KR20120105233A - Electrolyte for high voltage and polymer electrolyte fabricated using the same - Google Patents

Electrolyte for high voltage and polymer electrolyte fabricated using the same Download PDF

Info

Publication number
KR20120105233A
KR20120105233A KR1020110022925A KR20110022925A KR20120105233A KR 20120105233 A KR20120105233 A KR 20120105233A KR 1020110022925 A KR1020110022925 A KR 1020110022925A KR 20110022925 A KR20110022925 A KR 20110022925A KR 20120105233 A KR20120105233 A KR 20120105233A
Authority
KR
South Korea
Prior art keywords
electrolyte
polar solvent
polymer electrolyte
water
ipmc
Prior art date
Application number
KR1020110022925A
Other languages
Korean (ko)
Other versions
KR101291261B1 (en
Inventor
유영태
이장우
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020110022925A priority Critical patent/KR101291261B1/en
Publication of KR20120105233A publication Critical patent/KR20120105233A/en
Application granted granted Critical
Publication of KR101291261B1 publication Critical patent/KR101291261B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE: An electrolytic solution for high voltage is provided to able to be operated under low voltage of 1-3 V, to have excellent physical properties like lightness and flexability, and to improve electric stability by using heavy water or deuterated polar solvent. CONSTITUTION: An electrolytic solution of ionic polymer metal composite uses heavy water or deuterated polar solvent. The heavy water is deuterated water in which hydron side of hard water is substituted by deuterium. The deuterated polar solvent has a shape a hydrogen site of polar solvent is substituted by deuterium. The polymer electrolyte is manufactured by a step of vacuum-drying a polymer electrolyte membrane or an ionic polymer metal composite actuator manufactured from the same, and a step dipping the dried polymer electrolyte membrane or the ionic polymer metal composite actuator into an aqueous solution of the polar solvent or a solution of heavy water.

Description

고전압용 전해액 및 이를 이용하여 제조한 고분자 전해질{Electrolyte for high voltage and polymer electrolyte fabricated using the same}Electrolyte for high voltage and polymer electrolyte fabricated using the same

본 발명은 고전압용 전해액 및 이를 이용하여 제조한 고분자 전해질에 관한 것으로서, 더욱 상세하게는 전기 활성 고분자 중 하나인 이온성 고분자 금속 복합체(ionic polymer-metal composite; IPMC)의 전해액인 물을 대체할 수 있는 용액으로 작동 성능이 유지되고 내부용액의 손실을 최소화할 수 있도록 중수(deuterated water) 또는 중수소화된 극성용매를 사용하여 상기 용액을 IPMC의 전해액으로 사용하는 것 및 이를 이용하여 제조한 고분자 전해질에 관한 것이다.The present invention relates to a high voltage electrolyte and a polymer electrolyte prepared using the same, and more particularly, can replace water, an electrolyte of an ionic polymer-metal composite (IPMC), which is one of the electroactive polymers. Using the solution as an electrolyte of IPMC using deuterated water or deuterated polar solvent to maintain the operating performance and minimize the loss of the internal solution. It is about.

전기활성 고분자의 하나인 이온성 고분자 금속 복합체(ionic polymer-metal composite, IPMC)는 낮은 구동 전압(1-3V) 하에서 높은 변위를 내는 물질로서 액추에이터(actuator), 센서(sensor), 인공 근육(artificial muscle) 등으로 응용 가능한 스마트한 재료(smart material)이다. One of the electroactive polymers, ionic polymer-metal composite (IPMC), is a material that exhibits high displacement under low driving voltage (1-3V) and is used for actuators, sensors, and artificial muscles. It is a smart material that can be applied to muscles and the like.

이러한 IPMC는 다른 물질에 비해 다양한 장점을 가지고 있는데 예를 들면 가볍고 유연하다는 물리적 특성 외에도 1-3V의 낮은 전압 하에서 구동이 가능하고 빠른 반응시간, 비교적 큰 변위의 산출, 그리고 낮은 전압을 이용하기 때문에 마이크로 구조물로의 제작이 용이하다는 점 등이 있다.These IPMCs have various advantages over other materials, for example, because of their light and flexible physical properties, they can operate under low voltages of 1-3V, and because they use fast response times, relatively large displacements, and low voltages, It is easy to manufacture into a structure.

따라서 다양한 산업에 이용, 확대가 가능하고 산업적 적용범위가 무한하기 때문에 미래 산업용 소재로 활용가치가 높을 것으로 판단된다.Therefore, it can be used and expanded in various industries, and the industrial scope is infinite, so it is expected to have high utilization value for future industrial materials.

그러나 일반적인 IPMC 작동기는 전해액으로서 물을 포함하고 있다. 하지만 대기 중에서 장시간 작동시키면 전해액인 물이 자연 증발과 1.2V 이상의 인가전압 하에서 물의 전기분해로 인한 전해액의 손실로 인해 IPMC의 작동성능이 감소하게 되는 문제점이 있다.However, typical IPMC actuators contain water as the electrolyte. However, when operating for a long time in the air there is a problem that the operating performance of the IPMC is reduced due to the loss of the electrolyte due to the natural evaporation of water and the electrolysis of water under the applied voltage of 1.2V or more.

따라서, 본 발명자들은 상기와 같은 종래 문제점들을 극복하기 위하여 IPMC의 전해액인 물을 대체할 수 있는 용액으로서, 중수 또는 중수소화된 극성용매를 사용하여 작동 성능이 유지되고 내부용액의 손실을 최소화하는 고전압용 전해액 및 이로부터 고분자 전해질을 제조하고 본 발명을 완성하기 이르렀다.Therefore, the present inventors use a heavy water or deuterated polar solvent as a solution that can replace water, which is an electrolyte of IPMC, in order to overcome the conventional problems as described above, and maintain high operating voltage and minimize loss of internal solution. A solution electrolyte and a polymer electrolyte were prepared therefrom to complete the present invention.

본 발명의 목적은, 전기적 안정성을 향상시키기 위해 중수 또는 중수소화된 극성용매를 사용함으로써, IPMC의 전해액을 제공함에 있다.The object of the present invention, By using a heavy water or deuterated polar solvent to improve the electrical stability, to provide an electrolyte of IPMC.

또한, 본 발명은 상술한바와 같은 효능을 가진 IPMC 전해액을 이용하여 제조한 고분자 전해질을 제공함에 있다.In addition, the present invention is to provide a polymer electrolyte prepared by using an IPMC electrolyte having the same efficacy as described above.

상기 목적을 달성하기 위하여, 본 발명은 중수 또는 중수소화된 극성용매를 사용한 IPMC의 전해액을 제공한다.In order to achieve the above object, the present invention provides an electrolyte of IPMC using a deuterated or deuterated polar solvent.

또한, 본 발명은 상기 전해액으로 제조한 고분자 전해질을 제공한다.In addition, the present invention provides a polymer electrolyte prepared from the electrolyte.

상기와 같은 본 발명에 따르면, 중수 또는 중수소화된 극성용매를 IPMC의 전해액으로 사용함으로써, 가볍고 유연하다는 물리적 특성 외에도 1~3V의 낮은 전압 하에서 구동이 가능한 효과가 있다.According to the present invention as described above, by using a heavy water or deuterated polar solvent as the electrolyte of the IPMC, there is an effect capable of driving under a low voltage of 1 ~ 3V in addition to the physical properties of light and flexible.

또한, IPMC의 표면을 코팅하여 대기 중에서도 큰 변형을 일으키면서 장시간 작동시키는 효과가 있다.In addition, by coating the surface of the IPMC has the effect of operating for a long time while causing a large deformation in the atmosphere.

또한, IPMC 작동기/센서 이외에도 구조가 유사한 이차전지, 커패시터 및 연료전지의 전해액으로도 적용 가능한 효과가 있다.In addition to the IPMC actuator / sensor, there is an effect that can be applied to the electrolyte of the similar structure secondary battery, capacitor and fuel cell.

도 1은 IPMC의 구조 및 작동원리를 나타낸 것이다.
도 2는 IPMC의 전해액 흡수도를 나타낸 것이다.
도 3은 대기 중에서 시간경과에 따른 IPMC 내부로부터 손실되는 전해액 양을 나타낸 것이다.
도 4는 다양한 전해액의 IV 곡선을 나타낸 것이다.
도 5는 전압에 따른 IPMC 전해액의 손실양을 나타낸 것이다.
도 6은 2V의 인가전압 하에서 시간 경과에 따른 IPMC의 말단변위를 나타낸 것이다.
도 7은 3V의 인가전압 하에서 측정된 IPMC의 (a) 말단변위와 (b) 말단힘을 나타낸 것이다.
Figure 1 shows the structure and operation principle of the IPMC.
Figure 2 shows the electrolyte absorption of the IPMC.
Figure 3 shows the amount of electrolyte lost from the inside of the IPMC over time in the atmosphere.
4 shows IV curves of various electrolytes.
5 shows the amount of loss of the IPMC electrolyte according to the voltage.
Figure 6 shows the end displacement of the IPMC over time under an applied voltage of 2V.
Figure 7 shows the (a) end displacement and (b) end force of the IPMC measured under an applied voltage of 3V.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 중수 또는 중수소화된 극성용매를 사용한 IPMC의 전해액을 제공한다.The present invention provides an electrolyte of IPMC using a deuterated or deuterated polar solvent.

본 발명에 있어서, IPMC의 전해액은 경수(일반적인 물)의 수소가 동위원소인 중수소로 치환된 형태의 중수(deuterated water)와 극성용매의 수소 자리에 중수소가 위치한 형태의 중수소화된 극성용매(deuterated polar solvent)가 사용되는 것을 특징으로 한다.In the present invention, the electrolyte of the IPMC is deuterated deuterated water in the form of deuterated water in which hydrogen in hard water (general water) isotopically substituted with deuterium and deutererated polar solvent in the form of deuterium in the hydrogen site of the polar solvent. polar solvent) is used.

또한, 상기 극성용매는 높은 유전율, 높은 비점, 낮은 증기압 및 높은 전기적 안정성을 가지는 것을 특징으로 하는 용매이면 어느 것을 사용하여도 무방하나, 바람직하게는 DMSO, DMSO-d6, methylcellosolve (ethylene glycol monomethyl ether) 이다. 이 때, 극성용매는 물 또는 중수와 혼합하여 IPMC의 전해액용 혼합물을 제조하는 것을 특징으로 한다.In addition, the polar solvent may be used as long as it is a solvent characterized by high dielectric constant, high boiling point, low vapor pressure and high electrical stability, preferably DMSO, DMSO-d 6 , methylcellosolve (ethylene glycol monomethyl ether ) to be. In this case, the polar solvent is mixed with water or heavy water to prepare an electrolyte mixture for IPMC.

또한, 극성용매는 물 또는 중수에 0.5~2mol/L 농도의 극성용매가 포함되는 것이 바람직하며, 더욱 바람직하게는 1mol/L의 농도록 혼합되는 것이 좋다. 극성용매의 수용액 혹은 중수용액의 농도가 상기 농도범위 보다 낮으면 전기적 안정성이 크게 개선되지 않으며, 상기 농도범위 보다 높으면 이로부터 제조한 고분자 전해질의 이온전도도, 기계적 강도 등의 특성이 저하되므로 바람직하지 않다.In addition, the polar solvent preferably contains a polar solvent of 0.5 to 2 mol / L concentration in water or heavy water, more preferably 1 mol / L is mixed in thick. If the concentration of the aqueous solution or heavy aqueous solution of the polar solvent is lower than the concentration range, the electrical stability is not significantly improved, and if the concentration is higher than the concentration range, the characteristics such as ionic conductivity, mechanical strength, etc. of the polymer electrolyte prepared therefrom are deteriorated. .

또한, 본 발명은 상기 전해액으로 제조한 고분자 전해질을 제공한다.In addition, the present invention provides a polymer electrolyte prepared from the electrolyte.

구체적으로, 상기 고분자 전해질의 제조방법은 (1) 고분자 전해질 막 또는 이로부터 제조한 IPMC 작동기를 진공건조하는 단계; 및 (2) 상기 건조된 고분자 전해질 막 또는 이로부터 제조한 IPMC 작동기를 극성용매의 수용액 또는 중수용액에 담지하는 단계;로 이루어지는 것을 특징으로 한다.Specifically, the method for producing a polymer electrolyte includes the steps of: (1) vacuum drying a polymer electrolyte membrane or an IPMC actuator prepared therefrom; And (2) supporting the dried polymer electrolyte membrane or an IPMC actuator prepared therefrom in an aqueous solution or a heavy aqueous solution of a polar solvent.

상기 (1) 단계에서, 고분자 전해질 막은 나피온(NafionTM), 플레미온(FlemionTM) 및 아시플렉스(AciplexTM) 중에서 선택되는 것을 특징으로 하며, 60~70℃의 온도에서 12시간 이상 충분히 진공건조 하는 것을 특징으로 한다.In step (1), a polymer electrolyte membrane of Nafion (Nafion TM), play lukewarm (Flemion TM) and know the flex being selected from (Aciplex TM) and sufficient for more than 12 hours at a temperature of 60 ~ 70 ℃ vacuo It is characterized by drying.

또한, 상기 (2) 단계에서, 상기 (1) 단계로부터 얻어진 잘 건조된 고분자 전해질 막 또는 이로부터 제조한 IPMC 작동기를 극성용매 수용액 또는 중수용액에 12시간 이상 담지하는 것을 특징으로 한다. 이 때, 극성용매의 수용액 혹은 중수용액의 온도를 변화시킴으로써 다양한 전해액 농도를 가진 고분자 전해질 또는 이로부터 제조한 IPMC 작동기를 제조할 수 있다.
In the step (2), the well-dried polymer electrolyte membrane obtained from the step (1) or the IPMC actuator prepared therefrom is characterized in that it is supported for 12 hours or more in an aqueous polar solvent solution or a heavy aqueous solution. At this time, by changing the temperature of the aqueous solution or heavy water solution of the polar solvent, it is possible to manufacture a polymer electrolyte having a variety of electrolyte concentration or an IPMC actuator prepared therefrom.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

실시예Example 1.  One. IPMCIPMC 작동기 제작 Actuator fabrication

IPMC의 고분자 전해질인 나피온 필름(DuPont, N-117)의 표면적을 증가시키기 위해, 필름의 양 표면을 수직방향으로 각각 SiC 사포(#1000)를 사용하여 20회 스크래치하고, 초음파 세척 및 2N HCl과 탈이온수로 세척하였다. 세척된 나피온 막은 0.01N [Pt(NH3)4]Cl2수용액에 12시간 이상 담지하였다. 이때, 30 ㎠의 막에 대해 필요한 0.01 N [Pt(NH3)4]Cl2수용액의 양은 최소 45 ㎖ 이상이 요구된다.To increase the surface area of IPMC's polymer electrolyte Nafion Film (DuPont, N-117), both surfaces of the film were scratched 20 times with SiC sandpaper (# 1000) in the vertical direction, respectively, with ultrasonic cleaning and 2N HCl. And washed with deionized water. The washed Nafion membrane was immersed in 0.01N [Pt (NH 3 ) 4 ] Cl 2 aqueous solution for at least 12 hours. At this time, the amount of 0.01 N [Pt (NH 3 ) 4 ] Cl 2 aqueous solution required for a 30 cm 2 membrane is required to be at least 45 ml.

백금염 수용액에 담지 하였던 막을 탈이온수로 세척한 후, 40℃로 유지된 180㎖의 탈 이온수가 담긴 반응기에 넣고 환원제로 5중량% NaBH4수용액과 5중량% NH4OH수용액을 각각 2 ㎖씩 매 30분마다 총 7회 투입하되, 투입하면서 반응기의 온도는 점차적으로 60℃까지 승온시켰다. 마지막으로, 과량(20 ㎖)의 NaBH4수용액을 투입하고 60℃에서 1.5시간 동안 교반하였다.After washing the membrane supported by the aqueous platinum salt solution with deionized water, it was placed in a reactor containing 180 ml of deionized water maintained at 40 ° C., and 2 ml each of a 5 wt% NaBH 4 aqueous solution and a 5 wt% NH 4 OH aqueous solution was used as a reducing agent. A total of seven injections were made every 30 minutes, but the temperature of the reactor was gradually raised to 60 ° C. while adding. Finally, an excess (20 mL) of NaBH 4 aqueous solution was added and stirred at 60 ° C. for 1.5 hours.

도금이 완성된 나피온 막은 탈이온수로 표면을 세척하고, 내부에 잔존하는 환원제를 제거하기 위해 0.1N HCl에 넣고 1시간 담지하였다.The Nafion membrane was plated, washed with deionized water, and placed in 0.1N HCl to remove remaining reducing agent therein for 1 hour.

최종적으로, 막 내부에 술폰산기의 H+를 Li+로 치환하기 위해 1 N LiOH 수용액에 12시간 이상 담지하여 IPMC 작동기를 제조하였다.
Finally, in order to replace H + of sulfonic acid group with Li + in the membrane, it was supported by 1 N LiOH aqueous solution for 12 hours or more to prepare an IPMC actuator.

실시예Example 2. 극성유기용매 혼합물 및 이를 포함한  2. Polar organic solvent mixtures and the like IPMCIPMC 의 준비Preparation of

IPMC의 전해액으로서 극성유기용매는 높은 유전율, 높은 비점, 낮은 증기압, 그리고 높은 전기적 안정성을 가지는 것을 선택하였으며, 본원발명에서는 DMSO, DMSO-d6, methylcellosolve (ethylene glycol monomethyl ether)를 물 혹은 중수와 혼합하여 IPMC의 전해액용 혼합물(1mol/L)을 만들었다. 이들 용액에 잘 건조된 IPMC를 실온에서 24시간 동안 담지 함으로서 본 발명의 IPMC 시료를 완성하였다.
As the electrolyte of IPMC, the polar organic solvent was selected to have high dielectric constant, high boiling point, low vapor pressure, and high electrical stability. In the present invention, DMSO, DMSO-d 6 , Methylcellosolve (ethylene glycol monomethyl ether) was mixed with water or heavy water to form an IPMC electrolyte mixture (1 mol / L). Well-dried in these solutions The IPMC sample of the present invention was completed by supporting IPMC at room temperature for 24 hours.

실험예Experimental Example 1.  One.

이온성 고분자는 그 내부에 함유된 용액의 양이 증가함에 따라 이온성 고분자 내부의 이온군(ion cluster)과 이를 서로 연결시켜주는 경로의 크기가 증가하게 되어 이온의 전도율이 증가한다. 그러나 지나친 증가는 그 물질의 단단함을 저하시켜 형태를 유지하기 어려운 단점 또한 있다.As the amount of the solution contained in the ionic polymer increases, the ion cluster inside the ionic polymer and the size of the path connecting the ionic polymer increase with increasing the conductivity of the ions. However, the excessive increase also lowers the rigidity of the material, which makes it difficult to maintain the shape.

나피온 필름으로부터 제조한 IPMC를 70℃의 진공오븐(C-DV, Chang Shin Co., 한국)에서 24시간 동안 충분히 건조시킨 직후 무게를 측정하고, 이를 각 전해액에 실온에서 24시간 동안 담지 시킨 후, 와이프로 IPMC의 표면에 묻어있는 전해액을 신속히 닦아내고 다시 무게를 측정하여 IPMC 무게 대비 전해액의 흡수량(중량%)를 확인하였다.After the IPMC prepared from Nafion film was sufficiently dried in a vacuum oven at 70 ° C. (C-DV, Chang Shin Co., Korea) for 24 hours, the weight was measured, and it was immersed in each electrolyte solution at room temperature for 24 hours. , Wipe the electrolyte on the surface of the IPMC with a wipe quickly and weighed again to determine the absorption (wt%) of the electrolyte compared to the IPMC weight.

그 결과, 도 2에 나타나듯이 1 mol/L 농도의 전해액으로부터 얻어진 IPMC의 전해액 흡수도(중량%)는 기준 전해액인 물의 흡수도와 거의 유사한 값을 나타내었다.
As a result, as shown in Fig. 2, the electrolyte absorbance (wt%) of the IPMC obtained from the electrolyte at a concentration of 1 mol / L showed a value almost similar to that of water as the reference electrolyte.

실험예Experimental Example 2. 2.

IPMC가 작동할 때 내부에 존재하는 전해액이 손실되면 IPMC의 작동성능이 감소하게 된다.If the electrolyte is lost when the IPMC is operating, the performance of the IPMC is reduced.

실험예 1에서 측정된 IPMC 자체의 무게(진공건조 후 무게)와 흡수된 전해액의 무게 데이터를 이용하여, 각 전해액에 담지된 IPMC를 대기 중으로 꺼낸 후 표면에 묻어있는 전해액을 와이프로 닦아내고 시간에 따른 무게감소를 저울로 측정함으로써 IPMC 무게 대비 전해액의 잔량(wt%)을 평가하였다.Using the weight of the IPMC itself (weight after vacuum drying) and the absorbed electrolyte weight data measured in Experimental Example 1, the IPMC contained in each electrolyte was taken out into the air, and then wiped off the electrolyte on the surface with a wipe. By measuring the weight loss with a balance, the residual amount (wt%) of the electrolyte relative to the IPMC weight was evaluated.

그 결과, 대기 중에서 시간경과에 따른 IPMC 내부로부터 손실되는 전해액의 양을 확인할 수 있었다(도 3참조). 모든 극성유기혼합물들의 IPMC 내부에서 흡착/탈착 평형은 40분 전 후에서 나타나고 있으며, 흡착/탈착 평형에서의 잔존하는 내부용액의 양은 DMSO와 DMSO-d6를 함유하고 있는 경우(29-32 중량%)가 이를 포함하지 않은 경우(18-20 중량%)에 비해 그 양이 많았다. 이러한 결과는 실제 사용된 극성유기용매 혼합물에서 극성유기용매의 양은 10% 정도로 그 양이 매우 적지만 그들의 소수성 특성으로 인해 나피온 막의 고립된 극성 부분, 즉, 플루오로에테르(fluoroether)가 풍부한 지역에 침투하여 IPMC 내부에서의 자연 증발이 쉽기 않기 때문이라 판단된다.
As a result, it was possible to confirm the amount of electrolyte lost from the inside of the IPMC over time in the atmosphere (see FIG. 3). The adsorption / desorption equilibrium in the IPMC of all polar organic mixtures is shown after 40 minutes, and the amount of internal solution remaining in the adsorption / desorption equilibrium contains DMSO and DMSO-d 6 (29-32% by weight). ) Was higher than that without (18-20% by weight). These results indicate that the amount of polar organic solvent in the mixture of polar organic solvents actually used is very small, such as 10%, but due to their hydrophobic nature, the isolated polar portion of the Nafion membrane, i.e., a region rich in fluoroether, is used. This is because spontaneous evaporation inside the IPMC is not easy.

실험예Experimental Example 3. 3.

측정 전 각 전해액에 0.1M의 LiOH를 첨가하였고, 한 쌍의 금속전극판(전극판 사이의 거리: 1 mm)을 전해액에 담근 후 source meter(Keithley 2400, USA)를 이용하여 IV curve를 얻었다. IV curve를 이용하여 측정된 각 전해액의 전기분해전압(electrolysis voltage)을 나타내고 있다. 이 때, 전기분해전압은 전압 대비 전류가 급격히 증가하기 시작한 전압 값이다.Before the measurement, 0.1M LiOH was added to each electrolyte, and a pair of metal electrode plates (distance between electrode plates: 1 mm) was immersed in the electrolyte, and then IV curves were obtained using a source meter (Keithley 2400, USA). The electrolysis voltage of each electrolyte measured using the IV curve is shown. At this time, the electrolysis voltage is a voltage value at which the current sharply increases with respect to the voltage.

이렇게 얻어진 전기분해전압은 그 용액의 전기분해가 시작되는 전압으로서 이 값이 클수록 높은 전기적 안정성을 나타낸다. 아래 표 1 및 도 4에서 보듯이 중수소의 농도가 높은 전해액이 높은 전기분해전압을 가진다는 것을 알 수 있었다.The electrolysis voltage thus obtained is the voltage at which electrolysis of the solution starts, and the larger this value, the higher the electrical stability. As shown in Table 1 and FIG. 4, it was found that the electrolyte having a high concentration of deuterium has a high electrolysis voltage.

Inner solutionInner solution Eletrolysis voltageEletrolysis voltage H2OH 2 O 1.291.29 D2OD 2 O 2.912.91 1M DMSO1M DMSO 2.642.64 1M DMSO-d6 1M DMSO-d 6 2.672.67 1M DMSO-d6 in D2O1M DMSO-d 6 in D 2 O 2.702.70 1M methyl cellosolve1M methyl cellosolve 2.222.22

실험예Experimental Example 4. 4.

각각 1,2,3V 직류의 인가전압 하에서, 각각 2분 동안 대기 중에서 작동시킨 후 감소된 IPMC의 무게를 측정함으로써 평가한 손실된 IPMC의 전해액 양을 확인하였다.Under the applied voltage of 1,2,3V direct current, respectively, the amount of lost IPMC electrolyte was evaluated by measuring the weight of the reduced IPMC after operating in air for 2 minutes.

그 결과 도 5에서 보는 바와 같이, 앞서 언급한 전해액의 전기분해 안정성과 일치하는 결과를 보여주고 있다. 즉, 가장 전기분해전압이 높은 1M DMSO-d6 in D2O의 경우, 1V에서 3V까지의 인가전압 하에서 전해액 손실의 차이가 거의 없었으며, 이는 IPMC 내부에서 자연 증발 외의 전기 분해에 의한 손실이 거의 없음을 나타내고 있다.
As a result, as shown in Figure 5, it shows a result consistent with the electrolytic stability of the above-mentioned electrolyte solution. That is, in the case of 1M DMSO-d 6 in D 2 O, which has the highest electrolysis voltage, there was almost no difference in electrolyte loss under the applied voltage of 1V to 3V. It is almost none.

이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 의하여 정의된다고 할 것이다. As described above, specific portions of the contents of the present invention have been described in detail, and for those skilled in the art, these specific techniques are merely preferred embodiments, and the scope of the present invention is not limited thereto. Will be obvious. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (10)

중수 또는 중수소화된 극성용매를 사용한 이온성 고분자 금속 복합체의 전해액.
Electrolyte solution of ionic polymer metal composite using heavy water or deuterated polar solvent.
제 1항에 있어서,
상기 중수는 경수의 수소 자리에 중수소가 치환된 형태의 중수(deuterated water)인 것을 특징으로 하는 이온성 고분자 금속 복합체의 전해액.
The method of claim 1,
The heavy water is an electrolyte of the ionic polymer metal composite, characterized in that the deuterated water in the form of substituted deuterium in the hydrogen site of hard water.
제 1항에 있어서,
상기 중수소화된 극성용매는 극성용매의 수소 자리에 중수소가 치환된 형태인 것을 특징으로 하는 이온성 고분자 금속 복합체의 전해액.
The method of claim 1,
The deuterated polar solvent is an electrolyte of the ionic polymer metal composite, characterized in that deuterium is substituted in the hydrogen site of the polar solvent.
제 1항에 있어서,
상기 극성용매는 DMSO, DMSO-d6, methylcellosolve(ethylene glycol monomethyl ether)인 것을 특징으로 하는 이온성 고분자 금속 복합체의 전해액.
The method of claim 1,
The polar solvent is DMSO, DMSO-d 6 , methylcellosolve (ethylene glycol monomethyl ether) electrolyte of ionic polymer metal composite, characterized in that.
제 1항에 있어서,
상기 극성용매는 물 또는 중수에 0.5~2mol/L 농도로 포함되는 것을 특징으로 하는 이온성 고분자 금속 복합체의 전해액.
The method of claim 1,
The polar solvent is an electrolyte of the ionic polymer metal composite, characterized in that it is contained in a concentration of 0.5 ~ 2mol / L in water or heavy water.
제1항의 전해액을 이용하여 제조한 고분자 전해질.
A polymer electrolyte prepared using the electrolyte solution of claim 1.
제 6항에 있어서,
상기 고분자 전해질은 (1) 고분자 전해질 막 또는 이로부터 제조한 이온성 고분자 금속 복합체 작동기를 진공건조하는 단계; 및 (2) 상기 건조된 고분자 전해질 막 또는 이로부터 제조한 IPMC 작동기를 극성용매의 수용액 또는 중수용액에 담지하는 단계;로 제조되어지는 것을 특징으로 하는 고분자 전해질.
The method according to claim 6,
The polymer electrolyte is (1) vacuum drying the polymer electrolyte membrane or an ionic polymer metal composite actuator prepared therefrom; And (2) supporting the dried polymer electrolyte membrane or the IPMC actuator prepared therefrom in an aqueous solution or a heavy aqueous solution of a polar solvent.
제 7항에 있어서,
상기 (1) 단계에서, 고분자 전해질 막은 나피온(NafionTM), 플레미온(FlemionTM) 및 아시플렉스(AciplexTM) 중에서 선택되는 것을 특징으로 하는 고분자 전해질.
8. The method of claim 7,
(1) In the step, the polymer electrolyte membrane of Nafion (Nafion TM), a polymer electrolyte, characterized in that play is selected from the warm (Flemion TM) and know Flex (TM Aciplex).
제 7항에 있어서,
상기 (1) 단계에서 고분자 전해질 막은 60~70℃의 온도에서 12시간 이상 진공건조 하는 것을 특징으로 하는 고분자 전해질.
8. The method of claim 7,
The polymer electrolyte membrane in the step (1) is a polymer electrolyte, characterized in that the vacuum drying for more than 12 hours at a temperature of 60 ~ 70 ℃.
제 7항에 있어서,
상기 (2) 단계에서 고분자 전해질 막 또는 이로부터 제조한 이온성 고분자 금속 복합체 작동기를 극성용매 수용액 또는 중수용액에 12시간 이상 동안 담지하는 것을 특징으로 하는 고분자 전해질.
8. The method of claim 7,
In the step (2), the polymer electrolyte membrane or the ionic polymer metal composite actuator prepared therefrom is supported in a polar solvent aqueous solution or heavy aqueous solution for 12 hours or more.
KR1020110022925A 2011-03-15 2011-03-15 Electrolyte for high voltage and polymer electrolyte fabricated using the same KR101291261B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110022925A KR101291261B1 (en) 2011-03-15 2011-03-15 Electrolyte for high voltage and polymer electrolyte fabricated using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110022925A KR101291261B1 (en) 2011-03-15 2011-03-15 Electrolyte for high voltage and polymer electrolyte fabricated using the same

Publications (2)

Publication Number Publication Date
KR20120105233A true KR20120105233A (en) 2012-09-25
KR101291261B1 KR101291261B1 (en) 2013-07-30

Family

ID=47112284

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110022925A KR101291261B1 (en) 2011-03-15 2011-03-15 Electrolyte for high voltage and polymer electrolyte fabricated using the same

Country Status (1)

Country Link
KR (1) KR101291261B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091238A1 (en) * 2018-11-02 2020-05-07 주식회사 엘지화학 Method for evaluating internal short of secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102071401B1 (en) * 2017-02-16 2020-01-30 삼화전기 주식회사 Electrolytic solution for electrolytic capacitor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847493B1 (en) * 2006-11-08 2008-07-22 한국전자통신연구원 Method for Preparing Polymer Actuators with High Stability and Polymer Actuators Prepared by the Method
KR101066232B1 (en) * 2009-03-10 2011-09-20 건국대학교 산학협력단 Composite polymer electrolyte membrane and method for preparing the polymer actuator
KR20100101944A (en) * 2009-03-10 2010-09-20 건국대학교 산학협력단 Novel treated polymer electrolyte membrane and method for preparing the polymer actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091238A1 (en) * 2018-11-02 2020-05-07 주식회사 엘지화학 Method for evaluating internal short of secondary battery
US11404727B2 (en) 2018-11-02 2022-08-02 Lg Energy Solution, Ltd. Method for evaluating internal short of secondary battery

Also Published As

Publication number Publication date
KR101291261B1 (en) 2013-07-30

Similar Documents

Publication Publication Date Title
Correia et al. Ionic liquid–polymer composites: A new platform for multifunctional applications
Aili et al. Heterogeneous anion conducting membranes based on linear and crosslinked KOH doped polybenzimidazole for alkaline water electrolysis
Choudhury et al. Cross-linked polymer hydrogel electrolytes for electrochemical capacitors
Horowitz et al. High-performance, mechanically compliant silica-based ionogels for electrical energy storage applications
Chiba et al. Electrolyte systems for high withstand voltage and durability II. Alkylated cyclic carbonates for electric double-layer capacitors
US20090251027A1 (en) Electrically conductive polymer actuator, method for manufacturing the same, and method of driving the same
RU2020112290A (en) POLYMER CONTAINING FLUOROSULPHONYL GROUP OR SULFONIC ACID GROUP, METHOD FOR ITS PREPARATION AND ITS APPLICATION
KR20010034536A (en) Ion Conductive Matrixes and Their Use
Anjum et al. Humidity-modulated properties of hydrogel polymer electrolytes for flexible supercapacitors
Sasikumar et al. The effects of PVAc on surface morphological and electrochemical performance of P (VdF-HFP)-based blend solid polymer electrolytes for lithium ion-battery applications
Choudhury et al. Gelatin hydrogel electrolytes and their application to electrochemical supercapacitors
Wang et al. A single ionic conductor based on Nafion and its electrochemical properties used as lithium polymer electrolyte
CN112979897B (en) Preparation method of healable ionic gel polymer electrolyte
Liang et al. Solution-processed PDMS/SWCNT porous electrodes with high mass loading: toward high performance all-stretchable-component lithium ion batteries
Yamazaki et al. High/low temperature operation of electric double layer capacitor utilizing acidic cellulose–chitin hybrid gel electrolyte
Nair et al. Role of protic ionic liquid concentration in proton conducting polymer electrolytes for improved electrical and thermal properties
KR101291261B1 (en) Electrolyte for high voltage and polymer electrolyte fabricated using the same
US7670508B2 (en) Proton conductor, single ion conductor, manufacturing methods thereof, and electrochemical capacitor
Adjaoud et al. Piezoionic sensors based on formulated PEDOT: PSS and Aquivion® for ionic polymer–polymer composites
KR101595829B1 (en) Seperator membrane made of ion-conducting polymer comprising partially branched multiblock copolymer and redox flow batteries comprising the same
Huo et al. Crosslinked quaternized poly (arylene ether sulfone) copolymer membrane applied in an electric double‐layer capacitor for high energy density
KR101172427B1 (en) Method for producing PVA-SPTES, the PVA-SPTES film thereby, electroactive polymer actuator based on the PVA-SPTES film, and method for fabricating the actuator
US10270115B2 (en) Membrane for a proton exchange membrane fuel cell
JP2007027105A (en) Electrolyte containing oxocarbonic acid and/or its derivative, and its use
CN1901112B (en) Thermal treating process for super capacitor RuO2 coating electrode material

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160701

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee