KR20120088364A - Magnesium-based amorphous magnetic alloy - Google Patents

Magnesium-based amorphous magnetic alloy Download PDF

Info

Publication number
KR20120088364A
KR20120088364A KR1020110009663A KR20110009663A KR20120088364A KR 20120088364 A KR20120088364 A KR 20120088364A KR 1020110009663 A KR1020110009663 A KR 1020110009663A KR 20110009663 A KR20110009663 A KR 20110009663A KR 20120088364 A KR20120088364 A KR 20120088364A
Authority
KR
South Korea
Prior art keywords
magnesium
amorphous
magnetic material
amorphous alloy
rare earth
Prior art date
Application number
KR1020110009663A
Other languages
Korean (ko)
Other versions
KR101232030B1 (en
Inventor
박은수
이제인
류채우
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020110009663A priority Critical patent/KR101232030B1/en
Publication of KR20120088364A publication Critical patent/KR20120088364A/en
Application granted granted Critical
Publication of KR101232030B1 publication Critical patent/KR101232030B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/005Amorphous alloys with Mg as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE: A magnesium amorphous alloy magnetic material is provided to improve durability by providing a magnetic material of magnesium alloy series. CONSTITUTION: A general formula is Mg100-x-yAxBy(x,y is atomic weight %, 2.5<=x<=35, and 2.5<=y<=40). The A of the general formula is one or more metals selected from transition metals including Cu, Ni, Co, Zn, Al and Ag. The B is one or more elements selected from rare earth elements including Gd, Nd, Tb, Er, Dy, Ho, Tm and Sm. A manufactured magnesium amorphous alloy magnetic material has a maximum saturation magnetization value over 10emu/g.

Description

마그네슘 비정질 합금 자성재료{MAGNESIUM-BASED AMORPHOUS MAGNETIC ALLOY}Magnesium amorphous alloy magnetic material {MAGNESIUM-BASED AMORPHOUS MAGNETIC ALLOY}

본 발명은 마그네슘 비정질 합금에 관한 것으로, 더욱 자세하게는 마그네슘 비정질 합금 자성재료에 관한 것이다.The present invention relates to a magnesium amorphous alloy, and more particularly to a magnesium amorphous alloy magnetic material.

일반적으로, 금속은 상온에서 결정구조를 가진다. 즉 미세한 결정들의 집합체라고 할 수 있다. 하지만, 금속을 가열하여 액체 상태로 만든 후, 105~106K/sec 이상의 빠른 냉각 속도로 급랭하여 고체화하면, 원자들이 규칙적인 배열을 하지 못하고 무질서하게 배열된 상태의 고체가 된다. 이러한 상태를 비정질이라 하며, 결국 비정질 금속이란 구조적인 면에서 액체상태의 원자 위치를 그대로 동결시킨 것이라고 할 수 있다. 비정질 금속 재료는 종래의 금속 재료와는 상이한 전자기 및 기계적 특성이 있는 것이 밝혀지면서 다양한 연구가 진행되고 있다.In general, the metal has a crystal structure at room temperature. In other words, it is a collection of fine crystals. However, if the metal is heated to a liquid state and then quenched and solidified at a high cooling rate of 10 5 to 10 6 K / sec or more, atoms become a solid in a disordered state without regular arrangement. This state is called amorphous, and in the end, amorphous metal is a structure that freezes the atomic position of the liquid state as it is. Various studies are being conducted on the amorphous metal material as it has been found to have different electromagnetic and mechanical properties from the conventional metal material.

한편, 마그네슘 합금은 높은 비강도를 갖는 최경량의 합금이며, 진동, 충격, 전자 파동에 대한 흡진성이 뛰어나고, 전기 전도도와 열전도도 및 가공성 등이 우수하여, 경량화 소재로서 다양한 분야에서 응용되고 있다. 최근 들어 이러한 결정질 마그네슘 합금에 비하여 우수한 특성을 나타내는 것으로 알려진 마그네슘 비정질 합금을 개발하려는 노력이 계속되고 있다.On the other hand, magnesium alloy is the lightest alloy having a high specific strength, excellent in vibration, shock, and absorption of electromagnetic waves, excellent electrical conductivity, thermal conductivity and workability, etc., and has been applied in various fields as a lightweight material. Recently, efforts have been made to develop magnesium amorphous alloys which are known to exhibit superior properties as compared to such crystalline magnesium alloys.

현재 알려진 마그네슘 비정질 합금은 이원계 마그네슘 비정질 합금과 삼원계 마그네슘 비정질 합금 등이 있다. 이원계 마그네슘 비정질 합금으로는 Mg-Ca, Mg-Ni, Mg-Cu, Mg-Zn, Mg-Y 등의 계열이 있으며, 삼원계 마그네슘 비정질 합금으로 Mg-Cu-(Si, Ge, Ln, Y), Mg-Ni-(Si, Ge, Ln), Mg-Zn-(Si, Ge, Ln), Mg-Ca-(Al, Li, Si, Ge, M), Mg-Al-(Ln, Zn)등(단, Ln: 란탄계열(lanthanide), M: 전이금속원소(Ni, Cu, Zn)) 등의 합금이 있다.Currently known magnesium amorphous alloys include binary magnesium amorphous alloys and tertiary magnesium amorphous alloys. Binary magnesium amorphous alloys include Mg-Ca, Mg-Ni, Mg-Cu, Mg-Zn, Mg-Y, and others. Mg-Cu- (Si, Ge, Ln, Y) is a tertiary magnesium amorphous alloy. , Mg-Ni- (Si, Ge, Ln), Mg-Zn- (Si, Ge, Ln), Mg-Ca- (Al, Li, Si, Ge, M), Mg-Al- (Ln, Zn) Alloys such as Ln: lanthanide and M: transition metal elements (Ni, Cu, Zn).

하지만, 이러한 종래의 마그네슘 비정질 합금은 우수한 비정질 형성능과 강도 및 연신 향상과 같은 구조재료로서의 물성에 중점을 두고 개발이 진행되었으며, 마그네슘 비정질 합금의 전자기적 물성에 대한 연구 및 개발 결과를 찾아보기 어려운 실정이다.
However, these conventional magnesium amorphous alloys have been developed with an emphasis on excellent amorphous forming ability and physical properties as structural materials such as strength and extension improvement. to be.

본 발명은 전술한 것과 같이 마그네슘 비정질 합금의 새로운 기술영역을 개척하기 위한 것으로서, 전자기재료로서 사용할 수 있는 마그네슘 비정질 합금 자성재료를 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention aims at pioneering a new technical area of magnesium amorphous alloys as described above, and an object thereof is to provide a magnesium amorphous alloy magnetic material that can be used as an electromagnetic material.

상기 목적을 달성하기 위한 본 발명에 의한 마그네슘 비정질 합금 자성재료는, 일반식 Mg100-x-yAxBy(x,y는 원자량%로서 2.5≤x≤35, 2.5≤y≤40)로 표시되고, 상기 A는 Cu, Ni, Co, Zn, Al 및 Ag 을 포함하는 전이금속 중에서 선택되는 하나 이상이고, 상기 B는 희토류원소 중에서 선택되는 하나 이상이되, Gd, Nd, Tb, Er, Dy, Ho, Tm 및 Sm 을 포함하는 자성희토류원소 중에서 선택된 적어도 하나 이상을 포함하며, 최대 포화자화값이 10 emu/g 이상인 비정질 합금인 것을 특징으로 한다.Magnesium amorphous alloy magnetic material according to the present invention for achieving the above object is represented by the general formula Mg 100-xy A x B y (x, y is the atomic weight% 2.5≤x≤35, 2.5≤y≤40) , A is at least one selected from transition metals including Cu, Ni, Co, Zn, Al and Ag, and B is at least one selected from rare earth elements, Gd, Nd, Tb, Er, Dy, Ho , At least one selected from magnetic rare earth elements including Tm and Sm, and characterized in that the amorphous alloy having a maximum saturation magnetization value of 10 emu / g or more.

본 발명자는 마그네슘 비정질 합금이 갖는 구조재료로서의 물성에 더하여 전자기재료로서의 가능성에 대한 연구를 지속한 결과, 자성을 띄는 희토류원소를 포함하여 비정질화하면 자성특성을 갖는 마그네슘 합금을 제조할 수 있는 것을 확인하였다. 이때, 단순히 자성특성을 갖는 희토류원소를 포함하는 것이 아니라 비정질화하여야만 마그네슘 합금이 자성특성을 갖는다.As a result of continuing research on the potential of electromagnetic materials in addition to the physical properties of magnesium amorphous alloys, the present inventors confirmed that magnesium alloys having magnetic properties can be produced by amorphous crystals containing rare earth elements having magnetic properties. It was. At this time, the magnesium alloy has a magnetic property only by amorphous, not containing a rare earth element having magnetic properties.

본 발명의 마그네슘 비정질 합금 자성재료는 Gd, Nd, Tb, Er, Dy, Ho, Tm 및 Sm 와 같이 자성을 띄는 희토류원소가 적어도 하나 이상 포함되어야만 자성특성을 갖지만, 희토류원소는 마그네슘 합금의 비정질 형성능에도 관련이 있으므로 자성을 띄지 않는 희토류원소를 함께 사용할 수 있다.The magnesium amorphous alloy magnetic material of the present invention has magnetic properties only when at least one rare earth element having magnetic properties such as Gd, Nd, Tb, Er, Dy, Ho, Tm, and Sm has magnetic properties, but the rare earth element has the amorphous forming ability of the magnesium alloy. It is also related to, so rare earth elements with no magnetic properties can be used together.

이러한 조성의 마그네슘 비정질 합금 자성재료는 비정질 구조를 필수적으로 하고 있지만, 뛰어난 비정질 형성능을 보이는 조성의 범위와는 일치하지 않는다. 이는 마그네슘 비정질 합금 자성재료의 자성특성에 중점을 두었기 때문이며, A와 B의 함량이 많을수록 자성특성이 향상되는 반면에 용융온도가 높아져 비정질 형성이 어려워지는 단점이 있다. 따라서 비정질 형성을 위해서는 A는 35원자%를 초과하지 않아야하고, B는 40원자%를 초과하지 않아야한다.Magnesium amorphous alloy magnetic material of such a composition requires an amorphous structure, but does not coincide with a range of compositions showing excellent amorphous forming ability. This is because the focus on the magnetic properties of the magnesium amorphous alloy magnetic material, the higher the content of A and B, the higher the magnetic properties, but the higher the melting temperature has the disadvantage of difficult to form amorphous. Thus, for amorphous formation, A should not exceed 35 atomic percent and B should not exceed 40 atomic percent.

본 발명의 마그네슘 비정질 합금은 냉각조건에 따라서 다양한 형태의 비정질 시편을 제조할 수 있으며, 본 발명은 비정질 합금의 형태에 무관하다. 예를 들면, 스퍼터링 등을 이용하는 경우 박막 형태, 어토마이징을 이용하는 경우 분말형태, 멜트 스피닝 법 등을 이용하는 경우 리본 형태, 그리고 인젝션 캐스팅과 고압 주조법을 이용하는 경우는 벌크 형태의 비정질 시편을 제조할 수 있다.The magnesium amorphous alloy of the present invention can produce various types of amorphous specimens according to cooling conditions, and the present invention is independent of the amorphous alloy form. For example, in the case of using sputtering or the like, a thin film form, the use of an atomizing powder form, or the use of the melt spinning method, a ribbon form, and the injection casting and the high pressure casting method may be used to produce an amorphous specimen in the form of a bulk. .

본 발명의 다른 형태에 의한 마그네슘 비정질 합금 자성재료는, 일반식 Mg100-x-yAxBy(x,y는 원자량%로서 2.5≤x≤35, 20<y≤40)로 표시되고, 상기 A는 Cu, Ni, Co, Zn, Al 및 Ag 을 포함하는 전이금속 중에서 선택되는 하나 이상이고, 상기 B는 희토류원소 중에서 선택되는 하나 이상이되, Gd, Nd, Tb, Er, Dy, Ho, Tm 및 Sm 을 포함하는 자성희토류원소 중에서 선택된 적어도 하나 이상을 포함하는 것을 특징으로 한다.Magnesium amorphous alloy magnetic material according to another embodiment of the present invention is represented by the general formula Mg 100-xy A x B y (x, y is atomic weight% 2.5≤x≤35, 20 <y≤40) Is at least one selected from transition metals including Cu, Ni, Co, Zn, Al and Ag, wherein B is at least one selected from rare earth elements, and Gd, Nd, Tb, Er, Dy, Ho, Tm and It characterized in that it comprises at least one or more selected from the magnetic rare earth element containing Sm.

상기한 것과 같이, 희토류 원소의 함량이 많을수록 비정질 형성이 어려워지는 단점이 있으나, 최대 포화자화값이 증가하고 자기 열량 효과(magnetocaloric effect)가 나타나는 등 자성특성의 면에서만 살필 때는 희토류 원소의 함량이 20원자%를 초과하는 것이 바람직하다.As described above, the higher the content of the rare earth element, the more difficult it is to form amorphous, but when looking only in terms of the magnetic properties, such as the maximum saturation magnetization value and the magnetocaloric effect appears, the content of rare earth element is 20 Preference is given to exceeding atomic%.

이때, A가 Ni 또는 Co 이고 B가 Gd인 경우에 자성특성이 매우 뛰어나다.At this time, when A is Ni or Co and B is Gd, the magnetic properties are very excellent.

상술한 바와 같이 구성된 본 발명은, 초경량의 구조재료인 마그네슘 합금에 자성특성을 부여함으로써, 내구성이 필요한 경량의 자성소자에 적용할 수 있는 효과가 있다.The present invention configured as described above has an effect that can be applied to a lightweight magnetic element requiring durability by giving magnetic properties to a magnesium alloy which is an ultralight structural material.

또한, 내구성이 뛰어나면서도 무게가 가벼운 마그네슘 합금 계열의 자성재료를 제공함으로써, 종래에 중량 등의 문제로 인하여 자성재료를 사용하지 못하였던 새로운 적용분야를 개척할 수 있는 효과가 있다.In addition, by providing a magnesium alloy-based magnetic material with excellent durability and light weight, there is an effect that can exploit new applications that have not been used in the prior art due to problems such as weight.

도 1과 도 2는 본 발명의 실시예에 따른 마그네슘 비정질 합금 자성재료의 온도에 따른 자화(magnetization) 거동을 SQUID로 측정한 결과를 나타낸 그래프이다.
도 3은 본 발명의 실시예에 따른 마그네슘 비정질 합금 자성재료의 자기이력곡선을 나타내는 그래프이다.
도 4는 본 발명의 일 실시예에 따른 Mg60Ni15Gd25 합금이 결정질 구조인 경우와 비정질 구조인 경우의 자기이력곡선을 비교한 그래프이다.
1 and 2 are graphs showing the results of measuring the magnetization (magnetization) behavior according to the temperature of the magnesium amorphous alloy magnetic material according to an embodiment of the present invention by SQUID.
3 is a graph showing a magnetic history curve of the magnesium amorphous alloy magnetic material according to the embodiment of the present invention.
4 is a graph comparing magnetic hysteresis curves in the case where the Mg 60 Ni 15 Gd 25 alloy according to the exemplary embodiment of the present invention has a crystalline structure and an amorphous structure.

첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다.With reference to the accompanying drawings will be described embodiments of the present invention;

본 실시예에 따른 마그네슘 비정질 합금 자성재료를 제조하기 위하여, 고주파 유도용해로를 이용하여 아르곤 분위기에서 여러 가지 조성의 시료를 용해하고, 급랭하여 마그네슘 비정질 합금 시편을 제조하였으며, 제조된 마그네슘 비정질 합금의 자성특성을 확인하였다. 이때, 고융점 재료의 경우는 아크 멜팅(Arc melting을 이용하여 사전에 모합금 형태로 제조하였다.In order to manufacture the magnesium amorphous alloy magnetic material according to the present embodiment, samples of various compositions were dissolved in an argon atmosphere using a high frequency induction furnace and rapidly cooled to prepare magnesium amorphous alloy specimens. The characteristics were confirmed. In this case, in the case of a high melting point material, it was prepared in the form of a mother alloy in advance using arc melting (Arc melting).

본 실시예에 사용된 시료는 Mg에 Cu, Ni, Co, Zn, Al 및 Ag 등의 전이금속원소와 Gd, Nd, Tb, Er, Dy, Ho, Tm 및 Sm 등의 희토류원소를 혼합한 마그네슘 합금이다. 이러한 조성은 비정질 형성에 관한 경험법칙인, (1)3성분 이상의 다성분계 시스템, (2)커다란 원자반경차이, (3)음의 혼합열을 가진 원소 구성을 만족하는 구성이다. 다만, 전이금속원소와 희토류원소의 함량이 높을수록 비정질 형성능이 낮아지기 때문에 시편 제조에 주의하여야 한다.
The sample used in this example is magnesium, in which Mg is mixed with transition metal elements such as Cu, Ni, Co, Zn, Al and Ag and rare earth elements such as Gd, Nd, Tb, Er, Dy, Ho, Tm and Sm. Alloy. Such a composition satisfies an elemental composition having (1) a multicomponent system of three or more components, (2) a large atomic radius difference, and (3) a negative heat of mixing, which is a rule of thumb for amorphous formation. However, the higher the content of transition metal elements and rare earth elements, the lower the amorphous forming ability, so care must be taken in specimen preparation.

도 1과 도 2는 본 발명의 실시예에 따른 마그네슘 비정질 합금 자성재료의 온도에 따른 자화(magnetization) 거동을 SQUID로 측정한 결과를 나타낸 그래프이다.1 and 2 are graphs showing the results of measuring the magnetization (magnetization) behavior according to the temperature of the magnesium amorphous alloy magnetic material according to an embodiment of the present invention by SQUID.

도 1은 Mg65Cu25Gd10, Mg65Cu20Ag5Gd10, (Mg65Cu20Gd10)95Be5 및 Mg65Cu7.5Ni7.5Ag5Zn5Y5Gd5의 조성을 갖는 마그네슘 비정질 합금 자성재료의 온도에 따른 자화 거동을 나타낸 그래프이고, 도 2는 도 1의 자성재료에 Mg75Ni15Gd10와 Mg60Ni15Gd25의 조성을 갖는 마그네슘 비정질 합금 자성재료의 온도에 따른 자화거동을 추가한 그래프이다.1 is a magnesium amorphous having a composition of Mg 65 Cu 25 Gd 10 , Mg 65 Cu 20 Ag 5 Gd 10 , (Mg 65 Cu 20 Gd 10 ) 95 Be 5 and Mg 65 Cu 7.5 Ni 7.5 Ag 5 Zn 5 Y 5 Gd 5 Magnetization behavior according to the temperature of the alloy magnetic material, Figure 2 is a magnetization behavior of the magnesium amorphous alloy magnetic material having a composition of Mg 75 Ni 15 Gd 10 and Mg 60 Ni 15 Gd 25 in the magnetic material of FIG. The graph is added.

도 1과 도 2에 의하면, 본 실시예에 따라 제조된 상기한 조성의 마그네슘 비정질 합금 자성재료는 50K 이하의 온도에서 자성특성이 경자성특성에서 연자성특성으로 변화하는 큐리온도(Tc)를 확인할 수 있으며, 조성에 따라 자성 특성이 변하는 큐리온도 값이 변화되는 것을 확인할 수 있다. 1 and 2, the magnesium amorphous alloy magnetic material of the above-described composition prepared according to the present embodiment is to determine the Curie temperature (Tc) of the magnetic properties change from the hard magnetic properties to soft magnetic properties at a temperature of 50K or less And, it can be seen that the Curie temperature value of the magnetic properties is changed depending on the composition.

특히, Mg60Ni15Gd25의 조성을 갖는 마그네슘 비정질 합금 자성재료는 다른 조성의 자성재료에 비하여 자화의 절대값이 상대적으로 매우 크며, 큐리온도(Tc) 값이 상대적으로 높은 것을 확인 할 수 있다. In particular, the magnesium amorphous alloy magnetic material having a composition of Mg 60 Ni 15 Gd 25 has a relatively large absolute value of magnetization and a relatively high Curie temperature (Tc) value as compared to the magnetic material of other composition.

도 3은 본 발명의 실시예에 따른 마그네슘 비정질 합금 자성재료의 자기이력곡선을 나타내는 그래프이다. 도 3 내부 우측 하단의 그래프는 자기이력곡선의 중앙부를 나타내는 그래프이다.3 is a graph showing a magnetic history curve of the magnesium amorphous alloy magnetic material according to the embodiment of the present invention. 3 is a graph showing a central portion of the magnetic history curve.

제조된 마그네슘 비정질 합금 자성재료는 모두 10emu/g 이상의 최대 포화자화값을 나타냈으며, 특히 Mg60Ni15Gd25조성의 마그네슘 비정질 합금 자성재료는 50emu/g 이상의 최대 포화자화값을 나타냈다. All of the prepared magnesium amorphous alloy magnetic materials showed a maximum saturation magnetization value of 10 emu / g or more, and in particular, the magnesium amorphous alloy magnetic material of Mg 60 Ni 15 Gd 25 composition showed a maximum saturation magnetization value of 50 emu / g or more.

그리고 Mg60Ni15Gd25조성의 마그네슘 비정질 합금 자성재료는 약 10emu/g의 잔류자화값과 약 0.02T의 보자력을 나타냈다. 이상을 통하여 희토류원소가 20원자%를 초과하는 경우에 자성특성이 뛰어난 것을 확인할 수 있다.The magnesium amorphous alloy magnetic material of Mg 60 Ni 15 Gd 25 composition showed a residual magnetization value of about 10 emu / g and a coercive force of about 0.02T. Through the above, it can be confirmed that the magnetic properties are excellent when the rare earth element exceeds 20 atomic%.

도 4는 본 발명의 일 실시예에 따른 Mg60Ni15Gd25 합금이 결정질 구조인 경우와 비정질 구조인 경우의 자기이력곡선을 비교한 그래프이다. 도 4는 자기이력곡선의 중앙부를 나타낸 것이며, 도 4 내부 우측 하단의 그래프는 전체적인 자기이력곡선을 나타내는 그래프이다.4 is a graph comparing magnetic hysteresis curves in the case where the Mg 60 Ni 15 Gd 25 alloy according to the exemplary embodiment of the present invention has a crystalline structure and an amorphous structure. FIG. 4 shows a central portion of the magnetic hysteresis curve, and the graph at the lower right side of FIG. 4 is a graph showing the entire magnetic hysteresis curve.

이에 따르면, 결정질 구조의 벌크 Mg60Ni15Gd25 합금은 직선적 거동으로 자성특성을 나타내지 않는다. 반면에 벌크 비정질(BMG, bulk metallic glass) 상태의 Mg60Ni15Gd25 합금은 55emu/g가 넘는 최대 포화자화값을 가지며, 잔류자화값과 보자력을 갖는 히스테리시스 루프를 나타나는 것을 통해 자성 특성을 나타내는 것을 확인 할 수 있다. 이를 통하여, 본 실시예에 따른 마그네슘 비정잘 합금 자성재료의 자성특성은 단순히 자성을 띈 희토류원소를 첨가한 것에 의해 나타나는 특성이 아니며, 비정질 구조에 의하여 발생하는 특성임을 알 수 있다.
According to this, the bulk Mg 60 Ni 15 Gd 25 alloy of the crystalline structure does not exhibit magnetic properties due to linear behavior. On the other hand, the Mg 60 Ni 15 Gd 25 alloy in bulk metallic glass (BMG) has a maximum saturation magnetization value of more than 55 emu / g and exhibits magnetic properties by showing a hysteresis loop having residual magnetization and coercivity. You can check that. Through this, it can be seen that the magnetic properties of the magnesium amorphous alloy magnetic material according to the present embodiment are not the characteristics exhibited by simply adding a rare earth element having magnetic properties, but are generated by an amorphous structure.

이상 본 발명을 바람직한 실시예를 통하여 설명하였는데, 상술한 실시예는 본 발명의 기술적 사상을 예시적으로 설명한 것에 불과하며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화가 가능함은 이 분야에서 통상의 지식을 가진 자라면 이해할 수 있을 것이다. 따라서 본 발명의 보호범위는 특정 실시예가 아니라 특허청구범위에 기재된 사항에 의해 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상도 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.While the present invention has been described through the preferred embodiments, the above-described embodiments are merely illustrative of the technical idea of the present invention, and various changes may be made without departing from the technical idea of the present invention. Those of ordinary skill will understand. Therefore, the protection scope of the present invention should be interpreted not by the specific embodiments, but by the matters described in the claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (4)

일반식 Mg100-x-yAxBy(x,y는 원자량%로서 2.5≤x≤35, 2.5≤y≤40)로 표시되고,
상기 A는 Cu, Ni, Co, Zn, Al 및 Ag 을 포함하는 전이금속 중에서 선택되는 하나 이상이고,
상기 B는 희토류원소 중에서 선택되는 하나 이상이되, Gd, Nd, Tb, Er, Dy, Ho, Tm 및 Sm 을 포함하는 자성희토류원소 중에서 선택된 적어도 하나 이상을 포함하며,
최대 포화자화값이 10emu/g 이상인 비정질 합금인 것을 특징으로 하는 마그네슘 비정질 합금 자성재료.
General formula Mg 100-xy A x B y (x, y is expressed as atomic weight% as 2.5 ≦ x ≦ 35, 2.5 ≦ y ≦ 40),
A is at least one selected from transition metals including Cu, Ni, Co, Zn, Al and Ag,
The B is at least one selected from rare earth elements, including at least one selected from magnetic rare earth elements including Gd, Nd, Tb, Er, Dy, Ho, Tm and Sm,
Magnesium amorphous alloy magnetic material, characterized in that the amorphous alloy having a maximum saturation magnetization value of 10 emu / g or more.
일반식 Mg100-x-yAxBy(x,y는 원자량%로서 2.5≤x≤35, 20<y≤40)로 표시되고,
상기 A는 Cu, Ni, Co, Zn, Al 및 Ag 을 포함하는 전이금속 중에서 선택되는 하나 이상이고,
상기 B는 희토류원소 중에서 선택되는 하나 이상이되, Gd, Nd, Tb, Er, Dy, Ho, Tm 및 Sm 을 포함하는 자성희토류원소 중에서 선택된 적어도 하나 이상을 포함하는 것을 특징으로 하는 마그네슘 비정질 합금 자성재료.
General formula Mg 100-xy A x B y (x, y is expressed as atomic weight% as 2.5 ≦ x ≦ 35, 20 <y ≦ 40),
A is at least one selected from transition metals including Cu, Ni, Co, Zn, Al and Ag,
Wherein B is at least one selected from rare earth elements, magnesium amorphous alloy magnetic material characterized in that it comprises at least one or more selected from magnetic rare earth elements including Gd, Nd, Tb, Er, Dy, Ho, Tm and Sm .
청구항 1 또는 청구항 2에 있어서,
상기 B가 Gd인 것을 특징으로 하는 마그네슘 비정질 합금 자성재료.
The method according to claim 1 or 2,
M amorphous metal alloy material, characterized in that the B is Gd.
청구항 3에 있어서,
상기 A가 Ni 또는 Co인 것을 특징으로 하는 마그네슘 비정질 합금 자성재료.
The method according to claim 3,
A magnesium amorphous alloy magnetic material, wherein A is Ni or Co.
KR1020110009663A 2011-01-31 2011-01-31 Magnesium-based amorphous magnetic alloy KR101232030B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110009663A KR101232030B1 (en) 2011-01-31 2011-01-31 Magnesium-based amorphous magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110009663A KR101232030B1 (en) 2011-01-31 2011-01-31 Magnesium-based amorphous magnetic alloy

Publications (2)

Publication Number Publication Date
KR20120088364A true KR20120088364A (en) 2012-08-08
KR101232030B1 KR101232030B1 (en) 2013-02-12

Family

ID=46873664

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110009663A KR101232030B1 (en) 2011-01-31 2011-01-31 Magnesium-based amorphous magnetic alloy

Country Status (1)

Country Link
KR (1) KR101232030B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103602929A (en) * 2013-10-26 2014-02-26 溧阳市东大技术转移中心有限公司 Magnesium-base amorphous alloy composite material preparation method
CN105132776A (en) * 2015-08-26 2015-12-09 南昌航空大学 In-situ synthesized high-strength heat-resistant Mg-Cd-based composite material and preparation method thereof
CN110257731A (en) * 2019-06-28 2019-09-20 北京大学深圳研究院 Hypersorption Mg-Zn-Ag series non-crystalline state alloy and preparation method thereof
CN110257732A (en) * 2019-06-28 2019-09-20 北京大学深圳研究院 The medical embedded substrate of hypersorption Mg-Zn-Ag series non-crystalline state, preparation method and application
CN115519116A (en) * 2022-10-21 2022-12-27 安徽智磁新材料科技有限公司 High-biocompatibility magnesium-based amorphous alloy powder and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701029B1 (en) * 2005-06-14 2007-03-29 연세대학교 산학협력단 Magnesium Based Metallic Glasses with Enhanced Ductility

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103602929A (en) * 2013-10-26 2014-02-26 溧阳市东大技术转移中心有限公司 Magnesium-base amorphous alloy composite material preparation method
CN105132776A (en) * 2015-08-26 2015-12-09 南昌航空大学 In-situ synthesized high-strength heat-resistant Mg-Cd-based composite material and preparation method thereof
CN110257731A (en) * 2019-06-28 2019-09-20 北京大学深圳研究院 Hypersorption Mg-Zn-Ag series non-crystalline state alloy and preparation method thereof
CN110257732A (en) * 2019-06-28 2019-09-20 北京大学深圳研究院 The medical embedded substrate of hypersorption Mg-Zn-Ag series non-crystalline state, preparation method and application
CN115519116A (en) * 2022-10-21 2022-12-27 安徽智磁新材料科技有限公司 High-biocompatibility magnesium-based amorphous alloy powder and preparation method thereof

Also Published As

Publication number Publication date
KR101232030B1 (en) 2013-02-12

Similar Documents

Publication Publication Date Title
Song et al. Synthesis of ferromagnetic Fe-based bulk glassy alloys in the Fe–Nb–B–Y system
Jiao et al. Effects of alloying elements on glass formation, mechanical and soft-magnetic properties of Fe-based metallic glasses
Löffler Bulk metallic glasses
Poon et al. Glass formability of ferrous-and aluminum-based structural metallic alloys
KR101232030B1 (en) Magnesium-based amorphous magnetic alloy
Xu et al. Effects of Co substitution for Fe on the glass forming ability and properties of Fe80P13C7 bulk metallic glasses
Zhian et al. Effect of yttrium substitution on magnetic properties and microstructure of Nd-Y-Fe-B nanocomposite magnets
Li et al. Synthesis of bulk glassy Fe–C–Si–B–P–Ga alloys with high glass-forming ability and good soft-magnetic properties
Li et al. Effect of similar element substitution on Fe-B-Si-Mo bulk metallic glasses studied by experiment and ab initio molecular dynamics simulation
Wang et al. Fabrication of Fe-based bulk metallic glasses from low-purity industrial raw materials
Saito et al. Magnetic properties of Sm–Fe–Ti nanocomposite magnets with a ThMn12 structure
Lee et al. Excellent thermal stability and bulk glass forming ability of Fe-B-Nb-Y soft magnetic metallic glass
Chen et al. Gd–Co–Al and Gd–Ni–Al bulk metallic glasses with high glass forming ability and good mechanical properties
Wang et al. Effect of B to P concentration ratio on glass-forming ability and soft-magnetic properties in [(Fe0. 5Ni0. 5) 0.78 B0. 22− xPx] 97Nb3 glassy alloys
Zhang et al. Magnetic properties and magnetocaloric effect of FeCrNbYB metallic glasses with high glass-forming ability
Ding et al. Excellent glass forming ability and refrigeration capacity of a Gd55Al18Ni25Sn2 bulk metallic glass
Wang et al. FeNiPBNb bulk glassy alloys with good soft-magnetic properties
Sharma et al. Temperature and magnetic field induced strain in Ni50Mn34In16 alloy
Stoica et al. Bulk amorphous FeCrMoGaPCB: Preparation and magnetic properties
Chen et al. Influence of annealing treatment on soft magnetic properties of Fe76Si10B10Cr2Y2 amorphous ribbon
Zanaeva et al. Crystallization and its kinetics of soft magnetic (Fe1− xNix) 79B12P5Si3C1 glassy alloy ribbons
Zhanwei et al. Effect of Y addition on crystallization behavior and soft-magnetic properties of Fe78Si9B13 ribbons
Li et al. Glass formation and soft magnetic properties in Dy-containing Fe–Si–B alloys by adjusting B/Si mole ratio
Qiu et al. Glass-forming ability and thermal stability of Nd70− xFe20Al10Yx alloys
Geng et al. Fabrication and soft magnetic properties of Fe–B–Si–Zr/Hf–Cu nanocrystalline alloys with high glass-forming ability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160112

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170123

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180129

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee