KR20120092431A - Photosensor based on graphene-nanowire hybrid structures and the manufacturing method of the same - Google Patents

Photosensor based on graphene-nanowire hybrid structures and the manufacturing method of the same Download PDF

Info

Publication number
KR20120092431A
KR20120092431A KR1020110012479A KR20110012479A KR20120092431A KR 20120092431 A KR20120092431 A KR 20120092431A KR 1020110012479 A KR1020110012479 A KR 1020110012479A KR 20110012479 A KR20110012479 A KR 20110012479A KR 20120092431 A KR20120092431 A KR 20120092431A
Authority
KR
South Korea
Prior art keywords
graphene
nanowire
optical sensor
hybrid structure
sensor based
Prior art date
Application number
KR1020110012479A
Other languages
Korean (ko)
Other versions
KR101227600B1 (en
Inventor
홍승훈
이형우
허광
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020110012479A priority Critical patent/KR101227600B1/en
Publication of KR20120092431A publication Critical patent/KR20120092431A/en
Application granted granted Critical
Publication of KR101227600B1 publication Critical patent/KR101227600B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • H01L31/03845Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material comprising semiconductor nanoparticles embedded in a semiconductor matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Abstract

PURPOSE: An optical sensor based on a graphene-nanowire hybrid structure and a manufacturing method thereof are provided to prevent a nanowire from growing on the remaining photoresist of a graphene. CONSTITUTION: A graphene conductor is laminated on the upper side of a substrate. A nanowire collecting unit is formed on the upper side of the graphene conductor. The nanowire is made of CdS, CdSe, or CdTe. The nanowire collecting unit absorbs light energy and generates electron-hole pairs. The metal electrode is connected to both sides of the graphene conductor and transmits photo carriers to the outside.

Description

그래핀-나노와이어 하이브리드 구조체에 기반한 광센서 및 이의 제조방법{Photosensor based on graphene-nanowire hybrid structures and the manufacturing method of the same}Photosensor-based on graphene-nanowire hybrid structures and the manufacturing method of the same

본 발명은 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서 및 이의 제조방법에 관한 것이다.
The present invention relates to an optical sensor based on a graphene-nanowire hybrid structure and a manufacturing method thereof.

최근에, 단층 그래핀(single-layer graphene, SLG)은 높은 전도성과 이동성과 같은 다양한 특성 때문에 광범위하게 연구가 진행되고 있다. 그러나, 단층 그래핀의 광전도성은 상당히 낮은 것으로 알려져 있어서 단층 그래핀을 광전기 분야에 적용하기에는 어려움이 있다. 반면에, 그래핀보다 높은 광전도성을 가지는 광전도성 반도체는 다양한 광전기 회로를 제조하는데 광범위하게 사용되고 있다. 특히 반도체 나노와이어(semiconducting nanowires, NWs)는 다양한 광학장치에 사용할 수 있는 유망한 구성 요소로 여겨지고 있다. 예를 들어, 산화아연(ZnO), 산화주석(SnO2), 갈륨 질화물(GaN)에 기반한 나노와이어는 가시광선 또는 근 적외선을 감지하는데 유용하게 사용할 수 있다. 나노와이어를 기반한 광센서 장치들의 성능은 벌크 재료 기반한 장치와 비교하여 더욱 향상되는 것을 알 수 있다. 그러나, 반도체 나노와이어에 기반한 광센서들은 다소 늦은 광응답(photoresponse)과 광회복(photorecovery)을 보인다.
Recently, single-layer graphene (SLG) has been extensively studied due to various properties such as high conductivity and mobility. However, the photoconductivity of monolayer graphene is known to be quite low, making it difficult to apply monolayer graphene to the photovoltaic field. On the other hand, photoconductive semiconductors having higher photoconductivity than graphene have been widely used to manufacture various photovoltaic circuits. In particular, semiconductor nanowires (NWs) are considered to be promising components for use in a variety of optical devices. For example, nanowires based on zinc oxide (ZnO), tin oxide (SnO 2 ), and gallium nitride (GaN) may be useful for detecting visible or near infrared light. It can be seen that the performance of nanowire-based light sensor devices is further improved compared to bulk material-based devices. However, optical sensors based on semiconductor nanowires exhibit somewhat late photoresponse and photorecovery.

이에, 본 발명자들은 광응답과 광회복이 빠른 광센서를 연구하던 중 단층 그래핀 위의 특정 지역에 선택적으로 나노와이어를 성장시킨 하이브리드 구조로 이루어진 광센서를 개발하고, 본 발명을 완성하였다.
Accordingly, the present inventors have developed an optical sensor composed of a hybrid structure in which nanowires are selectively grown in a specific region on a single layer graphene while researching a photoresponder and a fast optical recovery sensor, and completed the present invention.

본 발명의 목적은 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서를 제공하는데 있다.An object of the present invention to provide an optical sensor based on the graphene-nanowire hybrid structure.

또한, 본 발명의 다른 목적은 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 제조방법을 제공하는데 있다.
In addition, another object of the present invention to provide a method for manufacturing an optical sensor based on the graphene-nanowire hybrid structure.

상기 목적을 달성하기 위해, 본 발명은 기판; 상기 기판 상부에 적층되고 광캐리어가 이동하는 그래핀 전도부; 상기 그래핀 전도부 상부에 형성되고 빛에너지를 흡수하여 전자-정공 쌍을 발생시키는 나노와이어 집광부; 및 상기 그래핀 전도부의 양측면에 각각 연결되어 광캐리어를 외부에 전달하는 금속전극;을 포함하는 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서를 제공한다.In order to achieve the above object, the present invention is a substrate; A graphene conductive part stacked on the substrate and having an optical carrier moved; A nanowire condenser formed on the graphene conductive part and absorbing light energy to generate an electron-hole pair; And a metal electrode connected to both sides of the graphene conductive part to transfer an optical carrier to the outside, for example, to provide an optical sensor based on a graphene-nanowire hybrid structure.

또한, 본 발명은 실리콘 기판에 그래핀층을 전사시킨 후 상기 그래핀층 상부에 촉매를 패터닝하는 단계(단계 1); 상기 단계 1에서 그래핀층 상부에 패터닝된 촉매에 나노와이어 원료물질을 공급하여 나노와이어를 성장시키는 단계(단계 2); 및 상기 단계 1에서 전사된 그래핀층 양측면 각각에 금속전극을 제조하는 단계(단계 3);를 포함하는 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 제조방법을 제공한다.
In addition, the present invention comprises the steps of transferring the graphene layer on the silicon substrate patterning the catalyst on the graphene layer (step 1); Growing nanowires by supplying a nanowire raw material to the catalyst patterned on the graphene layer in step 1 (step 2); It provides a method for manufacturing an optical sensor based on the graphene-nanowire hybrid structure comprising a; (step 3) to prepare a metal electrode on each of both sides of the graphene layer transferred in step 1.

본 발명에 따른 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서는 그래핀과 나노와이어 하이브리드 구조체로 제조되고 그래핀과 나노와이어를 사용하여 광전류가 향상되고 빠른 광응답 속도, 작동 속도를 나타낸다. The optical sensor based on the graphene-nanowire hybrid structure according to the present invention is made of a graphene and nanowire hybrid structure, and the graphene and the nanowires are used to improve the photocurrent and exhibit a fast photo response speed and an operating speed.

또한, 종래의 포토레지스트를 이용한 포토리소그래피나 이온빔 리소그래피 방법을 사용하지 않고 새도우 마스크와 열증착법만을 사용하여 포토레지스트 사용시 그래핀 상에 남아있는 포토레지스트에서 나노와이어가 성장하는 것을 방지하므로, 고성능의 광센서 제조에 유용하게 사용할 수 있다.
In addition, by using a shadow mask and a thermal evaporation method without using a photolithography or an ion beam lithography method using a conventional photoresist, the nanowires are prevented from growing on the photoresist remaining on the graphene when the photoresist is used. It can be usefully used for manufacturing the sensor.

