KR20120086182A - Method of hydrogen production using photosynthetic bacteria - Google Patents

Method of hydrogen production using photosynthetic bacteria Download PDF

Info

Publication number
KR20120086182A
KR20120086182A KR1020110007482A KR20110007482A KR20120086182A KR 20120086182 A KR20120086182 A KR 20120086182A KR 1020110007482 A KR1020110007482 A KR 1020110007482A KR 20110007482 A KR20110007482 A KR 20110007482A KR 20120086182 A KR20120086182 A KR 20120086182A
Authority
KR
South Korea
Prior art keywords
hydrogen production
initial
sphaeroides
hydrogen
dcw
Prior art date
Application number
KR1020110007482A
Other languages
Korean (ko)
Other versions
KR101220922B1 (en
Inventor
김미선
김동훈
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020110007482A priority Critical patent/KR101220922B1/en
Publication of KR20120086182A publication Critical patent/KR20120086182A/en
Application granted granted Critical
Publication of KR101220922B1 publication Critical patent/KR101220922B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/27Retrofit light sources for lighting devices with two fittings for each light source, e.g. for substitution of fluorescent tubes
    • F21K9/275Details of bases or housings, i.e. the parts between the light-generating element and the end caps; Arrangement of components within bases or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/0075Fastening of light sources or lamp holders of tubular light sources, e.g. ring-shaped fluorescent light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/06Arrangement of electric circuit elements in or on lighting devices the elements being coupling devices, e.g. connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R33/00Coupling devices specially adapted for supporting apparatus and having one part acting as a holder providing support and electrical connection via a counterpart which is structurally associated with the apparatus, e.g. lamp holders; Separate parts thereof
    • H01R33/05Two-pole devices
    • H01R33/06Two-pole devices with two current-carrying pins, blades or analogous contacts, having their axes parallel to each other
    • H01R33/08Two-pole devices with two current-carrying pins, blades or analogous contacts, having their axes parallel to each other for supporting tubular fluorescent lamp
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S362/00Illumination
    • Y10S362/80Light emitting diode

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE: A method for producing hydrogen using condition-optimized Rhodobacter sphaeroides KD131 is provided to maximize hydrogen productivity. CONSTITUTION: A method for producing hydrogen using Rhodobacter sphaeroides KD131 comprises a step of culturing Rhodobacter sphaeroides KD131 using succinate as a carbon source and (NH_2)_4SO_4 or glutamate as a nitrogen source. The initial concentration and pH of the bacteria is 0.45 g dcw/l-0.67 g dcw/l and pH 6-7.

Description

광합성 세균을 이용한 수소 생산방법{METHOD OF HYDROGEN PRODUCTION USING PHOTOSYNTHETIC BACTERIA}Hydrogen production method using photosynthetic bacteria {METHOD OF HYDROGEN PRODUCTION USING PHOTOSYNTHETIC BACTERIA}

본 발명은 수소 생산방법에 관한 것으로, 보다 상세하게는 로도박터 스페로이데스(Rhodobacter sphaeroides) KD131의 수소생산을 증진시키기 위한 방법에 관한 것이다.The present invention relates to a method for producing hydrogen, and more particularly, Rhodobacter sphaeroides ) relates to a method for enhancing the hydrogen production of KD131.

현대 산업의 구조는 화학공업의 원료 물질과 에너지원의 대부분을 화석 연료에 의존할 수밖에 없다. 1970년대 에너지 위기 이후 화석연료를 대체할 수 있는 에너지로서 수소생산 연구가 본격적으로 시작되었다. The structure of modern industry has to rely on fossil fuels for most of its raw materials and energy sources. Since the 1970s energy crisis, research on hydrogen production began in earnest as an alternative to fossil fuels.

현재까지 상용화된 수소제조 기술은 주로 석유나 천연가스 수증기 개질반응에 의하여 제조되거나 원유 정제공정 및 제철소 부산가스로부터 주로 얻어지고 있다. 그러나 화석연료의 부존성 및 편재성에 의한 국가간 긴장과 지구 환경 오염 등의 심각한 문제 때문에 장차 궁극적인 수소제조 기술은 태양광, 수력, 풍력, 미생물과 같은 청정기술을 이용하여 물이나 폐자원을 활용하는 환경 친화적인 기술로 수소를 제조해야 할 것으로 전망하고 있다. To date, commercially available hydrogen production technology is mainly produced by steam reforming of petroleum or natural gas, or is mainly obtained from crude oil refining process and steel mill by-product gas. However, due to serious problems such as international tension and the global environmental pollution caused by the absence and ubiquity of fossil fuels, the ultimate hydrogen production technology will utilize water or waste resources using clean technologies such as solar, hydro, wind and microorganisms. It is anticipated that hydrogen should be produced using environmentally friendly technologies.

태양광을 이용하고, 물로부터 수소를 생산할 수 있는 미생물 기술은 이와 같은 화석연료의 단점을 보완할 수 있는 기술이다. 미생물이 갖는 수소생산 기작은 기질의 종류 및 미생물 고유의 효소계, 광원의 유무에 의해 달라진다. Microbial technology that can use sunlight and produce hydrogen from water is a technology that can compensate for the disadvantages of such fossil fuel. The mechanism of hydrogen production of microorganisms varies depending on the type of substrate, the enzyme system, and the presence of a light source inherent in the microorganism.

수소를 생산하는 미생물은 광합성 세균, 조류 혐기성세균, 고세균 등으로 구분되며 이 연구에서 주목해야할 균이 광합성 세균이다. 광합성 세균은 다시 홍색비유황세균(purple non-sulfur bacteria), 홍색유황세균(puple sulfur bacteria) 및 녹색유황세균(green sulfur bacteria)로 나눠진다. Hydrogen-producing microorganisms are classified into photosynthetic bacteria, algal anaerobes and archaea, and the bacteria to be noted in this study are photosynthetic bacteria. Photosynthetic bacteria are further divided into purple non-sulfur bacteria, puple sulfur bacteria and green sulfur bacteria.

이중 홍색비유황세균은 유기물로부터 전자를 얻고, 광합성 반응에 의해서 수소를 생산하며, 일반적으로 유기화합물이 함유되어 있으면서 H2S가 존재하지 않거나 미량 존재하는 담수의 호수나 연못에서 서식한다. 홍색비유황세균은 수소생산성이 다른 그룹보다 좋고, 이러한 다양성 때문에 기질 이용 효율에 차이는 있지만 단당류, 이당류 및 각종 유기산을 모두 배양기질로 사용할 수 있다. Among them, the red non-sulfur bacteria obtain electrons from organic materials and produce hydrogen by photosynthetic reaction, and generally live in lakes or ponds of fresh water containing organic compounds and containing little or no H 2 S. The red non-sulfur bacterium has better hydrogen productivity than other groups, and because of this diversity, monosaccharides, disaccharides, and various organic acids can all be used as a culture substrate.

홍색비유황세균중에서도 로도박터(Rhodobacter) 속은 박테리오 클로로필이라고 불리우는 자체의 붉은 색소가 있어 장파장의 빛을 받아 전자전달 기작에 의해 질소 고정화를 수행한다. 질소 고정화에 관여하는 최종 효소는 나이트로게나아제(nitrogenase)인데, 질소원의 농도가 높으면 나이트로게나아제는 주반응인 질소고정과정을 거치며 균체성장이 활발해지며, 주변에 질소, 암모니아, 암모늄이온(NH4 +) 등의 질소원이 존재하지 않을 때는 양성자(H+)를 수소(H2)로 환원하는 반응을 수행하여 수소가스를 발생한다. Rhodobacter genus Rhodobacter genus has its own red pigment called bacterio chlorophyll, and it receives long wavelengths of light and performs nitrogen fixation by electron transfer mechanism. The final enzyme involved in nitrogen immobilization is nitrogenase. When the concentration of nitrogen source is high, nitrogenase undergoes the nitrogen fixation process, which is the main reaction, and the cell growth is active, and nitrogen, ammonia and ammonium ion ( When no nitrogen source such as NH 4 + ) is present, hydrogen gas is generated by reducing the proton (H + ) to hydrogen (H 2 ).

현재 다양한 기질과 폐기물을 이용한 Rhodobacter sphaeroides O.U.001, R. sphaeroides RV, R. sphaeroides ZX-5, R. sphaeroides NRLLB-1727, R. sphaeroides SCJ, R. sphaeroides SH2C, R. sphaeroides DSZM-158의 수소생산 연구가 활발히 진행되고 있다. Rhodobacter currently uses a variety of substrates and waste sphaeroides OU001, R. sphaeroides RV, R. sphaeroides ZX-5, R. sphaeroides NRLLB-1727, R. sphaeroides SCJ, R. sphaeroides SH2C, R. sphaeroides Research on hydrogen production of DSZM-158 is being actively conducted.

그러나 현재까지 알려진 로도박터 속 미생물의 수소생산능력에는 한계가 있다.However, the hydrogen production capacity of microorganisms in Rhodobacter is known until now.

본 발명은 배양조건을 최적화한 광합성 세균의 수소 생산방법을 제공하는데 목적이 있다. It is an object of the present invention to provide a method for producing hydrogen in photosynthetic bacteria with optimized culture conditions.

보다 구체적으로 본 발명은 로도박터 스페로이데스(Rhodobacter sphaeroides) KD131을 이용한 수소 생산방법을 제공하는데 목적이 있다.More specifically, an object of the present invention is to provide a hydrogen production method using Rhodobacter sphaeroides ( Rhodobacter sphaeroides ) KD131.

상기와 같은 목적을 달성하기 위해, 본 발명은 수소생산을 증진시키기 위해 로도박터 스페로이데스(Rhodobacter sphaeroides) KD131을 이용한 수소 생산방법을 제공한다. In order to achieve the above object, the present invention is Rhodobacter sphaeroides (Rhodobacter to enhance hydrogen production sphaeroides ) provides a method for producing hydrogen using KD131.

보다 구체적으로 본 발명은 0.40 g dcw/l 내지 1.14 g dcw/l 의 초기 균체 농도 및 6 내지 8의 초기 pH에서 숙시네이트를 탄소원으로, (NH2)4SO4 및 글루타메이트 중의 1 이상을 질소원으로 하여 로도박터 스페로이데스(R. sphaeroides) KD131을 배양하는 것을 특징으로 하는 로도박터 스페로이데스(R. sphaeroides) KD131을 이용한 수소 생산방법을 제공한다.More specifically, the present invention relates to Rhodobacter using succinate as a carbon source and at least one of (NH2) 4SO4 and glutamate as a nitrogen source at an initial cell concentration of 0.40 g dcw / l to 1.14 g dcw / l and an initial pH of 6 to 8. sphaeroides (R. sphaeroides) provides a hydrogen production method using the bakteo sphaeroides (R. sphaeroides) also KD131 wherein KD131 culturing.

본 발명에 따르면 배양조건의 최적화를 통해 로도박터 스페로이데스(R. sphaeroides) KD131의 수소생산능력을 극대화시킬 수 있다.According to the present invention it is possible to maximize the hydrogen production capacity of Rhodobacter spheroroides ( R. sphaeroides ) KD131 through the optimization of the culture conditions.

도 1은 로도박터 스페로이데스(R. sphaeroides) KD131의 수소생산에 대한 초기 균체 농도의 영향을 나타낸다.
도 2는 숙시네이트 30 mM 배지에서 로도박터 스페로이데스(R. sphaeroides) KD131의 수소생산에 대한 (NH4)2SO4 (a)와 글루타메이트 (b) 의 영향을 나타낸다 (● 0 mM, ◐: 2 mM, △: 4 mM, ▼ 8 mM, ◇: 16 mM, ■: 32 mM, □ 64 mM).
도 3은 숙시네이트 30 mM 배지에서 로도박터 스페로이데스(R. sphaeroides) KD131의 수소생산에 대한 (NH4)2SO4 4 mM (a) 와 글루타메이트 8 mM (b)의 영향을 나타낸다 (▨: 누적수소생산량, ●: pH, △: 균체성장, ▼ NH3-N).
Figure 1 shows the effect of the initial cell concentration on the hydrogen production of R. sphaeroides (D. sphaeroides ) KD131.
FIG. 2 shows the effect of (NH 4 ) 2 SO 4 (a) and glutamate (b) on hydrogen production of R. sphaeroides KD131 in succinate 30 mM medium (• 0 mM, ◐ : 2 mM, Δ: 4 mM, ▼ 8 mM, ◇: 16 mM, ■: 32 mM, □ 64 mM).
Figure 3 shows the effect of (NH 4 ) 2 SO 4 4 mM (a) and glutamate 8 mM (b) on the hydrogen production of R. sphaeroides KD131 in succinate 30 mM medium (▨ : Cumulative hydrogen production, ●: pH, △: cell growth, ▼ NH 3 -N).

이하, 본 발명의 구성 및 작용을 상세히 설명한다.Hereinafter, the configuration and operation of the present invention will be described in detail.

본 발명의 광합성 세균의 수소 생산방법은 초기 균체 농도, 초기 pH, 탄소원 및 질소원 등의 배양조건을 최적화한 것을 특징으로 한다.Hydrogen production method of photosynthetic bacteria of the present invention is characterized by optimizing the culture conditions such as initial cell concentration, initial pH, carbon source and nitrogen source.

보다 구체적으로 본 발명의 광합성 세균의 수소 생산방법은 0.40 g dcw/l 내지 1.14 g dcw/l 의 초기 균체 농도 및 6 내지 8의 초기 pH에서 숙시네이트를 탄소원으로, (NH2)4SO4 또는 글루타메이트 중의 1 이상을 질소원으로 하여 로도박터 스페로이데스(R. sphaeroides) KD131 을 배양하는 것을 특징으로 한다.More specifically, the method for producing hydrogen in photosynthetic bacteria of the present invention comprises succinate as a carbon source at an initial cell concentration of 0.40 g dcw / l to 1.14 g dcw / l, and an initial pH of 6 to 8, 1 in (NH 2) 4 SO 4 or glutamate. Rhodobacter speroroides ( R. sphaeroides ) KD131 is characterized in that the above as a nitrogen source.

상기 초기 균체 농도가 0.40 g dcw/l 미만인 경우에는 수소생산이 지연되고, 1.14 g dcw/l 이상인 경우에는 균체 뭉침 현상이 일어나 균 스스로 그림자(self shading effect)를 만들어 광저해(photo-inhibition)가 나타나 빛과 기질의 이용성을 저하시켜 수소생산이 감소될 수 있다. 보다 바람직하게는 상기 초기 균체 농도는 0.45 g dcw/l 내지 0.67 g dcw/l 이다.When the initial cell concentration is less than 0.40 g dcw / l, hydrogen production is delayed, and when the initial cell concentration is above 1.14 g dcw / l, cell aggregation occurs, resulting in a self shading effect of the bacteria and thus photo-inhibition. This may reduce the availability of light and substrates, thereby reducing hydrogen production. More preferably, the initial cell concentration is 0.45 g dcw / l to 0.67 g dcw / l.

본 발명의 광합성 세균의 수소 생산방법에서 초기 pH가 8을 초과하는 경우에는 나이트로게나아제의 생산성이 저해되고 업테이크 하이드로게나아제(uptake hydrogenase)가 활성화되기 때문에, 수소생산이 감소될 수 있다. 보다 바람직하게는 상기 초기 pH는 6 ~ 7이다.When the initial pH exceeds 8 in the hydrogen production method of photosynthetic bacteria of the present invention, since the productivity of nitrogenase is inhibited and the uptake hydrogenase is activated, hydrogen production may be reduced. More preferably, the initial pH is 6-7.

본 발명에서 광합성 균주로 사용되는 로도박터 스페로이데스 KD131은 배양기질로 탄소원인 숙시네이트로부터 전자를 얻고, 광합성 반응에 의해 수소를 생산한다. Rhodobacter spheroides KD131 used as a photosynthetic strain in the present invention obtains electrons from succinate, which is a carbon source, as a culture substrate, and produces hydrogen by photosynthesis.

본 발명에서는 로도박터 스페로이데스 KD131의 성장을 위해 (NH2)4SO4 또는 글루타메이트를 질소원으로 배지에 첨가한다.In the present invention, (NH 2) 4 SO 4 or glutamate is added to the medium as a nitrogen source for the growth of Rhodobacter spheroides KD131.

본 발명에서는 로도박터 스페로이데스 K131의 배양시 C/N 비는 11.56 내지 14.14 (w/w) 로 유지하는 것을 특징으로 한다.
In the present invention, the C / N ratio is maintained at 11.56 to 14.14 (w / w) during the culture of Rhodobacter spheroides K131.

이하, 실시예에 의거하여 본 발명을 더욱 상세하게 설명하나, 하기 실시예는 본 발명을 예시하기 위한 것이며 본 발명의 내용을 한정하는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are provided to illustrate the present invention and do not limit the content of the present invention.

균의 분리 및 배양Isolation and cultivation of bacteria

광합성 균주인 로도박터 스페로이데스(Rhodobacter sphaeroides) KD131을 대부도 해안에서 채집하여 분리하였다. 배지로 4 mM (NH2)4SO4, 0.3 mM L-아스파트산, 30 mM 숙신산(pH 7)이 함유된 수정 시스트롬(sistrom) 배지를 이용하였다. Photosynthetic strain Rhodobacter sphaeroides ) KD131 was collected from the coast of Daebudo Island and isolated. As a medium, a modified sistrom medium containing 4 mM (NH 2) 4 SO 4, 0.3 mM L-aspartic acid, and 30 mM succinic acid (pH 7) was used.

150 ml 시럼 병(serum bottle)에 50 ~ 70 ml가량 배양액을 넣어주고 균을 접종 시킨 후, 고무마개와 알루미늄 캡을 씌워 알곤 가스로 치환하였다. 50 to 70 ml of the culture solution was put in a 150 ml serum bottle and inoculated with bacteria, and then replaced with argon gas by using a rubber stopper and an aluminum cap.

치환 후 할로겐 램프로 110 W/m2 세기의 빛을 주면서 30 ℃에서 24시간 동안 배양했으며, 자기교반기를 이용하여 80 ~ 100 rpm으로 교반해주었다. After substitution was incubated for 24 hours at 30 ℃ giving a light of 110 W / m 2 with a halogen lamp, and stirred at 80 ~ 100 rpm using a magnetic stirrer.

반사광을 최대한 이용하기 위해서 배양기 후면에 거울을 배치하였다.
Mirrors were placed at the rear of the incubator to make the best use of the reflected light.

분석 방법Analysis method

유기산 분석은 0.01 M H2SO4를 이동상으로 하여 0.6 ㎕/min의 유속으로 용출하였으며, Aminex HPX-B7H를 장착한 HPLC(Shimadzu LC-10AT)를 사용하여 30℃에서 UV 검출기를 이용해 파장 210 nm에서 측정하였다.The organic acid analysis was eluted at a flow rate of 0.6 μl / min using 0.01 MH 2 SO 4 as a mobile phase, and HPLC (Shimadzu LC-10AT) equipped with Aminex HPX-B7H at 30 ° C. using a UV detector at a wavelength of 210 nm. Measured.

수소함량은 가스 크로마토그래피(Shimazu 14-B)로 분석하였다. 분자체 5A(Molecular sieve 5A(Supelco Inc.))를 충진물질로 사용하였고, 열전도도 검출기(TCD)로 분석하였다. 수소가스 정량을 위한 GC조건은 컬럼 온도 80℃, 인젝터 온도 100℃, 디텍터 온도 120℃이다. 캐리어 가스는 아르곤으로 60 ml/min의 유속을 유지하였다.
Hydrogen content was analyzed by gas chromatography (Shimazu 14-B). Molecular sieve 5A (Supelco Inc.) was used as a filler and analyzed by a thermal conductivity detector (TCD). GC conditions for hydrogen gas quantification are column temperature 80 ° C, injector temperature 100 ° C, and detector temperature 120 ° C. The carrier gas maintained a flow rate of 60 ml / min with argon.

실험예Experimental Example 1: 초기 균체 농도의 영향 1: Influence of initial cell concentration

초기 균체의 농도를 0.04, 0.27, 0.56, 1.14 g dcw/l (660 nm의 흡광도 0.1, 0.5, 1, 2)로 설정하여, 30 mM 말레이트와 8 mM L- 글루타메이트가 함유된 배지 중에서 분리균을 배양하였다. The initial cell concentrations were set to 0.04, 0.27, 0.56, 1.14 g dcw / l (absorbance at 0.1 nm, 0.5, 1, 2 at 660 nm) to isolate bacteria in medium containing 30 mM malate and 8 mM L-glutamate. Was cultured.

각각의 초기 균체 농도 별로 시간에 따른 수소생산량을 도 1에 나타냈다. 초기 0.56, 1.14 g dcw/l 일 경우 광합성 배양 2 ~ 2.5시간 후부터 수소가 생산되기 시작되는 반면, 이보다 초기 균체 농도가 낮을 때에는 수소생산이 광합성 배양 7시간까지 지연됐다.Hydrogen production with time for each initial cell concentration is shown in FIG. 1. At the initial 0.56 and 1.14 g dcw / l, hydrogen production started after 2 to 2.5 hours of photosynthetic culture, while hydrogen production was delayed to 7 hours of photosynthetic culture at lower initial cell concentrations.

광합성 배양 33 ~ 48시간 내에 누적 수소 생산량은 최대에 이르렀고, 그 후에는 점차 수소생산 속도가 떨어졌다. The cumulative hydrogen production reached its maximum within 33 to 48 hours of photosynthetic culture, and then gradually decreased.

결과적으로 초기 균체 농도 0.56 g dcw/l 까지는 초기 균체 농도가 증가할수록 누적 수소 생산량은 비례하며 증가하였지만, 초기 균체 농도 1.14 g dcw/l 와 0.56 g dcw/l 의 수소생산량은 차이가 거의 없었다. As a result, the cumulative hydrogen production increased proportionally with the initial cell concentration up to 0.56 g dcw / l, but there was little difference in the hydrogen production between the initial cell concentrations of 1.14 g dcw / l and 0.56 g dcw / l.

따라서 균체의 높은 농도는 오히려 수소생산에 적절하지 못하며, 초기 균체 농도가 0.56 g dcw/l 일 때 가장 수소생산에 효율적이었다. Therefore, the high cell concentration was not suitable for hydrogen production, and was most efficient for hydrogen production when the initial cell concentration was 0.56 g dcw / l.

이후의 실험에서는 초기 균체 농도를 0.56 g dcw/l로 맞춰 주었다.
In subsequent experiments, the initial cell concentration was set at 0.56 g dcw / l.

실험예Experimental Example 2: 초기  2: initial pHpH 의 영향Influence of

초기 pH가 수소생산과 균체 성장 등에 미치는 영향을 알아보기 위해 초기 pH를 6, 7, 8, 9로 맞추어 실험하여 그 결과를 표 1에 나타냈다. 광발효 48시간 경과시점이 수소생산속도가 최대였고, 이 후에는 수소생산속도가 감소하였다. In order to determine the effect of the initial pH to hydrogen production and cell growth, the experiment was adjusted to the initial pH of 6, 7, 8, 9 and the results are shown in Table 1. At 48 hours after photo-fermentation, the hydrogen production rate was the maximum, after which the hydrogen production rate decreased.

표 1에서 보는 바와 같이, 탄소원으로 말레이트, 질소원으로 글루타메이트를 이용한 배지에서 초기 pH를 7로 맞추어 배양한 경우, 광발효 120시간 후 1044 ml H2/l-배지 로 수소를 가장 많이 생산하였다.
As shown in Table 1, when the initial pH was adjusted to 7 in a medium using maleate as a carbon source and glutamate as a nitrogen source, hydrogen was most produced by 1044 ml H 2 / l- medium after 120 hours of photo fermentation.

초기 pH에 따른 영향Initial pH Effect 항목Item 광발효 시간 (h)Photo Fermentation Time (h) 초기 pHInitial pH 6.06.0 7.07.0 8.08.0 9.09.0
세포 성장 (OD660)

Cell Growth (OD 660 )
2424 2.92.9 2.72.7 2.52.5 2.02.0
4848 3.53.5 3.23.2 2.92.9 2.32.3 120120 3.13.1 2.92.9 2.72.7 2.22.2 누적 수소 생산량
(ml H2/l-배지)
Cumulative Hydrogen Production
(ml H 2 / l- medium)
2424 364.0364.0 608.0608.0 432.0432.0 300.0300.0
4848 506.0506.0 942.0942.0 442.0442.0 314.0314.0 120120 552.0552.0 1044.01044.0 458.0458.0 316.0316.0
탄소 기질의 분해 (%)

Degradation of Carbon Substrate (%)
2424 54.054.0 67.367.3 48.048.0 27.027.0
4848 81.281.2 86.786.7 59.059.0 31.031.0 120120 91.091.0 93.193.1 67.067.0 38.038.0
최종 pH

Final pH
2424 7.27.2 7.67.6 8.38.3 8.88.8
4848 7.57.5 7.87.8 8.48.4 8.88.8 120120 7.97.9 8.08.0 8.58.5 8.98.9

결과적으로 수소생산량은 광발효 120시간 후에 초기pH 7>6>8>9 순으로 많았으며, 초기 pH 7 일 때 수소생산량이 초기 pH 6, 8일 때의 수소생산량보다 2배 정도 많았다. As a result, the hydrogen production was higher in the order of pH 7> 6> 8> 9 after 120 hours of photo-fermentation, and the hydrogen production at the initial pH 7 was about twice that of the initial pH 6 and 8.

또한 균체농도는 배양 48시간 후에 최적이었으며, 초기pH 6>7>8>9 순으로 높았고, 초기pH 6일 때 흡광도3.5 (660 nm 파장에서 측정)로 가장 높은 값을 나타냈다.In addition, the cell concentration was optimal after 48 hours of incubation, and the highest pH was in the order of 6> 7> 8> 9, and the highest value was the absorbance of 3.5 (measured at 660 nm wavelength) at the initial pH of 6.

균체가 최적으로 성장하기 위해서는 초기pH 6이 적합 조건이었고, 수소생산량의 최적조건은 초기 pH 7.0이었다.In order for the cells to grow optimally, initial pH 6 was a suitable condition, and the optimum condition of hydrogen production was initial pH 7.0.

또한 광발효 120시간 후, 초기 pH 6 ~ 7일 때 90% 이상의 말레이트가 분해된 것에 비해 초기 pH 9일 때는 38%의 분해율을 보였다.
In addition, after 120 hours of photo-fermentation, more than 90% of the malate was decomposed at the initial pH of 6-7, compared to 38% at the initial pH of 9.

실험예Experimental Example 3:  3: 탄소원의Carbon source 영향 effect

탄소원으로 말레이트(4탄당), 숙시네이트(4탄당), 포르메이트(1탄당)를 각각 사용하였고, 질소원은 각 탄소원의 경우 모두 8 mM 글루타메이트를 사용하였다. 또한 초기 균체 농도는 0.56 g dcw/l, 초기 pH는 7로 각각 맞춰주었다. 말레이트와 숙시네이트는 30, 60 mM, 포르메이트는 30, 60, 120, 240 mM의 농도로 배양액을 만들고, C/N 비에 맞추어 48시간 배양을 진행하여 그 결과를 표 2에 나타냈다.
As the carbon source, maleate (octane sugar), succinate (octane sugar) and formate (monose sugar) were used, respectively, and for the carbon source, 8 mM glutamate was used for each carbon source. In addition, the initial cell concentration was 0.56 g dcw / l, the initial pH was set to 7. The maleate and succinate were 30, 60 mM, and formate were prepared in a concentration of 30, 60, 120, 240 mM, and the culture was performed for 48 hours according to the C / N ratio, and the results are shown in Table 2.

탄소원에 따른 영향Impact of Carbon Sources 기질temperament 농도
(mM)
density
(mM)
C/N 비
(w/w)
C / N ratio
(w / w)
H2 총량
(ml/l-배지)
H 2 Total amount
(ml / l-medium)
세포 농도
(g dcw/l)
Cell concentration
(g dcw / l)
기질 분해
(%)
Substrate decomposition
(%)
H2 생산효율
(mol H2/mol 기질)
H 2 production efficiency
(mol H 2 / mol substrate)
기질 전환율
(%)
Substrate conversion
(%)
말레이트Malrate 3030 12.8612.86 1098.61098.6 2.802.80 83.2083.20 1.971.97 32.732.7 6060 25.7125.71 364.8364.8 2.392.39 31.0031.00 1.751.75 29.229.2 숙시네이트
Succinate
3030 12.8612.86 1482.01482.0 2.252.25 67.0067.00 3.293.29 46.246.2
6060 25.7125.71 1259.61259.6 1.811.81 41.3141.31 2.272.27 32.432.4 포르메이트Formate 3030 3.223.22 17.217.2 1.441.44 29.4629.46 -- -- 6060 6.436.43 14.814.8 1.451.45 18.0118.01 -- -- 120120 12.8612.86 21.821.8 1.451.45 12.1212.12 -- -- 240240 25.7125.71 25.425.4 1.401.40 7.427.42 -- --

그 결과 광발효48시간 후 말레이트와 숙시네이트가 각각 30 mM포함된 배지에서, 30 mM의 포르메이트가 포함된 배지에서보다 균체 성장이 각각 1.94, 1.56배 높게 나타났다.As a result, after 48 hours of photo-fermentation, cell growth was 1.94 and 1.56 times higher in the medium containing 30 mM maleate and succinate, respectively, than in the medium containing 30 mM formate.

또한 30 mM의 말레이트 배지에서 균체농도는 광발효 48시간 후, 2.80 g dcw/l인 가장 높은 농도로 성장했으며, 숙시네이트와 동일한 조건일 때 보다 1.24배 높았다.The cell concentration was increased to the highest concentration of 2.80 g dcw / l after 48 hours of photo-fermentation, and 1.24 times higher than that of succinate.

반면 광발효 48시간 후 누적 수소생산량은 30 mM 말레이트 배지와 비교해 볼때 30 mM 숙시네이트 배지에서 1.35배 높은 것으로 나타났다. On the other hand, cumulative hydrogen production after 48 hours of photo fermentation was 1.35 times higher in 30 mM succinate medium compared to 30 mM malate medium.

숙시네이트 배지에서의 수소생산효율이 말레이트 배지보다 각각 1.67배 (30 mM 첨가 실험), 1.30배 (60 mM 첨가 실험) 높았으며, 최대 수소생산효율은 3.29 mol H2/mol 기질 로 나타났고, SCE(substrate conversion efficiency: 기질전환율)가 46.2%로 나타났다.The hydrogen production efficiency in succinate medium was 1.67 times (30 mM addition experiment) and 1.30 times (60 mM addition experiment) higher than maleate medium, and the maximum hydrogen production efficiency was 3.29 mol H2 / mol substrate. (substrate conversion efficiency) was 46.2%.

따라서 로도박터 스페로이데스KD131의 수소 생산에 사용되는 배지에는 탄소원으로 숙시네이트가 포함되는 것이 바람직하다는 것을 알 수 있었다.Therefore, it was found that succinate is preferably included as a carbon source in the medium used for hydrogen production of Rhodobacter spheroides KD131.

숙시네이트와 말레이트에서 누적수소생산량, 수소생산효율, SCE를 30 mM 와 60 mM의 농도로 비교해볼 때, 로도박터 스페로이데스KD131은 30 mM 에서 최적의 수소생산효율을 보였으며, C/N 비는 12.85 (w/w)이었다.
Comparing the cumulative hydrogen production, hydrogen production efficiency, and SCE between 30 mM and 60 mM in succinate and malate, Rhodobacter spheroides KD131 showed optimal hydrogen production efficiency at 30 mM and C / N. The ratio was 12.85 (w / w).

실험예Experimental Example 4: 질소원의 영향 4: Influence of nitrogen source

탄소원으로 숙시네이트, 질소원으로는 (NH2)4SO4 또는 글루타메이트가 함유된 pH 7의 배지를 사용하였다.A medium of pH 7 containing succinate as the carbon source and (NH 2) 4 SO 4 or glutamate as the nitrogen source was used.

암모늄 이온의 농도는 HS-NH3(N)-L와 HS-NH3(N)-H(Humas Co.)를 사용하여 측정했다. The concentration of ammonium ion was measured using HS-NH 3 (N) -L and HS-NH 3 (N) -H (Humas Co.).

1) (NH2)4SO4의 영향1) Influence of (NH2) 4SO4

(NH2)4SO4의 초기 농도를 0, 2, 4, 8, 16, 32 mM로 설정하여 실험하였고, 광발효동안 로도박터 스페로이데스 KD131가 이용한 암모늄 이온의 농도와 누적수소생산량을 도 2에 나타냈다. The initial concentration of (NH2) 4SO4 was set to 0, 2, 4, 8, 16 and 32 mM, and the concentrations of ammonium ions and cumulative hydrogen production used by Rhodobacter spheroides KD131 during light fermentation are shown in FIG. .

초기 농도 0, 2, 4 mM (NH2)4SO4에서 48 시간 경과시 각각 1.21, 1.16, 0.81 l H2/l-배지 의 수소를 생산했다. 또한 초기 농도 8 mM (NH2)4SO4를 질소원으로 사용할 경우 0.0003 l H2/l-배지 의 수소를 생산하였고, 초기 농도 16, 32 mM (NH2)4SO4에서는 수소를 생산하지 않았다. 결과적으로 (NH4)2SO4의 초기 농도가 낮을수록 누적 수소 생산량이 많았다. At 48, elapsed 48 hours at the initial concentrations of 0, 2 and 4 mM (NH2) 4SO4, hydrogen was produced at 1.21, 1.16 and 0.81 l H 2 / l- medium, respectively. In addition, when the initial concentration of 8 mM (NH2) 4SO4 was used as the nitrogen source, hydrogen was produced at 0.0003 l H2 / l- medium, and no hydrogen was produced at the initial concentration of 16 and 32 mM (NH2) 4SO4. As a result, the lower the initial concentration of (NH4) 2SO4, the higher the cumulative hydrogen production.

초기 (NH2)4SO4의 농도가 높을수록 수소생산이 지연되는 현상은 가역적이어서 일단 암모늄 이온이 제거되면 그 활성을 회복하여 수소생산을 수행한다. The higher the initial concentration of (NH2) 4SO4, the more prolonged hydrogen production is reversible. Once the ammonium ion is removed, its activity is restored to perform hydrogen production.

초기 농도 2, 4, 8 mM의 (NH2)4SO4이 주어졌을 때 각각 16, 24, 70 시간에 수소생산이 시작된 것은 수소생산이 암모늄이온이 균체성장과 다른 대사활성에 모두 사용된 후 시작되기 때문이다.
Given the initial concentrations of 2, 4, and 8 mM (NH2) 4SO4, hydrogen production began at 16, 24, and 70 hours, respectively, because hydrogen production begins after ammonium ion is used for both cell growth and other metabolic activity. to be.

2) 글루타메이트의 영향2) Effect of Glutamate

로도박터 스페로이데스 KD131은 글루타메이트 배지에서 자라면서 (NH4)2SO4 배지와 비교할 때 1.4배 높은 균체 농도를 나타낸다. 그러나 성장곡선은 비슷하며 48시간 후 균체가 최적인 것을 관찰할 수 있으며, 수소생산은 약간 다르게 나타난다.Rhodobacter spheroides KD131 grows in glutamate medium and shows a 1.4-fold higher cell concentration when compared to (NH4) 2SO4 medium. However, the growth curves are similar, and after 48 hours the cells are optimal, and hydrogen production is slightly different.

글루타메이트를 질소원으로 사용했을 때 초기 농도를 0, 4, 8, 16, 32, 64 mM로 설정하여 실험하였고, 로도박터 스페로이데스 KD131가 이용한 암모늄 이온의 농도와 누적수소생산량을 도 2에 나타냈다. When glutamate was used as a nitrogen source, the initial concentration was set to 0, 4, 8, 16, 32, 64 mM, and the concentration of ammonium ions used by Rhodobacter spheroides KD131 and the cumulative hydrogen production amount are shown in FIG. 2.

그 결과 글루타메이트의 초기농도 0, 4, 8, 16 mM 일 때 120 시간 후 각각 2.65, 1.93, 1.2, 0.6 l H2/l-배지 의 수소를 생산했고, 32, 64 mM일 때에는 수소 생산이 매우 저해되는 현상이 나타났다. As a result, when the initial concentration of glutamate was 0, 4, 8, and 16 mM, hydrogen was produced at 2.65, 1.93, 1.2, and 0.6 l H 2 / l- medium, respectively, after 120 hours. The phenomenon of inhibition appeared.

이는 광발효 동안 글루타메이트가 탈아미노화 되어 발생한 암모늄이온에 의해 나이트로게나아제의 활성이 저해되기 때문이다.
This is because the activity of nitrogenase is inhibited by ammonium ions generated by deamination of glutamate during photofermentation.

상기 실험 결과 탄소원으로 숙시네이트를 첨가하고, 질소원으로 (NH4)2SO4 또는 글루타메이트를 첨가하지 않았을 때에 수소생산은 가장 좋았지만, 균체 성장이 좋지 않음을 알 수 있었다. As a result of the experiment, when succinate was added as a carbon source and (NH 4) 2 SO 4 or glutamate was not added as a nitrogen source, hydrogen production was the best, but the cell growth was not good.

30 mM 숙시네이트와 (NH2)4SO4 또는 글루타메이트가 C/N 비 12.85(w/w)만큼 함유된 배지에서 로도박터 스페로이데스 KD 131의 수소생산, 균체성장 및 암모늄 이온 농도를 도 3에 나타냈다. 30 mM succinate and (NH2) 4SO4 Alternatively, hydrogen production, cell growth, and ammonium ion concentration of Rhodobacter spheroides KD 131 in a medium containing glutamate of 12.85 (w / w) by C / N ratio are shown in FIG. 3.

균체농도에 있어서, (NH2)4SO4를 질소원으로 사용했을 때보다 글루타메이트를 사용했을 때 균체 농도가 1.4배 높았다. 하지만 각각 두 질소원을 사용할 경우 모두 성장곡선은 비슷한 양상을 보였고 배양 48 시간 후 균체 농도가 가장 높았다.Cell concentration was 1.4 times higher when glutamate was used than when (NH 2) 4 SO 4 was used as the nitrogen source. However, the growth curves were similar for both nitrogen sources, with the highest cell concentration after 48 hours of culture.

반면, 수소생산에서, 글루타메이트를 함유한 배지의 경우 48 시간까지 급속도의 수소생산을 보여, (NH2)4SO4를 함유한 배지와 비교했을 때 48시간까지의 수소생산이 1.4배 높았다. 한편 (NH2)4SO4를 질소원으로 첨가한 배지는 장시간의 배양에 효과적이어서, 글루타메이트를 함유한 배지에서보다 96시간까지의 수소생산이 1.78배 높았다. On the other hand, in hydrogen production, the medium containing glutamate showed rapid hydrogen production up to 48 hours, and the hydrogen production up to 48 hours was 1.4 times higher compared to the medium containing (NH 2) 4 SO 4. On the other hand, the medium to which (NH2) 4SO4 was added as a nitrogen source was effective for long time incubation, and the hydrogen production up to 96 hours was 1.78 times higher than that in the medium containing glutamate.

Claims (4)

0.40 g dcw/l 내지 1.14 g dcw/l 의 초기 균체 농도 및 6 내지 8의 초기 pH에서 숙시네이트를 탄소원으로, (NH2)4SO4 또는 글루타메이트 중의 1 이상을 질소원으로 하여 로도박터 스페로이데스(R. sphaeroides) KD131을 배양하는 것을 특징으로 하는 로도박터 스페로이데스(R. sphaeroides) KD131을 이용한 수소 생산방법.Rhodobacter spheroids ( R. sphaeroides ) Hydrogen production method using Rhodobacter speroroides ( R. sphaeroides ) KD131, characterized by culturing. 청구항 1에 있어서, 상기 초기 균체 농도는 0.45 g dcw/l 내지 0.67 g dcw/l 인 것을 특징으로 하는 로도박터 스페로이데스(R. sphaeroides) KD131을 이용한 수소 생산방법.The method of claim 1, wherein the initial cell concentration is 0.45 g dcw / l to 0.67 g dcw / l hydrogen production method using R. sphaeroides ( R. sphaeroides ) KD131. 청구항 1에 있어서, 상기 초기 pH는 6 내지 7 인 것을 특징으로 하는 로도박터 스페로이데스(R. sphaeroides) KD131을 이용한 수소 생산방법.The method of claim 1, wherein the initial pH is 6 to 7, hydrogen production method using Rhodobacter spheroroides ( R. sphaeroides ) KD131. 청구항 1에 있어서, C/N 비는 11.56 내지 14.14 (w/w) 인 것을 특징으로 하는 로도박터 스페로이데스(R. sphaeroides) KD131을 이용한 수소 생산방법.The method of claim 1, wherein the C / N ratio is 11.56 to 14.14 (w / w) hydrogen production method using R. sphaeroides ( R. sphaeroides ) KD131.
KR1020110007482A 2011-01-25 2011-01-25 Method of hydrogen production using photosynthetic bacteria KR101220922B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110007482A KR101220922B1 (en) 2011-01-25 2011-01-25 Method of hydrogen production using photosynthetic bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110007482A KR101220922B1 (en) 2011-01-25 2011-01-25 Method of hydrogen production using photosynthetic bacteria

Publications (2)

Publication Number Publication Date
KR20120086182A true KR20120086182A (en) 2012-08-02
KR101220922B1 KR101220922B1 (en) 2013-01-11

Family

ID=46872095

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110007482A KR101220922B1 (en) 2011-01-25 2011-01-25 Method of hydrogen production using photosynthetic bacteria

Country Status (1)

Country Link
KR (1) KR101220922B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343643A (en) * 2019-08-07 2019-10-18 陕西科技大学 One plant of hydrogenlike silicon ion and its fermentation and hydrogen production methods and applications

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101758102B1 (en) 2017-02-27 2017-07-14 이석우 Rhodobacter capsulatus sw003 and microbial agent comprising it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343643A (en) * 2019-08-07 2019-10-18 陕西科技大学 One plant of hydrogenlike silicon ion and its fermentation and hydrogen production methods and applications

Also Published As

Publication number Publication date
KR101220922B1 (en) 2013-01-11

Similar Documents

Publication Publication Date Title
Chittibabu et al. Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21
Kawaguchi et al. H2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus
Li et al. High efficiency hydrogen production from glucose/xylose by the ldh-deleted Thermoanaerobacterium strain
Yokoi et al. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39
Valdez-Vazquez et al. Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: mesophilic versus thermophilic regime
Levin et al. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates
Du et al. Cellulosic ethanol production by natural bacterial consortia is enhanced by Pseudoxanthomonas taiwanensis
Tang et al. Highly efficient rice straw utilization for poly-(γ-glutamic acid) production by Bacillus subtilis NX-2
Kim et al. Enhancing photo-fermentative hydrogen production by Rhodobacter sphaeroides KD131 and its PHB synthase deleted-mutant from acetate and butyrate
Cai et al. Photo-biological hydrogen production by an acid tolerant mutant of Rhodovulum sulfidophilum P5 generated by transposon mutagenesis
Cheng et al. Enhanced photo-fermentative biohydrogen production from biowastes: an overview
Costa et al. Prospective technology on bioethanol production from photofermentation
CN110106223B (en) Method for promoting photosynthetic hydrogen production of corn straw
Cai et al. Hydrogen production from butyrate by a marine mixed phototrophic bacterial consort
Duan et al. Replacing water and nutrients for ethanol production by ARTP derived biogas slurry tolerant Zymomonas mobilis strain
Xu et al. Buffering action of acetate on hydrogen production by Ethanoligenens harbinense B49
Guangsheng et al. Selenomonas acidaminovorans sp. nov., a versatile thermophilic proton-reducing anaerobe able to grow by decarboxylation of succinate to propionate
US9249433B2 (en) Clostridium acetobutylicum and application thereof
Goveas et al. Recent advances in fermentative biohydrogen production
KR101220922B1 (en) Method of hydrogen production using photosynthetic bacteria
CN103184243A (en) Fermentation production method for xylitol
CN102634502B (en) Production method of halide alcohol dehalogenase
Sarma et al. Advancements in Bio‐hydrogen Production from Waste Biomass
Jiang et al. Enhanced butanol production through adding organic acids and neutral red by newly isolated butanol-tolerant bacteria
Seifert et al. Microbiological methods of hydrogen generation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160104

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171228

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181211

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191210

Year of fee payment: 8