KR20120086416A - Electric thermal storage air-conditioning heat pump apparatus - Google Patents

Electric thermal storage air-conditioning heat pump apparatus Download PDF

Info

Publication number
KR20120086416A
KR20120086416A KR1020110007622A KR20110007622A KR20120086416A KR 20120086416 A KR20120086416 A KR 20120086416A KR 1020110007622 A KR1020110007622 A KR 1020110007622A KR 20110007622 A KR20110007622 A KR 20110007622A KR 20120086416 A KR20120086416 A KR 20120086416A
Authority
KR
South Korea
Prior art keywords
heat
storage tank
hot water
heat exchanger
heating
Prior art date
Application number
KR1020110007622A
Other languages
Korean (ko)
Inventor
김종석
이종석
Original Assignee
김종석
이종석
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김종석, 이종석 filed Critical 김종석
Priority to KR1020110007622A priority Critical patent/KR20120086416A/en
Publication of KR20120086416A publication Critical patent/KR20120086416A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • F24D3/082Hot water storage tanks specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/02Increasing the heating capacity of a reversible cycle during cold outdoor conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE: A heating and cooling heat pump system in an electric-storage type is provided to improve heating efficiency by constantly generating heat even in the cold weather. CONSTITUTION: A heating and cooling heat pump system in an electric-storage type comprises a condensation heat exchanger(2), a thermal storage tank(6), and a hot water storage tank(3). The condensation heat exchanger heat exchanges refrigerants with anti-freeze while the refrigerants pass through an evaporation heat exchanger(5). The thermal storage tank comprises a heater(7), which heats the anti-freeze. The thermal storage tank provides evaporation heat sources. The hot water storage tank comprises a water supply valve connected to cold water. A hot water temperature control valve(11) is installed under a lower part of the hot water storage tank. The hot water temperature control valve discharges the hot water and supplies the cold water in a cooling mode.

Description

전기축열식 냉난방 히트펌프장치{Electric thermal storage air-conditioning heat pump apparatus}Electric thermal storage air-conditioning heat pump apparatus

본 발명은 전기축열식 냉난방 히트펌프장치에 관한 것으로서, 더욱 상세하게는 히트펌프 증발열원을 전기 히터만을 이용 축열조에 저장 후 히트펌프 냉방 및 난방 부하에 따라 축열조의 저장된 열원으로부터 증발열을 취득하여 히트펌프를 가동하는 장치이며, -10℃ 이하의 혹한기에 증발열원 부족으로 인한 증발 및 압축효율의 저하에 의한 가동이 곤란했던 공기열원 히트펌프 등 종래의 히트펌프에 비해 일정하게 축열된 열매체의 열량을 순환 공급함으로써, 겨울철에는 -5℃ ~ -20℃ 이하의 혹한기에도 아무런 영향없이 냉매의 안정된 증발이 이루어져 온수생산이 가능하고 간절기 및 여름철에도 냉, 온수를 동시에 생산 일정한 효율로 운전되어 냉방 및 난방에 지장이 없으므로 종래의 공기열 방식을 이용한 히트펌프에 비하여 겨울철 날씨의 영향을 전혀 받지 않고 난방효율이 증대되는 전기축열식 냉난방 히트펌프장치에 관한 것이다.The present invention relates to an electric heat storage air-conditioning heat pump device, and more particularly, a heat pump evaporation heat source is stored in a heat storage tank using only an electric heater, and the evaporation heat is obtained from the heat source stored in the heat storage tank according to the heat pump cooling and heating load. It is a device that operates and circulates and supplies heat quantity of heat medium which is uniformly stored compared with conventional heat pumps such as air heat source heat pump, which was difficult to operate due to deterioration of evaporation and compression efficiency due to lack of evaporation heat source in cold weather below -10 ℃. Thus, in winter, stable evaporation of refrigerant is possible without any influence in cold weather below -5 ℃ ~ -20 ℃, and hot water production is possible. Both cold and hot water are produced at the same time during summer and summer. Therefore, compared to the heat pump using the conventional air heat method, the effect of the weather in winter Without tongue relates to an electric heat storage air conditioning heat pump system that heating efficiency is increased.

종래에 특허출원 제10-2003-0053324호 및 제10-2003-0066432호 등에서 보면 히트펌프 냉난방기에 있어서 대체로 냉방의 수행은 원활하나 난방시엔 외기의 습도가 특별히 많은 날씨와 외기가 영하와 영상을 반복하는 이슬점의 기후에는 온도차에 의해 외부 공냉식 증발기에 과다한 적상이 발생되어 효율이 나지않아 과다 에너지 낭비를 가져왔고, 또한 수열원 히트펌프의 경우 지하수 및 공급수의 부족현상이 발생되어 원할한 히트펌프 가동에 제한이 있어 왔으며, 지열원 히트펌프의 경우 배관을 지하에 다수개 매설하는 관계로 인하여 설치후 2 ~ 3년후 부터는 지중 스케일등의 영향으로 효율이 반감되어 가동의 제한이 있어왔다.Conventional Patent Application Nos. 10-2003-0053324 and 10-2003-0066432 show that heat pump air conditioners generally perform smooth cooling, but during heating, weather and outside air, where humidity is particularly high, repeat images below zero and images. In the climate of the dew point, excessive dropping occurs in the external air-cooled evaporator due to the temperature difference, resulting in excessive energy waste due to inefficiency, and in the case of the heat source heat pump, there is a shortage of ground water and supply water, so that a smooth heat pump is operated. In the case of geothermal heat heat pumps, since the pipes are buried underground, two to three years after installation, efficiency has been reduced by the effects of underground scales, which has limited operation.

결국 항상 일정하고 안정된 열원을 확보하여야 효율좋은 히트펌프를 가동하는데 문제가 없었는데, 특히 공기열 히트펌프에서 보듯이 7℃이상의 외기온도에서는 마력당 3,000kcal/hr 이상 열량을 생산할 수 있어 대단히 효율이 좋았으나 -10℃ 이하의 외기온도 하에서는 공기열원 히트펌프의 경우 외부 증발열교환기에 과다한 적상이 발생되어 영상 7℃에서의 생산열량 대비 55% 이하로 반감되어 전력 소모량 대비 COP.효율이 1.4이하로 되고 생산 열량이 줄어든 원인에 의해 결국엔 난방효율 EEP.가 저하되는 단점이 있다. 결국 마력당 1,000 ~ 1,500kcal/hr 이하로 열량이 생산되므로 보조설비 가동 전력량까지 합하면 COP는 1.0정도 밖엔 될 수 없어 골칫덩이로 전락하였고, 특히 고장이 잦아 경제성 없는 장비로 소비자들로부터 외면을 받는 등 문제점이 있었다.In the end, there was no problem in operating an efficient heat pump only when a constant and stable heat source was secured. Especially, as shown in the air heat heat pump, it was able to produce more than 3,000 kcal / hr of calories per horsepower at an outside air temperature of 7 ° C or more. Under the ambient temperature of -10 ℃ or less, excessive heat build-up occurs in the external evaporative heat exchanger in the case of the air heat source heat pump, which is halved to less than 55% of the heat output of the image at 7 ℃, resulting in less than 1.4 COP. Due to the reduced cause, the heating efficiency EEP. Eventually decreases. Eventually, the amount of heat produced is less than 1,000 ~ 1,500kcal / hr per horsepower, so the sum of the operating power of the auxiliary equipment can only be about 1.0, and the COP has fallen into troublesome bones. There was a problem.

종래의 히트펌프는 주위여건의 영향으로 제열량이 안나오므로 농업용 비닐하우스 같은 곳의 경우 장비용량을 과다 설계하거나 보조히터를 장착하므로 결국 난방효율이 저하되는 등의 한계가 있었다.Conventional heat pump has no limit of heat removal due to the influence of the ambient conditions, so in the case of an agricultural vinyl house, there is a limit such as excessive design of the equipment capacity or the installation of an auxiliary heater, resulting in lower heating efficiency.

본 발명은 종래의 히트펌프 문제점을 개선하기 위해 개발한 것으로서, 본 발명의 목적은 종래의 히트펌프보다는 년평균 25%정도 생산열량은 저감되나 혹한기 등의 영향을 받지 않고 일정한 열량을 생산하여 난방 효율을 개선하였고, 또한 종래의 전기히터 보일러 보다 30 ~ 40% 열량이 더 생산되어 사용전력을 30%이상 줄이게 되어 전체 전력 사용량을 줄이게 되는 효과를 가져오는 전기축열식 냉난방 히트펌프장치를 제공함에 있다.The present invention was developed to improve the problem of the conventional heat pump, the object of the present invention is less than the average heat production of 25% annual heat than the conventional heat pump, but produces a constant heat quantity without being affected by cold weather, heating efficiency In addition, it is also to provide an electric heat-cooled heating and cooling heat pump device that has the effect of reducing the total power consumption by 30 to 40% more heat than the conventional electric heater boiler to produce more than 30% heat.

본 발명은 -10℃ 이하의 혹한기에 증발열원 부족으로 인한 압축효율의 저하를 막고자 전기히터를 이용한 축열조를 신설하여 이의 열매체가 증발열교환기로 순환되면서 증발열원으로 사용되도록 하되, 압축기와 전기히터가 동시에 가동되는데 따른 전기 누진세를 감안하여 난방부하가 상대적으로 작은 오전시간대(숙박업소) 또는 심야시간대(학교나 공공기관)에는 상기 압축기와 전기히터를 교대로 가동시켜 전기료를 절감하는 전기축열식 냉난방 히트펌프장치를 제공함에 있다. The present invention is to establish a heat storage tank using an electric heater to prevent the deterioration of the compression efficiency due to lack of evaporation heat source in cold weather below -10 ℃ to allow the heat medium to be used as the evaporation heat source while being circulated to the evaporation heat exchanger, the compressor and the electric heater Electric regenerative air-conditioning heat pump that saves electricity by alternately operating the compressor and the electric heater in the morning time (hospital) or the late night time (school or public institution) with relatively low heating load in consideration of the electricity progress due to the simultaneous operation. In providing a device.

이를 위하여 본 발명은 압축 열량에 비해 증발열량은 65 ~ 70%인 점에 착안하여 증발에 필요한 열원을 시간으로 환산 축열 하고 기본 전력부하를 줄이기 위해 전기히터를 이용한 열매체의 축열시에는 압축기는 가동되지 않고 압축기의 용량과 같은 상기 전기히터만 작동되어 축열 하고, 축열이 끝나면 상기 압축기만을 가동하여 축열조의 열원을 이용하여 열량을 생산한 뒤 온수저장조에 저장 하고, 히트펌프 가동이 끝나면 다시 상기 전기히터를 가동시켜 항상 일정한 열량을 축열조에 저장하여 두어 증발부하 열원을 항상 보충함으로써, 1시간축열, 1시간 히트펌프 가동형식 또는 난방조건에 따라 시간대별로 연속 가동하는 형식으로 운전되어 안정된 냉난방 히트펌프운전이 되도록 한 특징이 있다.To this end, the present invention focuses on the fact that the amount of evaporation heat is 65 to 70% compared to the amount of compressed heat, and the heat source required for evaporation is converted and stored in time, and the compressor is not operated during the heat storage of the heat medium using the electric heater to reduce the basic power load. Only the electric heater, such as the capacity of the compressor, is operated to accumulate, and when the heat storage is completed, only the compressor is operated to produce heat using the heat source of the heat storage tank, and then store the heat in the hot water storage tank. It keeps a constant amount of heat in the heat storage tank so that it always replenishes the heat source of evaporation load, so that it is operated in the form of 1 hour heat storage, 1 hour heat pump operation or continuous operation by time zone according to heating conditions to ensure stable heating and cooling heat pump operation. There is one characteristic.

본 발명에 따르면 온수 및 온풍과 냉수 및 냉풍을 생산하는 히트펌프에 있어서 실외 공기열원의 영향을 받지 않고 히트펌프 가동을 할 수 있게 되었으며 난방시엔 전기 1kw가 전기히터에 입력되면 1,150kcal 정도의 열량이 축열조에 발생되어 COP 1.3정도를 년중 유지하게 되며, 냉방시엔 열매체인 부동액이 충진된 축열조의 온도를 -5℃ 까지 내릴수 있어 이를 냉수 공급펌프로 실내기 유니트에 공급하면 냉방효과가 크게 개선되어 냉방효율을 높일 수 있다. 작동 시그널에서 냉방 운전시엔 난방에 필요한 온수저장조의 물 온도를 온수 목표 온도 이하로 항상 유지시키는 온수온도 조절변이 구비되어 상수도와 연결된 보충수로 온수온도를 조절하는 간편한 구성으로 인하여 냉난방 동시 생산이 가능한 효과를 볼 수 있었다.According to the present invention, in a heat pump producing hot water, hot air, cold water and cold air, the heat pump can be operated without being influenced by an outdoor air heat source. When heating 1kw of electricity, the amount of heat of about 1,150 kcal is input. It is generated in the heat storage tank and maintains the COP 1.3 level throughout the year. When cooling, the temperature of the heat storage tank filled with anti-freeze fluid filled can be lowered to -5 ℃. When this is supplied to the indoor unit with a cold water supply pump, the cooling effect is greatly improved and cooling efficiency is improved. It can increase. When operating cooling in the operation signal, the hot water temperature control valve keeps the water temperature of the hot water storage tank required for heating below the hot water target temperature at all times. Could see.

본 발명을 이용하여 1000평 비닐 하우스에 적용시 월간 유류비는 800 ~ 900만원소요 되는데 반해 전기축열식 히트펌프는 200만원 이하에서도 운전이 가능해 졌고 특히 동종 히트펌프 장비가격 대비 60% 이상을 줄일 수 있어 소비자 부담을 덜게 되었으며, 항상 65℃ 이상의 고온수가 온수저장조에 일정량 생산되어 난방효율 면에서는 타 히트펌프 대비 30%이상의 효과를 가져왔을 뿐만아니라 고장 수리비 등 유지비용 또한 크게 줄이게 되는 효과를 가져왔다.When applied to a 1000 pyeong plastic house using the present invention, the monthly oil cost is 800 ~ 9 million won, whereas the electric heat pump is able to operate even under 2 million won, in particular, it can reduce more than 60% compared to the price of the same type of heat pumps consumers In addition, the amount of hot water above 65 ℃ is always produced in a hot water storage tank, resulting in more than 30% of the heating efficiency compared to other heat pumps, as well as significantly reducing maintenance costs such as troubleshooting costs.

또한 축열조는 실외에 설치할 필요가 없으므로 종래와 같은 실외기가 없어 설치 공간이 자유로우며 소형까지도 고효율 난방용 히트펌프를 생산 공급할 수 있게 되었고 축열조에 저장된 열량을 일정하게 증발열교환기로 공급하여 냉매는 늘 일정한 압력 이상으로 압축기에 흡입되므로 사이클이 항상 안정되어 히트펌프 운전을 수행하게 된다.In addition, since the heat storage tank does not need to be installed outdoors, the installation space is free because there is no outdoor unit as in the prior art, and it is possible to produce and supply a high-efficiency heating heat pump even for a small size. In this case, the cycle is always stabilized and the heat pump is operated.

상기 축열조는 부동액이 70℃ 이상 되면 자동으로 전원이 차단되고 난방 열량 혹은 냉방 열량이 목표에 도달되면 히트펌프의 가동 전원도 차단되며 자동 온도센서에 의해 모든 장치는 연동된다. 종래 공기열원 5마력급 히트펌프의 경우 혹한기 -10℃에서 7.0KWH 에서 7,800kcal/h가 생산되어 COP 1.29 정도이나 동급 전기축열식 히트펌프의 경우 COP 1.3 이상을 항상 유지하게 되고 열량은 13,500kcal/hr을 8시간 생산하게 되어 난방시 열량 부족에 의한 효과 저감을 방지할 수 있게 되었다. The heat storage tank is automatically powered off when the antifreeze is 70 ℃ or more, and the heating power or cooling power of the heat pump is also shut off when the target heat amount of heating or cooling heat is reached, all devices are interlocked by the automatic temperature sensor. Conventional air heat source 5 horsepower heat pump is produced 7,800kcal / h at 7.0KWH in cold weather -10 ℃ and maintains COP 1.29 or COP 1.3 or higher at all times in the same class electric heat storage heat pump and heat quantity is 13,500kcal / hr It will be produced for 8 hours to prevent the reduction of effect due to lack of heat during heating.

외기온도가 영상의 기온으로 올라가면 종래 공기열원 히트펌프는 COP가 2.8이상 증가하지만 상대적으로 외기온도가 올라가면 난방 부하가 줄어 들어 COP가 증대 하더라도 효과는 크지 않게 되므로 소비자의 입장에서 볼때 항상 일정한 열량을 토출하는 히트펌프를 요구하게 되는데, 본 발명의 상기 전기히터 축열조를 이용한 히트펌프는 외기에 관계없이 항상 일정한 열량을 생산하는 이점이 있으며, 압축기의 냉매 압력이 일정하므로 장치의 소손방지 및 내구성의 증대 등 비교적 안정된 사이클이 구성되는 등의 효과도 있다.When the outside air temperature rises to the image temperature, the conventional air heat source heat pump increases the COP by 2.8 or more.However, when the outside air temperature increases, the heating load decreases, so that even if the COP increases, the effect is not large. The heat pump using the electric heater heat storage tank of the present invention has the advantage of producing a constant amount of heat at all times regardless of the outside air, the refrigerant pressure of the compressor is constant, preventing the burnout of the device and increase the durability, etc. There are also effects, such as a relatively stable cycle.

도 1은 본 발명 한 실시예의 히트펌프장치의 개념도
도 2는 본 발명 다른 실시예의 히트펌프장치의 개념도
1 is a conceptual diagram of a heat pump apparatus according to an embodiment of the present invention;
2 is a conceptual diagram of a heat pump device according to another embodiment of the present invention;

도 1에서 본 발명 한 실시예는 R-22냉매를 22kg/㎠ 내외의 압력 및 75℃ 내외의 온도로 토출하는 압축기(1), 압축된 고온고압의 냉매로 온수저장조(6)의 물을 65℃내외의 온수로 만들어 주는 응축열교환기(2), 상기 응축열교환기(2)와 연결되어 응축된 냉매를 기체상태로 팽창시키는 팽창변(4), 그리고 축열조(6)의 부동액 열원과 수열교환 방식으로 열교환되어 냉매를 증발시키는 증발열교환기(5)로 구성된다. 상기 온수저장조(3)는 온수펌프(10)를 통하여 상기 응축열교환기(2)로 온수를 순환시켜 난방시 지속적인 열교환이 일어나도록 하는 것이며, 상부에는 보충수밸브(12)가 구비되고 하부에는 온수온도조절변(11)이 각각 구비되어 냉방시 온수온도를 난방시 필요한 온수온도 이하로 낮춘다. 이를 위하여 상기 온수온도조절변(11)이 온수온도에 따라 자동으로 개폐되면 상수도와 연결된 보충수밸브(12)가 개폐되므로 냉수가 온수저장조(3)에 유입되어 온수온도가 조절된다.In the embodiment of the present invention in Figure 1 is a compressor (1) for discharging the R-22 refrigerant at a pressure of about 22kg / ㎠ and a temperature of about 75 ℃, the water of the hot water storage tank (6) as a compressed high-temperature high-pressure refrigerant 65 Condensation heat exchanger (2) for making hot water inside and outside the ℃, expansion valve (4) connected to the condensation heat exchanger (2) to expand the condensed refrigerant in a gas state, and heat exchange with the antifreeze heat source of the heat storage tank (6) And an evaporation heat exchanger (5) for evaporating the refrigerant. The hot water storage tank (3) is to circulate the hot water to the condensation heat exchanger (2) through the hot water pump 10 so that the continuous heat exchange occurs during heating, the upper side is provided with a supplemental water valve 12 and the lower part of the hot water temperature The control valve 11 is provided to lower the hot water temperature at the time of cooling to below the hot water temperature required for heating. To this end, when the hot water temperature control valve 11 is automatically opened and closed according to the hot water temperature, since the supplemental water valve 12 connected to the water supply is opened and closed, cold water flows into the hot water storage tank 3 to control the hot water temperature.

상기 축열조(6)는 전기로 발열되는 히터(7)와 보조히터(8)가 각각 구비된다. 상기 히터(7)는 상기 축열조(6)의 부동액을 70℃ 까지 끌어올려 최대 난방부하시 필요한 증발열원을 제공하는 역할을 하며, 보조히터(8)는 부동액을 20℃ 까지 유지시켜 최소난방부하시 필요한 증발열원을 제공하는 역할을 한다. 그리고 축열공급펌프(9)가 구비되어 축열조(6)의 부동액을 증발열교환기(5)로 순환시킨다.The heat storage tank 6 is provided with a heater 7 and an auxiliary heater 8 which generate electricity by electricity. The heater 7 serves to provide the evaporative heat source required for the maximum heating load by raising the antifreeze of the heat storage tank 6 to 70 ℃, the auxiliary heater (8) to maintain the antifreeze to 20 ℃ to the minimum heating load It serves to provide the necessary evaporative heat source. And a heat storage supply pump 9 is provided to circulate the antifreeze of the heat storage tank 6 to the evaporation heat exchanger (5).

이처럼 구성된 본 발명 한 실시예의 히트펌프는 상기 압축기(1)에서 75℃ 내외의 냉매가 토출되므로 응축열교환기(2)와 열교환되는 온수저장조(6)는 65℃ 내외의 온수생산이 가능해진다. 온수를 생산한 응축열교환기(2)에서 토출되는 냉매는 약 62℃ 내외가 되는데, 상기 팽창변(4)에서 팽창된 뒤 증발열교환기(5)로 순환된다. 상기 축열조(6)는 히터(7) 및 보조히터(8)가 각각 구비되어 축열조(6)의 부동액을 최대 70℃ 까지 유지시키므로 -10℃ 이하의 혹한기에서도 상기 증발열교환기(5)로 순환되는 냉매의 증발에 필요한 열량을 외기와 관계없이 충분히 공급해주므로 냉매는 원활히 증발되어 압축기(1)로 순환되는 안정된 사이클이 형성된다.Since the heat pump according to the embodiment of the present invention configured as described above discharges refrigerant around 75 ° C. from the compressor 1, the hot water storage tank 6 which is heat-exchanged with the condensation heat exchanger 2 can produce hot water around 65 ° C. The refrigerant discharged from the condensation heat exchanger (2) that produces hot water is about 62 ° C. The refrigerant is expanded in the expansion valve (4) and then circulated to the evaporation heat exchanger (5). The heat storage tank 6 is provided with a heater 7 and an auxiliary heater 8, respectively, to maintain the antifreeze of the heat storage tank 6 up to 70 ° C, so that the refrigerant circulated to the evaporation heat exchanger 5 even in cold weather below -10 ° C Since a sufficient amount of heat required for evaporation of air is supplied irrespective of outside air, a stable cycle in which the refrigerant evaporates smoothly and circulates to the compressor 1 is formed.

본 발명은 난방시 상기 온수저장조(3)의 온수를 실내 팬코일유니트로 순환시키거나 또는 바닥난방의 경우 바닥 온수배관으로 순환시켜 난방을 수행하는 것은 일반적인 기술이다. 단지 냉방시 상기 축열조(6)의 히터(7) 및 보조히터(8) 가동을 정지시키고 상기 증발열교환기(5)로 축열조(6)의 부동액을 순환시켜 -5℃가 되도록 한 뒤 이 저온 부동액을 실내 팬코일유니트로 순환시켜 냉방이 수행되도록 한 것이며, 이때 상기 온수저장조(3)는 온수온도조절변(11) 및 보충수밸브(12)를 개방시켜 상수도의 냉수가 온수저장조(3)로 계속 유입되어 냉매의 응축에 따른 온수온도의 증가를 막는다.In the present invention, it is a general technique to circulate hot water in the hot water storage tank 3 to an indoor fan coil unit during heating or to circulate water to a bottom hot water pipe in the case of floor heating. When cooling only, the heater 7 and the auxiliary heater 8 of the heat storage tank 6 are stopped and the antifreeze liquid of the heat storage tank 6 is circulated to the evaporation heat exchanger 5 so that the low temperature antifreeze is Cooling is performed by circulating to the indoor fan coil unit, wherein the hot water storage tank 3 opens the hot water temperature control valve 11 and the supplemental water valve 12 to continue the cold water of the tap water to the hot water storage tank 3. It prevents the increase of hot water temperature due to the condensation of refrigerant.

도 2는 본 발명 다른 실시예로써, 축열조(6)와 증발열교환기(5)의 사이에 폐열교환기(13)가 더 구비된 특징이 있다. 상기 폐열교환기(13)의 경우 샤워나 목욕후 버려지는 온수를 회수하여 냉매의 증발보조열원으로 사용하거나 또는 지역 공장에서 버려지는 폐열을 회수하여 사용할 수 있으므로 히터(7)의 전력소모를 줄이는 효과가 있다.2 is another embodiment of the present invention, the waste heat exchanger 13 between the heat storage tank 6 and the evaporation heat exchanger (5) is further characterized. In the case of the waste heat exchanger 13, the hot water discarded after the shower or bath can be used as an evaporation auxiliary heat source of the refrigerant or the waste heat discarded at the local factory can be used to recover the power consumption of the heater 7. have.

1 : 압축기 2 : 응축열교환기
3 : 온수저장조 4 : 팽창변
5 : 증발열교환기 6 : 축열조
7 : 히터 8 : 보조히터
9 : 축열공급펌프 10 : 온수펌프
11 : 온수온도조절변 12 : 보충수밸브
13 : 폐열교환기
1: Compressor 2: Condensation Heat Exchanger
3: hot water storage tank 4: expansion valve
5: evaporative heat exchanger 6: heat storage tank
7: heater 8: auxiliary heater
9: heat storage supply pump 10: hot water pump
11: hot water temperature control valve 12: replenishment water valve
13: waste heat exchanger

Claims (3)

압축기에서 토출된 냉매가 응축열교환기를 거치는 과정에서 온수저장조의 물과 열교환되어 난방시 온수를 생산하고,
상기 응축열교환기에서 토출된 냉매는 팽창변을 지나 증발열교환기를 거치면서 축열조의 부동액과 열교환되는데,
상기 축열조에는 난방시 부동액을 전기로 가열하는 히터가 구비되어 냉매의 증발열원을 제공하여 -10℃ 이하의 혹한기에도 냉매의 증발이 원활히 이루어져 사이클이 안정되게 유지되도록 한 것을 특징으로 하는 전기축열식 냉난방 히트펌프장치.
The refrigerant discharged from the compressor exchanges heat with the water in the hot water storage tank while passing through the condensation heat exchanger to produce hot water during heating.
The refrigerant discharged from the condensation heat exchanger exchanges heat with the antifreeze of the heat storage tank while passing through the expansion valve and passing through the evaporation heat exchanger.
The heat storage tank is provided with a heater for heating the antifreeze with electricity to provide an evaporation heat source of the refrigerant to facilitate the evaporation of the refrigerant even in cold weather below -10 ℃ to keep the cycle stable stably heat Pump device.
제 1 항에 있어서,
상기 온수저장조에는 상부에 냉수와 연결된 보충수밸브가 구비되고, 하부에 온수온도조절변이 각각 구비되어 냉방시 상기 온수저장조의 온수를 배출하고 냉수를 급수하여 상기 응축열교환기로 순환되는 온수의 급격한 온도변화가 방지되도록 하고,
냉방시 상기 축열조는 히터의 가동을 정지시키고 부동액을 상기 증발열교환기로 순환시켜 -5℃ 까지의 냉방열원으로 사용하도록 한 것을 특징으로 하는 전기축열식 냉난방 히트펌프장치.
The method of claim 1,
The hot water storage tank is provided with a supplementary water valve connected to cold water in the upper portion, and a hot water temperature control valve is provided in the lower portion to discharge the hot water of the hot water storage tank when cooling, and supply the cold water to the cold water to circulate to the condensation heat exchanger. To prevent change,
The heat storage tank is an electric heat storage heating and cooling pump, characterized in that to stop the operation of the heater and circulate the antifreeze to the evaporation heat exchanger to use as a cooling heat source up to -5 ℃.
제 2 항에 있어서,
상기 축열조에는 보조히터가 더 구비되어, 상기 히터와 교대로 부동액을 가열시키되, 난방부하가 적은 시간대에는 상기 보조히터를 가동하고, 또한 상기 압축기와 히터를 교대로 운전하여 동시운전에 따른 전기누진세를 경감하도록 한 것을 특징으로 하는 전기축열식 냉난방 히트펌프장치.
The method of claim 2,
The heat storage tank is further provided with an auxiliary heater to alternately heat the antifreeze with the heater, and operate the auxiliary heater during a time when the heating load is low, and also by alternately driving the compressor and the heater to achieve an electric progressive power due to simultaneous operation. Electric regenerative air-conditioning heat pump device characterized in that to reduce.
KR1020110007622A 2011-01-26 2011-01-26 Electric thermal storage air-conditioning heat pump apparatus KR20120086416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110007622A KR20120086416A (en) 2011-01-26 2011-01-26 Electric thermal storage air-conditioning heat pump apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110007622A KR20120086416A (en) 2011-01-26 2011-01-26 Electric thermal storage air-conditioning heat pump apparatus

Publications (1)

Publication Number Publication Date
KR20120086416A true KR20120086416A (en) 2012-08-03

Family

ID=46872219

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110007622A KR20120086416A (en) 2011-01-26 2011-01-26 Electric thermal storage air-conditioning heat pump apparatus

Country Status (1)

Country Link
KR (1) KR20120086416A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497772B1 (en) * 2012-12-31 2015-03-05 고려대학교 산학협력단 Heat Exchanging System
CN105066514A (en) * 2015-08-31 2015-11-18 佛山市南海聚腾环保设备有限公司 Heat pump power regeneration system
CN106152850A (en) * 2016-08-29 2016-11-23 镇江市三维电加热器有限公司 Molten salt energy-storage, heat exchange and intelligence control system
CN108895526A (en) * 2018-07-03 2018-11-27 上海电力学院 A kind of electric heat storage formula heating system
CN112378113A (en) * 2020-10-29 2021-02-19 北京京仪自动化装备技术有限公司 Semiconductor temperature control device and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497772B1 (en) * 2012-12-31 2015-03-05 고려대학교 산학협력단 Heat Exchanging System
CN105066514A (en) * 2015-08-31 2015-11-18 佛山市南海聚腾环保设备有限公司 Heat pump power regeneration system
CN106152850A (en) * 2016-08-29 2016-11-23 镇江市三维电加热器有限公司 Molten salt energy-storage, heat exchange and intelligence control system
CN108895526A (en) * 2018-07-03 2018-11-27 上海电力学院 A kind of electric heat storage formula heating system
CN112378113A (en) * 2020-10-29 2021-02-19 北京京仪自动化装备技术有限公司 Semiconductor temperature control device and method

Similar Documents

Publication Publication Date Title
Osterman et al. Review on compression heat pump systems with thermal energy storage for heating and cooling of buildings
US7617697B2 (en) In-ground geothermal heat pump system
US7827814B2 (en) Geothermal water heater
Zogou et al. Effect of climatic conditions on the design optimization of heat pump systems for space heating and cooling
JP2015511700A (en) Heat pump system using latent heat
CN103398505B (en) A kind of associating heat pump and solar water HVAC system
US20200386447A1 (en) Heat pump management of low-grade-heat in buildings
KR20120086416A (en) Electric thermal storage air-conditioning heat pump apparatus
CN108870598A (en) A kind of separate heat pipe energy-storage air conditioner system
KR20170009580A (en) Solar generating zero house system
KR101454756B1 (en) Heat storaging apparatus having cascade cycle and Control process of the same
US20150338137A1 (en) Method for controlling an integrated cooling and heating facility
KR101096615B1 (en) Hybrid type heat pump system
KR101171763B1 (en) Gas driven heatpump system with the combined heat source
KR101454282B1 (en) Storage heat pump system with compensated heat source
KR101459514B1 (en) Building structures for axis column expression heat pump airconditioning, heating system
KR101150659B1 (en) Refrigeration and air-conditioning system for ice rink using deep seawater
Pilou et al. Towards a 100% renewable energy share for heating and cooling in office buildings with solar and geothermal energy
EP3594588B1 (en) Geothermal heat pump device
JP6164537B2 (en) Cold / heat generator
Stene et al. Field Measurements–Heat Pump Systems in NZEB
KR101547875B1 (en) Cooling-heating system by double pond
KR101308028B1 (en) Thermal energy sharing system for multi buildings
Surroop et al. Technical and economic assessment of seawater air conditioning in hotels
Urchueguia Shallow geothermal and ambient heat technologies for renewable heating

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application