도 1은 본 발명에 따른 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 제조공정을 나타낸 단면도이고;
도 2는 본 발명에 따른 광센서의 그래핀층에 형성된 CdS 나노와이어의 주사전자현미경(SEM) 사진이고;
도 3은 그래핀층 표면과 CdS 나노와이어 사이 경계면을 나타낸 주사전자현미경(SEM) 사진이고;
도 4는 Au 촉매필름이 패터닝된 그래핀층에서의 성장시간에 따른 CdS 나노와이어의 주사전자현미경(SEM) 사진이고;
도 5의 (a)는 본 발명에 따른 광센서를 PCB 보드 위에 구비한 광센서 장치의 현미경 사진, 주사전자현미경(SEM) 사진, CdS 나노와이어의 고해상도 투과전자현미경(HRTEM) 사진 및 성장시간에 따른 나노와이어 길이 변화와 그래핀 위에서의 나노와이어 길이와 감도(sensitivity)를 나타낸 그래프이고;
도 6은 본 발명에 따른 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 광전도성, 바이어스 전압에 따른 광전류, +3V 바이어스 전압에서의 광 출력 밀도에 따른 광밀도 및 광발광(PL, 적색선)과 스펙트럼 응답(검정선)을 나타낸 그래프이고; 및
도 7는 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 광전류 응답(photocurrent response), 반응 곡선 및 광감도(△I/Idark)를 나타낸 그래프이다.
1 is a cross-sectional view showing a manufacturing process of an optical sensor based on a graphene-nanowire hybrid structure according to the present invention;
2 is a scanning electron microscope (SEM) photograph of the CdS nanowires formed on the graphene layer of the optical sensor according to the present invention;
3 is a scanning electron microscope (SEM) photograph showing the interface between the graphene layer surface and the CdS nanowires;
4 is a scanning electron microscope (SEM) photograph of CdS nanowires according to growth time in a graphene layer patterned with Au catalyst film;
5 (a) is a photomicrograph, a scanning electron microscope (SEM) picture, a high-resolution transmission electron microscope (HRTEM) picture of the CdS nanowires and the growth time of the optical sensor device provided with a light sensor according to the present invention on a PCB board A graph showing nanowire length change along with nanowire length and sensitivity on graphene;
6 is a light density and photoluminescence (PL, red line) according to the photoconductivity of the optical sensor based on the graphene-nanowire hybrid structure according to the present invention, the photocurrent according to the bias voltage, the light output density at + 3V bias voltage and A graph showing the spectral response (black line); And
FIG. 7 is a graph showing photocurrent response, response curve, and light sensitivity (ΔI / I dark ) of an optical sensor based on a graphene-nanowire hybrid structure.

이하, 본 발명에 대해 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 기판; The present invention relates to a substrate;

상기 기판 상부에 적층되고 광캐리어가 이동하는 그래핀 전도부; A graphene conductive part stacked on the substrate and having an optical carrier moved;

상기 그래핀 전도부 상부에 형성되고 빛에너지를 흡수하여 전자-정공 쌍을 발생시키는 나노와이어 집광부; 및A nanowire condenser formed on the graphene conductive part and absorbing light energy to generate an electron-hole pair; And

상기 그래핀 전도부의 양측면에 각각 연결되어 외부에 광캐리어를 전달하는 금속전극;을 포함하는 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서를 제공한다.
It provides an optical sensor based on the graphene-nanowire hybrid structure comprising a; a metal electrode connected to both sides of the graphene conducting unit, respectively, to transfer an optical carrier to the outside.

본 발명에 따른 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서는 전자이동도가 우수하고 탄성이 뛰어나 늘리거나 구부려도 전기적 성질을 잃지 않은 그래핀층과 빛에너지를 흡수하여 전자-정공 쌍을 발생시키는 나노와이어를 사용하여 상기 나노와이어에서 생산된 전자와 정공은 전자이동도가 우수한 그래핀층을 통해 이동하므로, 광응답 및 작동 속도가 향상된다.The optical sensor based on the graphene-nanowire hybrid structure according to the present invention has excellent electron mobility and excellent elasticity, thereby absorbing graphene layers and light energy that do not lose electrical properties even when stretched or bent to generate electron-hole pairs. Electrons and holes produced in the nanowires using wires move through the graphene layer having excellent electron mobility, thereby improving photo response and operating speed.

본 발명에 따른 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서는 기판, 그래핀 전도부, 나노와이어 집광부 및 금속전극을 포함하고, 상기 금속전극은 그래핀 전도부 양측면에 각각 연결되어 광캐리어를 외부에 전달하게 한다. 상기 그래핀 전도부는 기판 상부에 전사되어 광캐리어가 이동하며, 상기 나노와이어는 그래핀 전도부 상부에 형성되어 빛에너지를 흡수하여 전자-정공 쌍을 생성시키며, 상기 금속전극은 그래핀층 양측면에 각각 연결되어 상기 나노와이어에서 생성된 광캐리어를 외부에 전달한다. An optical sensor based on a graphene-nanowire hybrid structure according to the present invention includes a substrate, a graphene conducting portion, a nanowire condensing portion, and a metal electrode, and the metal electrodes are respectively connected to both sides of the graphene conducting portion to externally carry an optical carrier. Let it pass The graphene conducting portion is transferred onto the substrate to move an optical carrier, and the nanowires are formed on the graphene conducting portion to absorb light energy to generate electron-hole pairs, and the metal electrodes are connected to both sides of the graphene layer. And transmits the optical carrier generated in the nanowire to the outside.

또한, 상기 그래핀 전도부는 단층인 것이 바람직하고, 상기 나노와이어는 CdS, CdSe, CdTe 등을 사용할 수 있고 복수개로 구비될 수 있다. 상기 금속전극은 그래핀층과 연결되며 Ti/Au 금속전극 등을 사용할 수 있으나, 전도성이 우수한 금속이면 이에 제한되는 것은 아니다.In addition, the graphene conducting unit is preferably a single layer, the nanowires may be used, such as CdS, CdSe, CdTe may be provided in plurality. The metal electrode is connected to the graphene layer and may be a Ti / Au metal electrode, but is not limited thereto.

본 발명에 따른 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서는 100?3000 ㎐에서 광감도가 85?100 %로 나타나므로, 응답속도와 광감도가 우수한 광센서에 유용하게 사용할 수 있다.
Since the optical sensor based on the graphene-nanowire hybrid structure according to the present invention has a light sensitivity of 85 to 100% at 100 to 3000 Hz, it can be usefully used for an optical sensor having excellent response speed and light sensitivity.

또한, 본 발명은 실리콘 기판에 그래핀층을 전사시킨 후 상기 그래핀층 상부에 촉매를 패터닝하는 단계(단계 1);In addition, the present invention comprises the steps of transferring the graphene layer on the silicon substrate patterning the catalyst on the graphene layer (step 1);

상기 단계 1에서 그래핀층 상부에 패터닝된 촉매에 나노와이어 원료물질을 공급하여 나노와이어를 성장시키는 단계(단계 2); 및Growing nanowires by supplying a nanowire raw material to the catalyst patterned on the graphene layer in step 1 (step 2); And

상기 단계 1에서 전사된 그래핀층 양측면 각각에 금속전극을 제조하는 단계(단계 3);를 포함하는 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 제조방법을 제공한다.
It provides a method for manufacturing an optical sensor based on the graphene-nanowire hybrid structure comprising the step (step 3) of preparing a metal electrode on each side of the graphene layer transferred in step 1.

본 발명에 따른 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 제조방법에 있어서, 단계 1은 실리콘 기판에 그래핀층을 전사시킨 후 그래핀층 상부에 촉매를 패터닝하는 단계이다. In the method of manufacturing an optical sensor based on the graphene-nanowire hybrid structure according to the present invention, step 1 is a step of patterning a catalyst on the graphene layer after transferring the graphene layer to a silicon substrate.

이때, 상기 그래핀층의 전사는 소프트 트랜스퍼 프린팅(soft transfer printing), PDMS 전사방법, PMMA 전사방법, 열방출 테이프 전사방법 또는 롤 전사방법을 사용하여 수행할 수 있다. In this case, the transfer of the graphene layer may be performed using soft transfer printing, a PDMS transfer method, a PMMA transfer method, a heat release tape transfer method, or a roll transfer method.

또한, 상기 단계 1의 촉매는 나노와이어가 성장할 수 있는 촉매와 시발점 역할을 하며, Au 등을 사용할 수 있다.
In addition, the catalyst of step 1 serves as a starting point with a catalyst that can grow nanowires, Au may be used.

다음으로, 본 발명에 따른 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 제조방법에 있어서, 단계 2는 상기 단계 1에서 그래핀층 상부에 패터닝된 촉매에 나노와이어 원료물질을 공급하여 나노와이어를 성장시키는 단계이다. Next, in the manufacturing method of the optical sensor based on the graphene-nanowire hybrid structure according to the present invention, step 2 is to grow the nanowires by supplying a nanowire raw material to the catalyst patterned on the graphene layer in step 1 This is the step.

상기 단계 2의 나노와이어 원료물질은 CdS, CdSe, CdTe 등을 사용할 수 있고, 상기 나노와이어의 성장은 약 10-3 torr 진공 상태에서 600?700 ℃로 수행하는 것이 바람직하고, 600?700 ℃에서 35?45 분 동안 수행하는 것이 더욱 바람직하며, 650 ℃에서 45 분 동안 수행하는 것이 가장 바람직하다. 만약, 상기 온도범위를 벗어나는 경우에는 나노와이어의 형태로 성장하지 않는 문제가 있다. 또한, 상기 시간이 35 분 미만인 경우에는 나노와이어의 길이가 짧아 광감도가 향상되지 않은 문제가 있고, 45 분을 초과하는 경우에는 과도하게 나노와이어가 성장하여 광감도가 저하되는 문제가 있다.
The nanowire raw material of step 2 may be used CdS, CdSe, CdTe, etc., the growth of the nanowire is preferably carried out at 600 ~ 700 ℃ in a vacuum state of about 10 -3 torr, at 600 ~ 700 ℃ More preferably, it is carried out for 35 to 45 minutes, most preferably for 45 minutes at 650 ℃. If out of the temperature range, there is a problem that does not grow in the form of nanowires. In addition, if the time is less than 35 minutes, the length of the nanowire is short, there is a problem that the photosensitivity is not improved, and if it exceeds 45 minutes, there is a problem that the nanowire is excessively grown and the photosensitivity is lowered.

다음으로, 본 발명에 따른 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 제조방법에 있어서, 단계 3은 상기 단계 1에서 전사된 그래핀층 양측면 각각에 금속전극을 제조하는 단계이다. Next, in the manufacturing method of the optical sensor based on the graphene-nanowire hybrid structure according to the present invention, step 3 is a step of manufacturing a metal electrode on each side of the graphene layer transferred in the step 1.

이때, 상기 단계 3의 금속전극은 열증착법을 이용하여 Ti/Au를 그래핀층 양측면에 형성시킬 수 있으며, 금속전극이 그래핀층 양측면에 형성되어 전극이 나노와이어와는 연결되지 않아 그래핀은 광캐리어의 이동만을 담당할 수 있고, 나노와이어는 빛에너지에 의해 광캐리어를 발생시키는 역할만을 담당할 수 있어 광응답속도(광감도)와 작동 속도가 향상된다.
In this case, the metal electrode of step 3 can be formed on both sides of the graphene layer by thermal evaporation method, the metal electrode is formed on both sides of the graphene layer, so that the electrode is not connected to the nanowires, the graphene is an optical carrier It can only be responsible for the movement of the nanowires can only play the role of generating the optical carrier by the light energy, so the optical response speed (light sensitivity) and the operating speed is improved.

따라서, 본 발명에 따른 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서는 그래핀과 나노와이어 하이브리드 구조체로 제조되고 그래핀과 나노와이어를 사용하여 광전류가 향상되고 빠른 광응답 속도, 작동 속도를 나타낸다. Therefore, the optical sensor based on the graphene-nanowire hybrid structure according to the present invention is made of a graphene and nanowire hybrid structure, and the graphene and the nanowires are used to improve the photocurrent, and exhibit a fast optical response speed and an operating speed.

또한, 종래의 포토레지스트를 이용한 포토리소그래피나 이온빔 리소그래피 방법을 사용하지 않고 새도우 마스크와 열증착법만을 사용하여 포토레지스트 사용시 그래핀 상에 남아있는 포토레지스트에서 나노와이어가 성장하는 것을 방지하므로, 고성능의 광센서 제조에 유용하게 사용할 수 있다.
In addition, by using a shadow mask and a thermal evaporation method without using a photolithography or an ion beam lithography method using a conventional photoresist, the nanowires are prevented from growing on the photoresist remaining on the graphene when the photoresist is used. It can be usefully used for manufacturing the sensor.

이하, 본 발명을 실시예 및 도면들에 의해 더욱 상세히 설명한다. 단, 하기의 실시예는 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 제한되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to examples and drawings. It should be noted, however, that the following examples are illustrative of the invention and are not intended to limit the scope of the invention.

<실시예 1> 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 제조 1Example 1 Fabrication of an Optical Sensor Based on Graphene-Nanowire Hybrid Structure 1

도 1은 본 발명에 따른 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 제조공정을 나타낸 단면도이다. 도 1을 참조하면, 단층 그래핀을 SiO2 기판 위에 전사(도 1의 (a))시킨 후 그래핀층 표면에 새도우 마스크(shadow mask)를 사용하여 8?12 ㎜ 두께의 Au 필름을 증착시켰다(도 1의 (b), 도 2 참조). 도 1에서 짙은 회색부분은 SiO2를 나타내고 옅은 회색부분은 Si를 나타낸다. 수평 관형로에서 그래핀층에 패터닝된 Au 필름 위에 선택적으로(Au 촉매가 있는 부분) 단결정 CdS 나노와이어를 성장시켰다(도 1의 (c)). 상기 수평 관형로에는 균일한 온도 영역에 산화알루미늄(알루미나) 튜브와 CdS 소스가 채워진 작은 알루미나 포트(pot)가 구비된다. 촉매가 패턴된 단층 그래핀 시트를 원료 물질의 공급부 하부에 위치시켰으며, 수평 관형로는 약 10-3 torr의 진공 상태에서 650 ℃로 45 분 동안 유지시켜 CdS 나노와이어를 성장시켰다. 마지막으로 금속 전극을 새도우 마스크를 통해 그래핀층 양측면에 각각 열증착(thermal evaporation)시켜(도 1의 (d)) 그래핀-CdS 나노와이어 하이브리드 구조체에 기반한 광센서를 제조하였다.
1 is a cross-sectional view showing a manufacturing process of an optical sensor based on a graphene-nanowire hybrid structure according to the present invention. Referring to FIG. 1, a single layer graphene is transferred onto a SiO 2 substrate (FIG. 1A), and then an Au film having a thickness of 8 to 12 mm is deposited on the surface of the graphene layer using a shadow mask ( (B) of FIG. 1). In FIG. 1, the dark gray portion represents SiO 2 and the light gray portion represents Si. Single crystal CdS nanowires were selectively grown on the Au film patterned on the graphene layer in a horizontal tubular furnace (part with Au catalyst) (FIG. 1C). The horizontal tubular furnace is equipped with a small alumina pot filled with an aluminum oxide (alumina) tube and a CdS source in a uniform temperature range. The catalyst-patterned monolayer graphene sheet was placed under the feed portion of the raw material, and the horizontal tubular furnace was grown at 650 ° C. for 45 minutes in a vacuum of about 10 −3 torr to grow CdS nanowires. Finally, optical electrodes based on graphene-CdS nanowire hybrid structures were prepared by thermal evaporation of the metal electrodes on both sides of the graphene layer through a shadow mask (FIG. 1 (d)).

<실시예 2> 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 제조 2Example 2 Fabrication of Optical Sensor Based on Graphene-Nanowire Hybrid Structure 2

나노와이어 원료물질로 CdSe를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 수행하여 그래핀-CdSe 나노와이어 하이브리드 구조체에 기반한 광센서를 제조하였다.
An optical sensor based on the graphene-CdSe nanowire hybrid structure was manufactured by the same method as Example 1, except that CdSe was used as a nanowire raw material.

<실시예 3> 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 제조 3Example 3 Fabrication of Optical Sensor Based on Graphene-Nanowire Hybrid Structure 3

나노와이어 원료물질로 CdTe를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 수행하여 그래핀-CdTe 나노와이어 하이브리드 구조체에 기반한 광센서를 제조하였다.
An optical sensor based on the graphene-CdTe nanowire hybrid structure was manufactured in the same manner as in Example 1, except that CdTe was used as a nanowire raw material.

도 3은 그래핀층 표면과 CdS 나노와이어 사이 경계면을 나타낸 주사전자현미경(SEM) 사진이고, 도 3에 나타난 바와 같이 CdS 나노와이어는 그래핀층 표면에 우수하게 결합된 것을 알 수 있다.
3 is a scanning electron microscope (SEM) photograph showing the interface between the graphene layer surface and the CdS nanowires, and as shown in FIG. 3, the CdS nanowires are excellently bonded to the graphene layer surface.

도 4는 Au 촉매필름이 패터닝된 그래핀층에서의 성장시간에 따른 CdS 나노와이어의 주사전자현미경(SEM) 사진이다. 도 4의 (a)는 30 분인 경우이고, (b)는 35 분인 경우, (c)는 40 분인 경우, (d)는 45 분인 경우 및 (e)는 60 분인 경우이다. 4 is a scanning electron microscope (SEM) photograph of the CdS nanowires according to the growth time in the graphene layer patterned Au catalyst film. (A) in FIG. 4 is 30 minutes, (b) is 35 minutes, (c) is 40 minutes, (d) is 45 minutes, and (e) is 60 minutes.

도 4에 나타난 바와 같이, 성장시간이 길어질수록 CdS 나노와이어의 길이 또한 길어지는 것을 알 수 있다. As shown in FIG. 4, the longer the growth time, the longer the length of the CdS nanowires.

도 5의 (a)는 본 발명에 따른 광센서를 PCB 보드 위에 구비한 광센서 장치의 현미경 사진이다. 그래핀 채널(층)의 길이는 5 ㎜이고, CdS 나노와이어는 그래핀 채널 중간 부분의 4×4 ㎜ 정사각형 부분에서 성장한 것을 알 수 있다. 촉매를 패터닝함으로써 Au 촉매가 패터닝된 부분에서 나노와이어가 성장하기 때문에 선택적으로 성장시킬 수 있다. 금속 전극은 Au 와이어 본딩에 의해 PCB 보드와 연결할 수 있다. 본 발명에서는 전극과 Au 와이어 사이에 접촉저항을 감소시키기 위해 은 페이스트를 사용하였다. Figure 5 (a) is a micrograph of the optical sensor device provided with a light sensor according to the invention on a PCB board. It can be seen that the graphene channel (layer) has a length of 5 mm, and the CdS nanowires grew in a 4 × 4 mm square portion in the middle portion of the graphene channel. The patterning of the catalyst allows selective growth because the nanowires grow in the portion where the Au catalyst is patterned. The metal electrode can be connected to the PCB board by Au wire bonding. In the present invention, silver paste was used to reduce the contact resistance between the electrode and the Au wire.

도 5의 (b)는 본 발명에 따른 그래핀-나노와이어 하이브리드 구조체의 주사전자현미경(SEM) 사진이다. CdS 나노와이어는 불규칙적인 배향으로 성장한 것을 알 수 있고, 각각의 CdS 나노와이어의 고해상도 주사전자현미경 사진은 통해 CdS 나노와이어가 그래핀 표면에 직접적으로 결합된 것을 알 수 있다. 5B is a scanning electron microscope (SEM) photograph of the graphene-nanowire hybrid structure according to the present invention. It can be seen that the CdS nanowires were grown in an irregular orientation, and high-resolution scanning electron micrographs of the respective CdS nanowires showed that the CdS nanowires were directly bonded to the graphene surface.

도 5의 (c)는 본 발명에 따른 그래핀-나노와이어 하이브리드 구조체에서의 CdS 나노와이어의 고해상도 투과전자현미경(HRTEM) 사진이다. 격자 줄무늬상(lattice fringe) 사이의 거리는 0.25 ㎜였고, 이는 ICCD-PDF 카드(No. 41-1049)에서 우르자이트(wurtzite) 구조인 CdS의 {102} 면의 d-스페이싱 값과 일치하는 것을 알 수 있다. 나노와이어의 표면에서 비정질층은 발견되지 않았고, 이는 CdS 나노와이어가 우수한 결정상으로 제조된 것을 알 수 있으므로, 본 발명에 따른 그래핀-CdS 나노와이어 하이브리드 구조체의 제조방법은 그래핀층 표면 위에 고품질의 결정상 CdS 나노와이어를 제조할 수 있는 것을 알 수 있다. Figure 5 (c) is a high-resolution transmission electron microscope (HRTEM) of the CdS nanowires in the graphene-nanowire hybrid structure according to the present invention. The distance between the lattice fringes was 0.25 mm, which is consistent with the d-spaced value of the {102} plane of the wurtzite structure CdS in the ICCD-PDF card (No. 41-1049). Able to know. The amorphous layer was not found on the surface of the nanowires, and it can be seen that the CdS nanowires were made of excellent crystal phase. Thus, the method for preparing the graphene-CdS nanowire hybrid structure according to the present invention is a high quality crystal phase on the graphene layer surface. It can be seen that the CdS nanowires can be produced.

도 5의 (d)는 성장시간에 따른 나노와이어 길이 변화와 그래핀 위에서의 나노와이어 길이와 감도(sensitivity)를 나타낸 그래프이다. 성장시간에 따른 관계를 분석한 결과 성장시간이 짧으면 그래핀의 일부분에 짧은 나노와이어가 성장하고, 성장시간이 증가하면 그래핀의 전체 표면에 CdS 나노와이어가 성장하므로, 성장 시간에 비례하여 나노와이어의 길이도 증가하는 것을 알 수 있다. 또한, 길이가 긴 나노와이어는 노출되는 표면적이 크기 때문에 짧은 나노와이어보다 더 많은 빛을 흡수하는 것으로 판단된다. 하지만 나노와이어가 일정한 길이 이상 길어지면 오히려 빛에 대한 반응성이 줄어드는 것을 알 수 있는데 이는 나노와이어가 생성한 전자-정공 쌍이 그래핀까지 도달하기 전에 길이가 긴 나노와이어에서 재결합될 확률이 높아지기 때문이다. 따라서, 본 발명에 따른 광센서의 제조에서는 35?45 분 동안 성장시키는 것이 바람직하고, 본 발명에 따른 실시예 1에서는 나노와이어를 45 분 동안 성장시켰다. 본 발명에 따른 제조방법으로 제조된 그래핀-CdS 나노와이어 하이브리드 구조체의 광 감도는 상대적 전류 차이인 (Imax-Idark)/Idark%(여기서, Imax는 광원이 공급된 경우의 전류이고, Idark는 광원이 공급되지 않은 경우의 전류이다)로 정의할 수 있다. 광원은 제논램프(xenon lamp, 300W)를 사용하였으며, 광센서에 +0.1V의 바이어스 전압을 인가하였다. 나노와이어 성장시간이 45 분(나노와이어 길이: 약 4 ㎛)까지 증가하면 감도는 증가하고 성장시간이 45 분을 초과하면 감도는 감소하였다. 길이가 긴 나노와이어에서 발생하는 다수의 광발생 캐리어(photo-generated carriers)는 그래핀 채널에 도달하기 전에 재결합하며, 이는 광캐리어의 이동과 수집에 적합하지 않은 것을 알 수 있다.
Figure 5 (d) is a graph showing the change in nanowire length with growth time and nanowire length and sensitivity on the graphene. As a result of analyzing the relationship with the growth time, if the growth time is short, short nanowires grow on a part of graphene, and if the growth time increases, CdS nanowires grow on the entire surface of graphene, so that the nanowires are proportional to the growth time. It can be seen that the length of. In addition, long nanowires are believed to absorb more light than short nanowires due to the large surface area exposed. However, if the nanowire is longer than a certain length, it can be seen that the reactivity with light decreases because the electron-hole pairs generated by the nanowire are more likely to be recombined in the long nanowire before reaching the graphene. Therefore, in the manufacturing of the optical sensor according to the present invention, it is preferable to grow for 35 to 45 minutes, and in Example 1 according to the present invention, the nanowires are grown for 45 minutes. The optical sensitivity of the graphene-CdS nanowire hybrid structure manufactured by the manufacturing method according to the present invention is (I max -I dark ) / I dark %, where I max is a current when a light source is supplied. , I dark is the current when no light source is supplied. Xenon lamp (300W) was used as the light source, and a bias voltage of + 0.1V was applied to the optical sensor. When the nanowire growth time was increased to 45 minutes (nanowire length: about 4 μm), the sensitivity was increased and the sensitivity was decreased when the growth time exceeded 45 minutes. Many photo-generated carriers that occur in long nanowires recombine before reaching the graphene channel, indicating that they are not suitable for the transport and collection of photocarriers.

도 6은 본 발명에 따른 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 광전도성을 나타낸 그래프이다. 6 is a graph showing the photoconductivity of the optical sensor based on the graphene-nanowire hybrid structure according to the present invention.

광전도성 측정을 위해 광원으로 인공태양광(solar simulator, Newport 91160A)을 사용하였다. 광원은 출력밀도가 100 mW/㎠인 백색광이었다. 도 6의 (a)는 본 발명에 따른 광센서의 바이어스 전압에 따른 Imax-Idark로 정의되는 광전류 △I 변화를 나타낸 그래프이고, 도 6의 (a)에 삽입된 그래프는 본 발명에 따른 광센서의 광원 유무에 따른 I-V 변화를 나타낸 것이다(광원이 공급되는 경우: 적색선, 광원이 공급되지 않은 경우: 검정선). 본 발명에 따른 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서인 실시예 1의 광전류(△I)는 4.42 ㎃이고, 광감도(△I/Idark)는 +10 V 바이어스 전압에서 42.4%였다. 광감도는 그래핀 채널의 큰 Idark 값 때문에 높지 않지만 광전류 크기는 종래 CdS에 기반한 광센서와 비교하여 상당히 높은 것을 알 수 있다. 추가적으로, 광전류 레벨은 종래 그래핀에 기반한 광센서보다 휠씬 높게 나타난다.Artificial solar light (solar simulator, Newport 91160A) was used as a light source for the photoconductivity measurement. The light source was white light with an output density of 100 mW / cm 2. 6 (a) is a graph showing a change in the photocurrent ΔI defined by I max -I dark according to the bias voltage of the optical sensor according to the present invention, the graph inserted in (a) of FIG. The IV change with or without the light source of the light sensor is shown (when light source is supplied: red line, when no light source is supplied: black line). The photocurrent ΔI of Example 1, which is an optical sensor based on the graphene-nanowire hybrid structure according to the present invention, was 4.42 ,, and the photosensitivity ΔI / I dark was 42.4% at +10 V bias voltage. The photosensitivity is not high due to the large I dark value of the graphene channel, but it can be seen that the photocurrent magnitude is significantly higher than that of the conventional CdS based optical sensor. In addition, the photocurrent level is much higher than that of conventional graphene based optical sensors.

도 6의 (b)는 광 출력 필터에 의해 조절된 다양한 광 출력 밀도를 가진 바이어스 전압에 따른 광전류를 나타낸 그래프이다. 도 6의 (b)에 나타난 바와 같이, 광 출력 밀도가 증가하면 광전류량이 증가하는 것을 알 수 있다. FIG. 6B is a graph showing photocurrent according to bias voltages having various light output densities controlled by the light output filter. As shown in (b) of FIG. 6, it can be seen that as the light output density increases, the amount of photocurrent increases.

도 6의 (c)는 +3 V 바이어스 전압에서의 광 출력 밀도에 따른 광밀도를 나타낸 그래프이다. 광전류 구동은 Ip ∝ A?Px와 같은 간단한 멱함수로 나타낼 수 있다. 여기서, Ip는 광전류를 나타내고, A는 비례 상수를 나타내며, P는 광원의 광 출력값을 나타낸다. x는 본 발명에 따른 광센서에서 CdS 나노와이어의 페르미 레벨(Fermi level)과 컨덕션 밴드 사이의 트랩 상태 밀도에 의해 영향을 받는다. 특히, 트랩 상태 밀도가 낮으면 광전류는 광원의 출력 밀도에 선형적으로 비례하고, x는 1에 근접하게 된다. 반면, 채널이 트랩 상태의 밀도가 다소 높으면 광 유도된 캐리어의 수명이 감소하기 때문에 x는 1 보다 작은 값이어야 한다. 본 발명에 따른 광센서인 실시예 1의 피팅결과에 의해 x는 0.85이고, 이는 CdS 나노리본에 기반한 광센서보다 큰 값이며, 이는 단층 그래핀과 CdS 나노와이어 사이의 결합은 트랩상태의 밀도가 다소 낮은 것을 의미한다. FIG. 6C is a graph showing light density according to light output density at a +3 V bias voltage. Photocurrent driving can be represented by a simple power function such as I p ∝ A-P x . Here, I p represents a photocurrent, A represents a proportionality constant, and P represents a light output value of the light source. x is affected by the trap state density between the Fermi level and the conduction band of the CdS nanowires in the optical sensor according to the invention. In particular, when the trap state density is low, the photocurrent is linearly proportional to the output density of the light source, and x is close to one. On the other hand, if the channel has a rather high density of trap states, x should be less than 1 because the lifetime of the light induced carriers is reduced. According to the fitting result of Example 1, which is an optical sensor according to the present invention, x is 0.85, which is larger than that of a CdS nanoribbon-based optical sensor, which means that the bond between monolayer graphene and CdS nanowires has a trapped density. It means somewhat low.

도 6의 (d)는 본 발명에 따른 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 광발광(PL, 적색선)과 스펙트럼 응답(검정선)을 나타낸 그래프이다. 스펙트럼 응답(spectral response)을 측정하는데 있어서, 단색광을 제공하기 위해 제논램프(300 W)와 분광기(Acton Research사, SpectraPro-150)를 사용하였다. 특정 파장의 단색광으로 본 발명에 따른 광센서의 광감도(△I/Idark)를 +5V 바이어스 전압에서 측정하였다. PL 피크는 CdS 밴드갭 에너지(파장= 508 ㎚)와 유사한 파장 부근에서 나타났으며, 이는 밴드-에지 에미션(band-edge emission)을 의미한다. 또한, 본 발명에 따른 광센서의 광감도는 상기 파장 근처에서 급격하게 증가한다. 여기서, 광감도는 스펙트럼 감도를 명확하기 하기 위해 최대 감도 100%에 대해 측정된 값이다. 광감도는 550 ㎚ 보다 큰 파장을 가진 광에서는 낮은 값을 나타내는데 이는 광자들(photons)이 전자-정공 쌍을 발생시키기에 충분한 에너지를 가지지 못하기 때문이다. 광원의 파장이 550 ㎚보다 작은 경우에는 광감도는 급격하게 증가하고 460 ㎚ 파장 근처에서 최대값을 갖는다. 파장이 460 ㎚보다 작은 경우에는 다시 광감도가 낮아지고 이는 광자들의 에너지가 또 다른 주변 구조체에 쉽게 흡수되기 때문이다.
Figure 6 (d) is a graph showing the light emission (PL, red line) and the spectral response (black line) of the optical sensor based on the graphene-nanowire hybrid structure according to the present invention. In measuring the spectral response, a xenon lamp (300 W) and a spectrometer (Actra Research, SpectraPro-150) were used to provide monochromatic light. The light sensitivity (ΔI / I dark ) of the optical sensor according to the present invention was measured at a + 5V bias voltage with monochromatic light having a specific wavelength. PL peaks appeared near wavelengths similar to CdS bandgap energy (wavelength = 508 nm), indicating band-edge emission. In addition, the photosensitivity of the photosensor according to the invention increases rapidly near the wavelength. Here, the photosensitivity is a value measured for 100% maximum sensitivity to clarify the spectral sensitivity. The photosensitivity is low for light with wavelengths greater than 550 nm because photons do not have enough energy to generate electron-hole pairs. When the wavelength of the light source is smaller than 550 nm, the light sensitivity increases rapidly and has a maximum value near the 460 nm wavelength. If the wavelength is smaller than 460 nm, the light sensitivity is again lowered because the energy of the photons is easily absorbed by another surrounding structure.

도 7는 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 응답속도 특성을 나타낸 그래프이다. 강도가 조절된 입사광을 제공하기 위해 제논램프(300 W)와 기계식 광단속기(mechanical chopper)를 사용하였다. 응답속도를 측정하는 동안 광센서의 그래핀 채널에는 +1V 바이어스 전압이 적용되었다. 7 is a graph illustrating a response speed characteristic of an optical sensor based on a graphene-nanowire hybrid structure. A xenon lamp (300 W) and a mechanical chopper were used to provide incident light with controlled intensity. While measuring the response speed, a + 1V bias voltage was applied to the graphene channel of the optical sensor.

도 7의 (a)와 (b)는 각각 100 ㎐와 3000 ㎐에서의 광전류 응답(photocurrent response)을 나타낸 그래프이다. 본 발명에 따른 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서인 실시예 1은 3000 ㎐까지 반응하였다. 측정된 상승시간(rise time, tr)은 85 μsec였고, 하강시간(fall time, tf)은 140 μsec였다. 여기서, 상승시간은 전류가 Imax의 10%에서 90%로 증가하는데 걸린 시간이고, 하강시간은 Imax의 90%에서 10%로 감소하는데 걸린 시간이다. 따라서, 본 발명에 따른 광센서인 실시예 1은 종래 다양한 나노와이어에 기반한 광센서보다 광응답(photoresponse)과 회복속도가 훨씬 빠른 것을 알 수 있다. 예를 들어, 종래 CdS 나노와이어에 기반한 광센서의 상승시간과 하강시간은 모두 약 15 msec로 나타났다. 또한, f3dB = 0.35/tr로 알려진 3-dB 주파수 범위(3-dB bandwidth)는 본 발명에 따른 광센서인 실시예 1에서는 4.118 ㎑로 나타나, 종래 CdS 나노리본에 기반한 광센서의 주파수 범위(약 467 ㎐)와 비교하여 다소 큰 것을 알 수 있다. 7A and 7B are graphs showing photocurrent responses at 100 Hz and 3000 Hz, respectively. Example 1, an optical sensor based on the graphene-nanowire hybrid structure according to the present invention, reacted up to 3000 Hz. The measured rise time (t r ) was 85 μsec and the fall time (t f ) was 140 μsec. Here, the rise time is the time taken for the current increased from 10% of I max by 90%, and the fall time is the time it takes to decrease to 90% of I max to 10%. Accordingly, it can be seen that Example 1, which is an optical sensor according to the present invention, has a much faster photoresponse and recovery rate than conventional optical sensors based on various nanowires. For example, the rise time and fall time of the optical sensor based on the conventional CdS nanowire were about 15 msec. In addition, the 3-dB frequency range (3-dB bandwidth) known as f 3dB = 0.35 / t r is represented by 4.118 에서는 in the first embodiment, which is an optical sensor according to the present invention, and the frequency range of the optical sensor based on a conventional CdS nanoribbon It can be seen that it is somewhat larger than (about 467 kPa).

도 7의 (c)는 본 발명에 따른 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서(검정)와 CdS 나노와이어에 기반한 광센서(청색)의 반응 곡선을 나타낸다. CdS 나노와이어에 기반한 광센서의 경우에 광전류 감쇠곡선은 2항 지수방정식

Figure pat00001
으로 맞출 수 있다. 이는 광전류 감쇠에서 두가지 구별되는 원인이 있기 때문이다. 페르미 레벨 피닝 현상 때문에 나노와이어의 표면 부근에서 에너지 밴드가 상부로 꺾이는데, 이 때문에 굵은 나노와이어의 경우 재결합 배리어(recombination barrier)가 발생하고, 이로 인해 광전류 감쇠곡선에 추가적인 항이 발생하는 것이다. 한편, 본 발명에 따른 그래핀-CdS 나노와이어 하이브리드 구조체에 기반한 광센서는
Figure pat00002
와 같은 단일 지수 감쇠 거동을 나타내고, 상기 감쇠 거동은 CdS 나노와이어에 기반한 광센서보다 휠씬 빠르다. CdS 나노와이어 기반 광센서인 경우 빠른 감쇠(τ1)와 늦은 감쇠(τ2)에 대한 시간 상수는 각각 750 μsec, 1.53 msec로 측정되었다. 반면, 본 발명에 따른 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서인 실시예 1은 감쇠 시간 상수가 약 130 μsec였고, 이는 CdS 나노와이어에서 발생된 광캐리어들이 그래핀 채널을 통해 이동하기 때문에 고 전도성의 그래핀 채널은 빠른 감쇠 과정을 유도할 수 있다. Figure 7 (c) shows the response curve of the optical sensor (black) based on the graphene-nanowire hybrid structure according to the present invention and the optical sensor (blue) based on CdS nanowires. In the case of optical sensors based on CdS nanowires, the photocurrent attenuation curve is a binary exponential equation.
Figure pat00001
Can be adjusted with This is because there are two distinct causes in photocurrent attenuation. Due to the Fermi level pinning phenomenon, the energy band bends upward near the surface of the nanowire, which causes a recombination barrier for the thick nanowire, which causes an additional term to the photocurrent attenuation curve. On the other hand, the optical sensor based on the graphene-CdS nanowire hybrid structure according to the present invention
Figure pat00002
It exhibits a single exponential decay behavior, and is much faster than optical sensors based on CdS nanowires. For CdS nanowire-based optical sensors, the time constants for fast decay (τ 1 ) and late decay (τ 2 ) were measured at 750 μsec and 1.53 msec, respectively. On the other hand, Example 1, which is an optical sensor based on the graphene-nanowire hybrid structure according to the present invention, had a decay time constant of about 130 μsec, because the optical carriers generated in the CdS nanowires moved through the graphene channel. Conductive graphene channels can induce a fast decay process.

도 7의 (d)는 입사된 광 신호 주파수에 따른 광센서의 광감도(△I/Idark)를 나타낸 그래프이다. 검정색 원은 본 발명에 따른 그래핀-CdS 나노와이어 하이브리드 구조체에 기반한 광센서인 실시예 1의 광감도를 나타내고, 적색 사각형은 CdS 나노와이어에 기반한 광센서의 광감도를 나타낸다. 여기서, 광감도는 상대값이고, 최대 광감도는 100%로 표시하였다. 본 발명에 따른 광센서인 실시예 1은 CdS 나노와이어에 기반한 광센서와는 다르게 높은 주파수(3000 ㎐)에서도 작동하는 것을 알 수 있고, 3-dB 주파수 범위 또한 넓은 것을 알 수 있다.
FIG. 7D is a graph showing the light sensitivity ΔI / I dark of the optical sensor according to the incident optical signal frequency. The black circle represents the photosensitivity of Example 1 which is an optical sensor based on the graphene-CdS nanowire hybrid structure according to the present invention, and the red square represents the photosensitivity of the photosensor based on CdS nanowires. Here, photosensitivity is a relative value, and maximum photosensitivity is represented by 100%. Example 1, which is an optical sensor according to the present invention, can be seen that it operates at a high frequency (3000 Hz), unlike the optical sensor based on CdS nanowires, and it is also understood that the 3-dB frequency range is also wide.

Claims (11)

기판;
상기 기판 상부에 적층되고 광캐리어가 이동하는 그래핀 전도부;
상기 그래핀 전도부 상부에 형성되고 빛에너지를 흡수하여 전자-정공 쌍을 발생시키는 나노와이어 집광부; 및
상기 그래핀 전도부의 양측면에 각각 연결되어 광캐리어를 외부에 전달하는 금속전극;을 포함하는 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서.
Board;
A graphene conductive part stacked on the substrate and having an optical carrier moved;
A nanowire condenser formed on the graphene conductive part and absorbing light energy to generate an electron-hole pair; And
And a metal electrode connected to both sides of the graphene conductive part to transfer an optical carrier to the outside.
제1항에 있어서, 상기 그래핀층은 단층인 것을 특징으로 하는 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서.
The optical sensor based on the graphene-nanowire hybrid structure of claim 1, wherein the graphene layer is a single layer.
제1항에 있어서, 상기 나노와이어는 CdS, CdSe 또는 CdTe인 것을 특징으로 하는 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서.
The optical sensor based on the graphene-nanowire hybrid structure of claim 1, wherein the nanowire is CdS, CdSe or CdTe.
제1항에 있어서, 상기 나노와이어는 복수개로 구비되는 것을 특징으로 하는 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서.
The optical sensor based on the graphene-nanowire hybrid structure of claim 1, wherein the nanowire is provided in plural.
제1항에 있어서, 상기 광센서는 100?3000 ㎐에서 광감도가 85?100 %인 것을 특징으로 하는 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서.
The optical sensor based on the graphene-nanowire hybrid structure according to claim 1, wherein the optical sensor has a light sensitivity of 85 to 100% at 100 to 3000 Hz.
실리콘 기판에 그래핀층을 전사시킨 후 상기 그래핀층 상부에 촉매를 패터닝하는 단계(단계 1);
상기 단계 1에서 패터닝된 촉매에 나노와이어 원료물질을 공급하여 나노와이어를 성장시키는 단계(단계 2); 및
상기 단계 1에서 전사된 그래핀층 양측면 각각에 금속전극을 제조하는 단계(단계 3)를 포함하는 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 제조방법.
Transferring the graphene layer to a silicon substrate and patterning a catalyst on the graphene layer (step 1);
Supplying a nanowire raw material to the catalyst patterned in step 1 to grow nanowires (step 2); And
The manufacturing method of the optical sensor based on the graphene-nanowire hybrid structure comprising the step (step 3) of preparing a metal electrode on each side of the graphene layer transferred in step 1.
제6항에 있어서, 상기 단계 1의 전사는 소프트 트랜스퍼 프린팅(soft transfer printing), PDMS 전사방법, PMMA 전사방법, 열방출 테이프 전사방법 또는 롤 전사방법인 것을 특징으로 하는 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 제조방법.
The graphene-nanowire hybrid structure according to claim 6, wherein the transfer of step 1 is a soft transfer printing, a PDMS transfer method, a PMMA transfer method, a heat release tape transfer method, or a roll transfer method. Method for manufacturing optical sensor based on
제6항에 있어서, 상기 단계 1의 촉매는 Au인 것을 특징으로 하는 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 제조방법.
The method of claim 6, wherein the catalyst of Step 1 is Au. 6.
제6항에 있어서, 상기 단계 2의 나노와이어 원료물질은 CdS, CdSe 또는 CdTe인 것을 특징으로 하는 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 제조방법.
The method of claim 6, wherein the nanowire raw material of step 2 is CdS, CdSe or CdTe.
제6항에 있어서, 상기 단계 2의 성장은 600?700 ℃에서 35?45 분 동안 수행하는 것을 특징으로 하는 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 제조방법.
The method of claim 6, wherein the growth of the step 2 is a manufacturing method of the optical sensor based on the graphene-nanowire hybrid structure, characterized in that performed for 35 to 45 minutes at 600 ~ 700 ℃.
제6항에 있어서, 상기 단계 3의 금속전극은 열증착법으로 제조되는 것을 특징으로 하는 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서의 제조방법.

The method of claim 6, wherein the metal electrode of step 3 is manufactured by thermal evaporation.

KR1020110012479A 2011-02-11 2011-02-11 Photosensor based on graphene-nanowire hybrid structures and the manufacturing method of the same KR101227600B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110012479A KR101227600B1 (en) 2011-02-11 2011-02-11 Photosensor based on graphene-nanowire hybrid structures and the manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110012479A KR101227600B1 (en) 2011-02-11 2011-02-11 Photosensor based on graphene-nanowire hybrid structures and the manufacturing method of the same

Publications (2)

Publication Number Publication Date
KR20120092431A true KR20120092431A (en) 2012-08-21
KR101227600B1 KR101227600B1 (en) 2013-01-29

Family

ID=46884464

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110012479A KR101227600B1 (en) 2011-02-11 2011-02-11 Photosensor based on graphene-nanowire hybrid structures and the manufacturing method of the same

Country Status (1)

Country Link
KR (1) KR101227600B1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101364531B1 (en) * 2013-01-21 2014-02-19 덕산하이메탈(주) Transparent electrode having nano material layer and method of manufacturing the same
KR20150053157A (en) * 2013-11-07 2015-05-15 삼성전자주식회사 Nanostructure and optical device comprising nanostructure
US9130082B2 (en) 2012-12-27 2015-09-08 Electronics And Telecommunications Research Institute Apparatus for generating/detecting terahertz wave using graphene and manufacturing method of the same
KR20160025987A (en) 2014-08-28 2016-03-09 주식회사 크레진 Preparation method of hybrid materials of graphene and metal oxide nanoparticle
US9327984B2 (en) 2013-10-22 2016-05-03 Hyundai Motor Company Method of preparing graphene nanoplate, prepared graphene nanoplate, graphene nanoplate paste, and conductive layer including the graphene nanoplate
US9527773B2 (en) 2013-10-22 2016-12-27 Hyundai Motor Company Graphene-ceramic hybrid coating layer, and method for preparing the same
US9540525B2 (en) 2013-10-22 2017-01-10 Hyundai Motor Company Graphene oxide-ceramic hybrid coating layer, and method for preparing the same
US9925559B2 (en) 2015-08-25 2018-03-27 Hyundai Motor Company Graphene-containing coating film, and method for preparing the same
US9966257B2 (en) 2010-12-13 2018-05-08 Norwegian University Of Science And Technology Nanowire epitaxy on a graphitic substrate
CN108075009A (en) * 2016-11-09 2018-05-25 香港生产力促进局 Graphene infrared sensor based on photonic crystal photoresponse enhancing technology and preparation method thereof
US10021763B2 (en) 2013-09-17 2018-07-10 Unist (Ulsan National Institute Of Science And Technology) Bezel-free display device formed by using flexible wires and manufacturing method therefor
CN108735858A (en) * 2018-04-11 2018-11-02 湖北大学 A kind of ultraviolet/infrared photoelectric detector preparation method of composite nanostructure
US10243104B2 (en) 2012-01-10 2019-03-26 Norwegian Univeresity Of Science And Technology (Ntnu) Nanowire device having graphene top and bottom electrodes and method of making such a device
WO2019074320A1 (en) * 2017-10-13 2019-04-18 건국대학교 산학협력단 Varistor-based photodetector and image sensor comprising same
US10347791B2 (en) 2015-07-13 2019-07-09 Crayonano As Nanowires or nanopyramids grown on graphitic substrate
US10347781B2 (en) 2012-06-21 2019-07-09 Norwegian University Of Science And Technology (Ntnu) Solar cells
CN110047973A (en) * 2019-04-23 2019-07-23 北京蜃景光电科技有限公司 A kind of photoelectric sensor and preparation method thereof based on Copper-cladding Aluminum Bar cadmium sulfide nano wires
WO2019099171A3 (en) * 2017-11-15 2019-10-17 Microsoft Technology Licensing Llc Fabrication methods
US10714337B2 (en) 2015-07-31 2020-07-14 Crayonano As Process for growing nanowires or nanopyramids on graphitic substrates
KR20200121088A (en) 2019-04-15 2020-10-23 주식회사 크레진 Preparation method of hybrid materials of graphene and metal oxide nanoparticle
US11024792B2 (en) 2019-01-25 2021-06-01 Microsoft Technology Licensing, Llc Fabrication methods
US11239391B2 (en) 2017-04-10 2022-02-01 Norwegian University Of Science And Technology (Ntnu) Nanostructure
US11261537B2 (en) 2013-06-21 2022-03-01 Norwegian University Of Science And Technology (Ntnu) III-V or II-VI compound semiconductor films on graphitic substrates
US11378446B2 (en) 2017-10-13 2022-07-05 Konkuk University Industrial Cooperation Corp Method for detecting intensity as function of energy of light and devices for performing same
US11594657B2 (en) 2015-07-13 2023-02-28 Crayonano As Nanowires/nanopyramids shaped light emitting diodes and photodetectors
WO2023074961A1 (en) * 2021-10-29 2023-05-04 주식회사 바이오제네시스 Hybrid graphene electrode-based electrochemical biosensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150017422A (en) * 2013-07-17 2015-02-17 경희대학교 산학협력단 Graphene/Silicon Nanowire Molecular Sensor and the Fabricating Method and Method of Identification Using thereof
KR102562513B1 (en) 2021-03-30 2023-08-02 (주)제니컴 Graphene nano-structure gas sensor and its fabrication method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301199B2 (en) 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
US20090299213A1 (en) 2006-03-15 2009-12-03 President And Fellows Of Harvard College Nanobioelectronics
WO2010059687A2 (en) 2008-11-18 2010-05-27 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services A semiconductor for measuring biological interactions
KR101652406B1 (en) * 2010-02-19 2016-08-30 삼성전자주식회사 Electric energy generator

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9966257B2 (en) 2010-12-13 2018-05-08 Norwegian University Of Science And Technology Nanowire epitaxy on a graphitic substrate
US10861696B2 (en) 2010-12-13 2020-12-08 Norwegian University Of Science And Technology Compositions comprising epitaxial nanowires on graphene substrates and methods of making thereof
US10243104B2 (en) 2012-01-10 2019-03-26 Norwegian Univeresity Of Science And Technology (Ntnu) Nanowire device having graphene top and bottom electrodes and method of making such a device
US11257967B2 (en) 2012-06-21 2022-02-22 Norwegian University Of Science And Technology (Ntnu) Solar cells
US10347781B2 (en) 2012-06-21 2019-07-09 Norwegian University Of Science And Technology (Ntnu) Solar cells
US9130082B2 (en) 2012-12-27 2015-09-08 Electronics And Telecommunications Research Institute Apparatus for generating/detecting terahertz wave using graphene and manufacturing method of the same
WO2014112766A1 (en) * 2013-01-21 2014-07-24 덕산하이메탈(주) Transparent electrode including nano-material layer, method for fabricating same, and optical element device, display device and touch panel device including same
KR101364531B1 (en) * 2013-01-21 2014-02-19 덕산하이메탈(주) Transparent electrode having nano material layer and method of manufacturing the same
US11261537B2 (en) 2013-06-21 2022-03-01 Norwegian University Of Science And Technology (Ntnu) III-V or II-VI compound semiconductor films on graphitic substrates
US10021763B2 (en) 2013-09-17 2018-07-10 Unist (Ulsan National Institute Of Science And Technology) Bezel-free display device formed by using flexible wires and manufacturing method therefor
US9327984B2 (en) 2013-10-22 2016-05-03 Hyundai Motor Company Method of preparing graphene nanoplate, prepared graphene nanoplate, graphene nanoplate paste, and conductive layer including the graphene nanoplate
DE102013227201B4 (en) 2013-10-22 2019-09-12 Hyundai Motor Company A method for producing a coating layer of a graphene-ceramic hybrid material
US9540525B2 (en) 2013-10-22 2017-01-10 Hyundai Motor Company Graphene oxide-ceramic hybrid coating layer, and method for preparing the same
US9527773B2 (en) 2013-10-22 2016-12-27 Hyundai Motor Company Graphene-ceramic hybrid coating layer, and method for preparing the same
KR20150053157A (en) * 2013-11-07 2015-05-15 삼성전자주식회사 Nanostructure and optical device comprising nanostructure
KR20160025987A (en) 2014-08-28 2016-03-09 주식회사 크레진 Preparation method of hybrid materials of graphene and metal oxide nanoparticle
US11264536B2 (en) 2015-07-13 2022-03-01 Crayonano As Nanowires or nanopyramids grown on a graphene substrate
US11594657B2 (en) 2015-07-13 2023-02-28 Crayonano As Nanowires/nanopyramids shaped light emitting diodes and photodetectors
US10347791B2 (en) 2015-07-13 2019-07-09 Crayonano As Nanowires or nanopyramids grown on graphitic substrate
US11450528B2 (en) 2015-07-31 2022-09-20 Crayonano As Process for growing nanowires or nanopyramids on graphitic substrates
US10714337B2 (en) 2015-07-31 2020-07-14 Crayonano As Process for growing nanowires or nanopyramids on graphitic substrates
US9925559B2 (en) 2015-08-25 2018-03-27 Hyundai Motor Company Graphene-containing coating film, and method for preparing the same
CN108075009A (en) * 2016-11-09 2018-05-25 香港生产力促进局 Graphene infrared sensor based on photonic crystal photoresponse enhancing technology and preparation method thereof
US11239391B2 (en) 2017-04-10 2022-02-01 Norwegian University Of Science And Technology (Ntnu) Nanostructure
US11711986B2 (en) 2017-06-30 2023-07-25 Microsoft Technology Licensing Llc Superconductor-semiconductor fabrication
WO2019074320A1 (en) * 2017-10-13 2019-04-18 건국대학교 산학협력단 Varistor-based photodetector and image sensor comprising same
KR20190041742A (en) * 2017-10-13 2019-04-23 건국대학교 산학협력단 Phothdetector based on barristor and image sencor including the same
US11378446B2 (en) 2017-10-13 2022-07-05 Konkuk University Industrial Cooperation Corp Method for detecting intensity as function of energy of light and devices for performing same
US11296145B2 (en) 2017-11-15 2022-04-05 Microsoft Technology Licensing, Llc Fabrication methods
WO2019099171A3 (en) * 2017-11-15 2019-10-17 Microsoft Technology Licensing Llc Fabrication methods
CN108735858A (en) * 2018-04-11 2018-11-02 湖北大学 A kind of ultraviolet/infrared photoelectric detector preparation method of composite nanostructure
US11024792B2 (en) 2019-01-25 2021-06-01 Microsoft Technology Licensing, Llc Fabrication methods
KR20200121088A (en) 2019-04-15 2020-10-23 주식회사 크레진 Preparation method of hybrid materials of graphene and metal oxide nanoparticle
CN110047973B (en) * 2019-04-23 2020-05-01 范佳旭 Photoelectric sensor based on copper-doped cadmium sulfide nanowire and preparation method thereof
CN110047973A (en) * 2019-04-23 2019-07-23 北京蜃景光电科技有限公司 A kind of photoelectric sensor and preparation method thereof based on Copper-cladding Aluminum Bar cadmium sulfide nano wires
WO2023074961A1 (en) * 2021-10-29 2023-05-04 주식회사 바이오제네시스 Hybrid graphene electrode-based electrochemical biosensor

Also Published As

Publication number Publication date
KR101227600B1 (en) 2013-01-29

Similar Documents

Publication Publication Date Title
KR101227600B1 (en) Photosensor based on graphene-nanowire hybrid structures and the manufacturing method of the same
CN110047957B (en) Mid-infrared light detector and preparation method thereof
Cao et al. High-performance UV–vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures
DK2483925T3 (en) QUANTITY POINT FILLER TRANSITION BASED PHOTO DETECTORS
Mahdi et al. Synthesis and characterization of single-crystal CdS nanosheet for high-speed photodetection
Tian et al. In-doped Ga 2 O 3 nanobelt based photodetector with high sensitivity and wide-range photoresponse
Wang et al. ZnO branched nanowires and the p-CuO/n-ZnO heterojunction nanostructured photodetector
Al Fattah et al. Sensing of ultraviolet light: a transition from conventional to self-powered photodetector
Yadav et al. Sol-gel-based highly sensitive Pd/n-ZnO thin film/n-Si Schottky ultraviolet photodiodes
Lee et al. Graphene–nanowire hybrid structures for high-performance photoconductive devices
Han et al. Progress in piezo-phototronic effect enhanced photodetectors
Chang et al. Electrical and optical characteristics of UV photodetector with interlaced ZnO nanowires
JP2009513018A (en) Nanocrystal solar cells prepared from solution
TWI430465B (en) Photovoltaic devices with enhanced efficiencies using high-aspect-ratio nanostructures
US11653555B2 (en) Methods and apparatuses for fabricating perovskite-based devices on cost-effective flexible conductive substrates
Xie et al. p-CdTe nanoribbon/n-silicon nanowires array heterojunctions: photovoltaic devices and zero-power photodetectors
Kim et al. ITO nanowires-embedding transparent NiO/ZnO photodetector
JP5379811B2 (en) Photovoltaic devices using high aspect ratio nanostructures and methods for making same
US9812595B1 (en) All-wavelength (VIS-LWIR) transparent electrical contacts and interconnects and methods of making them
Anitha et al. Large area ultraviolet photodetector on surface modified Si: GaN layers
Dhyani et al. High speed MSM photodetector based on Ge nanowires network
Şakar et al. Ultraviolet and visible photo-response of transparent conductive Al-doped ZnO (AZO)/n-Silicon isotype heterojunction device
Pan et al. Light trapping enhanced broadband photodetection and imaging based on MoSe2/pyramid Si vdW heterojunction
CN107731936B (en) Tunneling type photoelectric detector based on three-dimensional Dirac material and preparation method
Guo et al. Large-area photodetector with high-sensitivity and broadband spectral response based on composition-graded CdSSe nanowire-chip

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151224

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161227

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171221

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee