ([methyl (6-t-buthoxyhexyl) silyl (η5-tetramethylCp) (t-Butylamido)] TiCl 22 의 합성)Synthesis)

상온에서 50g의 Mg를 10L 반응기에 투입한 후 THF 300mL을 가하였다. 여기에 I2를 0.5g 정도 가한 후, 반응기 온도를 50℃로 유지하였다. 50 g of Mg was added to a 10 L reactor at room temperature, and then 300 mL of THF was added thereto. After 0.5 g of I 2 was added thereto, the reactor temperature was maintained at 50 ° C.

상기 반응기 온도가 안정화된 후 250g의 6-t-부톡시헥실클로라이드(6-t-buthoxyhexyl chloride)를 주입펌프(feeding pump)를 이용하여 5 mL/min의 속도로 반응기에 투입하면서 12시간 동안 교반하여(6-t-부톡시헥실클로라이드가 투입되면서 반응기 온도가 4~5℃ 정도 상승함), 6-t-부톡시헥실마그네슘 클로라이드(6-t-buthoxyhexyl magnesium chloride)를 제조하였다.After the reactor temperature is stabilized, 250 g of 6-t-butoxyhexyl chloride is added to the reactor at a rate of 5 mL / min using a feeding pump and stirred for 12 hours. (6-t-butoxyhexyl chloride was added to the reactor temperature is increased by about 4 ~ 5 ℃), 6-t-butoxyhexyl magnesium chloride (6-t-buthoxyhexyl magnesium chloride) was prepared.

상기 6-t-부톡시헥실마그네슘 클로라이드는 검은색의 반응 용액으로 수득되었는데, 이 검은색의 반응 용액으로부터 2mL을 취한 뒤 물을 가하여 유기층을 얻고, 이 유기층에 포함된 화합물이 1H-NMR을 통해 그리냐드 반응의 결과물인 6-t-부톡시헥산(6-t-buthoxyhexane)임을 확인하였다.The 6-t-butoxyhexyl magnesium chloride was obtained as a black reaction solution. 2 mL of the black reaction solution was taken and water was added to obtain an organic layer, and the compound included in the organic layer was subjected to 1H-NMR. It was confirmed that the result of the Grignard reaction 6-t-butoxyhexane (6-t-buthoxyhexane).

MeSiCl3 500g과 1L의 THF를 별도의 반응기에 가한 후 반응기 온도를 -20℃까지 냉각하였다. 이 반응기에 앞에서 제조된 6-t-부톡시헥실마그네슘클로라이드 중 560g을 주입 펌프를 이용하여 5 mL/min의 속도로 투입한 다음, 반응기 온도를 천천히 상온으로 승온하면서 12시간 교반하였다.500 g of MeSiCl 3 and 1 L of THF were added to a separate reactor, and the reactor temperature was cooled to -20 ° C. Into this reactor, 560 g of 6-t-butoxyhexyl magnesium chloride prepared above was introduced at a rate of 5 mL / min using an infusion pump, and then stirred for 12 hours while slowly raising the temperature of the reactor to room temperature.

상기 12시간 교반 후 흰색의 MgCl2 염이 생성되는 것을 확인하였고,여기에 헥산 4L를 가한 다음 실험용 가압 탈수 여과 장치(labdori, (주)한강엔지니어링)를 통해 염을 제거하여 필터된 용액을 얻을 수 있었다. After 12 hours of stirring, it was confirmed that white MgCl 2 salt was formed, and 4 L of hexane was added thereto, followed by removing the salt through a laboratory pressure dehydration filtration apparatus (labdori, Han River Engineering Co., Ltd.) to obtain a filtered solution. there was.

상기 필터된 용액을 반응기에 가한 후 70℃에서 헥산을 제거하여 엷은 노란색의 액체를 얻었고, 이를 1H NMR을 통해 메틸(6-t-부톡시헥실)디클로로실란 화합물임을 확인(1H NMR (CDCl3): 3.3 (t, 2H), 1.5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H), 1.1 (m, 2H), 0.7 (s, 3H))하였다.The filtered solution was added to the reactor and hexane was removed at 70 ° C. to obtain a pale yellow liquid, which was confirmed to be a methyl (6-t-butoxyhexyl) dichlorosilane compound through 1H NMR (1H NMR (CDCl 3): 3.3 (t, 2H), 1.5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H), 1.1 (m, 2H), 0.7 (s, 3H)).

별도의 반응기에 테트라메틸시클로펜타디엔 1.2몰(150g)과 THF 2.4L를 가한 후 반응기 온도를 -20℃로 냉각한 다음, 2.5M 농도의 n-BuLi 480mL을 주입 펌프를 이용하여 5 mL/min의 속도로 투입하였다. 상기 n-BuLi의 투입 후 반응기 온도를 천천히 상온으로 올리면서 12시간 교반한 다음, 메틸(6-t-부톡시헥실)디클로로실란(Methyl(6-t-buthoxyhexyl)dichlorosilane 326g(350mL)을 빠르게 반응기에 가하였다. 반응기 온도를 천천히 상온으로 올리면서 12시간 교반한 후, 상기 반응기 온도를 0℃로 냉각시킨 다음 2 당량의 t-BuNH2를 투입하였다. 1.2 mol (150 g) of tetramethylcyclopentadiene and 2.4 L of THF were added to a separate reactor, and the reactor temperature was cooled to -20 ° C. Then, 480 mL of 2.5M concentration of n-BuLi was injected using an infusion pump to 5 mL / min. Was added at the rate of. After the addition of n-BuLi, the reactor was slowly stirred for 12 hours while slowly raising the temperature to room temperature, and then 326 g (350 mL) of methyl (6-t-butoxyhexyl) dichlorosilane was rapidly reacted. After stirring for 12 hours while slowly raising the temperature of the reactor to room temperature, the reactor temperature was cooled to 0 ° C and 2 equivalents of t-BuNH 2 was added thereto.

상기 반응기 온도를 천천히 상온으로 올리면서 12시간 교반하였고, 이후 THF를 제거하고, 4L의 헥산을 가한 다음 실험용 가압 탈수 여과 장치(labdori, (주)한강엔지니어링)를 통해 염을 제거하여 필터된 용액을 얻을 수 있었다. 이 필터된 용액을 다시 반응기에 가한 후, 헥산을 70℃에서 제거하여 노란색의 용액을 얻었고, 이를 1H NMR을 통해 methyl (6-t-buthoxyhexyl)(tetramethylCpH)t-Butylaminosilane임을 확인하였다.After stirring the reactor temperature slowly to room temperature for 12 hours, THF was removed, 4 L of hexane was added, and salt was removed through an experimental pressure dehydration filtration apparatus (labdori, Han River Engineering Co., Ltd.) to filter the solution. Could get After the filtered solution was added to the reactor again, hexane was removed at 70 ° C. to obtain a yellow solution, which was identified as methyl (6-t-buthoxyhexyl) (tetramethylCpH) t-Butylaminosilane through 1H NMR.

상기 Methyl(6-t-buthoxyhexyl)(tetramethylCpH)t-Butylaminosilane을 -78℃, THF 하에서 n-BuLi과 반응시켜 생성된 디리튬염 용액에 TiCl3(THF)3 10mmol를 빠르게 가한 다음, 천천히 -78℃에서 상온으로 승온하면서 12시간 동안 교반하였다. 상기 12시간 교반 후, 상온에서 당량의 PbCl2 10 mmol을 반응 용액에 가하고 12시간 동안 교반하여 짙은 검은색의 용액을 얻었다. 10 mmol of TiCl 3 (THF) 3 was quickly added to a dilithium salt solution formed by reacting Methyl (6-t-buthoxyhexyl) (tetramethylCpH) t-Butylaminosilane with n-BuLi under -78 ° C and THF, and then slowly -78 It stirred for 12 hours, heating up at room temperature. After stirring for 12 hours, 10 mmol of equivalent PbCl 2 was added to the reaction solution at room temperature, followed by stirring for 12 hours to obtain a dark black solution.

상기 짙은 검은색의 용액에서 THF를 제거한 후 헥산을 가한 다음 여과하여 필터된 용액을 얻었다. 이 필터 용액에서 헥산을 제거하고 남은 물질이 1H NMR을 통하여 [methyl(6-t-buthoxyhexyl)silyl(η5-tetramethylCp) (t-Butylamido)]TiCl2임을 확인(1H NMR(CDCl3): 3.3 (s, 4H), 2.2 (s, 6H), 2.1 (s, 6H), 1.8 ~ 0.8 (m), 1.4 (s, 9H), 1.2 <136> (s, 9H), 0.7 (s, 3H))하였다.
After removing THF from the dark black solution, hexane was added and then filtered to obtain a filtered solution. Remove the hexane from the filter solution and confirm that the remaining material is [methyl (6-t-buthoxyhexyl) silyl (η5-tetramethylCp) (t-Butylamido)] TiCl 2 through 1H NMR (1H NMR (CDCl 3 ): 3.3 ( s, 4H), 2.2 (s, 6H), 2.1 (s, 6H), 1.8 to 0.8 (m), 1.4 (s, 9H), 1.2 (s, 9H), 0.7 (s, 3H)) It was.

<제조예 3> (메탈로센 담지 촉매의 제조)Preparation Example 3 (Preparation of Supported Metallocene Catalyst)

280m2/g의 표면적에 1.47ml/g의 기공부피를 갖는 소성 처리된 실리카(Sylopol 2212, Grace Davison) 3g에 톨루엔 30ml를 넣은 다음, 70℃에서 제조예 1에서 제조된 [t-Bu-O-(CH2)6-C5H4]2ZrCl2 0.36mmole을 투입하고 1시간 동안 반응시킨 후 남은 고체 성분을 톨루엔을 사용하여 세척하였다. 상기 고체 성분을 70℃에서 메틸알루미녹산(MAO) 15ml(10wt% Toluene 용액)와 2시간 동안 반응시킨 후 톨루엔으로 세척하여 미반응 MAO 용액을 제거하고 메틸알루미녹산이 함유된 고체 성분을 제조하였다. 30 ml of toluene was added to 3 g of calcined silica (Sylopol 2212, Grace Davison) having a pore volume of 1.47 ml / g at a surface area of 280 m 2 / g, and then [t-Bu-O prepared in Preparation Example 1 at 70 ° C. 0.36 mmole of-(CH 2 ) 6 -C 5 H 4 ] 2 ZrCl 2 was added and reacted for 1 hour, and then the remaining solid was washed with toluene. The solid component was reacted with 15 ml (10 wt% Toluene solution) of methylaluminoxane (MAO) at 70 ° C. for 2 hours, washed with toluene to remove the unreacted MAO solution, and a solid component containing methylaluminoxane was prepared.

상기 메틸알루미녹산이 함유된 고체성분 전량과 제조예 2에서 제조된 [methyl(6-t-buthoxyhexyl)silyl(η5-tetramethylCp)(t-Butylamido)]TiCl2 0.36mmole을 톨루엔을 용매로 하여 50℃에서 1시간 동안 반응시킨 후 톨루엔으로 세척하고, 이 세척된 고체 성분과 trityl tetrakis (penta-fluoro-phenyl)borate(TB) 1.2mmole을 톨루엔을 용매로 하여 50℃에서 1시간 동안 반응 시킨 후, 50℃에서 감압하에 건조하여 고체 상태의 메탈로센 담지 촉매를 제조하였다. 이때 붕소(B)/전이금속(Zr)의 몰비는 1.3이었다.
The total amount of the solid component containing methylaluminoxane and [methyl (6-t-buthoxyhexyl) silyl (η5-tetramethylCp) (t-Butylamido)] TiCl 2 0.36mmole prepared in Preparation Example 2 were used in a solvent of toluene at 50 ° C. After reacting with toluene for 1 hour and washing with toluene, the washed solid component and trityl tetrakis (penta-fluoro-phenyl) borate (TB) 1.2mmole was reacted with toluene as a solvent for 1 hour at 50 ℃, 50 It dried under reduced pressure at ° C to prepare a metallocene supported catalyst in a solid state. At this time, the molar ratio of boron (B) / transition metal (Zr) was 1.3.

<제조예 4> (분자량 조절제의 제조)Production Example 4 (Preparation of Molecular Weight Control Agent)

250ml 둥근 바닥 플라스크(round bottom flask)에 bis(cyclopentadienyl)titanium dichloride 1.25g 및 톨루엔 10ml를 순차적으로 투입한 후 교반하였다. 여기에 triisooctylaluminum(1M in hexane) 10 ml를 투입하고 상온에서 3일 동안 교반한 다음, 용매를 진공으로 제거하여 녹색 혼합물을 수득하였다. 상기 녹색 혼합물이 생성됨을 통해 상기 티타노센(titanocene)이 +3가로 환원됨을 알 수 있었고, 이 녹색 혼합물은 산화되거나 색이 변하지 않았다. 이하에서 상기 녹색 혼합물은 정제 과정 없이 그대로 사용되었다. 또한, H NMR을 통해 bis(cyclopentadienyl)octyl titanium과 dioctylaluminum chloride의 혼합물인 것을 확인(1H NMR(CDCl3, 500MHz): 7.31 (br s, 10 H), 2.43 (d, 4H), 1.95~1.2 (m , 28H), 1.2~0.9 (m, 19 H))하였다.
Bis (cyclopentadienyl) titanium dichloride 1.25g and toluene 10ml were sequentially added to a 250ml round bottom flask, followed by stirring. 10 ml of triisooctylaluminum (1M in hexane) was added thereto, stirred at room temperature for 3 days, and then the solvent was removed in vacuo to give a green mixture. As the green mixture was produced, it was found that the titanocene was reduced to + trivalent, and the green mixture was not oxidized or changed in color. In the following the green mixture was used as it is without purification. In addition, H NMR confirmed that it was a mixture of bis (cyclopentadienyl) octyl titanium and dioctylaluminum chloride (1H NMR (CDCl 3 , 500MHz): 7.31 (br s, 10H), 2.43 (d, 4H), 1.95 ~ 1.2 ( m, 28H), 1.2-0.9 (m, 19H)).

실시예 1Example 1

2기의 0.2 m3 용량의 반응기로 구성된 다단 연속식 CSTR 반응기(하기 도 1 참조)를 사용하였다. A multistage continuous CSTR reactor (see FIG. 1 below) consisting of two 0.2 m 3 capacity reactors was used.

제1 반응기에 헥산이 35kg/hr, 에틸렌이 10kg/hr, 수소가 1.5g/hr, 트리에틸알루미늄(TEAL)이 40mmol/hr의 유량으로 각각 주입되고, 또한 제조예 3에서 제조된 메탈로센 담지 촉매가 1g/hr(180㎛ol/hr)로 주입되었다. 이때 상기 제1반응기는 84℃로 유지되고, 압력은 9bar로 유지되었으며, 반응물의 체류시간은 2.5시간으로 유지시켰고, 반응기 내 일정 액위를 유지하면서 연속적으로 중합체를 포함한 슬러리 혼합물이 제2 반응기로 넘어가도록 하였다. Into the first reactor, 35 kg / hr of hexane, 10 kg / hr of ethylene, 1.5 g / hr of hydrogen, and triethylaluminum (TEAL) were injected at a flow rate of 40 mmol / hr, respectively. The supported catalyst was injected at 1 g / hr (180 μmol / hr). In this case, the first reactor was maintained at 84 ° C., the pressure was maintained at 9 bar, the residence time of the reactants was maintained at 2.5 hours, and the slurry mixture containing the polymer was continuously transferred to the second reactor while maintaining a constant liquid level in the reactor. It was made.

제2반응기에 헥산이 21kg/hr, 에틸렌이 6.5kg/hr, 1-헥센이 70g/hr, 트리에틸알루미늄(TEAL)이 20mmol/hr의 유량으로 주입되고, 제조예 4에서 제조된 분자량 조절제가 80㎛ol/hr로 주입되었다. 제2반응기는 80℃로 유지되고, 압력은 7bar로 유지되었으며, 반응물의 체류시간은 1.5시간으로 유지시켰고, 반응기 내 일정 액위를 유지하면서 연속적으로 중합체 혼합물을 포스트 반응기(post reactor)로 넘어가도록 하였다. Hexane 21 kg / hr, ethylene 6.5 kg / hr, 1- hexene 70 g / hr, triethylaluminum (TEAL) is injected into the second reactor at a flow rate of 20 mmol / hr, the molecular weight regulator prepared in Preparation Example 4 Injected at 80 μmol / hr. The second reactor was maintained at 80 ° C., the pressure was maintained at 7 bar, the residence time of the reactants was maintained at 1.5 hours, and the polymer mixture was continuously passed to the post reactor while maintaining a constant liquid level in the reactor. .

상기 포스트 반응기는 78℃로 유지되고, 미반응 단량체가 중합되었다. 이후 중합 생성물은 용매 제거 설비 및 건조기를 거쳐 최종 폴리에틸렌으로 제조되었다. 제조된 폴리에틸렌은 칼슘스테아레이트(두본산업 제조) 1000ppm 및 열안정제 21B(송원산업 제조) 2000ppm과 혼합된 다음, 펠렛으로 만들어졌다. The post reactor was maintained at 78 ° C. and unreacted monomers were polymerized. The polymerization product was then made into final polyethylene via a solvent removal plant and a dryer. The polyethylene produced was mixed with 1000 ppm of calcium stearate (manufactured by Dubon Industries) and 2000 ppm of heat stabilizer 21B (manufactured by Songwon Industries), and then made into pellets.

실시예 2Example 2

상기 제2반응기에서 1-헥센을 100ml/hr로 주입하는 대신 1-부텐을 70ml/hr로 주입한 것을 제외하고 상기 실시예 1과 동일한 방법으로 실시하였다.Instead of injecting 1-hexene at 100ml / hr in the second reactor was carried out in the same manner as in Example 1 except that 1-butene was injected at 70ml / hr.

실시예 3Example 3

상기 제2 반응기에서 1-헥센을 100ml/hr로 주입하지 않고, 분자량 조절제를 40㎛ol/hr로 주입한 것을 제외하고 상기 실시예 1과 동일한 방법으로 실시하였다.In the second reactor was carried out in the same manner as in Example 1 except that the 1-hexene was injected at 100ml / hr, the molecular weight regulator was injected at 40㎛ol / hr.

비교예 1Comparative Example 1

상기 실시예 3에서 분자량 조절제를 사용하지 않은 것을 제외하고는 상기 실시예 3과 동일한 방법으로 실시하였다.Except that the molecular weight regulator was not used in Example 3 was carried out in the same manner as in Example 3.

비교예 2Comparative Example 2

연속식 CSTR 반응기를 이용하고, 메탈로센 촉매 대신 지글러 촉매를 사용하며, 분자량 조절제를 사용하지 않고 제조된 종래의 블로우몰딩용 폴리에틸렌 제품(BE0350, LG화학 제조).A conventional blow molding polyethylene product (BE0350, manufactured by LG Chem) which is manufactured using a continuous CSTR reactor, using a Ziegler catalyst instead of a metallocene catalyst, and without using a molecular weight regulator.

비교예 3Comparative Example 3

루프 반응기에서 소성된 크롬 촉매를 사용하며, 공단량체로 1-hexene이 포함되어 제조된 종래의 블로우몰딩용 폴리에틸렌 제품(5502HS, 대림산업 제조).
A conventional blow molding polyethylene product (5502HS, manufactured by Daelim Industrial Co., Ltd.) manufactured using a chromium catalyst calcined in a loop reactor and manufactured by including 1-hexene as a comonomer.

[시험예][Test Example]

상기 실시예 1 내지 3 및 비교예 1 내지 3에서 제조 또는 사용된 폴리에틸렌의 특성을 하기의 방법으로 측정하고, 그 결과를 하기의 표 1에 나타내었다.The properties of the polyethylene produced or used in Examples 1 to 3 and Comparative Examples 1 to 3 were measured by the following method, and the results are shown in Table 1 below.

* 분자량(MW): 겔 투과 크로마토그래피 (GPC: gel permeation chromatography)를 이용하여 중량 평균분자량으로 측정하였다. * Molecular weight (MW): measured by weight average molecular weight using gel permeation chromatography (GPC).

* 다분산도(PDI): 겔 투과 크로마토그래피(GPC: gel permeation chromatography) 를 이용하여 중량평균분자량을 수평균분자량으로 나눈 값으로 측정하였다.* Polydispersity (PDI): The weight average molecular weight was measured by gel permeation chromatography (GPC) divided by the number average molecular weight.

* Die Swell(%): 펠렛화된 제품을 중공 성형기(KRUPP KAUTEX, GERMANY)를 통해 나오는 패리슨이 수직 방향으로 15.7cm 떨어질 때의 수지를 가위로 잘라 그 무게를 측정하여 구하였다.* Die Swell (%): The pelletized product was obtained by cutting the resin when the parison coming out through the blow molding machine (KRUPP KAUTEX, GERMANY) fell 15.7 cm in the vertical direction by measuring its weight.

Die Swell(%) =Die Swell (%) =

Figure pat00001
Figure pat00001

As=Vsp×W/LAs = Vsp × W / L

As: 가위간격(15.7cm)동안의 패리슨의 평균 단면적(cm2)As: average cross-sectional area of the parison during the shear interval (15.7 cm) (cm 2 )

Ad: 다이 갭(gap)의 단면적 (0.6726cm2)Ad: cross section of die gap (0.6726 cm 2 )

Vsp: 폴리에틸렌이 채워지지 않았을 때의 비 용융 부피 Vsp: specific melt volume when polyethylene is not filled

(Specific melting volume) (1.32cm3/g)(Specific melting volume) (1.32cm 3 / g)

W: 잘린 패리슨의 평균 무게(g)W: average weight of truncated parisons (g)

L: 가위의 간격(15.7cm)L: the gap between scissors (15.7cm)

* Sagging Time(초): 중공 성형기를 통해 수직 방향으로 떨어지는 용융 수지가 126.5cm 지점에 도달하는데 걸리는 시간으로 측정하였다.* Sagging Time (sec): Measured by the time taken for the molten resin falling in the vertical direction through the blow molding machine to reach the 126.5 cm point.

* 성형성: 외관을 눈으로 관찰하여 제품 표면이 부드럽고 굴곡이 없는 경우 양호한 것으로 판단하였다.
* Formability: The appearance was visually observed and judged to be good when the surface of the product was smooth and there was no bending.

구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 중합polymerization 연속continuity 연속continuity 연속continuity 연속continuity 올레핀(kg/h)Olefin (kg / h) 16.516.5 16.516.5 16.516.5 16.516.5 분자량 조절제
㎛ol/hr
Molecular weight regulator
Μmol / hr
8080 8080 4040 00
공중합체Copolymer 1-Hexene1-Hexene 1-Butene1-Butene -- -- g/hrg / hr 7070 7070 R1 MI(@5kg)R1 MI (@ 5kg) 3030 3030 3030 3030 MI(@2kg)MI (@ 2kg) 0.190.19 0.170.17 0.180.18 1.51.5 MI(@5kg)MI (@ 5kg) 0.850.85 0.800.80 0.760.76 4.84.8 MI(@21.6kg)MI (@ 21.6kg) 16.416.4 15.715.7 14.514.5 5353 MFRMFR 8686 9292 8181 3535 MWMW 231,617231,617 215,326215,326 237,480237,480 153,484153,484 PDIPDI 9.49.4 9.59.5 9.29.2 6.46.4 밀도density 0.9550.955 0.9560.956 0.9600.960 0.9620.962

(R1 MI(@5kg)은 다단-CSTR 반응기의 제 1 반응기에 체류하고 있는 폴리에틸렌 파우더의 MI(@5kg)를 측정한 것이며, MI(@5kg)는 포스트 반응기 및 건조 공정을 통과한 폴리에틸렌의 MI(@5kg)를 의미한다)
(R1 MI (@ 5kg) is a measure of the MI (@ 5kg) of the polyethylene powder staying in the first reactor of the multi-stage CSTR reactor, MI (@ 5kg) is the MI of polyethylene passed through the post reactor and drying process (@ 5 kg) means)

상기 표 1에 나타낸 바와 같이, 본 발명에 따른 폴리에틸렌(실시예 1 내지 3)은 분자량 조절제 없이 제조된 폴리에틸렌(비교예 1)에 비하여 용융지수(MI)가 현저히 낮고, 분자량 및 다분산도(PDI)가 매우 높음을 확인할 수 있었다.As shown in Table 1, the polyethylene according to the present invention (Examples 1 to 3) has a significantly lower melt index (MI) compared to polyethylene (Comparative Example 1) prepared without a molecular weight modifier, molecular weight and polydispersity (PDI) ) Was found to be very high.

또한 하기 도 2에 도시된 분자량 분포 곡선(Molecular Weight Distribution Curve)를 보면, 본 발명에 따른 폴리에틸렌(실시예 1)은 두 개의 봉우리가 관찰되나, 분자량 조절제 없이 제조된 폴리에틸렌(비교예 1)은 한 개의 봉우리만 관찰됨을 확인할 수 있었다.In addition, when looking at the molecular weight distribution curve (Molecular Weight Distribution Curve) shown in Figure 2, the polyethylene according to the present invention (Example 1) is observed two peaks, polyethylene prepared without a molecular weight regulator (Comparative Example 1) is a Only peaks were observed.

