KR20120091676A - Measurement method for chloride in concrete using the x-ray diffraction method - Google Patents

Measurement method for chloride in concrete using the x-ray diffraction method Download PDF

Info

Publication number
KR20120091676A
KR20120091676A KR1020110011596A KR20110011596A KR20120091676A KR 20120091676 A KR20120091676 A KR 20120091676A KR 1020110011596 A KR1020110011596 A KR 1020110011596A KR 20110011596 A KR20110011596 A KR 20110011596A KR 20120091676 A KR20120091676 A KR 20120091676A
Authority
KR
South Korea
Prior art keywords
chloride
amount
ray diffraction
fixed
diffraction analysis
Prior art date
Application number
KR1020110011596A
Other languages
Korean (ko)
Other versions
KR101285328B1 (en
Inventor
김도겸
이장화
Original Assignee
한국건설기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원 filed Critical 한국건설기술연구원
Priority to KR1020110011596A priority Critical patent/KR101285328B1/en
Publication of KR20120091676A publication Critical patent/KR20120091676A/en
Application granted granted Critical
Publication of KR101285328B1 publication Critical patent/KR101285328B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE: A method for measuring a chloride content using an X-ray diffraction analysis is provided to directly measure fixed chloride content by an X-ray diffraction analysis method, thereby simply evaluating a risk degree of corrosion reinforcing bar and the durability of the inside of a concrete structure. CONSTITUTION: A method for measuring a chloride content using an X-ray diffraction analysis is as follows. A cement paste powder is collected. A fixed chloride content is calculated by an X-ray diffraction analysis with respect to the cement paste powder. A free chloride content is calculated by using the fixed chloride content.

Description

X선 회절분석을 이용한 염화물량 측정방법{MEASUREMENT METHOD FOR CHLORIDE IN CONCRETE USING THE X-RAY DIFFRACTION METHOD}Chloride amount measurement method using X-ray diffraction analysis {MEASUREMENT METHOD FOR CHLORIDE IN CONCRETE USING THE X-RAY DIFFRACTION METHOD}

본 발명은 건설 분야에 관한 것으로서, 상세하게는 콘크리트 내 염화물량을 측정하기 위한 방법에 관한 것이다.The present invention relates to the field of construction, and more particularly to a method for measuring the amount of chloride in concrete.

건설 분야에서 시멘트 콘크리트가 차지하는 비중은 절대적으로, 그와 관련한 구조물의 성능 및 안정성 확보를 위한 연구가 꾸준히 진행되고 있다. The proportion of cement concrete in the construction field is absolutely, and researches to secure the performance and stability of the related structures are continuously conducted.

특히 해안환경에 노출되어 있는 구조물의 경우 염화물 침투에 의한 철근부식 문제의 심각성이 제기되고 있는 실정이다. In particular, in the case of structures exposed to the coastal environment, the seriousness of the problem of reinforcing corrosion due to chloride penetration is raised.

철근부식이 발생할 경우 내부 응력의 증가로 인하 콘크리트 구조물의 균열 및 탈락현상이 발생하고, 부식으로 인한 철근 단면의 감소로 인한 구조적 결함을 야기하므로 안정성에 문제와도 직결된다. In case of corrosion of reinforcing steel, cracking and dropping of concrete structures are caused by the increase of internal stress, and structural defects are caused by the reduction of steel cross section due to corrosion.

이에 대해 콘크리트 내에서 철근부식의 주요인자인 염화물량 측정(측정)방법은 연구가 활발히 진행되어 여러 방법이 존재하지만, 시료 채취 및 측정 과정의 번거로움이 존재하고, 측정법의 결과에 따른 환산법에 대한 특별한 규정이 마련되어 있지 않았다. On the other hand, the method of measuring (measurement) chloride, which is the main factor of reinforcing corrosion in concrete, has been actively researched and there are various methods. However, the cumbersome process of sampling and measuring exists, and the method of conversion There were no special provisions.

특히, 콘크리트 내 염화물은 고정염화물(염분침투속도에 영향을 미침)과 자유염화물(철근부식의 이유가 됨)로 나눌 수 있는데, 종래에는 고정염화물량을 직접 측정할 수 있는 방법이 개발되어 있지 않았으므로, 먼저 총염화물량 및 자유염화물량을 측정한 후, 총염화물량에서 자유염화물량을 제하는 방식으로 고정화염화물량을 산출할 수밖에 없었는바, 측정방법이 번거롭다는 문제점이 제기되어 왔다.In particular, chloride in concrete can be divided into fixed chloride (which affects the rate of salt penetration) and free chloride (which is the reason for the corrosion of reinforcing bars). In the past, no method has been developed to measure the amount of fixed chloride directly. Therefore, since the total chloride amount and the free chloride amount are first measured, and then the fixed chloride amount has to be calculated by subtracting the free chloride amount from the total chloride amount, a problem arises that the measurement method is cumbersome.

본 발명은 상기와 같은 문제점을 해결하기 위하여 도출된 것으로서, X선 회절분석 방식에 의해 직접 고정염화물량을 측정할 수 있도록 하여, 간편하게 콘크리트 구조물 내부의 철근부식 위험도 및 내구성능을 평가하여 구조물의 수명을 예측할 수 있도록 하는 X선 회절분석을 이용한 염화물량 측정방법을 제시하는 것을 그 목적으로 한다.The present invention was derived to solve the above problems, by measuring the amount of fixed chloride directly by the X-ray diffraction analysis method, it is easy to evaluate the risk of corrosion and durability of the reinforcement inside the concrete structure life of the structure The purpose of the present invention is to propose a method for measuring chloride amount using X-ray diffraction analysis.

상기 과제의 해결을 위하여, 본 발명은 시멘트 페이스트 분말을 채취하는 분말채취단계; 상기 시멘트 페이스트 분말에 대한 X선 회절분석에 의해 고정염화물량을 산출하는 고정염화물량 산출단계; 상기 고정염화물량으로부터 자유염화물량을 산출하는 자유염화물량 산출단계;를 포함하는 X선 회절분석을 이용한 염화물량 측정방법을 제시한다.In order to solve the above problems, the present invention is powder extraction step of collecting the cement paste powder; A fixed chloride amount calculating step of calculating a fixed chloride amount by X-ray diffraction analysis of the cement paste powder; It proposes a method for measuring the amount of chloride using X-ray diffraction analysis, including; free chloride amount calculating step of calculating the amount of free chloride from the amount of fixed chloride.

상기 분말채취단계는 상기 시멘트 페이스트 분말을 갈아 눈이 250~350㎛인 체로 체거름하는 것이 바람직하다.In the powder extraction step, the cement paste powder is sieved through a sieve having 250 to 350 μm of eyes.

상기 고정염화물량 산출단계는 상기 X선 회절분석 시 입사각 11.08°에서의 피크강도로부터 상기 고정염화물량을 산출하는 것이 바람직하다.In the fixed chloride amount calculating step, the fixed chloride amount may be calculated from the peak intensity at an incident angle of 11.08 ° during the X-ray diffraction analysis.

상기 자유염화물량 산출단계는 상기 고정염화물량을 Langmuir Isotherm 식에 대입하여 자유염화물량을 산출하는 것이 바람직하다.In the free chloride amount calculating step, the free chloride amount is calculated by substituting the fixed chloride amount into a Langmuir Isotherm equation.

본 발명은 시멘트 페이스트 분말을 채취하는 분말채취단계; 상기 시멘트 페이스트 분말에 대하여 X선 회절분석을 하고, 입사각 11.08°에서의 피크강도로부터 고정염화물량을 산출하는 고정염화물량 산출단계; 상기 고정염화물량을 Langmuir Isotherm 식에 대입하여 자유염화물량을 산출하는 자유염화물량 산출단계;를 포함하는 X선 회절분석을 이용한 염화물량 측정방법을 함께 제시한다.The present invention is powder extraction step of collecting the cement paste powder; A fixed chloride amount calculating step of performing X-ray diffraction analysis on the cement paste powder and calculating a fixed chloride amount from a peak intensity at an incident angle of 11.08 °; The amount of chloride is calculated by substituting the fixed chloride amount into a Langmuir Isotherm equation to calculate the amount of free chloride.

본 발명은 X선 회절분석 방식에 의해 직접 고정염화물량을 측정할 수 있도록 하여, 간편하게 콘크리트 구조물 내부의 철근부식 위험도 및 내구성능을 평가하여 구조물의 수명을 예측할 수 있도록 하는 X선 회절분석을 이용한 염화물량 측정방법을 제시한다.In the present invention, it is possible to measure the amount of fixed chloride directly by X-ray diffraction analysis method, so that the chloride life using X-ray diffraction analysis to predict the life of the structure by simply evaluating the risk of corrosion and durability of the reinforcement inside the concrete structure Provide a measure of quantity.

본 발명이 실용화되는 경우, 이미 건설되어 공용중인 콘크리트 구조물의 시료채취 후 X선 회절분석이라는 간단한 과정을 통해 염화물의 양을 예측할 수 있게 될 것이므로, 철근부식 위험도 및 구조물의 내구연한 산정에 큰 영향을 미칠 것으로 예상된다.If the present invention is put to practical use, since it will be possible to predict the amount of chloride through a simple process called X-ray diffraction analysis after sampling of concrete structures that are already constructed and used, it has a great influence on the risk of reinforcing corrosion and durability of the structure. It is expected to go crazy.

도 1 이하는 본 발명에 의한 측정방법을 도출하기 위한 실험과정 및 결과에 관한 것으로서,
도 1은 분말채취과정의 사진.
도 2는 질산은 용액을 이용한 염화물량 측정과정의 사진.
도 3은 물-결합재비에 따른 자유염화물량/고정염화물량의 관계를 수학식 1을 이용하여 표현한 그래프.
도 4는 결합재에 따른 자유염화물량/고정염화물량의 관계를 수학식 1을 이용하여 표현한 그래프.
도 5는 X선 회절 분석을 통한 물/결합재비, 결합재에 따른 Fridel 염 분석 결과를 나타낸 그래프.
도 6은 고정염화물량과 X선 회절 분석을 통한 Fridel 염 피크강도와의 관계를 나타낸 그래프.
도 7은 X선 회절 분석 결과와 고정염화물량과의 상관관계식 도출 및 관계에 관한 그래프.
Figure 1 below relates to the experimental procedure and results for deriving the measuring method according to the present invention,
1 is a photograph of the powder extraction process.
Figure 2 is a photograph of the chloride content measurement process using a silver nitrate solution.
Figure 3 is a graph showing the relationship between the amount of free chloride / fixed chloride amount according to the water-bound material ratio using Equation 1.
4 is a graph showing the relationship between the amount of free chloride / fixed chloride amount according to the binder using Equation 1.
5 is a graph showing the water / binder ratio through the X-ray diffraction analysis, Fridel salt analysis results according to the binder.
6 is a graph showing the relationship between the amount of fixed chloride and the peak intensity of Fridel salt through X-ray diffraction analysis.
FIG. 7 is a graph illustrating a correlation and derivation of a relationship between X-ray diffraction analysis results and fixed chloride amounts. FIG.

이하, 첨부도면을 참조하여 본 발명의 실시예에 관하여 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 의한 염화물량 측정방법은 기본적으로, 시멘트 페이스트 분말을 채취하는 분말채취단계; 시멘트 페이스트 분말에 대한 X선 회절분석에 의해 고정염화물량을 산출하는 고정염화물량 산출단계; 고정염화물량으로부터 자유염화물량을 산출하는 자유염화물량 산출단계;를 포함하여 구성된다.The method for measuring the amount of chloride according to the present invention, basically, the powder extraction step of collecting the cement paste powder; Fixed chloride amount calculating step of calculating the fixed chloride amount by X-ray diffraction analysis of the cement paste powder; It is configured to include; free chloride amount calculation step of calculating the amount of free chloride from the amount of fixed chloride.

X선은 전자기파의 일종으로 고속의 전자가 무거운 원소의 원자와 충돌할 때 발생하게 된다. X-rays are a kind of electromagnetic waves that are generated when high-speed electrons collide with atoms of heavy elements.

X선은 각 결정상에서 산란되는데 일반적으로 임의의 방향에서는 위상이 조금씩 다르므로 파가 상쇄되어 소멸되므로 결정에 대한 기여도가 0이 되나 특정방향에서는 각 격자점의 산란파가 보강관계를 이루어 강한 회절 X선 파가 관측된다. X-rays are scattered in each crystal phase. Generally, the phase is slightly different in any direction, so the wave cancels and disappears, so the contribution to the crystal becomes 0. In certain directions, the scattered wave of each lattice point is reinforced and strong diffraction X-ray A wave is observed.

발생된 회절 X선 파는 각 결정의 양에 따라 그 강도가 다르게 나타나며 그 강도는 입사각(2θ)에 따라 그 강도를 수치화시켜 표현할 수 있다. The generated diffraction X-ray wave is different in intensity depending on the amount of each crystal, and the intensity can be expressed by quantifying the intensity according to the incident angle (2θ).

후술하는 X선 회절분석 결과와 염화물량 측정 결과 해석과의 상관도 분석을 통해, 입사각 11.18°에서의 피크강도가 Friedel 염(고정염화물량)의 함유량을 의미함을 확인할 수 있었다.Correlation analysis between the X-ray diffraction analysis results described later and the analysis of the chloride content measurement results confirmed that the peak intensity at an incident angle of 11.18 ° means the content of Friedel salt (fixed chloride amount).

따라서 위 방식에 의해 직접 콘크리트 내 고정염화물량을 측정할 수 있으므로, 간편하게 콘크리트 구조물 내부의 철근부식 위험도 및 내구성능을 평가하여 구조물의 수명을 예측할 수 있다는 효과가 있다.Therefore, it is possible to directly measure the amount of fixed chloride in the concrete by the above method, it is easy to evaluate the risk of corrosion and durability of the reinforcement inside the concrete structure has the effect of predicting the life of the structure.

측정된 고정염화물량으로부터 자유염화물량을 구하는 방식은, 종래의 방식에 의해 총염화물량을 구하고, 이로부터 고정염화물량을 제하는 방식을 사용할 수도 있다.As a method of determining the amount of free chloride from the measured amount of fixed chloride, a method of calculating the total amount of chloride by a conventional method and subtracting the amount of fixed chloride from it may be used.

그러나, 이는 결국 다시 종래의 측정방식을 사용하여야 한다는 번거로움이 있는바, 별도의 수식을 정하고 그 수식에 고정염화물량을 대입하여 계산 만에 의해 자유염화물량을 산출하는 방식을 사용하는 것이 바람직하다.However, this is inconvenient to use the conventional measuring method again, it is preferable to use a method of calculating the amount of free chloride only by calculating a separate formula and substituting the fixed chloride amount into the formula. .

이러한 수식을 개발하기 위해서는, 동일한 시료를 대상으로 하여 종래의 측정방식에 의해 총염화물량 및 자유염화물량을 구하고, 본 발명에 의한 X선 회절분석에 의해 고정염화물량을 구한 후, 이들의 상관관계를 해석하는 것이 필요하다.In order to develop such a formula, the total chloride amount and free chloride amount are determined by a conventional measuring method for the same sample, and the fixed chloride amount is determined by X-ray diffraction analysis according to the present invention, and then these correlations are obtained. It is necessary to interpret.

이하, 이에 관한 실험 및 해석과정에 관하여 설명한다.Hereinafter, a description will be given of the experiment and analysis process.

시멘트 페이스트 분말시료의 대상이 되는 결합재로는 일반 포틀랜드 시멘트, 30% 플라이 애시, 65% 고로슬래그 미분말을 사용하였으며, 일반 포틀랜드 시멘트를 사용한 경우 물/결합재비를 0.3에서 0.6으로 단계별로 제작하였다.For cement paste powder samples, general portland cement, 30% fly ash, and 65% blast furnace slag fine powder were used. In case of general portland cement, water / bonding material ratio was manufactured from 0.3 to 0.6 step by step.

결합재별 구성성분은 표 1과 같다.Components of each binder are shown in Table 1.

Figure pat00001
Figure pat00001

콘크리트 내에서 염화물 고정화 과정의 거의 완료되는 시점인 150일 양생시점에서 상술한 염분량 측정(총염화물량 및 자유염화물량의 측정) 및 X선 회절분석(고정염화물량의 측정)을 실시하였다.The above-described salt content measurement (total chloride content and free chloride content) and X-ray diffraction analysis (measurement of fixed chloride content) were performed at 150 days of curing, which is almost the completion of the chloride fixation process in concrete.

채취한 시멘트 페이스트 시편에서, 분말 채취의 과정 중 잔존 알칼리와 염화물이 손실되는 것을 방지하기 위해 104℃에서 24시간 동안 건조시켰다.In the obtained cement paste specimens, it was dried for 24 hours at 104 ℃ to prevent the loss of residual alkali and chloride during the powder extraction process.

분말의 크기를 미세하게 하기 위해, 정밀한 막자와 막자사발 또는 깊이별로 분말을 생성하는 그라인딩 장비를 사용하며 채취된 분말을 분쇄하였고, 분쇄된 분말은 체의 눈이 300μm인 체로 체거름을 실시한다.In order to make the size of the powder fine, using a grinding machine to produce the powder by precision mortar and pestle or mortar, the powder is pulverized, and the pulverized powder is sieved with a sieve having a 300 μm eye.

그라인딩 장비로는 깊이를 정확하게 표시하는 디지털 깊이계가 설치된 장비를 사용하는 것이 바람직하다.It is preferable to use a device equipped with a digital depth meter that accurately displays the depth as the grinding equipment.

수용성 염화물(자유염화물)의 추출을 위해 50℃의 증류수에서 5분간 저어주며, 추가적으로 30분간 안정화하였다. Stirring for 5 minutes in distilled water at 50 ℃ for the extraction of water-soluble chloride (free chloride), and further stabilized for 30 minutes.

용해된 분말 샘플은 종이필터를 이용해 걸러내어 염화물이 용해된 용액만을 추출한 뒤, 질산은을 이용한 측정기를 이용해 염화물량을 측정하였다. The dissolved powder sample was filtered using a paper filter to extract only the solution in which chloride was dissolved, and then the amount of chloride was measured using a measuring device using silver nitrate.

염화물 농도를 측정하는 과정 중에는 온도에 의한 고정화능력의 영향을 피하기 위해 항상 20±1℃의 온도를 유지하였다.During the measurement of chloride concentrations, the temperature was always maintained at 20 ± 1 ° C to avoid the effect of immobilization capacity on temperature.

자유염화물량은 양생 56일 후 수분 추출 방법을 통해 측정하였다.The amount of free chloride was measured by water extraction method after 56 days of curing.

이후, 위와 같은 방식에 의해 채취한 시멘트 페이스트 분말을 X선 회절분석기에 넣고, 입사각의 범위를 5~60°의 범위로 하여, X선 회절분석을 실시하였다.Thereafter, the cement paste powder collected by the above method was placed in an X-ray diffractometer, and the X-ray diffraction analysis was performed with the incident angle in the range of 5 to 60 °.

시멘트 페이스트 분말과 공기중의 접촉에 의해 추후 발생할 수 있는 화학적 반응을 피하기 위해 분말 채취 후 즉시 X선 회절분석을 진행하였고, 시멘트 페이스트 시편은 시멘트 중량비 0.0~3.0% 범위의 염화물을 포함하는 것을 사용하여 평가하였다.X-ray diffraction analysis was performed immediately after the powder was taken to avoid chemical reactions that may occur due to the contact between the cement paste powder and the air. The cement paste specimens contained chlorides in the range of 0.0 to 3.0% by weight of cement. Evaluated.

도 3 내지 7은 위 방식에 의해 측정된 총염화물량, 자유염화물량, 고정염화물량의 상관관계를 나타낸 것이다.3 to 7 show the correlation between the total chloride amount, free chloride amount and fixed chloride amount measured by the above method.

구체적으로, 도 3은 물/결합재 비에 따른 자유염화물/고정염화물의 관계를 나타낸다.Specifically, Figure 3 shows the relationship of free chloride / fixed chloride according to the water / binder ratio.

도 4는 OPC(보통 포틀랜드 시멘트), 30% PFA(플라이애시), 65%GGBS(고로슬래그 미분말)의 자유염화물/고정염화물의 관계를 나타낸다.FIG. 4 shows the relationship of free chloride / fixed chloride of OPC (usually Portland cement), 30% PFA (fly ash), 65% GGBS (fine blast furnace slag).

도 5는 X 선 회절분석을 통한 분석결과를 나타내었으며, 물/결합재비, 결합재별 결과를 나타낸다.5 shows the analysis results through X-ray diffraction analysis, and shows the water / binder ratio, the results for each binder.

도 6,7은 결합재, 물/결합재비와 관계없이 고정염화물량과 Fridel 염 피크강도의 관계 및 상관도를 나타낸다.6 and 7 show the relationship and correlation between the fixed chloride amount and the Fridel salt peak intensity regardless of the binder and water / binder ratio.

종래방식에 의한 고정염화물량의 측정결과(측정된 총염화물량에서 측정된 자유염화물량을 제한 값), 고정염화물량은 결합재에 따라 65% GGBS > 30% PFA > OPC 순으로 높게 나타났으며, 물/결합재비가 낮을수록 높게 나타났다.As a result of measuring the amount of fixed chloride according to the conventional method (limiting value of free chloride measured from the total amount of chloride measured), the amount of fixed chloride was higher in the order of 65% GGBS> 30% PFA> OPC depending on the binder. The lower the water / binder ratio, the higher.

또한, X선 회절분석에 의한 Fridel 염(고정염화물량)의 측정결과에서도, 위와 동일한 결론을 얻을 수 있었다.In addition, the same conclusion as above can be obtained from the measurement result of Fridel salt (fixed chloride amount) by X-ray diffraction analysis.

즉, 결합재의 종류, 물/결합재비에 관계없이, 종래방식에 의한 고정염화물량의 측정결과(측정된 총염화물량에서 측정된 자유염화물량을 제한 값)와 X선 회절분석에 의한 Fridel 염(고정염화물량)의 측정결과는 밀접한 상관관계가 있음을 확인할 수 있었다.That is, irrespective of the type of binder and the water / binder ratio, the measurement result of the fixed chloride amount according to the conventional method (limit value of the free chloride measured from the measured total chloride amount) and the Fridel salt by X-ray diffraction analysis ( The amount of fixed chlorides) was found to be closely correlated.

또한, 위와 같은 X선 회절분석결과, 입사각의 범위(5~60°) 중 입사각 11.18°에서의 피크강도가 Friedel 염(고정염화물량)의 함유량을 의미함을 확인할 수 있었다.As a result of the X-ray diffraction analysis, it was confirmed that the peak intensity at the incident angle of 11.18 ° in the range of the incident angle (5 to 60 °) means the content of Friedel salt (fixed chloride amount).

이러한 실험결과, 자유염화물량과 고정염화물량의 관계는 다음 수학식 1에 의해 나타낼 수 있음을 확인하였다.As a result of the experiment, it was confirmed that the relationship between the amount of free chloride and fixed chloride can be represented by the following equation (1).

Figure pat00002
Figure pat00002

여기서,

Figure pat00003
는 고정염화물량,
Figure pat00004
는 자유염화물량, 상수
Figure pat00005
,
Figure pat00006
는 표 2에 나타남.here,
Figure pat00003
Is the fixed chloride amount,
Figure pat00004
Is the amount of free chloride, constant
Figure pat00005
,
Figure pat00006
Is shown in Table 2.

Figure pat00007
Figure pat00007

위 수학식 1은 상술한 바와 같이, 종래방식에 의해 산출한 총염화물량, 자유염화물량과, X선 회절분석에 의해 산출한 고정염화물량의 상관관계를 면밀히 분석하여 도출한 것이다.Equation 1 above is derived by carefully analyzing the correlation between the total chloride amount, free chloride amount calculated by the conventional method, and the fixed chloride amount calculated by X-ray diffraction analysis.

따라서 향후에는 X선 회절분석에 의해 고정염화물량을 산출한 이후, 단지 그 값을 위 수학식 1에 대입하는 것만으로 자유염화물량을 산출할 수 있는 것이다.Therefore, in the future, after calculating the fixed chloride amount by X-ray diffraction analysis, it is possible to calculate the amount of free chloride by simply substituting the value into Equation 1 above.

이상은 본 발명에 의해 구현될 수 있는 바람직한 실시예의 일부에 관하여 설명한 것에 불과하므로, 주지된 바와 같이 본 발명의 범위는 위의 실시예에 한정되어 해석되어서는 안 될 것이며, 위에서 설명된 본 발명의 기술적 사상과 그 근본을 함께 하는 기술적 사상은 모두 본 발명의 범위에 포함된다고 할 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention as defined in the appended claims. It is to be understood that both the technical idea and the technical spirit of the invention are included in the scope of the present invention.

Claims (5)

시멘트 페이스트 분말을 채취하는 분말채취단계;
상기 시멘트 페이스트 분말에 대한 X선 회절분석에 의해 고정염화물량을 산출하는 고정염화물량 산출단계;
상기 고정염화물량으로부터 자유염화물량을 산출하는 자유염화물량 산출단계;를
포함하는 X선 회절분석을 이용한 염화물량 측정방법.
A powder extraction step of collecting cement paste powder;
A fixed chloride amount calculating step of calculating a fixed chloride amount by X-ray diffraction analysis of the cement paste powder;
A free chloride amount calculating step of calculating a free chloride amount from the fixed chloride amount;
Chloride amount measurement method using an X-ray diffraction analysis.
제1항에 있어서,
상기 분말채취단계는
상기 시멘트 페이스트 분말을 갈아 눈이 250~350㎛인 체로 체거름하는 것을 특징으로 하는 X선 회절분석을 이용한 염화물량 측정방법.
The method of claim 1,
The powder extraction step
Chloride amount measurement method using the X-ray diffraction analysis, characterized in that the cement paste powder is sieved with a sieve of 250 ~ 350㎛.
제1항에 있어서,
상기 고정염화물량 산출단계는
상기 X선 회절분석 시 입사각 11.08°에서의 피크강도로부터 상기 고정염화물량을 산출하는 것을 특징으로 하는 X선 회절분석을 이용한 염화물량 측정방법.
The method of claim 1,
The fixed chloride amount calculating step
Chloride amount measurement method using the X-ray diffraction analysis characterized in that for calculating the amount of the fixed chloride from the peak intensity at the incident angle of 11.08 ° in the X-ray diffraction analysis.
제1항에 있어서,
상기 자유염화물량 산출단계는
상기 고정염화물량을 수학식 1에 대입하여 자유염화물량을 산출하는 것을 특징으로 하는 X선 회절분석을 이용한 염화물량 측정방법.
[수학식 1]
Figure pat00008

여기서,
Figure pat00009
는 고정염화물량,
Figure pat00010
는 자유염화물량, 상수
Figure pat00011
,
Figure pat00012
는 표 2에 나타남.
The method of claim 1,
The free chloride amount calculating step
Chloride amount measurement method using the X-ray diffraction analysis, characterized in that by calculating the amount of free chloride by substituting the fixed chloride amount in the formula (1).
[Equation 1]
Figure pat00008

here,
Figure pat00009
Is the fixed chloride amount,
Figure pat00010
Is the amount of free chloride, constant
Figure pat00011
,
Figure pat00012
Is shown in Table 2.
시멘트 페이스트 분말을 채취하는 분말채취단계;
상기 시멘트 페이스트 분말에 대하여 X선 회절분석을 하고, 입사각 11.08°에서의 피크강도로부터 고정염화물량을 산출하는 고정염화물량 산출단계;
상기 고정염화물량을 수학식 1에 대입하여 자유염화물량을 산출하는 자유염화물량 산출단계;를
포함하는 X선 회절분석을 이용한 염화물량 측정방법.
A powder extraction step of collecting cement paste powder;
A fixed chloride amount calculating step of performing X-ray diffraction analysis on the cement paste powder and calculating a fixed chloride amount from a peak intensity at an incident angle of 11.08 °;
A free chloride amount calculating step of calculating a free chloride amount by substituting the fixed chloride amount into Equation 1;
Chloride amount measurement method using an X-ray diffraction analysis.
KR1020110011596A 2011-02-09 2011-02-09 Measurement method for chloride in concrete using the x-ray diffraction method KR101285328B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110011596A KR101285328B1 (en) 2011-02-09 2011-02-09 Measurement method for chloride in concrete using the x-ray diffraction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110011596A KR101285328B1 (en) 2011-02-09 2011-02-09 Measurement method for chloride in concrete using the x-ray diffraction method

Publications (2)

Publication Number Publication Date
KR20120091676A true KR20120091676A (en) 2012-08-20
KR101285328B1 KR101285328B1 (en) 2013-07-11

Family

ID=46883988

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110011596A KR101285328B1 (en) 2011-02-09 2011-02-09 Measurement method for chloride in concrete using the x-ray diffraction method

Country Status (1)

Country Link
KR (1) KR101285328B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133175A (en) * 2019-05-07 2019-08-16 山东大学 The method of chloride ion content is combined under a kind of accurate Characterization difference carbonizing degree in cement slurry

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136615B (en) * 2015-09-24 2017-11-03 东南大学 A kind of continuous method for following the trail of cement-based material Water Transport

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100884578B1 (en) 2007-10-12 2009-02-19 연세대학교 산학협력단 Chloride threshold value method for steel corrosion in concrete

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133175A (en) * 2019-05-07 2019-08-16 山东大学 The method of chloride ion content is combined under a kind of accurate Characterization difference carbonizing degree in cement slurry

Also Published As

Publication number Publication date
KR101285328B1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
Nguyen et al. Reinforcement corrosion in limestone flash calcined clay cement-based concrete
Tennakoon et al. Chloride ingress and steel corrosion in geopolymer concrete based on long term tests
Sui et al. Quantification methods for chloride binding in Portland cement and limestone systems
Vedalakshmi et al. Determination of diffusion coefficient of chloride in concrete using Warburg diffusion coefficient
Zhang et al. Effects of impressed current density on corrosion induced cracking of concrete cover
Bao et al. Experimental and theoretical investigation of chloride ingress into concrete exposed to real marine environment
Zhang et al. The influence of admixture on chloride time-varying diffusivity and microstructure of concrete by low-field NMR
Poupard et al. Corrosion damage diagnosis of a reinforced concrete beam after 40 years natural exposure in marine environment
Gunay et al. Kinetics of passivation and chloride-induced depassivation of iron in simulated concrete pore solutions using electrochemical quartz crystal nanobalance
Zhu et al. Corrosion of rebar in concrete. Part II: Literature survey and statistical analysis of existing data on chloride threshold
Moradllo et al. Comparing ion diffusion in alternative cementitious materials in real time by using non-destructive X-ray imaging
Chopperla et al. Using electrical resistivity to determine the efficiency of supplementary cementitious materials to prevent alkali-silica reaction in concrete
JP5631788B2 (en) Method for predicting diffusion state of chemical species in concrete, and method for predicting corrosion occurrence time of steel in concrete using the same
KR101285328B1 (en) Measurement method for chloride in concrete using the x-ray diffraction method
Moon et al. Release of arsenic (As) and lead (Pb) from quicklime-sulfate stabilized/solidified soils under diffusion-controlled conditions
Xia et al. Cracking behaviour of restrained cementitious materials with expansive agent by comprehensive analysis of residual stress and acoustic emission signals
Chung et al. Setting and stiffening of cementitious components in Cast Stone waste form for disposal of secondary wastes from the Hanford waste treatment and immobilization plant
Souza et al. Stabilization of electric-arc furnace dust in concrete
Jin et al. Investigating the dual influence of freezing-thawing cycles and chloride ion penetration on GGBS-AEA concrete deterioration
Hauková et al. Characterisation of historic mortars for conservation diagnosis
JP4833735B2 (en) Method for the determination of magnesium sulfate in steel slag
Mori et al. A review of recent applications of EPMA to evaluate the durability of concrete
JP2011099730A (en) Method for estimating blending of mortar or concrete
Hossain Correlations between porosity, chloride diffusivity and electrical resistivity in volcanic pumice-based blended cement pastes
Delgado et al. Diagnostic of concrete samples of pile caps affected by internal swelling reactions

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee