KR20120096277A - Micromixer having horizontal and vertical multi-mixing flow - Google Patents

Micromixer having horizontal and vertical multi-mixing flow Download PDF

Info

Publication number
KR20120096277A
KR20120096277A KR1020110015590A KR20110015590A KR20120096277A KR 20120096277 A KR20120096277 A KR 20120096277A KR 1020110015590 A KR1020110015590 A KR 1020110015590A KR 20110015590 A KR20110015590 A KR 20110015590A KR 20120096277 A KR20120096277 A KR 20120096277A
Authority
KR
South Korea
Prior art keywords
fluid
microchannel
mixing
inlet
partition bar
Prior art date
Application number
KR1020110015590A
Other languages
Korean (ko)
Inventor
박상후
유원설
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to KR1020110015590A priority Critical patent/KR20120096277A/en
Publication of KR20120096277A publication Critical patent/KR20120096277A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE: A micromix causing the mixed flow of fluid is provided to improve the mixing rate of fluid by three-dimensionally arranging partition bars according to an X-shape. CONSTITUTION: A micromix includes a microchannel(400) and a mixing part. The mixing part mixes fluid through the microchannel. The mixing part includes a first partition bar(101) and a second partition bar(100). The first partition bar is formed at the inner lower layer of the microchannel. The second partition part is formed at the inner upper layer of the microchannel to cross the first partition bar. The micromix further includes a first inlet(300) for first fluid(200) and a second inlet(301) for second fluid(201).

Description

유체의 혼합유동을 일으키는 마이크로믹스{Micromixer having horizontal and vertical multi-mixing flow}Micromixer having horizontal and vertical multi-mixing flow

본 발명은 유체의 혼합유동을 일으키는 마이크로믹서에 관한 것으로서, 더욱 상세하게는 마이크로채널 내부에 'X'자 형태의 3차원적인 격벽바 구조물을 설치하여 마이크로채널 내부에 흐르는 유체를 상하 좌우 복합의 혼합유동을 일으켜서 서로 혼합시키는 마이크로믹스에 관한 것이다.The present invention relates to a micromixer that causes a mixed flow of fluid, and more particularly, a three-dimensional partition bar structure having an 'X' shape inside a microchannel is installed to mix a fluid flowing inside the microchannel in a vertically mixed up and down left and right combination. It relates to a micromix that creates a flow and mixes it with each other.

최근 하나의 칩 속에 실험실이라 불리는 Lab-on-a-chip이나 μ-TAS(Micro Total Analysis System)과 같은 초소형 디바이스들은 극소량의 시료를 이용하여 높은 처리속도로 분석 및 합성을 할 수 있어 바이오나 화학 분야에서 많이 활용되며, 연구가 진행되고 있다. Recently, micro-devices such as lab-on-a-chip or micro-total analysis system (micro-TAS) in a single chip can be analyzed and synthesized at very high throughput using very small amount of samples. It is widely used in the field and research is being conducted.

초소형 디바이스들에서의 유체는 레이놀즈수(Re)가 1000 이하의 층류(Laminar flow)로 흐르기 때문에 단순한 확산만 의존하는 혼합을 유도하기가 어렵다. 그래서 마이크로믹서를 이용하여 짧은 거리에서 유체의 반응과 혼합을 일으키는 방법에 관하여 많은 연구가 진행되고 있다.Fluids in very small devices are difficult to induce mixing that depends only on simple diffusion because Reynolds number Re flows with a laminar flow of less than 1000. Therefore, much research is being conducted on the method of causing the reaction and mixing of the fluid at a short distance using a micromixer.

마이크로믹서는 능동형 방식(Active type)과 수동형 방식(Passive type)으로 나누어진다. 능동형 방식(Active type)은 초음파, 자기장 등과 같이 외부의 동력원을 이용하여 혼합을 유도한다. 단점으로 제작 시 어려움이 있고, 비용이 많이 든다. 이와 반대로 수동형 방식(Passive Type)은 채널 내부의 형상을 변형 또는 유동의 흐름을 변화시켜서 혼합을 유도하는 방식이다. 이는 제작이 용이하며, 적은 비용이 드는 장점이 있다. 수동형 방식으로는 크게 A.D. Stroock의 Chaotic 믹서와 SAR(Split and recombine) 믹서 등이 있다. The micromixer is divided into an active type and a passive type. Active type induces mixing by using an external power source such as ultrasonic wave, magnetic field, etc. Disadvantages are difficult and expensive to produce. In contrast, the passive type (Passive Type) is a method of inducing mixing by changing the shape of the channel inside or changing the flow of flow. It is easy to manufacture and has the advantage of low cost. In passive mode, A.D. Stroock's Chaotic mixer and Split and recombine mixer.

Chaotic 믹서는 채널 바닥에 간단하게 패터닝 된 홈을 이용하여 카오스 이류를 유도하는 방식이다. SAR(Split and recombine) 믹서는 채널 내부의 유동의 흐름을 변형하여 분할과 재결합을 반복하여 혼합을 유도하는 방식이다.Chaotic mixers induce chaotic advection by simply patterning grooves at the bottom of the channel. The SAR (Split and Recombine) Mixer modifies the flow of the flow inside the channel to induce mixing by repeating splitting and recombination.

이와 같이 수동형 방식의 마이크로 믹서에서 각각의 Chaotic 믹서와 SAR(Split and recombine) 믹서에 대한 연구가 많이 진행되고 있지만, 이 두 가지의 혼합특성을 동시에 가지는 고효율 수동형 믹서의 개발이 필요한 실정이다.As described above, many studies on chaotic mixers and split and recombine (SAR) mixers have been conducted in the passive type micro mixer. However, there is a need for the development of a high-efficiency passive mixer having both mixing characteristics.

본 발명은 앞서 설명한 바와 같은 종래의 Chaotic 믹서와 SAR(Split and recombine) 믹서의 각각의 특성을 동시에 가지는 상하 좌우 복합 혼합유동을 일으키는 SRM(Spiral reversal mechanism) 마이크로믹서의 모델로 별도의 구동수단이 없이도 마이크로채널을 통과해서 짧은 거리에서 효과적으로 혼합을 유도하는 마이크로믹서 모델을 제공하는 것을 목적으로 한다.The present invention is a model of a spiral reversal mechanism (SRM) micromixer that generates a vertically mixed horizontal and vertical mixed flow having the characteristics of a conventional chaotic mixer and a split and recombine mixer as described above, without a separate driving means. The goal is to provide a micromixer model that effectively induces mixing over a short distance through the microchannel.

본 발명에 따른 유체의 혼합유동을 일으키는 마이크로믹스는 마이크로채널과, 혼합부를 구비한다. 상기 혼합부는 상기 마이크로채널 내부로 흐르는 유체를 혼합시키기 위하여 상기 마이크로채널 내부의 하층에 형성된 제1격벽바와, 상기 마이크로 채널 내부의 상층에 상기 제1격벽바와 교차하도록 형성된 제2격벽바를 구비한다.The micromix which causes the mixing flow of the fluid according to the present invention includes a microchannel and a mixing part. The mixing unit includes a first partition bar formed at a lower layer in the microchannel and a second partition bar formed at an upper layer in the microchannel to intersect the first partition wall to mix the fluid flowing into the microchannel.

또한, 상기의 마이크로믹스는 제1유체를 공급하기 위하여 상기 마이크로채널의 입구에 형성된 제1주입구와, 제2유체를 공급하기 위하여 상기 마이크로채널의 입구에 형성된 제2주입구를 더 포함하는 것이 바람직하다.The micromix may further include a first inlet formed at the inlet of the microchannel to supply a first fluid, and a second inlet formed at the inlet of the microchannel to supply a second fluid. .

또한, 상기의 마이크로믹스에 있어서, 상기 혼합부는 상기 제1격벽바와 상기 제2격벽바가 'X'자 형태로 교차하는 것이 바람직하다.In addition, in the micromix, the mixing part preferably crosses the first partition bar and the second partition bar in an 'X' shape.

또한, 상기의 마이크로믹스에 있어서, 상기 혼합부는 상기 마이크로채널의 길이방향을 따라 복수 개 배치된 것이 바람직하다.In addition, in the micromix, it is preferable that a plurality of mixing portions are arranged along the longitudinal direction of the microchannel.

본 발명에 의하면 상하 좌우 복합 혼합유동을 일으키는 SRM(Spiral reversal mechanism) 마이크로믹서의 모델을 제공함으로써, 간단하게 격벽바들을 3차원적으로 " X " 자 형태로 구성함으로, 쉽게 간단한 구조로 두 유체의 분리와 혼합이 반복적으로 이루어지는 고효율의 혼합율을 향상시키는 효과가 있다.According to the present invention, by providing a model of a spiral reversal mechanism (SRM) micromixer that causes a mixed flow of up, down, left, and right, by simply forming a three-dimensional "X" shape of the partition bar, it is possible to easily There is an effect of improving the mixing ratio of high efficiency in which separation and mixing are repeated.

도 1은 본 발명에 따른 유체의 혼합유동을 일으키는 마이크로믹스의 일 실시예의 개념도,
도 2는 도 1에 도시된 실시예의 혼합부의 확대도,
도 3은 마이크로채널의 길이에 따라 마이크로채널을 통과하는 유체가 혼합되는 경향을 전산유체해석 결과를 통해 나타낸 도면,
도 4는 마이크로채널 내부에 형성된 격박바의 각도에 따른 유체의 혼합효율을 나타낸 그래프이다.
1 is a conceptual diagram of one embodiment of a micromix causing a mixed flow of fluid according to the present invention;
2 is an enlarged view of the mixing part of the embodiment shown in FIG.
3 is a graph showing the tendency of the fluid passing through the microchannels in accordance with the length of the microchannels through the results of the computational fluid analysis,
4 is a graph showing the mixing efficiency of the fluid according to the angle of the separation bar formed inside the microchannel.

도 1 내지 도 4를 참조하여 본 발명에 따른 유체의 혼합유동을 일으키는 마이크로믹스에 대하여 설명한다.Referring to Figures 1 to 4 will be described with respect to the micromix causing the mixed flow of the fluid according to the present invention.

본 발명에 따른 마이크로믹스는 마이크로채널(400)과, 혼합부와, 제1주입구(300)와, 제2주입구(201)를 포함한다.The micromix according to the present invention includes a microchannel 400, a mixing unit, a first inlet 300, and a second inlet 201.

마이크로채널(400)은 폭이 수백 마이크로미터 정도이고, 길이가 대략 수 미리미터이다. 혼합부는 마이크로채널(400) 내부에 흐르는 유체를 혼합시키기 위하여 마이크로채널(400) 내부에 형성된다. 이를 위하여 혼합부는 마이크로채널(400) 내부의 하층에 형성된 제1격벽바(101)와, 제1격벽바(101)와 교차하도록 마이크로채널 내부의 상층에 형성된 제2격벽바(100)로 구성된다. 이때 제1격벽바(101)와 제2격벽바(100)는 'X'자 형태로 교차하도록 형성된다. 제1격벽바(101)와 제2격벽바(100)는 따로 기존의 MEMS 공정을 통해서 스탬프 주형(mold)을 제작하여 캐스팅(casting) 작업을 통해서 형상이 제작되어 마이크로채널(400) 내부에서 제1격벽바(101)와 제2격벽바(100)가 정렬되어 접착된다. 또는 쾌속조형(Rapid Prototyping)으로 제1격벽바(101)와 제2격벽바(100)가 한 번에 제작될 수 있다. 혼합부는 마이크로채널(400) 내부에 1개가 형성될 수 있고, 길이방향을 따라 반복적으로 형성될 수 있다. 본 실시예의 경우 2개가 반복적으로 형성되었다. 이와 같이 반복적으로 형성이 되면 유체간의 혼합효율을 더욱 높일 수 있다. 또한 본 실시예의 경우 2개의 혼합부가 서로 연결되어 있으나 실시예에 따라서 서로 분리될 수도 있다.The microchannel 400 is about several hundred micrometers wide and about several millimeters long. The mixing part is formed inside the microchannel 400 to mix the fluid flowing in the microchannel 400. To this end, the mixing unit includes a first partition bar 101 formed in the lower layer inside the microchannel 400 and a second partition bar 100 formed in the upper layer inside the microchannel so as to intersect the first partition bar 101. . At this time, the first partition bar 101 and the second partition bar 100 is formed to cross in the 'X' shape. The first bulkhead bar 101 and the second bulkhead bar 100 are separately manufactured by forming a stamp mold through a conventional MEMS process to produce a shape through a casting process, and thus the first bulkhead bar 101 and the second bulkhead bar 100 are manufactured in the microchannel 400. The first partition bar 101 and the second partition bar 100 are aligned and bonded. Alternatively, the first bulkhead bar 101 and the second bulkhead bar 100 may be manufactured at a time by rapid prototyping. One mixing unit may be formed inside the microchannel 400, and may be repeatedly formed along the longitudinal direction. In this example, two were formed repeatedly. If formed repeatedly in this way it is possible to further increase the mixing efficiency between the fluids. In addition, in the present embodiment, the two mixing parts are connected to each other, but may be separated from each other according to the embodiment.

제1주입구(300)는 마이크로채널(400)에 제1유체(200)를 공급하기 위하여 마이크로채널(400)의 입구에 형성되며, 제2주입구(301)는 마이크로채널(400)에 제2유체(201)을 공급하기 위하여 마이크로채널(400)의 입구에 형성된다. 본 발명에 따른 마이크로믹스는 마이크로채널(400)의 입구에 제1주입구(300)와 제2주입구(301)이 형성됨으로 인하여 'Y'자 형태로 형성된다.The first inlet 300 is formed at the inlet of the microchannel 400 to supply the first fluid 200 to the microchannel 400, the second inlet 301 is a second fluid in the microchannel 400 It is formed at the inlet of the microchannel 400 to supply 201. The micromix according to the present invention is formed in a 'Y' shape because the first inlet 300 and the second inlet 301 are formed at the inlet of the microchannel 400.

제1주입구(300)로 제1유체(200)를 주입시키고, 제2주입구(301)로 제2유체(201)를 주입시키면 유체는 마이크로채널(400)의 혼합부에서 상하좌우로 유동이 일어나서 서로 혼합된다. 그러면 혼합부를 통과하여 혼합유체(202)가 되어 유출구(302)로 흘러나간다.When the first fluid 200 is injected into the first inlet 300 and the second fluid 201 is injected into the second inlet 301, the fluid flows up, down, left, and right at the mixing portion of the microchannel 400. Mixed with each other. Then, the mixture passes through the mixing part to become the mixed fluid 202 and flows out to the outlet 302.

도 3은 격벽바의 각도 별로 마이크로채널(400)을 통과하는 길이에 따른 혼합의 정도를 실험한 전산유체해석의 결과이다. 격벽바간의 각도(102)를 60°, 90°, 120°에 대하여 전산유체해석을 하였다. 전산유체해석결과 각도가 줄어들수록 혼합을 이루는 거리가 줄어들어 더 높은 효율의 혼합율을 얻을 수 있음을 알 수 있다.3 is a result of a computational fluid analysis that tests the degree of mixing according to the length passing through the microchannel 400 for each angle of the partition bar. Computational fluid analysis was carried out for the angle 102 between the partition bars. As a result of computational fluid analysis, as the angle decreases, the mixing distance decreases, so that a higher efficiency mixing ratio can be obtained.

도 4는 도 3의 전산유체해석 결과를 2000년에 N. L. Jeon에 의해 제안된 혼합의 정도를 정량화하기 위한 [수학식 1]을 이용하여 혼합효율을 격벽바간의 각도(102)에 따라 각각 계산하여 그래프로 나타낸 도면이다.
FIG. 4 calculates the mixing efficiency according to the angle 102 between the partition bars by using Equation 1 to quantify the degree of mixing proposed by NL Jeon in 2000 in the computational fluid analysis results of FIG. 3. It is a graph shown.

Figure pat00001
Figure pat00001

여기서 C는 출구에서의 농도이고, C0는 초기농도, C는 완전 혼합이 일어난 후의 농도이다.Where C is the concentration at the outlet, C 0 is the initial concentration, and C is the concentration after complete mixing has taken place.

101 : 제1격벽바 100 : 제2격벽바
102 : 각도 200 : 제1유체
201 : 제2유체 201 : 혼합유체
300 : 제1주입구 301 : 제2주입구
302 : 유출구 400 : 마이크로채널
101: first partition bar 100: second partition bar
102: angle 200: first fluid
201: second fluid 201: mixed fluid
300: first inlet 301: second inlet
302: outlet 400: microchannel

Claims (4)

마이크로채널과,
상기 마이크로채널 내부로 흐르는 유체를 혼합시키기 위하여 상기 마이크로채널 내부의 하층에 형성된 제1격벽바와, 상기 마이크로 채널 내부의 상층에 상기 제1격벽바와 교차하도록 형성된 제2격벽바를 구비한 혼합부를 포함하는 것을 특징으로 하는 유체의 혼합유동을 일으키는 마이크로믹스.
Microchannels,
And a mixing part including a first partition bar formed in a lower layer inside the micro channel and a second partition bar formed in an upper layer of the micro channel to intersect the first partition bar to mix the fluid flowing into the micro channel. A micromix that produces a mixed flow of a fluid.
제1항에 있어서,
제1유체를 공급하기 위하여 상기 마이크로채널의 입구에 형성된 제1주입구와,
제2유체를 공급하기 위하여 상기 마이크로채널의 입구에 형성된 제2주입구를 더 포함하는 것을 특징으로 하는 유체의 혼합유동을 일으키는 마이크로믹스.
The method of claim 1,
A first inlet formed at an inlet of the microchannel to supply a first fluid;
And a second inlet formed at the inlet of the microchannel for supplying a second fluid.
제2항에 있어서,
상기 혼합부는 상기 제1격벽바와 상기 제2격벽바가 'X'자 형태로 교차하는 것을 특징으로 하는 유체의 혼합유동을 일으키는 마이크로믹스.
The method of claim 2,
The mixing unit is a micromix causing a mixed flow of the fluid, characterized in that the first partition bar and the second partition bar cross in the form of an 'X'.
제3항에 있어서,
상기 혼합부는 상기 마이크로채널의 길이방향을 따라 복수 개 배치된 것을 특징으로 하는 유체의 혼합유동을 일으키는 마이크로믹스.
The method of claim 3,
The mixing portion is a micromix causing a mixed flow of the fluid, characterized in that arranged in plurality in the longitudinal direction of the microchannel.
KR1020110015590A 2011-02-22 2011-02-22 Micromixer having horizontal and vertical multi-mixing flow KR20120096277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110015590A KR20120096277A (en) 2011-02-22 2011-02-22 Micromixer having horizontal and vertical multi-mixing flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110015590A KR20120096277A (en) 2011-02-22 2011-02-22 Micromixer having horizontal and vertical multi-mixing flow

Publications (1)

Publication Number Publication Date
KR20120096277A true KR20120096277A (en) 2012-08-30

Family

ID=46886325

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110015590A KR20120096277A (en) 2011-02-22 2011-02-22 Micromixer having horizontal and vertical multi-mixing flow

Country Status (1)

Country Link
KR (1) KR20120096277A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101432729B1 (en) * 2012-12-24 2014-08-21 인하대학교 산학협력단 Micromixer with circular chambers and crossing constriction channels
WO2018074779A3 (en) * 2016-10-18 2018-08-09 주식회사 엘지화학 High-pressure homogenizer and method for manufacturing graphene by using same
CN114053973A (en) * 2021-12-21 2022-02-18 安徽科芯微流化工科技有限公司 Microchannel reaction structure and microchannel reactor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101432729B1 (en) * 2012-12-24 2014-08-21 인하대학교 산학협력단 Micromixer with circular chambers and crossing constriction channels
WO2018074779A3 (en) * 2016-10-18 2018-08-09 주식회사 엘지화학 High-pressure homogenizer and method for manufacturing graphene by using same
US11242251B2 (en) 2016-10-18 2022-02-08 Lg Chem, Ltd. High-pressure homogenizer and method for manufacturing graphene using the same
US11820665B2 (en) 2016-10-18 2023-11-21 Lg Chem, Ltd. High-pressure homogenizer and method for manufacturing graphene using the same
CN114053973A (en) * 2021-12-21 2022-02-18 安徽科芯微流化工科技有限公司 Microchannel reaction structure and microchannel reactor

Similar Documents

Publication Publication Date Title
Bhagat et al. Enhancing particle dispersion in a passive planar micromixer using rectangular obstacles
Ward et al. Mixing in microfluidic devices and enhancement methods
Lee et al. Microfluidic mixing: a review
Chen et al. Gas-liquid-liquid multiphase flow in microfluidic systems–A review
Capretto et al. Micromixing within microfluidic devices
Wang et al. Mixing enhancement of novel passive microfluidic mixers with cylindrical grooves
Naher et al. Effect of micro-channel geometry on fluid flow and mixing
KR101736797B1 (en) Micromixer for mixing fluids
CN103638852B (en) A kind of synthesizing jet-flow Valveless piezoelectric micro-mixer
KR101432729B1 (en) Micromixer with circular chambers and crossing constriction channels
Yang et al. Design and fabrication of a three dimensional spiral micromixer
CN104826674B (en) Reverse-Y shaped channel microfluid chip for generating droplets
EP1604733A1 (en) Microstructure designs for optimizing mixing and pressure drop
Li et al. Design and test of a passive planar labyrinth micromixer for rapid fluid mixing
CN103386337A (en) Microfluidic chip for producing multicomponent droplets
JP3974531B2 (en) Microchannel mixing method and microchannel apparatus
Fan et al. Rapid microfluidic mixer utilizing sharp corner structures
CN209646393U (en) A kind of non-concentric O shape channel microfluid mixer
KR20120096277A (en) Micromixer having horizontal and vertical multi-mixing flow
Bagherabadi et al. Enhancing active electro-kinetic micro-mixer efficiency by introducing vertical electrodes and modifying chamber aspect ratio
CN105056821A (en) Cross micromixer with symmetrical elliptic-arc-shaped baffles
CN202527089U (en) Novel backflow type micro-mixer
Green et al. A review of passive and active mixing systems in microfluidic devices
Steinbacher et al. Simplified mesofluidic systems for the formation of micron to millimeter droplets and the synthesis of materials
JP6118417B2 (en) Blender

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application