물성Properties 측정방법How to measure 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 2Comparative Example 2 비교예 3Comparative Example 3 MI(@2kg)MI (@ 2kg) ASTM D1238ASTM D1238 0.190.19 0.170.17 0.180.18 0.250.25 0.200.20 MI(@5kg)MI (@ 5kg) 0.850.85 0.800.80 0.760.76 0.940.94 0.890.89 MI(@21.6kg)MI (@ 21.6kg) 16.416.4 15.715.7 14.514.5 12.012.0 MFRMFR 8686 9292 8181 4848 밀도(kg/m3)Density (kg / m3) ASTM D792ASTM D792 0.9550.955 0.9560.956 0.9600.960 0.9580.958 0.9600.960 굴곡강도(Mpa)Flexural Strength (Mpa) ASTM D790ASTM D790 13201320 13401340 14201420 13601360 (1400)(1400) 내응력 균열성(FNCT) (hr, 80도/3.5MPa)Stress crack resistance (FNCT) (hr, 80 degrees / 3.5MPa) ISO 16770ISO 16770 100100 3030 1010 33 33 Die Swell(%)Die Swell (%) 210210 200200 190190 180180 210210 Sagging Time(초)Sagging Time (sec) 2323 2424 2424 2020 2323 성형성(외관)Formability (Appearance) 양호Good 양호Good 양호Good 양호Good 양호Good

상기 표 2에 나타낸 바와 같이, 본 발명에 따른 폴리에틸렌(실시예 1임을 내지 3)은 분자량 조절제 없이 제조된 종래의 폴리에틸렌(비교예 2)과 루프 반응기에서 제조된 종래의 폴리에틸렌(비교예 3)에 비하여 패리슨 처짐 시간(Sagging Time)이 향상되고, 내응력 균열성(FNCT)이 크게 뛰어난 것을 확인할 수 있었다.
As shown in Table 2, the polyethylene according to the present invention (Example 1 to 3) is a conventional polyethylene (Comparative Example 2) prepared without a molecular weight regulator and a conventional polyethylene (Comparative Example 3) prepared in a loop reactor In comparison, the parison sagging time was improved and the stress cracking resistance (FNCT) was significantly excellent.

Claims (18)

올레핀을 메탈로센 촉매 및 분자량 조절제 하에서 중합하는 것을 특징으로 하는 폴리올레핀의 제조방법.A method for producing a polyolefin, wherein the olefin is polymerized under a metallocene catalyst and a molecular weight regulator. 제 1항에 있어서,
상기 중합은, 다단-CSTR 반응기(Cascade-CSTR Reactor)에서 실시되는 것을 특징으로 하는
폴리올레핀의 제조방법.
The method of claim 1,
The polymerization is characterized in that carried out in a cascade-CSTR reactor
Method for producing polyolefin.
제 2항에 있어서,
상기 다단-CSTR 반응기는. 제1 반응기, 제2 반응기 및 포스트 반응기 (Post Reactor)를 포함하여 이루어진 것을 특징으로 하는
폴리올레핀의 제조방법.
The method of claim 2,
The multistage-CSTR reactor. It characterized in that it comprises a first reactor, a second reactor and a post reactor (Post Reactor)
Method for producing polyolefin.
제 3항에 있어서,
상기 제1 반응기에 메탈로센 촉매 및 올레핀이 투입되고, 상기 제2 반응기에 분자량 조절제가 투입되는 것을 특징으로 하는
폴리올레핀의 제조방법.
The method of claim 3, wherein
A metallocene catalyst and an olefin are introduced into the first reactor, and a molecular weight regulator is added to the second reactor.
Method for producing polyolefin.
제 3항에 있어서,
상기 제2 반응기의 온도는, 상기 제1 반응기의 온도에 비하여 +20 내지 -40 ℃인 것을 특징으로 하는
폴리올레핀의 제조방법.
The method of claim 3, wherein
The temperature of the second reactor is +20 to -40 ℃ compared to the temperature of the first reactor, characterized in that
Method for producing polyolefin.
제 3항에 있어서,
상기 제2 반응기의 압력은, 상기 제1 반응기의 압력에 비하여 +1 내지 -5 bar인 것을 특징으로 하는
폴리올레핀의 제조방법.
The method of claim 3, wherein
The pressure of the second reactor, characterized in that +1 to -5 bar compared to the pressure of the first reactor
Method for producing polyolefin.
제 3항에 있어서,
상기 제2 반응기에 공단량체로 상기 올레핀과 다른 α-올레핀이 추가 투입되는 것을 특징으로 하는
폴리올레핀의 제조방법.
The method of claim 3, wherein
Characterized in that the olefin and another α-olefin is further added to the second reactor as a comonomer.
Method for producing polyolefin.
제 7항에 있어서,
상기 α-올레핀은, 상기 올레핀 총 100 중량부를 기준으로 0.01 내지 30 중량부인 것을 특징으로 하는
폴리올레핀의 제조방법.
8. The method of claim 7,
The α-olefin is characterized in that 0.01 to 30 parts by weight based on 100 parts by weight of the total olefins.
Method for producing polyolefin.
제 1항에 있어서,
상기 중합은, 알킬 알루미늄 화합물을 더 포함하여 실시되는 것을 특징으로 하는
폴리올레핀의 제조방법.
The method of claim 1,
The polymerization is carried out, further comprising an alkyl aluminum compound
Method for producing polyolefin.
제 1항에 있어서,
상기 올레핀은, 에틸렌, 프로필렌, 1-부텐, 1-헥센, 1-옥텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-데센, 1-운데센, 1-도데센, 노보넨, 에틸리덴노보넨, 스티렌, 알파-메틸스티렌 및 3-클로로메틸스티렌으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는
폴리올레핀의 제조방법.
The method of claim 1,
The olefin is ethylene, propylene, 1-butene, 1-hexene, 1-octene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-decene, 1-undecene, 1 At least one member selected from the group consisting of dodecene, norbornene, ethylidenenorbornene, styrene, alpha-methylstyrene and 3-chloromethylstyrene;
Method for producing polyolefin.
제 1항에 있어서,
상기 메탈로센 촉매는, 제1 메탈로센 화합물, 제2 메탈로센 화합물, 조촉매 및 담체를 포함하여 이루어진 혼성 담지 메탈로센 촉매인 것을 특징으로 하는
폴리올레핀의 제조방법.
The method of claim 1,
The metallocene catalyst is a hybrid supported metallocene catalyst comprising a first metallocene compound, a second metallocene compound, a promoter and a carrier.
Method for producing polyolefin.
제 1항에 있어서,
상기 분자량 조절제는, 하기 화학식 1로 표시되는 시클로펜타디에닐리간드 화합물과 하기 화학식 2로 표시되는 유기 알루미늄 화합물을 반응시켜 제조된 유기금속 착화합물인 것을 특징으로 하는
폴리올레핀의 제조방법
[화학식 1]
Cp 1Cp 2MX2
(상기 화학식 1에서 Cp 1 및 Cp 2는 독립적으로 시클로펜타디에닐기, 치환된 시클로펜타디에닐기, 인데닐기, 치환된 인데닐기, 플루오레닐기, 치환된 플루오레닐기에서 선택된 시클로펜타디에닐기를 지닌 리간드이고, M는 주기율표상의 IV족 원소이고, X는 할로겐 원소이다.)
[화학식 2]
R1R2R3Al
(상기 화학식 2에서 R1, R2 및 R3는 독립적으로 C1~C20 알킬기 또는 할로겐이다.)
The method of claim 1,
The molecular weight modifier is an organometallic complex prepared by reacting a cyclopentadienyl ligand compound represented by the following formula (1) and an organoaluminum compound represented by the following formula (2)
Method for producing polyolefin
[Formula 1]
C p 1 C p 2 MX 2
In Formula 1, C p 1 and C p 2 are independently a cyclopentadienyl group selected from a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, a fluorenyl group, and a substituted fluorenyl group Is a ligand with a group, M is a group IV element on the periodic table, and X is a halogen element.)
(2)
R 1 R 2 R 3 Al
(In Formula 2, R 1 , R 2 and R 3 are independently a C 1 ~ C 20 alkyl group or halogen.)
제 1항에 있어서,
상기 분자량 조절제는, 상기 올레핀 총 100 중량부를 기준으로 10-7 내지 10-1 중량부인 것을 특징으로 하는
폴리올레핀의 제조방법.
The method of claim 1,
Wherein the molecular weight modifier is 10 -7 to 10 -1 parts by weight based on 100 parts by weight of the total of the olefins
Method for producing polyolefin.
제 1항 내지 제 14항 중 어느 한 항의 폴리올레핀 제조방법에 따라 제조된 폴리올레핀.A polyolefin prepared according to the method for producing a polyolefin according to any one of claims 1 to 14. 제 14항에 있어서,
상기 폴리올레핀은, 다봉 분자량 분포를 가지는 것을 특징으로 하는 폴리올레핀.
The method of claim 14,
The polyolefin has a polymodal molecular weight distribution.
제 14항에 있어서,
상기 폴리올레핀은, 중량평균분자량이 100,000 내지 700,000인 것을 특징으로 하는 폴리올레핀.
The method of claim 14,
The polyolefin has a weight average molecular weight of 100,000 to 700,000 polyolefin.
제 14항에 있어서,
상기 폴리올레핀은, 블로우몰딩용 폴리올레핀인 것을 특징으로 하는 폴리올레핀.
The method of claim 14,
The polyolefin is a polyolefin for blow molding.
제 14항의 폴리올레핀으로 이루어지되, 블로우몰딩 공정으로 제조된 중공 성형체.A hollow molded article made of the polyolefin of claim 14, which is prepared by a blow molding process.
KR1020110030050A 2011-04-01 2011-04-01 Method For Preparing Polyolefin And Polyolefin Therefrom KR101412846B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110030050A KR101412846B1 (en) 2011-04-01 2011-04-01 Method For Preparing Polyolefin And Polyolefin Therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110030050A KR101412846B1 (en) 2011-04-01 2011-04-01 Method For Preparing Polyolefin And Polyolefin Therefrom

Publications (2)

Publication Number Publication Date
KR20120111530A true KR20120111530A (en) 2012-10-10
KR101412846B1 KR101412846B1 (en) 2014-06-30

Family

ID=47282219

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110030050A KR101412846B1 (en) 2011-04-01 2011-04-01 Method For Preparing Polyolefin And Polyolefin Therefrom

Country Status (1)

Country Link
KR (1) KR101412846B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101503567B1 (en) * 2011-08-18 2015-03-17 주식회사 엘지화학 Method of preparing polyolefin
WO2015076618A1 (en) * 2013-11-21 2015-05-28 주식회사 엘지화학 Method for preparing polyolefin and polyolefin prepared thereby
KR20150058020A (en) * 2013-11-18 2015-05-28 주식회사 엘지화학 Method for preparing polyolfin and polyolefin prepared therefrom
KR20150058035A (en) * 2013-11-18 2015-05-28 주식회사 엘지화학 Method for preparing polyolefin and polyolefin prepared therefrom
US9988469B2 (en) 2014-06-03 2018-06-05 Lg Chem, Ltd. Method for preparing polyolefin and polyolefin prepared thereby
US10870712B2 (en) 2015-06-15 2020-12-22 Lg Chem. Ltd. Method for preparing polyolefin

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI105820B (en) * 1995-10-10 2000-10-13 Borealis Tech Oy Process for the preparation of homopolymers or copolymers of propylene
FI973050A (en) * 1997-07-18 1999-01-19 Borealis As Process for the preparation of olefin polymers with "desired molecular weight distribution"
KR100579843B1 (en) * 2003-04-01 2006-05-12 주식회사 엘지화학 Supported hybrid metallocene catalysts, method for preparing the same, and method for preparing polyolefin using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101503567B1 (en) * 2011-08-18 2015-03-17 주식회사 엘지화학 Method of preparing polyolefin
KR20150058020A (en) * 2013-11-18 2015-05-28 주식회사 엘지화학 Method for preparing polyolfin and polyolefin prepared therefrom
KR20150058035A (en) * 2013-11-18 2015-05-28 주식회사 엘지화학 Method for preparing polyolefin and polyolefin prepared therefrom
WO2015076618A1 (en) * 2013-11-21 2015-05-28 주식회사 엘지화학 Method for preparing polyolefin and polyolefin prepared thereby
KR20150059125A (en) * 2013-11-21 2015-05-29 주식회사 엘지화학 Method for preparing polyolfin and polyolefin prepared therefrom
US9975969B2 (en) 2013-11-21 2018-05-22 Lg Chem, Ltd. Method of preparing polyolefin, and polyolefin prepared thereby
US9988469B2 (en) 2014-06-03 2018-06-05 Lg Chem, Ltd. Method for preparing polyolefin and polyolefin prepared thereby
US10870712B2 (en) 2015-06-15 2020-12-22 Lg Chem. Ltd. Method for preparing polyolefin

Also Published As

Publication number Publication date
KR101412846B1 (en) 2014-06-30

Similar Documents

Publication Publication Date Title
EP0822946B1 (en) Azaborolinyl metal complexes as olefin polymerization catalysts
KR101025038B1 (en) Olefin-Based Polymers and Fibers Comprising the Same
KR101528603B1 (en) Method for preparing polyolfin and polyolefin prepared therefrom
JP6499195B2 (en) Process for producing polyolefin and polyolefin produced therefrom
KR101503567B1 (en) Method of preparing polyolefin
KR101709688B1 (en) Method for preparing polyolfin and polyolefin prepared therefrom
KR100886681B1 (en) Process for preparing linear low density polyethylene
US10875951B2 (en) Propylene-diene copolymer resin having excellent melt tension
MXPA97008182A (en) S $! azaborolinilo metallic complexs as olefi polymerization catalysts
JPH11501339A (en) Borabenzene olefin polymerization catalyst
JP6328239B2 (en) Olefin polymer with excellent processability
JP2008530298A (en) Hybrid supported metallocene catalyst and method for producing polyethylene copolymer using the same
JP2004526818A (en) Dual-site olefin polymerization catalyst composition
KR101412846B1 (en) Method For Preparing Polyolefin And Polyolefin Therefrom
JP6511151B2 (en) Method of producing polyolefin
EP2794691B1 (en) Process for controlling the polymer composition of an ethylene copolymer obtained by a catalyst system comprising a transition metal catalyst component and a ziegler catalyst component
KR20190038387A (en) A novel indene-based transition metal complexes, catalysts composition containing the same, and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same
KR20110096718A (en) Process for ultra high molecular weight polyolefin using supported dinuclear constrained geometry catalyst complexes
KR101164962B1 (en) Ethylene copolymer with improved hygienic property and process for preparing the same
CN111491952A (en) Process for preparing polyolefins using supported hybrid metallocene catalysts
CN105339377B (en) For the catalyst of olefinic polymerization, methods for making them and application thereof
KR102646690B1 (en) Method for preparing a polyolefin
WO2016204457A1 (en) Method for preparing polyolefin
CA2219816C (en) Azaborolinyl metal complexes as olefin polymerization catalysts
CN116917354A (en) Polyethylene for preparing fiber and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180418

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 6