KR20120095111A - Microchip for detecting trace phenolic endocrine disruptors and detection method using the same - Google Patents

Microchip for detecting trace phenolic endocrine disruptors and detection method using the same Download PDF

Info

Publication number
KR20120095111A
KR20120095111A KR1020110014580A KR20110014580A KR20120095111A KR 20120095111 A KR20120095111 A KR 20120095111A KR 1020110014580 A KR1020110014580 A KR 1020110014580A KR 20110014580 A KR20110014580 A KR 20110014580A KR 20120095111 A KR20120095111 A KR 20120095111A
Authority
KR
South Korea
Prior art keywords
sample
channel
unit
detection
concentration
Prior art date
Application number
KR1020110014580A
Other languages
Korean (ko)
Inventor
심윤보
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to KR1020110014580A priority Critical patent/KR20120095111A/en
Publication of KR20120095111A publication Critical patent/KR20120095111A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • B01L9/527Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for microfluidic devices, e.g. used for lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"

Abstract

PURPOSE: A microchip for detecting phenolic environmental hormone and a detection method of the environmental hormones using the same are provided to detect the environmental hormones using electrodes having chemically modified surfaces, thereby rapidly detecting the phenolic environmental hormones at high detect rate. CONSTITUTION: A microchip for detecting phenolic environmental hormone comprises a first concentration part which concentrate samples according to pH gradient using a field-amplified sample stacking(FASS), a concentration channel including a second concentration part which concentrates the samples according to the potential difference by using the field-amplified sample injection(FASI), and a detection channel which includes the detection part and is separated from the concentration channel having 0.05-0.2 mm interval. The detection channel comprises a carbon paste electrode reformed with gold nano-particles(AuNPs) which are stabilized with dsDNA and citric acid. The AuNPs is added to a buffer solution which is used for the concentration channel and the detection channel. The phenolic environmental hormone is 4- nonylphenol, nonylphenol, 4- octylphenol, 4- pentyl phenol or bisphenol A. The concentration channel comprises a sample injection port(101), a first sample exhausting part(102) in which the buffer solution is stored, and a part of the provided sample is exhausted, a first concentration part(103) which concentrates the samples according to pH gradient by using the field amplification sample stacking(103), a second channel(120) which connects the first sample exhausting part and the first concentration part, a first chnnel(110) which is branched from one side of the second channel, and connects the sample injection port and the second channel, a second concentration part(104) which concentrates the samples according to the potential difference by using the field amplification sample injection, a first buffer solution storage(105), and a third channel(130).

Description

페놀성 환경호르몬 검출용 마이크로칩 및 이를 이용한 환경호르몬 검출방법{Microchip for detecting trace phenolic endocrine disruptors and detection method using the same}Microchip for detecting phenolic environmental hormones and method for detecting environmental hormone using the same {Microchip for detecting trace phenolic endocrine disruptors and detection method using the same}

본 발명은 페놀성 환경호르몬 검출용 마이크로칩 및 이를 이용한 환경호르몬 검출방법에 관한 것으로서, 보다 상세하게는 시료에 흔적량으로 존재하는 페놀성 환경호르몬을 높은 검출 감도로 신속하고, 간편하게 검출할 수 있는 페놀성 환경호르몬 검출용 마이크로칩 및 이를 이용한 환경호르몬 검출방법에 관한 것이다. The present invention relates to a microchip for detecting phenolic environmental hormones and a method for detecting environmental hormones using the same, and more particularly, to detect phenolic environmental hormones present in trace amounts in a sample quickly and easily with high detection sensitivity. The present invention relates to a microchip for detecting phenolic environmental hormones and a method for detecting environmental hormones using the same.

주요한 환경호르몬인 내분비 교란 페놀성 화합물로는 4-페닐페놀, 4-옥틸페놀, 4-노닐페놀, 노닐페놀 및 비스페놀A가 알려져 있다. 이들 환경호르몬들은 호르몬과 유사하게 작용하고, 호르몬 기능을 방해하고, 세포 반응을 파괴하며, 간접적으로 호르몬 대사에 영향을 미치는 등 다양한 방식으로 동물에서 작용한다.Endocrine disrupting phenolic compounds, which are the main environmental hormones, are known as 4-phenylphenol, 4-octylphenol, 4-nonylphenol, nonylphenol and bisphenol A. These environmental hormones work in animals in a variety of ways, acting like hormones, disrupting hormone function, destroying cellular responses, and indirectly affecting hormone metabolism.

가장 널리 알려진 페놀성 환경호르몬으로는 비스페놀A와 노닐페놀이 있다. 비스페놀A는 난소를 제거한 마우스를 이용한 1930년의 동물실험에서 합성 에스트로겐으로서 작용하는 것으로 알려졌으며, 그후 세포를 이용한 실험을 통해 내분비 교란제로서 알려졌다. 게다가, 비스페놀A는 폴리카보네이트 또는 에폭시 수지의 합성을 위한 전구체 화합물로서 여전히 사용되고 있다. 한편, 노닐페놀은 낮은 분해능력과 높은 비옥화 특성으로 인하여 쉽게 생리학적 환경에서 농축되어 왔다.The most widely known phenolic environmental hormones are bisphenol A and nonylphenol. Bisphenol A was known to act as a synthetic estrogen in animal experiments in 1930 with ovarian-depleted mice, and later as an endocrine disruptor through experiments with cells. In addition, bisphenol A is still used as precursor compound for the synthesis of polycarbonate or epoxy resins. On the other hand, nonylphenol has been easily concentrated in a physiological environment due to its low degradability and high fertilization properties.

따라서, 생리학적 환경을 보호하기 위하여 흔적량으로 존재하는 환경호르몬을 분석할 필요가 있다. UV, 형광, 화학발광 및 HPLC-MS를 포함한 다양한 분석방법들이 알려져 있다. 이들 중 HPLC-MS 방법은 매우 선택적이며 민감하여 흔적량 분석을 위해 유용하게 사용될 수 있지만, 시료의 복잡한 전처리 공정과 고가의 장비를 사용해야 하는 문제점를 안고 있다. Therefore, it is necessary to analyze the environmental hormone present in trace amounts in order to protect the physiological environment. Various assays are known, including UV, fluorescence, chemiluminescence and HPLC-MS. Among them, the HPLC-MS method is very selective and sensitive and can be usefully used for trace analysis, but there is a problem of using a complicated pretreatment process and expensive equipment.

또한, 몇십년 전 미세유체 생분석 장치가 개발된 이래로 이를 생리학적, 임상적 및 환경적으로 중요한 분석물의 분석을 위한 효율적인 플랫폼으로 사용하여 왔다. 이들 중 미세유체 전기영동법은 다른 방법들에 비해 매우 민감하고, 신속하며 간단하다. 게다가, 최근 분리 효율이 마이셀 동전기 분리법(MEKC)와 미세유체 전기영동법의 조합에 의해 크게 향상될 수 있다고 알려져 있다. MEKC는 특히 작고 중성인 분자의 분리에 유용하다. In addition, since the development of microfluidic bioanalytical devices decades ago, it has been used as an efficient platform for the analysis of physiological, clinical and environmentally important analytes. Of these, microfluidic electrophoresis is very sensitive, rapid and simple compared to other methods. In addition, it is known that the separation efficiency can be greatly improved by a combination of microcell electrophoresis (MEKC) and microfluidic electrophoresis in recent years. MEKC is particularly useful for the separation of small and neutral molecules.

따라서, 본 발명자는 이전 연구를 통해 농축공정과 MEKC 분리를 하나의 마이크로칩에서 구현할 수 있는 방법을 보고한 바 있다. 상기 농축공정은 필드 증폭 시료 스태킹(field-amplified sample stacking; FASS)과 필드 증폭 시료 주입(field-amplified sample injection; FASI) 기술을 이용하였으며, FASS 공정에서는 저전도성 용액에서 준비된 시료 용액을 고전도성 완충액으로 채워진 농축채널에 주입하였다. 그러나 상기 방법은 농축 효율과 검출 민감도에 한계가 있어 흔적량의 페놀성 환경호르몬을 농축하여 검출하는 데에는 그다지 효과적이지 못한 문제가 있었다. Therefore, the present inventors have reported a method that can implement the concentration process and MEKC separation in one microchip through the previous research. The concentration process was performed using field-amplified sample stacking (FAS) and field-amplified sample injection (FASI) techniques. In the FASS process, a sample solution prepared from a low conductivity solution was used as a high conductivity buffer. It was injected into a concentrated channel filled with. However, the method has a problem in that the concentration efficiency and detection sensitivity are limited, so it is not very effective for the concentration detection of trace amount of phenolic environmental hormone.

한편, 본 발명자들은 FASS 및 FASI 공정을 이용한 농축공정에서 완충액으로 구연산으로 안정화된 금 나노입자(AuNPs)를 이용하고, 또한 검출공정에서 작동전극으로서 셀룰로오즈, 이중나선 DNA(dsDNA) 및 구연산으로 안정화된 금 나노입자(AuNPs)로 개질된 탄소 반죽 전극을 이용함으로써 흔적량의 페놀성 환경호르몬의 농축 효율을 증진시킴으로써 흔적량의 페놀성 환경호르몬을 높은 검출 감도로 신속하고, 간편하게 검출할 수 있다는 점을 발견하여 본 발명을 완성하였다. On the other hand, the present inventors use gold nanoparticles (AuNPs) stabilized with citric acid as a buffer in the concentration process using the FASS and FASI process, and also stabilized with cellulose, double-stranded DNA (dsDNA) and citric acid as working electrodes in the detection process. By using carbon paste electrodes modified with gold nanoparticles (AuNPs), the traceability of trace phenolic environmental hormones can be quickly and easily detected with high detection sensitivity by enhancing the concentration efficiency of trace amount of phenolic environmental hormones. Discovered to complete the present invention.

본 발명은 시료 중에 함유된 흔적량의 페놀성 환경호르몬을 필드 증폭 시료 스태킹법과 필드 증폭 시료 주입법을 이용하여 농축한 후, 화학적으로 표면개질된 전극을 이용하여 검출함으로써 흔적량의 페놀성 환경호르몬을 높은 검출 감도로 신속하고, 간편하게 검출할 수 있는 페놀성 환경호르몬 검출용 마이크로칩 및 이를 이용한 페놀성 환경호르몬 검출방법을 제공하는데 그 목적이 있다. The present invention concentrates trace amounts of phenolic environmental hormones contained in a sample using a field amplification sample stacking method and a field amplification sample injection method, and then detects trace amounts of phenolic environmental hormones by chemically using a surface-modified electrode. It is an object of the present invention to provide a microchip for phenolic environmental hormone detection that can be detected quickly and simply with high detection sensitivity, and a method for detecting phenolic environmental hormone using the same.

상기 목적을 달성하기 위하여, 본 발명은 필드 증폭 시료 스태킹(field-amplified sample stacking; FASS)을 이용하여 pH 구배에 따라 시료를 농축하는 제1농축부 및 필드 증폭 시료 주입(field-amplified sample injection; FASI)을 이용하여 전위 차이에 따라 시료를 농축하는 제2농축부를 포함하는 농축채널; 및 상기 농축채널과 0.05-0.2 mm로 이격되며 검출부를 포함하는 검출채널로 구성되며, 상기 검출채널은 작동전극으로서 셀룰로오즈, 이중나선 DNA(dsDNA) 및 구연산으로 안정화된 금 나노입자(AuNPs)로 개질된 탄소 반죽 전극(CPE)을 포함하며, 상기 농축채널 및 검출채널에 사용되는 완충액에 AuNPs를 첨가하는 것을 특징으로 하는 페놀성 환경호르몬 검출용 마이크로칩을 제공한다.In order to achieve the above object, the present invention provides a first enrichment unit and a field-amplified sample injection for concentrating a sample according to a pH gradient using field-amplified sample stacking (FASS); An enrichment channel including a second enrichment unit for concentrating the sample according to the potential difference using FASI); And a detection channel spaced apart from the enrichment channel by 0.05-0.2 mm and including a detection unit, wherein the detection channel is modified with cellulose, double-stranded DNA (dsDNA) and citric acid stabilized gold nanoparticles (AuNPs) as working electrodes. It provides a carbon dough electrode (CPE), and provides a microchip for detecting phenolic environmental hormones, characterized in that the addition of AuNPs to the buffer used in the concentration channel and the detection channel.

상기 페놀성 환경호르몬은 4-노닐페놀(4-NP), 노닐페놀(NP), 4-옥틸페놀(4-OP), 4-펜틸페놀(4-PP) 및 비스페놀A(BPA)로 이루어진 군에서 선택된 어느 하나일 수 있다.The phenolic environmental hormone is a group consisting of 4-nonylphenol (4-NP), nonylphenol (NP), 4-octylphenol (4-OP), 4-pentylphenol (4-PP), and bisphenol A (BPA). It may be any one selected from.

본 발명에 따른 셀룰로오즈-dsDNA/AuNPs-개질 CPE을 갖는 마이크로칩을 이용하여 물 등에 흔적량으로 함유된 4-PP, 4-OP, 4-NP, NP 및 BPA와 같은 페놀성 환경호르몬을 농축하고, 분리하며 검출할 수 있다. 특히, FASS 및 FASI 공정 중 완충액에 AuNP를 첨가함으로써 흔적량의 페놀성 환경호르몬의 농축 효율을 개선할 수 있다. 상기 마이크로칩을 이용한 페놀성 환경호르몬의 분리는 150초 이내에 수행되었으며, 4-PP, 4-OP, 4-NP, NP 및 BPA의 이동 시간은 각각 83(±0.3), 111(±0.5), 129(±0.7), 137(±0.8) 및 147(±1.0)로 나타났다. 그리고, 테스트 화합물의 검출 한계는 11.1 내지 7.1 fM로 나타남에 따라 실제 시료를 높은 감도로 성공적으로 분리 검출할 수 있음을 알 수 있다.By using a microchip with cellulose-dsDNA / AuNPs-modified CPE according to the present invention, phenolic environmental hormones such as 4-PP, 4-OP, 4-NP, NP and BPA contained in trace amounts in water and the like were concentrated. Can be separated and detected. In particular, the addition of AuNP to the buffer during the FASS and FASI process can improve the concentration efficiency of trace amounts of phenolic environmental hormone. Separation of phenolic environmental hormone using the microchip was performed within 150 seconds, and the transit times of 4-PP, 4-OP, 4-NP, NP and BPA were 83 (± 0.3), 111 (± 0.5), 129 (± 0.7), 137 (± 0.8) and 147 (± 1.0). In addition, as the detection limit of the test compound is 11.1 to 7.1 fM, it can be seen that the actual sample can be successfully separated and detected with high sensitivity.

상기 농축채널은 시료가 주입되는 시료주입부; 완충액이 저장되며, 상기 시료주입부에서 공급된 시료의 일부가 배출되는 제1시료배출부; 필드 증폭 시료 스태킹(field-amplified sample stacking)을 이용하여 pH 구배에 따라 시료를 농축하는 제1농축부; 상기 제1시료배출부와 상기 제1농축부가 연통되도록 하는 제2채널; 상기 제2채널의 일측에서 분기되며, 상기 시료주입부와 상기 제2채널이 서로 연통되도록 하는 제1채널; 필드 증폭 시료 주입(field-amplified sample injection)을 이용하여 전위 차이에 따라 시료를 농축하는 제2농축부; 완충액이 저장되는 제1완충액저장부; 및 상기 제1농축부, 상기 제2농축부 및 상기 제1완충액저장부가 서로 연통되도록 하는 제3채널로 구성될 수 있다.The condensation channel is a sample injection unit into which the sample is injected; A first sample discharge part in which a buffer solution is stored and a part of the sample supplied from the sample injection part is discharged; A first concentrating portion for concentrating the sample according to a pH gradient using field-amplified sample stacking; A second channel allowing the first sample discharger to communicate with the first concentrate part; A first channel branched at one side of the second channel and allowing the sample injection unit and the second channel to communicate with each other; A second concentrator for concentrating the sample according to the potential difference by using field-amplified sample injection; A first buffer storage unit for storing a buffer solution; And a third channel allowing the first concentrate part, the second concentrate part, and the first buffer storage part to communicate with each other.

상기 검출채널은 완충액이 저장되는 제2완충액저장부; 완충액이 저장되며, 시료의 일부가 배출되는 제2시료배출부; 상기 제2농축부와 상기 제2시료배출부가 서로 연통되도록 하는 제4채널; 내부에 전극부가 구비되고 완충액이 저장되며, 시료를 검출하는 검출부; 및 상기 제2완충액저장부와 상기 검출부를 연결시키며, 상기 제4채널의 일측과 연통되도록 하는 제5채널로 구성될 수 있다.The detection channel includes a second buffer storage unit for storing a buffer; A second sample discharge part in which a buffer is stored and a part of the sample is discharged; A fourth channel allowing the second concentrate portion and the second sample discharger to communicate with each other; A detector configured to include an electrode part and to store a buffer, and detect a sample; And a fifth channel connecting the second buffer storage unit and the detection unit to communicate with one side of the fourth channel.

또한, 본 발명은 시료주입부에 시료를 주입하는 시료주입단계; 상기 시료주입부에 양극전압을 인가하고 제1시료배출부를 접지시켜, 시료가 상기 제1시료배출부 측으로 이동되도록 하는 제1시료배출부이동단계; 상기 시료주입부를 플로팅시키며 제1시료배출부에 양극전압을 인가하고 제1농축부를 접지시켜, 필드 증폭 시료 스태킹(field-amplified sample stacking)을 이용하여 pH 구배에 따라 시료를 농축시키고 농축된 시료가 제1농축부 측으로 이동되도록 하는 제1농축부이동단계; 제1완충액저장부에 물을 주입한 다음, 완충액과 구연산으로 안정화된 금 나노입자(AuNPs)를 주입하는 제1완충액저장부주입단계; 상기 제1농축부에 음극전압을 인가하고 상기 제1완충액저장부를 접지시켜, 필드 증폭 시료 주입(field-amplified sample injection)을 이용하여 전위 차이에 따라 시료를 농축시키고 농축된 시료가 제2농축부 측으로 이동되도록 하는 제2농축부이동단계; 제2농축부에 음극전압을 인가하고, 제2시료배출부를 접지시켜, 시료가 제2시료배출부 측으로 이동되도록 하는 제2시료배출부이동단계; 상기 제2농축부와 상기 제2시료배출부를 플로팅시키고, 제2완충액저장부에 음극전압을 인가하고, 검출부를 접지시켜 시료가 검출부 측으로 이동되도록 하는 검출부이동단계; 및 마이셀 동전기 분리(micellar electrokinetic separation)를 이용하여 시료를 분리하고, 작동전극으로서 셀룰로오즈, 이중나선 DNA(dsDNA) 및 구연산으로 안정화된 금 나노입자(AuNPs)로 개질된 탄소 반죽 전극을 이용하여 상기 분리된 시료를 검출하는 검출단계를 포함하는 것을 특징으로 하는 페놀성 환경호르몬 검출용 마이크로칩을 이용한 페놀성 환경호르몬의 검출방법을 제공한다.In addition, the present invention comprises a sample injection step of injecting a sample to the sample injection unit; A first sample discharge unit moving step of applying a positive voltage to the sample injection unit and grounding a first sample discharge unit to move the sample to the first sample discharge unit; The sample injection unit is floated, an anode voltage is applied to the first sample discharge unit, and the first concentration unit is grounded. The sample is concentrated according to the pH gradient using field-amplified sample stacking, and the concentrated sample is A first concentrated part moving step of moving to the first concentrated part side; Injecting water into the first buffer storage unit, and then injecting the first buffer storage unit to inject gold nanoparticles (AuNPs) stabilized with a buffer solution and citric acid; Applying a negative voltage to the first concentration unit and grounding the first buffer storage unit, using a field-amplified sample injection (concentrate) the sample according to the potential difference and the concentrated sample is the second concentration unit A second concentrated part moving step for moving to the side; A second sample discharge unit moving step of applying a negative voltage to the second concentration unit and grounding the second sample discharge unit to move the sample to the second sample discharge unit; A detector moving step of floating the second concentrate part and the second sample discharge part, applying a negative voltage to a second buffer storage part, and grounding the detector to move the sample to the detector; And separating the sample using micelle electrokinetic separation, and using the carbon dough electrode modified with cellulose, double-stranded DNA (dsDNA) and citric acid stabilized gold nanoparticles (AuNPs) as working electrodes. It provides a method for detecting phenolic environmental hormone using a microchip for phenolic environmental hormone detection, characterized in that it comprises a detection step of detecting the separated sample.

상기 페놀성 환경호르몬은 4-노닐페놀, 노닐페놀, 4-옥틸페놀, 4-펜틸페놀 및 비스페놀A로 이루어진 군에서 선택된 어느 하나일 수 있다.
The phenolic environmental hormone may be any one selected from the group consisting of 4-nonylphenol, nonylphenol, 4-octylphenol, 4-pentylphenol, and bisphenol A.

이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should appropriately interpret the concepts of the terms appropriately The present invention should be construed in accordance with the meaning and concept consistent with the technical idea of the present invention.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only one of the most preferred embodiments of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.

이하, 도 1을 참조하여 본 발명의 실시예에 따른 페놀성 환경호르몬 검출용 마이크로칩을 설명하도록 한다. 도 1은 본 발명의 실시예에 따른 페놀성 화합물 검출용 마이크로칩의 채널 패턴도이다.Hereinafter, a microchip for phenolic environmental hormone detection according to an embodiment of the present invention will be described with reference to FIG. 1. 1 is a channel pattern diagram of a microchip for phenolic compound detection according to an embodiment of the present invention.

본 발명에 따른 페놀성 환경호르몬 검출용 마이크로칩은 제1농축부(103), 제2농축부(104)를 포함하는 농축채널과 검출부(108)를 포함하는 검출채널을 구비한다. The microchip for phenolic environmental hormone detection according to the present invention includes a concentration channel including the first concentration unit 103 and the second concentration unit 104 and a detection channel including the detection unit 108.

이때, 검출채널은 제2농축부와 0.05-0.2 mm로 이격되는 것이 바람직하며, 만약 상기 범위를 벗어나 근거리 또는 원거리로 이격되면 큰 노이즈가 발생되거나, 감도가 낮아지는 문제가 야기될 수 있다.In this case, the detection channel is preferably spaced apart from the second concentration portion by 0.05-0.2 mm, and if the distance is short or far away from the range, a large noise may be generated, or a sensitivity may be lowered.

상기 농축채널은 시료가 주입되는 시료주입부(101), 완충액이 저장되며, 상기 시료주입부(101)에서 공급된 시료의 일부가 배출되는 제1시료배출부(102), 필드 증폭 시료 스태킹방법을 이용하여 pH 구배에 따라 시료를 농축하는 제1농축부(103), 제1시료배출부(102)와 제1농축부(103)가 연통되도록 하는 제2채널(120), 제2채널(102)의 일측에서 분기되며, 시료주입부(101)와 상기 제2채널(120)이 서로 연통되도록 하는 제1채널(110), 필드 증폭 시료 주입방법을 이용하여 전위 차이에 따라 시료를 농축하는 제2농축부(104), 완충액이 저장되는 제1완충액저장부(105), 제1농축부(103), 상기 제2농축부(104) 및 상기 제1완충액저장부(105)가 서로 연통되도록 하는 제3채널(130)을 포함한다. The concentration channel is a sample injection unit 101, the sample is injected, the buffer is stored, the first sample discharge unit 102, a part of the sample supplied from the sample injection unit 101 is discharged, the field amplified sample stacking method The second channel 120, the second channel (120) and the second channel (103) to communicate the first concentration unit 103, the first sample discharge unit 102 and the first concentration unit 103 to concentrate the sample according to the pH gradient using It is branched from one side of 102, the sample injection unit 101 and the second channel 120 to concentrate the sample according to the potential difference using the first channel 110, the field amplified sample injection method to communicate with each other The second concentrate part 104, the first buffer storage unit 105, the buffer is stored, the first concentrate portion 103, the second concentrate portion 104 and the first buffer storage 105 is in communication with each other The third channel 130 to be included.

또한, 상기 검출채널은 완충액이 저장되는 제2완충액저장부(106), 완충액이 저장되며, 시료의 일부가 배출되는 제2시료배출부(107), 제2농축부(104)와 상기 제2시료배출부(107)가 서로 연통되도록 하는 제4채널(140), 내부에 전극부가 구비되고 완충액이 저장되며, 시료를 검출하는 검출부(108), 제2완충액저장부(106)와 검출부(108)를 연결시키며, 제4채널(140)의 일측과 연통되도록 하는 제5채널(150)을 포함한다.In addition, the detection channel is a second buffer storage unit 106, the buffer is stored, the second sample discharge unit 107, the second concentration unit 104 and the second buffer is stored, the portion of the sample is discharged Fourth channel 140 for allowing the sample discharge unit 107 to communicate with each other, the electrode unit is provided therein, the buffer is stored, the detector 108 for detecting a sample, the second buffer storage 106 and the detector 108 And a fifth channel 150 to communicate with one side of the fourth channel 140.

이때, 상기 농축채널과 검출채널에서 사용되는 완충액에 AuNP를 첨가함으로써 흔적량의 환경호르몬의 농축과 분리 효율을 개선할 수 있다.At this time, by adding AuNP to the buffer used in the concentration channel and the detection channel it can improve the concentration and separation efficiency of trace environmental hormones.

여기서, 도 2를 참조하여 본 발명의 실시예에 따른 전극부를 설명하도록 한다. 도 2는 본 발명의 실시예에 따른 페놀성 화합물 검출용 마이크로칩 전극부 중 작동전극의 개념도이다.Here, an electrode unit according to an exemplary embodiment of the present invention will be described with reference to FIG. 2. 2 is a conceptual diagram of a working electrode of the microchip electrode unit for detecting a phenolic compound according to an embodiment of the present invention.

상기 전극부는 기준전극, 반대전극 및 작동전극(151)을 포함하며, 작동전극(151)은 셀룰로오즈, 이중나선 DNA(dsDNA) 및 구연산으로 안정화된 금 나노입자(AuNPs)로 개질된 탄소 반죽 전극을 이용하는 것이 바람직하다. 이때, 이중나선 DNA의 그루브(groove)에 페놀성 화합물이 붙잡히게 되어 페놀성 환경호르몬 검출용 마이크로칩의 검출능을 향상시킬 수 있으며, 상기 AuNP는 전기적, 자기적 그리고 우수한 촉매 활성으로 인해 페놀성 환경호르몬에 대해 검출 민감도 및 분리 선택도의 향상 기능을 수행할 수 있다. The electrode unit includes a reference electrode, a counter electrode, and a working electrode 151. The working electrode 151 is a carbon dough electrode modified with cellulose, double-stranded DNA (dsDNA), and gold nanoparticles (AuNPs) stabilized with citric acid. It is preferable to use. At this time, the phenolic compound is caught in the groove of the double-stranded DNA to improve the detection ability of the microchip for detecting phenolic environmental hormones, and the AuNP is phenolic due to its electrical, magnetic and excellent catalytic activity. Enhancement of detection sensitivity and isolation selectivity can be performed for environmental hormones.

또, 상기 개질 탄소 반죽 전극은 탄소 100 중량부에 대하여 셀룰로오스-dsDNA 10 내지 50 중량부 및 AuNPs 10 내지 50 중량부를 포함하는 것이 바람직하며, 만약 셀룰로오스-dsDNA의 함량이 상기 범위를 벗어나면 페놀성 화합물의 선택적 반응의 문제가 야기될 수 있고, AuNPs의 함량이 상기 범위를 벗어나면 페놀성 환경 호르몬의 검출 민감도 감소의 문제가 야기될 수 있다.In addition, the modified carbon dough electrode preferably contains 10 to 50 parts by weight of cellulose-dsDNA and 10 to 50 parts by weight of AuNPs based on 100 parts by weight of carbon, and if the content of cellulose-dsDNA is out of the above range, the phenolic compound The problem of selective reaction of can be caused, and if the content of AuNPs is out of the above range can cause a problem of reduced detection sensitivity of phenolic environmental hormones.

이러한 전극부의 작동전극(151)은 페놀성 환경호르몬 검출용 마이크로칩에서 다른 작동전극으로 교체가능하도록 상기 마이크로칩 내에서 착탈가능하도록 구비되는 것이 바람직하다. The working electrode 151 of the electrode unit is preferably provided to be detachable in the microchip so that the phenolic environmental hormone detection microchip can be replaced with another working electrode.

상술한 바와 같이, 본 발명의 페놀성 환경호르몬 검출용 마이크로칩 및 이를 이용한 페놀성 환경호르몬 검출방법에 의하면, 필드 증폭 시료 스태킹과 필드 증폭 시료 주입 방법을 마이크로칩 내에서 수행하며, 이때 농축 및 분리 완충액으로 AuNP를 첨가하여 흔적량의 페놀성 환경호르몬을 신속하고 간편하게 검출할 수 있으며, 또한 검출부에서 셀룰로오스, 이중나선 DNA 및 구연산으로 안정화된 금 나노입자 혼합물을 이용하여 표면을 개질시킨 탄소 반죽 전극을 사용함으로써, 보다 감도 높게 페놀성 환경호르몬을 검출할 수 있다.As described above, according to the phenolic environmental hormone detection microchip of the present invention and the phenolic environmental hormone detection method using the same, field amplification sample stacking and field amplification sample injection method are performed in a microchip, where concentration and separation are performed. By adding AuNP as a buffer, it is possible to detect trace amount of phenolic environmental hormone quickly and simply. Also, in the detection unit, a carbon paste electrode whose surface was modified using gold nanoparticle mixture stabilized with cellulose, double-stranded DNA and citric acid was used. By using it, phenolic environmental hormone can be detected more highly.

도 1은 본 발명의 실시예에 따른 페놀성 환경호르몬 검출용 마이크로칩의 채널 패턴도를 나타낸 것이고,
도 2는 본 발명의 실시예에 따른 페놀성 환경호르몬 검출용 마이크로칩 전극부의 개념도를 나타낸 것이고,
도 3은 본 발명의 실시예에 따른 셀룰로오즈-dsDNA/AuNPs-개질 CPE의 순환전류전압 분석 결과를 나타낸 것이고(a: 0.1M 포스페이트 완충용액 (pH 7.0), b: 1.0×10-4M BPA 함유 시료, c: 1.0×10-4M NP 함유 시료, d: 1.0×10-4M 4-NP 함유 시료, e: 1.0×10-4M 4-OP 함유 시료, f: 1.0×10-4M 4-PP 함유 시료),
도 4a 내지 도 4c는 본 발명의 실시예에 따른 셀룰로오즈-dsDNA/AuNPs-개질 CPE의 피크 전류에 대한 (a) 증착시간, (b) 완충액 pH 및 (c) 온도의 영향을 나타낸 것이고,
도 5는 (A) 개질되지 않은 전극 및 (B) 본 발명의 실시예에 따른 셀룰로오즈-dsDNA/AuNPs-개질 CPE를 이용한 환경호르몬의 전기이동도를 나타낸 것이고,
도 6a 및 도 6b는 각각 (a) FASI 공정 단독 및 (b) FASS 공정과 FASI 공정 둘다를 수행하여 얻어진 환경호르몬의 전기이동도를 나타낸 것이고,
도 7a 및 도 7b는 농축 효율에 관한 (a) 물 농도 및 (b) 물 플러그 길이의 영향을 나타낸 것이고,
도 8a는 FASS 공정과 FASI 공정에 의해 얻어진 환경호르몬의 검량곡선을 나타낸 것이고,
도 8b는 (a) 수돗물 및 (b) 표면수 시료의 전기이동도를 나타낸 것이다.
<도면의 주요 부분에 대한 부호의 설명>
100 : 페놀성 화합물 검출용 마이크로칩 101 : 시료주입부
102 : 제1시료배출부 103 : 제1농축부
104 : 제2농축부 105 : 제1완충액저장부
106 : 제2완충액저장부 107 : 제2시료배출부
108 : 검출부 110 : 제1채널
120 : 제2채널 130 : 제3채널
140 : 제4채널 150 : 제5채널
이하, 하기 실시예에 의해 본 발명을 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.
<실시예 1> AuNP 준비
AuNP는 종래 알려진 방법(Anal. Chem. 79, 3724-3733, 2007)에 따라 합성하였다. 즉, 1.0 중량% HAuCl4, 38.8mM 구연산 3나트륨 및 0.0075 중량% NaBH4 용액을 각각 플라스크에 준비하였다. 1.0 중량% HAuCl4 0.5 mL를 함유한 플라스크에 45.0 mL의 증류수를 첨가하고 1분 동안 교반한 후, 상기 반응 혼합물을 38.8mM 구연산 3나트륨 1 mL를 함유한 플라스크에 첨가하고 1분 동안 교반하였다. 마지막으로, 얻어진 반응 혼합물을 0.0075 중량% NaBH4 용액 0.5 mL에 첨가하고 5분 동안 교반하였다. 그 후, 반응 혼합물이 분홍색으로 변화하여 입자 형성을 관찰하였다. 가시광선 분광분석기와 TEM 이미지를 통해 나노입자의 크기를 확인하였고, 적절한 완충용액을 이용하여 매일 희석하여 준비하였다. 그 결과, 상기 나노입자는 519nm에서 흡수밴드를 갖는 3.5 nm 정도의 나노입자인 것을 확인하였다.
<실시예 2> 셀룰로오즈-dsDNA/AuNPs-개질 CPE 준비 및 성능 평가
1. 셀룰로오즈-dsDNA/AuNPs-개질 CPE 준비
본 발명에서 작동전극으로 사용되는 셀룰로오즈-dsDNA/AuNPs-개질 CPE는 탄소 반죽 전극(carbon paste electrode : CPE)을 특정 개질제를 이용하여 일반적인 방법으로 손으로 혼합하여 제조되었다. 이때, 사용된 구성성분은 0.2g의 그라파이트 분말 (grade #38: Fisher Scientific), 앞서 준비된 AuNPs (직경: 3.5 nm), 및 10.0 ㎕의 미네랄오일 (DNase, RNase and protease not detected: Sigma)을 사용하였다. 상기 그라파이트 분말을 AuNP 및 셀룰로오즈-dsDNA와 각각 40 중량%, 30 중량% 및 30 중량%의 중량비율로 혼합하였다. 상기 페이스트를 테프론 슬리브 (5.0mm id) 바디 내로 촘촘하게 패킹시켰다. 스테인레스 스틸 로드를 통해 전기적 접촉을 설계하였다. CPE 표면을 부드럽게 연마시키고 2차 증류수로 세정한 후 사용하였으며, 이때 CPE 표면적은 1.1-1.2 mm였다.
2. 순환전류전압(CV) 특성 분석
준비된 셀룰로오즈-dsDNA/AuNPs-개질 CPE의 성능을, 어떠한 개질이 없는 나전극 CPE 및 셀룰로오즈-dsDNA-개질 CPE의 성능과 비교하기 위하여 순환전류전압법(CV)을 통해 검토하였다. 이때, 시료는 1.0×10-4M NP, 4-NP, BPA, 4-OP 및 4-PP를 함유한 테스트 용액(pH 7.0)을 사용하였다.
도 3a와 같이, 0.1M 포스페이트 완충용액(pH 7.0) 중 셀룰로오즈-dsDNA/AuNPs-개질 CPE의 CV에서는 어떠한 산화 피크도 관찰되지 않았다. 그러나, 도 3b 내지 도 3f와 같이 1.0×10-4M BPA(b), NP(c), 4-NP(d), 4-OP(e) 및 4-PP(f)를 함유한 용액 각각에서 셀룰로오즈-dsDNA/AuNPs-개질 CPE의 CV는 각각 +0.53, +0.54, +0.62, +0.54 및 +0.57V의 산화피크를 나타내었다. 이들 산화피크 중 4-PP의 산화피크가 가장 크게 나타났고, 이러한 산화피크들은 +0.7V보다 낮은 전압에서 나타났다. 따라서, +0.7V의 적용전위를 이용하여 시간대 전류 반응 (chronoamperometry response)을 얻었고, 이러한 적용전위를 이후 분리 및 농축 실험에서 사용하였다.
그리고, 피크 전류는 CPE 중 셀룰로오즈-dsDNA 및 AuNP의 함량이 각각 30 중량%로 증가함에 따라 증가되었으며, 이들의 함량이 30 중량% 미만으로 되면 개질제의 감소로 인해 전류 반응이 감소되는 반면, 40 중량%를 초과하면 전극의 높은 저항으로 인하여 전류 반응이 감소되었다. 또한, 셀룰로오즈-dsDNA/AuNPs-개질 CPE의 전류 반응이 셀룰로오즈-dsDNA-개질 CPE과 비교할 때 3배 정도 높게 나타났다.
따라서, 셀룰로오즈-dsDNA/AuNPs-개질 CPE를 이용하면 개질되지 않은 나전극 CPE나 셀룰로오즈-dsDNA-개질 CPE를 사용한 경우에 비해 전류 반응과 작동전극의 감도를 증진시킬 수 있었다.
<실시예 3> 마이크로칩 제작
이하 모든 전기화학적 실험은 작동전극으로 앞서 준비된 셀룰로오즈-dsDNA/AuNPs-개질 CPE, 기준전극으로 Ag/AgCl 전극 및 반대전극으로 백금선으로 구성된 3상 전극계(Model 273 Potentiostat/Galvanostat)를 사용하였으며, 고전압 공급을 위하여 Spellman CZE 1000 R을 사용하였다.
본 발명에서 사용된 마이크로칩은 도 1을 참조하면, 제2채널(120), 제3채널(130), 제5채널(140)이 서로 평행이 되도록 테프론 재질의 베이스에 식각하였다. 이 때, 제2채널(120), 제3채널(130), 제5채널(140)은 서로 10㎜의 거리로 이격되도록 식각하였다. 여기서, 상기 마이크로칩에 식각된 채널의 구체적인 길이와 폭은 표 1에 나타내었다. 상기 X는 제1채널(110)과 제2채널(120)의 교차지점을 나타낸다. 그리고, 상기 미세유체채널은 X와 제1시료배출부(102) 사이의 거리가 2㎜가 되도록 식각하였다. 이러한 미세유체채널에 따르면, 시료가 제2채널(120) 내에서 최대 2㎜를 차지하도록 주입될 수 있다. 또한, 모든 채널의 내부는 라운드지게 홈을 형성하였으며, 23㎛ 이하의 깊이를 갖도록 하였다.
<표 1>

Figure pat00001

구체적인 마이크로칩의 제조는 Shiddiky 등의 방법(Electrophoresis, 26: 3043-3052, 2005)에 따라 수행하였다. 슬라이드 글래스 (2.5×7.5 cm)를 먼저 화학적으로 세정하였다. 호모-메이드 스핀코터를 이용하여 3,000 rpm에서 상기 글래스 플레이트 표면 상에 헥사메틸디실라존과 양성 타입 포토레지스트를 스핀코팅 하였다. 110℃에서 3분 동안의 프리베이킹 공정 후, 포토레지스트-코팅 글래스 슬라이드 상에 포토마스크를 놓고, 8분 동안 UV 빛 (365.0 nm)로 노광시켰다. 상기 글래스 슬라이드를 현상액에 8분 동안 담구어 현상시키고 증류수로 10분 동안 세정하였다. 이러한 세정공정은 채널 세정을 위해 매우 중요하다. 그후, 110℃에서 5분 동안 포스트베이킹 공정을 수행하였다. 모든 노출된 글래스를 HF:H2O:NH4 (14.0 mL:85.0 mL:56.5 g)의 혼합용액에서 에칭시켰다. 증류수 및 아세톤을 사용하여 에칭된 글래스 와이퍼로부터 포토레지스트를 제거하고 105℃ 오븐에서 밤새도록 건조시켰다. 에칭된 플레이트와 커버 플레이트를 앞서와 동일한 방법으로 세정하고 상기 커버 글래스 위에 10시간 동안 노에서 열적으로 결합시켰다.
<실시예 4> 환경호르몬 검출 최적 조건 선별 및 실제 시료 분석
앞서 제작된 마이크로칩을 이용한 환경호르몬 검출의 최적 조건을 선별하기 위하여 다음과 같이 수행하였다.
1. 전기화학적 검출을 위한 최적 조건 선별
먼저, 테스트 화합물의 100 μM 스탁 용액을 10% v/v 메탄올에 용해시켜 준비하였다. 이때, 사용된 테트스 화합물은 분석용 환경호르몬으로서, 4-노닐페놀(4-NP, 98%), 노닐페놀(NP; 98%)은 Riedel로부터 구매하였고, 4-옥틸페놀(4-OP; 99%)은 Aldrich에서, 4-펜틸페놀(4-PP; 98%)은 Fluka에서, 비스페놀A(BPA)는 Sigma에서 구매하였다. 상기 스탁 용액을 물로 희석한 후, 0.45㎛ 필터(Milipore, MA)를 사용하여 여과하며, 2.0 mM의 수산화나트륨(NaOH) 용액을 첨가하여 pH를 조절하여 사용하였다.
앞서 준비된 마이크로칩 내부를 0.1M NaOH 용액과 증류수로 각각 10분 동안 세척한 후, low-pH BGE 완충액(low-pH background electrolyte, 10mM H3PO4 + 10mM SDS + 1M 우레아, pH 2.1)에서 10분 동안 마지막으로 세척하였다.
70 mM 포스페이트 완충액 (pH 8.0)과 low-pH BGE 완충액으로 FASS 및 FASI 채널을 각각 채웠다. 그후, 분리채널을 완충액으로 채우고 100 μM의 분석물을 시료주입부(101)에 주입시키고 +100V/cm의 전압을 20초 동안 인가하였다. 그후, 시료주입부(101)를 플로팅시키고 제1시료배출부(102)에 +200V/cm의 전압을 300초 동안 인가하여 시료 스태킹을 시작하였다. 그 후, 제1농축부(103)에 low-pH BGE를 50초 동안 주입하고 -100V/cm의 전압을 60초 동안 인가하여 농축된 분석물을 FASI 채널로 이동시켰다. FASI 공정 후, 농축된 분석물을 제2농축부(104)로 이동시킨 후, 이들 분석물의 분리와 검출을 위한 MEKC-EC 공정이 수행되었다. 즉, low-pH BGE를 제2완충액저장부(106)와 제2시료배출부(107)에 채우고 10mM 포스페이트 완충 용액(pH 7.0)으로 구성된 검출 완충액을 검출부(108)에 채웠다. 다음으로, 제2완충액저장부(106)에 -250V/cm의 전압을 인가함으로써, 시료에 포함된 환경호르몬을 분리하였다.
상기 마이크로칩을 이용한 환경호르몬 검출의 최적 조건을 규명하기 위하여, 증착시간, 배지의 pH 및 온도를 반응 전류에 대한 함수로 하여 모니터링 하였다. 이때, 100 mV/s의 주사속도에서 +0.0 내지 +1.0V의 범위로 전위 순환을 통해 테스트 화합물의 산화 전류를 기록하였다.
도 4a와 같이, 4-OP 및 BPA의 산화 전류는 첫 10분 동안 약간 감소한 반면, 4-PP, 4-NP 및 NP의 산화 전류는 증착 첫 15분 동안 증가하였다. 이러한 결과로부터 4-PP, 4-NP 및 NP이 개질 전극 표면 상에 보다 효과적으로 포집되는 것을 알 수 있었다.
도 4b와 같이, 배지의 pH가 6.0에서 7.0으로 증가함에 따라 전류가 증가하였고, 7.0에서 9.0으로 증가함에 따라 전류가 감소하였기 때문에 전류 반응은 pH 6.0 내지 8.0 사이가 적절하며, pH 7.0을 최적 검출 pH로 선정하였다.
도 4c와 같이, 반응 전류는 40℃까지 온도가 증가함에 따라 증가하였고, 50℃를 초과하는 경우 감소하였다. 이후 실험은 30℃에서 수행하였다.
2 개질 CPE의 분리 효율 평가
셀룰로오즈-dsDNA/AuNPs-개질 CPE의 전기화학적 평가 후 8.0×10-6M 4-PP, 4-OP, 4-NP, NP 및 BPA를 함유한 테스트 용액에 대한 개질 CPE의 민감도를 분리 완충액으로 10.0 mM low-pH BGE(pH 2.1)를 이용하여 분리 채널에서 조사하였다.
그 결과, 도 5와 같이 셀룰로오즈-dsDNA/AuNPs-개질 CPE은 나전극 CPE에 비해 반응 전류가 10배 이상 증가하였다. 모든 테스트 용액에 관한 분리를 150초 이내에 마쳤다. 4-PP, 4-OP, 4-NP, NP 및 BPA의 이동 시간은 83(±0.3), 111(±0.5), 129(±0.7), 137(±0.8) 및 147(±1.0)으로 나타났다. 4-PP, 4-OP, 4-NP, NP 및 BPA의 반피크 너비(W1/2), 분리능(Rs = 2tR/(W1 + W2)) 및 분리 효능(N = 5.54 (tR-/W1/2)2)은 각각 ?30 337, ?38 165, 40 973, 53 206 및 ?63 980이었다.
3. AuNP를 이용한 농축 및 분리 공정의 성능 평가
전하 안정화된 AuNP를 이용하여 분리 및 농축 완충액을 개질하였다. FASI 농축 공정을 위해 low-pH BGE 완충액에 AuNP를 첨가한 경우, 음이온 계면활성제인 SDS가 AuNP 주위를 둘러싸서 응집을 방지하였다. 도 6b와 같이 배지 내에 (a) AuNP를 갖지 않거나, (b) AuNP를 갖는 마이크로칩 분리에 관한 전기이동도를 검토한 결과, AuNP를 갖는 마이크로칩의 경우 민감도 향상이 200배 정도 증가되었다. 분리 및 농축 완충액을 AuNP로 개질함으로써 분리 선택도 및 검출 민감도를 향상시킬 수 있었다.
4. 최적 농축 조건
최적 농축 조건을 규명하기 위하여, 완충액 농도와 물 플러그 길이에 따른 전류 반응을 검토한 결과, 도 7a와 같이 10.0 mM에서 100.0 mM로 완충액의 농도가 증가함에 따라 70.0 mM까지 피크 높이가 증가되었지만, 70.0 mM을 초과하는 경우 감소하였다. 도 7b와 같이, 물 플러그 길이가 50.0 mm까지 증가함에 따라 피크 면적이 증가하였으나, 50.0 mm를 넘어서면 감소하였다. 따라서, 분리 효율을 증진시킬 수 있는 최적 완충액 농도는 70.0 mM이고, 최적 물 플러그 길이는 50.0 mm이었다.
5. 실제 시료 분석
도 8a와 같이, 시료 농도에 따른 피크 면적을 플로팅하여 적정곡선을 구하였다. 페놀성 화합물의 동력학적 범위는 0.15에서 600.0 pM로 확인되었다. 이러한 산출 그래프에서 얻어진 민감도는 4-PP, 4-OP, 4-NP, NP 및 BPA 각각이 2.290, 2.310, 2.493, 1.702 및 1.251이었다. 최적 조건 하에서 산출된 지표들은 표 2와 같다.
<표 2>
Figure pat00002

실제 시료를 수돗물(부산대학교 수도관 파이프로부터 채취함)로부터 모으고, 표면 물과 페놀성 환경호르몬의 농도를 표준첨가법에 따라 구하였다. 완충용액에 AuNP를 첨가하기 전, 미처리된 완충액(70.0 mM, pH 8.5)과 BGE 용액(pH 2.1)을 0.45 mm 밀리포어 필터로 여과하였다. 도 8b와 같이 표면 물 시료에서는 모든 피크가 서로서로 분리되어 있고, 도 6a(b)와 동일한 이동 시간으로 검출되었다. 수돗물 시료에서 표적 피크들이 분리되었고, 도 8b(b)와 같이 동일한 전기이동 성능으로 검출하였다. 도 8b에서 얻어진 피크는 실제 시료인 수돗물과 표면 물 시료를 각각의 표준 페놀류(7.0×10-11M)와 비교하여 확인하였다. 수돗물과 표면 물에서의 모든 화합물들에 대한 평균 회수율은 75 내지 84% 및 78 내지 89%로 나타났으며, 변수는 13 내지 19% 및 21 내지 25%로 나타났다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다. 1 shows a channel pattern diagram of a microchip for phenolic environmental hormone detection according to an embodiment of the present invention.
2 is a conceptual diagram illustrating a microchip electrode unit for detecting a phenolic environmental hormone according to an embodiment of the present invention.
Figure 3 shows the results of cyclic current voltage analysis of cellulose-dsDNA / AuNPs-modified CPE according to an embodiment of the present invention (a: 0.1M phosphate buffer (pH 7.0), b: containing 1.0 × 10 -4 M BPA) Sample, c: 1.0 × 10 -4 M NP-containing sample, d: 1.0 × 10 -4 M 4-NP-containing sample, e: 1.0 × 10 -4 M 4-OP-containing sample, f: 1.0 × 10 -4 M 4-PP containing sample),
4A-4C show the effect of (a) deposition time, (b) buffer pH and (c) temperature on peak current of cellulose-dsDNA / AuNPs-modified CPE according to an embodiment of the invention,
Figure 5 shows the electrophoresis of the environmental hormone using (A) unmodified electrode and (B) cellulose-dsDNA / AuNPs-modified CPE according to an embodiment of the present invention,
6a and 6b show the electrophoresis of the environmental hormone obtained by (a) FASI process alone and (b) both FASS process and FASI process, respectively,
7A and 7B show the influence of (a) water concentration and (b) water plug length on concentration efficiency,
Figure 8a shows the calibration curve of the environmental hormone obtained by the FASS process and the FASI process,
Figure 8b shows the electrophoresis of (a) tap water and (b) surface water samples.
Description of the Related Art
100: microchip for detecting phenolic compound 101: sample injection unit
102: first sample discharge unit 103: first concentration unit
104: second concentration unit 105: the first buffer storage unit
106: second buffer storage unit 107: second sample discharge unit
108: detector 110: first channel
120: second channel 130: third channel
140: fourth channel 150: fifth channel
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by these examples.
Example 1 AuNP Preparation
AuNPs were synthesized according to known methods ( Anal. Chem. 79, 3724-3733, 2007). That is, 1.0 wt% HAuCl 4 , 38.8 mM trisodium citrate and 0.0075 wt% NaBH 4 solution were prepared in the flask, respectively. 45.0 mL of distilled water was added to the flask containing 0.5 mL of 1.0 wt% HAuCl 4 and stirred for 1 minute, and then the reaction mixture was added to the flask containing 1 mL of 38.8 mM trisodium citrate and stirred for 1 minute. Finally, the resulting reaction mixture was added to 0.5 mL of 0.0075 wt% NaBH 4 solution and stirred for 5 minutes. Thereafter, the reaction mixture turned pink to observe particle formation. The size of the nanoparticles was confirmed by visible light spectroscopy and TEM image, and prepared by dilution daily using an appropriate buffer solution. As a result, it was confirmed that the nanoparticles are about 3.5 nm nanoparticles having an absorption band at 519 nm.
Example 2 Cellulose-dsDNA / AuNPs-Modified CPE Preparation and Performance Evaluation
1. Cellulose-dsDNA / AuNPs-Modified CPE Preparation
The cellulose-dsDNA / AuNPs-modified CPE used as the working electrode in the present invention was prepared by hand mixing a carbon paste electrode (carbon paste electrode: CPE) by a general method using a specific modifier. In this case, the ingredients used were 0.2 g of graphite powder (grade # 38: Fisher Scientific), previously prepared AuNPs (diameter: 3.5 nm), and 10.0 μl of mineral oil (DNase, RNase and protease not detected: Sigma). It was. The graphite powder was mixed with AuNP and cellulose-dsDNA in weight ratios of 40 wt%, 30 wt% and 30 wt%, respectively. The paste was tightly packed into a Teflon sleeve (5.0 mm id) body. Electrical contacts were designed through stainless steel rods. The CPE surface was gently ground and washed with secondary distilled water, where the CPE surface area was 1.1-1.2 mm.
2. Analysis of cyclic current voltage (CV)
The performance of the prepared cellulose-dsDNA / AuNPs-modified CPE was examined by cyclic voltammetry (CV) in order to compare the performance of the unmodified bare electrode CPE and the cellulose-dsDNA-modified CPE. At this time, a test solution (pH 7.0) containing 1.0 × 10 −4 M NP, 4-NP, BPA, 4-OP, and 4-PP was used.
As shown in FIG. 3A, no oxidation peak was observed in CV of cellulose-dsDNA / AuNPs-modified CPE in 0.1M phosphate buffer (pH 7.0). However, solutions containing 1.0 × 10 −4 M BPA (b), NP (c), 4-NP (d), 4-OP (e) and 4-PP (f), respectively, as shown in Figs. 3b to 3f. The CV of the cellulose-dsDNA / AuNPs-modified CPE at showed an oxidation peak of +0.53, +0.54, +0.62, +0.54 and + 0.57V, respectively. Of these oxide peaks, the peak of 4-PP oxide was the largest, and these peaks appeared at voltages lower than + 0.7V. Therefore, a time-phase current response (chronoamperometry response) was obtained using an application potential of +0.7 V, and this application potential was used in subsequent separation and concentration experiments.
In addition, the peak current was increased as the content of cellulose-dsDNA and AuNP in the CPE increased to 30% by weight, respectively, and when the content thereof was less than 30% by weight, the current response was reduced due to the decrease of the modifier, while 40% by weight. Exceeding% reduced the current response due to the high resistance of the electrode. In addition, the current response of cellulose-dsDNA / AuNPs-modified CPE was about three times higher than that of cellulose-dsDNA-modified CPE.
Therefore, the use of cellulose-dsDNA / AuNPs-modified CPE was able to enhance the current response and the sensitivity of the working electrode compared with the unmodified bare electrode CPE or the cellulose-dsDNA-modified CPE.
Example 3 Microchip Fabrication
All electrochemical experiments below used a three-phase electrode system (Model 273 Potentiostat / Galvanostat) consisting of cellulose-dsDNA / AuNPs-modified CPE prepared as a working electrode, Ag / AgCl electrode as a reference electrode, and platinum wire as a counter electrode. Spellman CZE 1000 R was used for the feed.
Referring to FIG. 1, the microchip used in the present invention was etched on a base made of Teflon so that the second channel 120, the third channel 130, and the fifth channel 140 are parallel to each other. At this time, the second channel 120, the third channel 130, and the fifth channel 140 were etched to be spaced apart from each other by a distance of 10 mm. Here, specific lengths and widths of the channels etched in the microchip are shown in Table 1. X represents an intersection point of the first channel 110 and the second channel 120. In addition, the microfluidic channel was etched such that the distance between X and the first sample outlet 102 was 2 mm. According to the microfluidic channel, the sample may be injected to occupy a maximum of 2 mm in the second channel 120. In addition, the insides of all the channels are rounded to form grooves, and have a depth of 23 μm or less.
TABLE 1
Figure pat00001

Specific microchips were prepared according to the method of Shiddiky et al. ( Electrophoresis , 26: 3043-3052, 2005). Slide glass (2.5 × 7.5 cm) was first chemically cleaned. A hexamethyldisilazone and positive type photoresist were spincoated onto the glass plate surface at 3,000 rpm using a homo-made spin coater. After a 3 minute prebaking process at 110 ° C., the photomask was placed on a photoresist-coated glass slide and exposed to UV light (365.0 nm) for 8 minutes. The glass slide was immersed in a developer for 8 minutes to develop and washed with distilled water for 10 minutes. This cleaning process is very important for channel cleaning. Thereafter, the postbaking process was performed at 110 ° C. for 5 minutes. All exposed glass was etched in a mixed solution of HF: H 2 O: NH 4 (14.0 mL: 85.0 mL: 56.5 g). Photoresist was removed from the etched glass wiper with distilled water and acetone and dried overnight in a 105 ° C. oven. The etched plate and cover plate were cleaned in the same manner as before and thermally bonded in a furnace for 10 hours on the cover glass.
Example 4 Screening of Optimal Conditions for Environmental Hormone Detection and Actual Sample Analysis
In order to select the optimal conditions for the detection of environmental hormone using the microchip manufactured as described above was performed as follows.
1. Selection of Optimum Conditions for Electrochemical Detection
First, 100 μM stock solution of test compound was prepared by dissolving in 10% v / v methanol. At this time, the test compound used as an environmental hormone for analysis, 4-nonylphenol (4-NP, 98%), nonylphenol (NP; 98%) was purchased from Riedel, 4-octylphenol (4-OP; 99%) was purchased from Aldrich, 4-pentylphenol (4-PP; 98%) from Fluka, and bisphenol A (BPA) from Sigma. The stock solution was diluted with water, filtered using a 0.45 μm filter (Milipore, MA), and adjusted to pH by adding 2.0 mM sodium hydroxide (NaOH) solution.
The inside of the prepared microchip was washed with 0.1 M NaOH solution and distilled water for 10 minutes, and then, in low-pH BGE buffer (low-pH background electrolyte, 10 mM H 3 PO 4 + 10 mM SDS + 1 M urea, pH 2.1). Last wash for minutes.
FASS and FASI channels were filled with 70 mM phosphate buffer (pH 8.0) and low-pH BGE buffer, respectively. Thereafter, the separation channel was filled with buffer, 100 μM of analyte was injected into the sample inlet 101, and a voltage of +100 V / cm was applied for 20 seconds. Thereafter, the sample injection unit 101 was floated and a sample stacking was started by applying a voltage of +200 V / cm to the first sample discharge unit 102 for 300 seconds. Thereafter, low-pH BGE was injected into the first concentration unit 103 for 50 seconds and a voltage of −100 V / cm was applied for 60 seconds to move the concentrated analyte to the FASI channel. After the FASI process, the concentrated analytes were transferred to the second concentration unit 104, and then a MEKC-EC process for separation and detection of these analytes was performed. That is, the low-pH BGE was filled in the second buffer storage unit 106 and the second sample discharge unit 107, and the detection unit 108 was filled with a detection buffer composed of 10 mM phosphate buffer solution (pH 7.0). Next, by applying a voltage of -250V / cm to the second buffer storage unit 106, the environmental hormone contained in the sample was separated.
In order to determine the optimal conditions for the detection of environmental hormone using the microchip, the deposition time, pH and temperature of the medium were monitored as a function of the reaction current. At this time, the oxidation current of the test compound was recorded through the potential cycle in the range of +0.0 to + 1.0V at a scanning speed of 100 mV / s.
As shown in FIG. 4A, the oxidation currents of 4-OP and BPA decreased slightly during the first 10 minutes, while the oxidation currents of 4-PP, 4-NP and NP increased during the first 15 minutes of deposition. From these results, it can be seen that 4-PP, 4-NP and NP are more effectively collected on the modified electrode surface.
As shown in FIG. 4B, since the current increased as the pH of the medium increased from 6.0 to 7.0, and the current decreased as the pH increased from 7.0 to 9.0, the current response is appropriate between pH 6.0 and 8.0, and optimal detection of pH 7.0 pH was chosen.
As shown in FIG. 4C, the reaction current increased with increasing temperature up to 40 ° C. and decreased when exceeding 50 ° C. FIG. The experiment was then performed at 30 ° C.
Evaluation of Separation Efficiency of Two Modified CPEs
After electrochemical evaluation of cellulose-dsDNA / AuNPs-modified CPEs, the sensitivity of the modified CPEs to test solutions containing 8.0 × 10 −6 M 4-PP, 4-OP, 4-NP, NP and BPA was determined as 10.0 as separation buffer. Irradiation in separate channels was performed using mM low-pH BGE (pH 2.1).
As a result, as shown in FIG. 5, the cellulose-dsDNA / AuNPs-modified CPE increased the reaction current more than 10 times compared to the bare electrode CPE. Separation of all test solutions was completed within 150 seconds. The travel times of 4-PP, 4-OP, 4-NP, NP, and BPA were 83 (± 0.3), 111 (± 0.5), 129 (± 0.7), 137 (± 0.8), and 147 (± 1.0). . Half peak width (W 1/2 ), resolution (R s = 2t R / (W 1 + W 2 )), and separation efficacy (N = 5.54 () of 4-PP, 4-OP, 4-NP, NP, and BPA t R- / W 1/2 ) 2 ) were -30 337, -38 165, 40 973, 53 206 and -63 980, respectively.
3. Performance Evaluation of Concentration and Separation Process Using AuNP
The charge stabilized AuNPs were used to modify the separation and concentration buffer. When AuNP was added to the low-pH BGE buffer for the FASI concentration process, SDS, an anionic surfactant, was wrapped around AuNP to prevent aggregation. As shown in FIG. 6B, as a result of examining the electrical mobility of (a) no AuNP in the medium or (b) microchip separation with AuNP, the sensitivity improvement of the microchip with AuNP was increased by about 200 times. The separation and concentration buffers were modified with AuNPs to improve separation selectivity and detection sensitivity.
4. Optimum Concentration Conditions
In order to determine the optimal concentration condition, the current response according to the buffer concentration and the water plug length was examined. As a result, the peak height was increased to 70.0 mM as the concentration of the buffer was increased from 10.0 mM to 100.0 mM as shown in FIG. It decreased when exceeding mM. As shown in FIG. 7B, the peak area increased as the water plug length increased to 50.0 mm, but decreased beyond 50.0 mm. Thus, the optimal buffer concentration for enhancing separation efficiency was 70.0 mM and the optimum water plug length was 50.0 mm.
5. Real sample analysis
As shown in FIG. 8A, a titration curve was obtained by plotting the peak area according to the sample concentration. The kinetic range of the phenolic compound was found to be 0.15 to 600.0 pM. The sensitivity obtained in this calculation graph was 2.290, 2.310, 2.493, 1.702 and 1.251 for 4-PP, 4-OP, 4-NP, NP and BPA, respectively. The indicators calculated under the optimal conditions are shown in Table 2.
TABLE 2
Figure pat00002

The actual samples were collected from tap water (taken from the water pipe pipe of Pusan National University) and the concentrations of surface water and phenolic environmental hormones were calculated according to the standard addition method. Before adding AuNP to the buffer, the untreated buffer (70.0 mM, pH 8.5) and BGE solution (pH 2.1) were filtered with a 0.45 mm Millipore filter. As shown in FIG. 8B, all the peaks were separated from each other in the surface water sample, and were detected at the same travel time as in FIG. 6A (b). Target peaks were separated from the tap water sample and detected with the same electrophoretic performance as shown in FIG. 8B (b). The peaks obtained in FIG. 8B were confirmed by comparing tap water and surface water samples, which are actual samples, with respective standard phenols (7.0 × 10 −11 M). Average recoveries for all compounds in tap water and surface water were 75 to 84% and 78 to 89%, with variables ranging from 13 to 19% and 21 to 25%.
As mentioned above, although this invention was demonstrated by the limited embodiment and drawing, this invention is not limited by this, The person of ordinary skill in the art to which this invention belongs, Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

Claims (6)

필드 증폭 시료 스태킹(field-amplified sample stacking; FASS)을 이용하여 pH 구배에 따라 시료를 농축하는 제1농축부 및 필드 증폭 시료 주입(field-amplified sample injection; FASI)을 이용하여 전위 차이에 따라 시료를 농축하는 제2농축부를 포함하는 농축채널; 및 상기 농축채널과 0.05-0.2 mm로 이격되며 검출부를 포함하는 검출채널로 구성되며, 상기 검출채널은 작동전극으로서 셀룰로오즈, 이중나선 DNA(dsDNA) 및 구연산으로 안정화된 금 나노입자(AuNPs)로 개질된 탄소 반죽 전극을 포함하며, 상기 농축채널 및 검출채널에 사용되는 완충액에 AuNPs를 첨가하는 것을 특징으로 하는 페놀성 환경호르몬 검출용 마이크로칩.The first enrichment unit concentrates the sample according to the pH gradient using field-amplified sample stacking (FASS) and the sample according to the potential difference using field-amplified sample injection (FASI). A condensation channel comprising a second concentrating portion for concentrating; And a detection channel spaced apart from the enrichment channel by 0.05-0.2 mm and including a detection unit, wherein the detection channel is modified with cellulose, double-stranded DNA (dsDNA) and citric acid stabilized gold nanoparticles (AuNPs) as working electrodes. A phenolic environmental hormone detection microchip comprising a carbon dough electrode, and adding AuNPs to the buffer used in the concentration channel and the detection channel. 청구항 1에 있어서, 상기 페놀성 환경호르몬은 4-노닐페놀, 노닐페놀, 4-옥틸페놀, 4-펜틸페놀 및 비스페놀A로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 페놀성 환경호르몬 검출용 마이크로칩.The method of claim 1, wherein the phenolic environmental hormone is phenolic environmental hormone detection micro, characterized in that any one selected from the group consisting of 4-nonylphenol, nonylphenol, 4-octylphenol, 4-pentylphenol and bisphenol A chip. 청구항 1 또는 청구항 2에 있어서,
상기 농축채널은 시료가 주입되는 시료주입부;
완충액이 저장되며, 상기 시료주입부에서 공급된 시료의 일부가 배출되는 제1시료배출부;
필드 증폭 시료 스태킹(field-amplified sample stacking)을 이용하여 pH 구배에 따라 시료를 농축하는 제1농축부;
상기 제1시료배출부와 상기 제1농축부가 연통되도록 하는 제2채널;
상기 제2채널의 일측에서 분기되며, 상기 시료주입부와 상기 제2채널이 서로 연통되도록 하는 제1채널;
필드 증폭 시료 주입(field-amplified sample injection)을 이용하여 전위 차이에 따라 시료를 농축하는 제2농축부;
완충액이 저장되는 제1완충액저장부; 및
상기 제1농축부, 상기 제2농축부 및 상기 제1완충액저장부가 서로 연통되도록 하는 제3채널로 구성되는 것을 특징으로 하는 페놀성 환경호르몬 검출용 마이크로칩.
The method according to claim 1 or 2,
The condensation channel is a sample injection unit into which the sample is injected;
A first sample discharge part in which a buffer solution is stored and a part of the sample supplied from the sample injection part is discharged;
A first concentrating portion for concentrating the sample according to a pH gradient using field-amplified sample stacking;
A second channel allowing the first sample discharger to communicate with the first concentrate part;
A first channel branched at one side of the second channel and allowing the sample injection unit and the second channel to communicate with each other;
A second concentrator for concentrating the sample according to the potential difference by using field-amplified sample injection;
A first buffer storage unit for storing a buffer solution; And
The first concentrate portion, the second concentrate portion and the first buffer solution storage microchip for phenolic environmental hormone detection, characterized in that consisting of a third channel to communicate with each other.
청구항 1 또는 청구항 2에 있어서,
상기 검출채널은 완충액이 저장되는 제2완충액저장부;
완충액이 저장되며, 시료의 일부가 배출되는 제2시료배출부;
상기 제2농축부와 상기 제2시료배출부가 서로 연통되도록 하는 제4채널;
내부에 전극부가 구비되고 완충액이 저장되며, 시료를 검출하는 검출부; 및
상기 제2완충액저장부와 상기 검출부를 연결시키며, 상기 제4채널의 일측과 연통되도록 하는 제5채널로 구성되는 것을 특징으로 하는 페놀성 환경호르몬 검출용 마이크로칩.
The method according to claim 1 or 2,
The detection channel includes a second buffer storage unit for storing a buffer;
A second sample discharge part in which a buffer is stored and a part of the sample is discharged;
A fourth channel allowing the second concentrate portion and the second sample discharger to communicate with each other;
A detector configured to include an electrode part and to store a buffer, and detect a sample; And
A phenolic environmental hormone detection microchip comprising the fifth buffer connecting the second buffer solution and the detection unit, the fifth buffer to communicate with one side of the fourth channel.
시료주입부에 시료를 주입하는 시료주입단계;
상기 시료주입부에 양극전압을 인가하고 제1시료배출부를 접지시켜, 시료가 상기 제1시료배출부 측으로 이동되도록 하는 제1시료배출부이동단계;
상기 시료주입부를 플로팅시키며 제1시료배출부에 양극전압을 인가하고 제1농축부를 접지시켜, 필드 증폭 시료 스태킹(field-amplified sample stacking)을 이용하여 pH 구배에 따라 시료를 농축시키고 농축된 시료가 제1농축부 측으로 이동되도록 하는 제1농축부이동단계;
제1완충액저장부에 물을 주입한 다음, 완충액과 구연산으로 안정화된 금 나노입자(AuNPs)를 주입하는 제1완충액저장부주입단계;
상기 제1농축부에 음극전압을 인가하고 상기 제1완충액저장부를 접지시켜, 필드 증폭 시료 주입(field-amplified sample injection)을 이용하여 전위 차이에 따라 시료를 농축시키고 농축된 시료가 제2농축부 측으로 이동되도록 하는 제2농축부이동단계;
제2농축부에 음극전압을 인가하고, 제2시료배출부를 접지시켜, 시료가 제2시료배출부 측으로 이동되도록 하는 제2시료배출부이동단계;
상기 제2농축부와 상기 제2시료배출부를 플로팅시키고, 제2완충액저장부에 음극전압을 인가하고, 검출부를 접지시켜 시료가 검출부 측으로 이동되도록 하는 검출부이동단계; 및
마이셀 동전기 분리(micellar electrokinetic separation)를 이용하여 시료를 분리하고, 작동전극으로서 셀룰로오즈, 이중나선 DNA(dsDNA) 및 구연산으로 안정화된 금 나노입자(AuNPs)로 개질된 탄소 반죽 전극을 이용하여 상기 분리된 시료를 검출하는 검출단계를 포함하는 것을 특징으로 하는 페놀성 환경호르몬 검출용 마이크로칩을 이용한 페놀성 환경호르몬의 검출방법.
A sample injection step of injecting a sample into the sample injection unit;
A first sample discharge unit moving step of applying a positive voltage to the sample injection unit and grounding a first sample discharge unit to move the sample to the first sample discharge unit;
The sample injection unit is floated, an anode voltage is applied to the first sample discharge unit, and the first concentration unit is grounded. The sample is concentrated according to the pH gradient using field-amplified sample stacking, and the concentrated sample is A first concentrated part moving step of moving to the first concentrated part side;
Injecting water into the first buffer storage unit, and then injecting the first buffer storage unit to inject gold nanoparticles (AuNPs) stabilized with a buffer solution and citric acid;
Applying a negative voltage to the first concentration unit and grounding the first buffer storage unit, using a field-amplified sample injection (concentrate) the sample according to the potential difference and the concentrated sample is the second concentration unit A second concentrated part moving step for moving to the side;
A second sample discharge unit moving step of applying a negative voltage to the second concentration unit and grounding the second sample discharge unit to move the sample to the second sample discharge unit;
A detector moving step of floating the second concentrate part and the second sample discharge part, applying a negative voltage to a second buffer storage part, and grounding the detector to move the sample to the detector; And
Samples were separated using micellar electrokinetic separation and separated using carbon dough electrodes modified with cellulose, double-stranded DNA (dsDNA) and citric acid stabilized gold nanoparticles (AuNPs) as working electrodes. A phenolic environmental hormone detection method using a microchip for phenolic environmental hormone detection comprising the step of detecting the sample.
청구항 5에 있어서,
상기 페놀성 환경호르몬은 4-노닐페놀, 노닐페놀, 4-옥틸페놀, 4-펜틸페놀 및 비스페놀A로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 페놀성 환경호르몬 검출용 마이크로칩을 이용한 페놀성 환경호르몬의 검출방법.
The method according to claim 5,
The phenolic environmental hormone is phenolic using a microchip for phenolic environmental hormone detection, characterized in that any one selected from the group consisting of 4-nonylphenol, nonylphenol, 4-octylphenol, 4-pentylphenol and bisphenol A Environmental hormone detection method.
KR1020110014580A 2011-02-18 2011-02-18 Microchip for detecting trace phenolic endocrine disruptors and detection method using the same KR20120095111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110014580A KR20120095111A (en) 2011-02-18 2011-02-18 Microchip for detecting trace phenolic endocrine disruptors and detection method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110014580A KR20120095111A (en) 2011-02-18 2011-02-18 Microchip for detecting trace phenolic endocrine disruptors and detection method using the same

Publications (1)

Publication Number Publication Date
KR20120095111A true KR20120095111A (en) 2012-08-28

Family

ID=46885748

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110014580A KR20120095111A (en) 2011-02-18 2011-02-18 Microchip for detecting trace phenolic endocrine disruptors and detection method using the same

Country Status (1)

Country Link
KR (1) KR20120095111A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048445A (en) * 2012-12-14 2013-04-17 广东工业大学 Preparation method of bisphenol A-coated antigen with polylysine as carrier and application thereof
KR101460516B1 (en) * 2013-08-28 2014-11-12 바이오센서연구소 주식회사 Residual antibiotics measuring sensor, analyser, and control method thereof
KR101510241B1 (en) * 2013-08-28 2015-04-08 바이오센서연구소 주식회사 Residual antibiotics measuring apparatus and method thereof
KR101510242B1 (en) * 2013-08-28 2015-04-08 바이오센서연구소 주식회사 Residual antibiotics measuring apparatus and sensor
CN105699646A (en) * 2016-02-25 2016-06-22 济南大学 Manufacturing method and application of electrochemiluminescence nonyl phenol sensor based on titanium dioxide nanosheet composite
WO2016111397A1 (en) * 2015-01-09 2016-07-14 바이오센서연구소 주식회사 Apparatus and method for measuring amount of residual antibiotic
WO2016111398A1 (en) * 2015-01-09 2016-07-14 바이오센서연구소 주식회사 Sensor and apparatus for measuring amount of residual antibiotic
CN106841348A (en) * 2017-01-06 2017-06-13 南京师范大学 Detect electrochemical immunosensor of female phenol and bisphenol-A and its preparation method and application
CN107824800A (en) * 2017-11-01 2018-03-23 石河子大学 A kind of preparation method of sea urchin shape nano Au particle and the method for labelled protein
CN108226251A (en) * 2018-01-17 2018-06-29 中国检验检疫科学研究院 A kind of preparation method of disposable bisphenol-A aptamers biosensor
KR20210122979A (en) * 2020-04-02 2021-10-13 아주대학교산학협력단 Biosensing chip to analyze cell-derived materials during cell culture, and method for quantitative analysis of cell activity using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048445A (en) * 2012-12-14 2013-04-17 广东工业大学 Preparation method of bisphenol A-coated antigen with polylysine as carrier and application thereof
CN103048445B (en) * 2012-12-14 2015-02-04 广东工业大学 Preparation method of bisphenol A-coated antigen with polylysine as carrier and application thereof
KR101460516B1 (en) * 2013-08-28 2014-11-12 바이오센서연구소 주식회사 Residual antibiotics measuring sensor, analyser, and control method thereof
KR101510241B1 (en) * 2013-08-28 2015-04-08 바이오센서연구소 주식회사 Residual antibiotics measuring apparatus and method thereof
KR101510242B1 (en) * 2013-08-28 2015-04-08 바이오센서연구소 주식회사 Residual antibiotics measuring apparatus and sensor
WO2016111397A1 (en) * 2015-01-09 2016-07-14 바이오센서연구소 주식회사 Apparatus and method for measuring amount of residual antibiotic
WO2016111398A1 (en) * 2015-01-09 2016-07-14 바이오센서연구소 주식회사 Sensor and apparatus for measuring amount of residual antibiotic
CN105699646A (en) * 2016-02-25 2016-06-22 济南大学 Manufacturing method and application of electrochemiluminescence nonyl phenol sensor based on titanium dioxide nanosheet composite
CN106841348A (en) * 2017-01-06 2017-06-13 南京师范大学 Detect electrochemical immunosensor of female phenol and bisphenol-A and its preparation method and application
CN107824800A (en) * 2017-11-01 2018-03-23 石河子大学 A kind of preparation method of sea urchin shape nano Au particle and the method for labelled protein
CN108226251A (en) * 2018-01-17 2018-06-29 中国检验检疫科学研究院 A kind of preparation method of disposable bisphenol-A aptamers biosensor
KR20210122979A (en) * 2020-04-02 2021-10-13 아주대학교산학협력단 Biosensing chip to analyze cell-derived materials during cell culture, and method for quantitative analysis of cell activity using the same

Similar Documents

Publication Publication Date Title
KR20120095111A (en) Microchip for detecting trace phenolic endocrine disruptors and detection method using the same
Lin et al. Glassy carbon electrodes modified with gold nanoparticles for the simultaneous determination of three food antioxidants
Beitollahi et al. Electrochemical behavior of carbon nanotube/Mn (III) salen doped carbon paste electrode and its application for sensitive determination of N-acetylcysteine in the presence of folic acid
Won et al. Simultaneous detection of antibacterial sulfonamides in a microfluidic device with amperometry
Huang et al. A high performance electrochemical biosensor based on Cu 2 O–carbon dots for selective and sensitive determination of dopamine in human serum
Vikraman et al. MWCNT-modified gold electrode sensor for the determination of propyl gallate in vegetable oils
CN103091302A (en) Preparation of ECL (electro chemical luminescence) DNA (Deoxyribose Nucleic Acid) sensor based on 3D paper chip, and application of sensor to simultaneous detection on Hg&lt;2+&gt; and Ag&lt;+&gt;
CN102135518B (en) Detection electrode of trace lead in drinking water and preparation method thereof
Noh et al. Total analysis of endocrine disruptors in a microchip with gold nanoparticles
Chen et al. Simultaneous determination of dihydroxybenzene isomers using glass carbon electrode modified with 3D CNT-graphene decorated with au nanoparticles
CN104634842A (en) Method for preparing electrode modified by copper/graphene nanocomposite and application of modified electrode
Figueiredo-Filho et al. Electroanalytical determination of the linuron herbicide using a cathodically pretreated boron-doped diamond electrode: comparison with a boron-doped diamond electrode modified with platinum nanoparticles
CN107505374A (en) Detect the method for content of luteolin and its chemically modified electrode of use and preparation in Radix Lamiophlomidis Rotatae capsule
RU2015156527A (en) ELECTROCHEMICAL ANALYTICAL TEST STRIP WITH SOLUBLE ELECTROCHEMICALLY-ACTIVE COATING AGAINST AN OPEN ELECTRODE
Cepriá et al. Selectivity of silver nanoparticle sensors: discrimination between silver nanoparticles and Ag+
CN107202828A (en) A kind of estradiol optical electro-chemistry sensor and its preparation and application based on boron doping iron cobalt/cobalt oxide two-dimensional nano composite
Kamyabi et al. Electromembrane extraction coupled to square wave anodic stripping voltammetry for selective preconcentration and determination of trace levels of As (III) in water samples
CN107345931A (en) A kind of bisphenol-A optical electro-chemistry sensor and its preparation and application based on carbonitride binary metal boron oxide compound composite
CN105928996A (en) Preparation of graphene oxide and polyaniline-modified electrode and assembled electrochemical detection device
CN103969250A (en) Method for detecting Hg&lt;2+&gt; with signal-off chemiluminescence method
Lu et al. Square-wave anodic stripping voltammetric determination of thallium (I) at a Nafion/mercury film modified electrode
Arancibia et al. Adsorptive stripping voltammetric determination of morin in tea infusions and chocolate drinks on a gold electrode. Effect of cetylpyridinium bromide on the sensitivity of the method
Choukairi et al. A Carbon Paste Electrode Modified by Bentonite and l‐Cysteine for Simultaneous Determination of Ascorbic and Uric Acids: Application in Biological Fluids
CN105466989A (en) Method for electrochemical detection of lead in soy source
CN111239212B (en) Ciprofloxacin detection method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application