KR20120085700A - Method for surface modification of grapheneoxide using surface initiated polymerization by microwave irradiation - Google Patents

Method for surface modification of grapheneoxide using surface initiated polymerization by microwave irradiation Download PDF

Info

Publication number
KR20120085700A
KR20120085700A KR1020120073826A KR20120073826A KR20120085700A KR 20120085700 A KR20120085700 A KR 20120085700A KR 1020120073826 A KR1020120073826 A KR 1020120073826A KR 20120073826 A KR20120073826 A KR 20120073826A KR 20120085700 A KR20120085700 A KR 20120085700A
Authority
KR
South Korea
Prior art keywords
graphene oxide
poly
chloride
surface modification
benzylvinyl
Prior art date
Application number
KR1020120073826A
Other languages
Korean (ko)
Other versions
KR101186365B1 (en
Inventor
윤국로
박민수
Original Assignee
한남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한남대학교 산학협력단 filed Critical 한남대학교 산학협력단
Priority to KR1020120073826A priority Critical patent/KR101186365B1/en
Publication of KR20120085700A publication Critical patent/KR20120085700A/en
Application granted granted Critical
Publication of KR101186365B1 publication Critical patent/KR101186365B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0061Methods for manipulating nanostructures
    • B82B3/0076Methods for manipulating nanostructures not provided for in groups B82B3/0066 - B82B3/0071

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE: A method for modifying the surface of graphene oxide by using surface-initiated-polymerization based on the irradiation of electromagnetic waves is provided to shorten times required for surface modifying reaction. CONSTITUTION: A method for modifying the surface of graphene oxide includes the following: graphene oxide is introduced into an organic solvent and is dispersed by ultrasonic wave-based decomposition; the dispersed graphene oxide slurry is mixed with monomers and a catalyst; the mixture is introduced into an electromagnetic wave irradiating device; the mixture is irradiated with electromagnetic waves at a temperature between 80 and 120 degrees Celsius for 20 to 50 minutes to obtain graphene oxide-polymer nano-composite. The organic solvent is one selected from a group including toluene, dichloromethane, dimethyl sulfoxide, dimethyl formamide, tetrahydrofurane, acetone, diethyl ether, ethyl acetate, and hexane. The polymer is poly(benzyl vinyl chloride), poly(vinylidene chloride), or poly(vinyl chloride).

Description

전자기파 조사에 의한 표면 개시 중합을 이용한 그라펜옥사이드의 표면 개질 방법 {Method for surface modification of grapheneoxide using surface initiated polymerization by microwave irradiation}Surface modification of graphene oxide using surface initiated polymerization by electromagnetic radiation {Method for surface modification of grapheneoxide using surface initiated polymerization by microwave irradiation}

본 발명은 전자기파 조사에 의한 표면 개시 중합을 이용한 그라펜옥사이드의 표면 개질 방법에 관한 것이다.
The present invention relates to a method for surface modification of graphene oxide using surface initiated polymerization by electromagnetic wave irradiation.

그라펜(Graphene)은 2004년 영국 맨체스터 대학교의 앙드레 게임 팀과 러시아 마이크로일렉트로닉스 연구소의 연구팀이 처음 만든 것으로 겨우 원자 한 개의 두께를 가진 2차원 탄소 구조체이다. 이 재료는 연필에서 발견되는 흑연(graphite)에서 만들어진다. 그라펜은 몇 가지 특징적인 물리적 성질을 가진다. 이 성질들 중 하나는 그라펜 내의 전자들이 정지 질량이 없는 상대론적 입자처럼 행동하고 약 초속 1백만 미터로 움직인다는 것이다. 비록 이 속도가 진공 중의 빛의 속도보다 300배나 느린 것이지만 일반 도체나 반도체 내의 전자의 속도보다는 훨씬 빠르다. 또한, 게임과 맨체스터, Chernogoloka, 네덜란드 Radboud 대학교의 동료들, 그리고 이들과 별개로 콜롬비아 대학교의 김필립은 이러한 새로운 탄소 형태의 전자적 특성을 연구하여 이 구조가 훌륭한 전도체라는 것을 발견하였다. 영국-러시아 연구팀은 그라펜으로 고속트랜지스터를 만든 바도 있었다. 2007년에는 옥스포드 대학교의 세르게이 미하일로브가 그라펜에 전자기파를 쏘이면, 더 높은 주파수의 전자기파를 방사하고, 주파수 증가기(multipler)로 사용할 수 있다는 연구 결과를 발표하기도 하였다. Graphene was originally created in 2004 by Andre Gaming's team at the University of Manchester, UK, and a team at the Russian Institute of Microelectronics, a two-dimensional carbon structure with only one atom thick. This material is made from the graphite found in pencils. Graphene has several characteristic physical properties. One of these properties is that the electrons in graphene behave like relativistic particles with no stationary mass and move at about one million meters per second. Although this speed is 300 times slower than the speed of light in a vacuum, it is much faster than the speed of electrons in ordinary conductors or semiconductors. In addition, gaming, Manchester, Chernogoloka, colleagues at the Radboud University in the Netherlands, and apart from them, Kim Phillip at Columbia University, studied the electronic properties of this new carbon form and found that the structure was a good conductor. The British-Russian team has made high-speed transistors from graphene. In 2007, Sergei Mihailov of Oxford University published a study showing that when graphene penetrates electromagnetic waves, it can radiate higher frequencies and use them as multiplers.

한편, 그라펜옥사이드(graphene oxide)는 그라펜을 강한 산화제로 처리하여 얻어지는 화합물로서, 탄소, 산소 및 수소의 다양한 비율로 이루어진다. 그라펜옥사이드는 절연체로 이용되고, 1~5×10-3S/㎝ 범위의 전도성을 갖는 반도체로도 이용된다. 또한, 그라펜옥사이드는 양자 전기이동, 조절가능한 밴드갭(band gap), 극히 높은 이동성, 높은 탄성 및 전기 기계적 변조(modulation)가 뛰어나다. 따라서, 그라펜옥사이드의 우수한 기계적, 전기적, 열적 및 광학적 성질로 인해 그라펜옥사이드는 전기재료나 센서 등 다양한 분야에 응용되고 있으며, 그라펜옥사이드에 대한 연구가 활발하게 진행되고 있다.On the other hand, graphene oxide (graphene oxide) is a compound obtained by treating the graphene with a strong oxidizing agent, made of various ratios of carbon, oxygen and hydrogen. Graphene oxide is used as an insulator and is also used as a semiconductor having conductivity in the range of 1 to 5 x 10 -3 S / cm. In addition, graphene oxide is excellent in quantum electrophoresis, adjustable band gap, extremely high mobility, high elasticity and electromechanical modulation. Therefore, graphene oxide has been applied to various fields such as electrical materials and sensors due to the excellent mechanical, electrical, thermal and optical properties of graphene oxide, and research on graphene oxide has been actively conducted.

그라펜옥사이드를 전기재료나 센서에 이용하기 위해서는 그라펜옥사이드를 표면 개질하여야 한다. 지금까지 그라펜옥사이드를 표면 개질하는 방법에 관하여 많이 알려져 있지만, 아직까지 전자기파를 조사하여 그라펜옥사이드를 표면 개질하는 연구에 대해서는 전무한 상태이다. 따라서, 전자기파를 이용하여 그라펜옥사이드를 표면 개질하는 방법에 관한 연구의 필요성이 요구되고 있다.
In order to use graphene oxide in an electrical material or a sensor, the graphene oxide must be surface modified. Until now, much is known about the method for surface modification of graphene oxide, but there is no research on the surface modification of graphene oxide by irradiating electromagnetic waves. Therefore, there is a need for a study on a method for surface modification of graphene oxide using electromagnetic waves.

본 발명자들은 전기재료나 센서 등 다양한 분야에 응용하기 위한 그라펜옥사이드의 표면 개질 방법에 대해 연구하던 중, 그라펜옥사이드 표면에 전자기파를 조사하여 표면 개시 중합을 이용하여 단량체를 중합하였으며, 상기 그라펜옥사이드의 표면이 매끄럽게 표면 개질됨을 확인하고, 본 발명을 완성하였다.
The present inventors studied the surface modification method of graphene oxide for various applications such as electrical materials or sensors, and polymerized monomers by irradiating electromagnetic waves on the surface of graphene oxide using surface-initiated polymerization. It was confirmed that the surface of the oxide was smoothly surface modified, and the present invention was completed.

본 발명은 전자기파 조사에 의해 단량체의 표면 개시 중합을 이용한 그라펜옥사이드의 표면 개질 방법을 제공하고자 한다.
The present invention seeks to provide a method for surface modification of graphene oxide using surface initiated polymerization of monomers by electromagnetic wave irradiation.

본 발명에 따른 표면 개질 방법은, 전자기파 조사에 의해 단량체를 그라펜옥사이드에 표면 개시 중합함으로써, 매끄럽게 표면 개질되고 짧은 시간 내에 빠른 반응을 통해 반응시간을 획기적으로 줄일 수 있다. 따라서, 본 발명에 따라 표면 개질되어 제조된 그라펜옥사이드-고분자 나노복합체는 전자재료 또는 센서에 유용하게 사용될 수 있다.
In the surface modification method according to the present invention, by surface-initiated polymerization of the monomer to the graphene oxide by electromagnetic wave irradiation, the reaction time can be drastically reduced and the reaction time can be drastically reduced through rapid reaction within a short time. Therefore, the graphene oxide-polymer nanocomposite prepared by surface modification according to the present invention can be usefully used for electronic materials or sensors.

도 1은 본 발명에 따른 그라펜옥사이드-폴리(염화벤질비닐) 나노복합체의 FT-IR 스펙트럼을 나타낸 도이다[(a)그라펜옥사이드(GO), (b)그라펜옥사이드-폴리(염화벤질비닐)(GO-PVBC)].
도 2는 본 발명에 따른 그라펜옥사이드-폴리(염화벤질비닐) 나노복합체의 열중량 분석(TGA) 데이터를 나타낸 도이다[(a)그라펜옥사이드(GO), (b)그라펜옥사이드-폴리(염화벤질비닐)(GO-PVBC)].
도 3은 본 발명에 따른 그라펜옥사이드-폴리(염화벤질비닐) 나노복합체를 위에서 관찰한 주사 전자현미경(SEM) 영상을 나타낸 도이다[(a)그라펜옥사이드(GO), (b)그라펜옥사이드-폴리(염화벤질비닐)(GO-PVBC)].
도 4는 본 발명에 따른 그라펜옥사이드-폴리(염화벤질비닐) 나노복합체를 측면에서 관찰한 주사 전자현미경(SEM) 영상을 나타낸 도이다[(a)그라펜옥사이드(GO), (b)그라펜옥사이드-폴리(염화벤질비닐)(GO-PVBC)].
도 5는 본 발명에 따른 그라펜옥사이드-폴리(염화벤질비닐) 나노복합체의 성분분석기(EDS) 데이터를 나타낸 도이다[(a)그라펜옥사이드(GO), (b)그라펜옥사이드-폴리(염화벤질비닐)(GO-PVBC)].
도 6은 본 발명에 따른 그라펜옥사이드-폴리(염화벤질비닐) 나노복합체의 XPS 데이터를 나타낸 도이다[(a)그라펜옥사이드(GO), (b)그라펜옥사이드-폴리(염화벤질비닐)(GO-PVBC)].
도 7은 본 발명에 따른 그라펜옥사이드-폴리(염화벤질비닐) 나노복합체의 투과전자현미경(TEM) 영상을 나타낸 도이다[(a)그라펜옥사이드(GO), (b)그라펜옥사이드-폴리(염화벤질비닐)(GO-PVBC)].
1 is a diagram showing the FT-IR spectrum of the graphene oxide-poly (benzyl vinyl chloride) nanocomposite according to the present invention [(a) graphene oxide (GO), (b) graphene oxide-poly (benzyl chloride) Vinyl) (GO-PVBC)].
Figure 2 is a diagram showing the thermogravimetric analysis (TGA) data of graphene oxide-poly (benzylvinyl chloride) nanocomposites according to the present invention ((a) graphene oxide (GO), (b) graphene oxide-poly (Benzylvinyl chloride) (GO-PVBC)].
3 is a scanning electron microscope (SEM) image of the graphene oxide-poly (benzylvinyl chloride) nanocomposite according to the present invention observed from above [(a) graphene oxide (GO), (b) graphene Oxide-poly (benzylvinyl chloride) (GO-PVBC)].
4 is a scanning electron microscope (SEM) image of a graphene oxide-poly (benzylvinyl chloride) nanocomposite observed from the side of the present invention [(a) graphene oxide (GO), (b) graph Phenoxide-poly (benzylvinyl chloride) (GO-PVBC)].
5 is a diagram showing the component analyzer (EDS) data of the graphene oxide-poly (benzylvinyl chloride) nanocomposite according to the present invention ((a) graphene oxide (GO), (b) graphene oxide-poly ( Benzylvinyl chloride) (GO-PVBC)].
6 is a diagram showing XPS data of graphene oxide-poly (benzylvinyl chloride) nanocomposites according to the present invention [(a) graphene oxide (GO), (b) graphene oxide-poly (benzylvinyl chloride) (GO-PVBC)].
7 is a diagram showing a transmission electron microscope (TEM) image of a graphene oxide-poly (benzylvinyl chloride) nanocomposite according to the present invention [(a) graphene oxide (GO), (b) graphene oxide-poly (Benzylvinyl chloride) (GO-PVBC)].

본 발명은 The present invention

(가) 그라펜옥사이드를 유기용매에 넣고 초음파분해하여 분산시키는 단계; 및(A) dispersing the graphene oxide in an organic solvent by sonication; And

(나) 상기 분산된 그라펜옥사이드 혼탁액에 단량체와 촉매를 가하여 혼합하고, 상기 혼합물을 전자기파 조사 장비에 넣고 80~120℃를 유지하면서 20~50분 동안 반응시켜, 그라펜 옥사이드-고분자 나노복합체를 형성하는 단계;를 포함하는 그라펜옥사이드의 표면 개질 방법을 제공한다.(B) Adding a monomer and a catalyst to the dispersed graphene oxide turbidity liquid, and mixing, putting the mixture into the electromagnetic wave irradiation equipment and reacting for 20 to 50 minutes while maintaining 80 ~ 120 ℃, graphene oxide-polymer nanocomposite It provides a method for surface modification of the graphene oxide comprising a step.

이하, 본 발명에 대해 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명의 그라펜옥사이드의 표면 개질 방법은, 그라펜옥사이드를 유기용매에 넣고 초음파분해시켜 분산시킨 후, 전자기파 조사에 의해 단량체를 표면 개시 중합하는 것을 특징으로 한다.The surface modification method of the graphene oxide of the present invention is characterized in that the graphene oxide is placed in an organic solvent, sonicated and dispersed, and then surface-initiated polymerization of the monomer by electromagnetic wave irradiation.

상기 단량체는 염화벤질비닐(vinylbenzyl chloride), 염화비닐리덴(vinylidene chloride) 또는 염화비닐(vinyl chloride)이 될 수 있으나 이에 한정되지 않는다.The monomer may be, but is not limited to, benzyl vinyl (vinylbenzyl chloride), vinylidene chloride (vinylidene chloride) or vinyl chloride (vinyl chloride).

상기 유기용매는 톨루엔, 디클로로메탄, 디메틸설폭시드(DMSO), 디메틸포름아미드(DMF), 테트라히드로퓨란(THF), 아세톤, 디에틸에테르, 에틸아세테이트 및 헥산으로 이루어진 군으로부터 선택되는 것을 포함하나, 이에 한정되지 않는다.The organic solvent is toluene, dichloromethane, Dimethyl sulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofuran (THF), acetone, diethyl ether, ethyl acetate and hexanes, but is not limited thereto.

상기 단량체가 중합되어 형성된 고분자는 폴리(염화벤질비닐)[poly(vinylbenzyl chloride); PVBC], 폴리(염화비닐리덴)[poly(vinylidene chloride); PVDC] 또는 폴리(염화비닐)[poly(vinyl chloride); PVC]을 포함하나 이에 한정되지 않으며, 본 발명에서는 폴리(염화벤질비닐)이 가장 바람직하다. 폴리(염화벤질비닐)은 말단기에 (Cl)작용기를 가지고 있어서 반응성이 좋아 전기재료나 센서 등 다양한 분야에 응용이 가능하다.The polymer formed by polymerizing the monomer may be poly (benzylvinyl chloride) [poly (vinylbenzyl chloride); PVBC], poly (vinylidene chloride) [poly (vinylidene chloride)]; PVDC] or poly (vinyl chloride); PVC], including but not limited to poly (benzylvinyl chloride) is most preferred in the present invention. Poly (benzylvinyl chloride) has a (Cl) functional group at its end group, so its reactivity is applicable to various fields such as electrical materials and sensors.

상기 촉매는 반응속도를 증가시키는 효과를 나타내고 반응이 종료된 후에도 원래의 상태로 존재할 수 있는 물질로서, 염화알루미늄(AlCl3) 또는 염화철(FeCl3)과 같은 루이스 산 촉매를 사용하는 것이 바람직하나, 이에 한정되지 않는다.The catalyst has the effect of increasing the reaction rate and may be present in the original state after the reaction is completed, it is preferable to use a Lewis acid catalyst such as aluminum chloride (AlCl 3 ) or iron chloride (FeCl 3 ), It is not limited to this.

상기 (나)단계에서 전자기파를 조사할 시 80~120℃, 바람직하게는 100℃를 유지하면서 20~50분 동안 반응시키는 것이 좋다.When irradiating the electromagnetic wave in the step (b) it is preferable to react for 20 to 50 minutes while maintaining 80 ~ 120 ℃, preferably 100 ℃.

상기 그라펜옥사이드 표면을 개질하는 대표적인 과정은 하기 반응식 1로 나타낸다. A representative process for modifying the graphene oxide surface is shown in Scheme 1 below.

[반응식 1][Reaction Scheme 1]

Figure pat00001
Figure pat00001

상기 방법에 따라 표면 개질된 그라펜옥사이드는, FT-IR 스펙트럼에서 그라펜옥사이드와 비슷하게 나타나며, 다만 560㎝-1에서 그라펜옥사이드에는 없는 말단 C-Cl결합이 나타난다. 또한, 주사 전자현미경(SEM) 관찰 결과, 표면 개질된 그라펜옥사이드 표면은 거칠지 않고 매끄러우며, 투과 전자현미경(TEM)을 이용하여 관찰한 결과, 한 개의 층의 그라펜옥사이드를 단량체가 중합된 고분자가 덮고 있는 이미지를 관찰할 수 있다. The graphene oxide surface-modified according to the above method appears similar to graphene oxide in the FT-IR spectrum, except that terminal C-Cl bonds present in the graphene oxide are not present at 560 cm −1 . In addition, SEM observation revealed that the surface-modified graphene oxide surface was not rough and smooth, and when observed using a transmission electron microscope (TEM), one layer of graphene oxide was polymerized with monomers. You can observe the image that is covered.

상기한 바와 같이, 본 발명에 따른 표면 개질 방법은, 전자기파 조사에 의해 단량체를 그라펜옥사이드에 표면 개시 중합함으로써, 매끄럽게 표면 개질되고 짧은 시간 내에 빠른 반응을 통해 반응시간을 획기적으로 줄일 수 있다. 따라서, 본 발명에 따라 표면 개질되어 제조된 그라펜옥사이드-고분자 나노복합체는 전자재료 또는 센서에 유용하게 사용될 수 있다. As described above, the surface modification method according to the present invention, by surface-initiated polymerization of the monomer to the graphene oxide by the electromagnetic wave irradiation, it is possible to significantly reduce the reaction time through smooth reaction surface modification and fast reaction within a short time. Therefore, the graphene oxide-polymer nanocomposite prepared by surface modification according to the present invention can be usefully used for electronic materials or sensors.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 다만, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 권리범위가 하기 실시예에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are merely to illustrate the invention, the scope of the present invention is not limited by the following examples.

실시예Example :  : 그라펜옥사이드Graphene oxide -- 폴리(염화벤질비닐)(GO-PVBC)의Of poly (benzylvinyl chloride) (GO-PVBC) 제조  Produce

40㎖의 N,N-디메틸포름아미드에 0.1g의 그라펜옥사이드(GO)를 가하였다. 그라펜옥사이드의 분산을 위해서 상기 혼탁액을 1시간 동안 초음파분해하였다. 잘 분산된 GO 혼탁액에 진공상태에서 염화알루미늄(AlCl3) 0.2g과 염화벤질비닐(vinylbenzylchoride) 0.45g을 넣고 질소 하에, 실온에서 혼합하였다. 상기 반응혼합물을 전자기파 조사 장비를 통해서 100℃를 유지하면서 30분간 교반시켰다. 반응 종료 후, 반응혼합물을 원심분리기를 통해 2500rpm으로 20분간 침전 시킨 후 상층액을 제거하고, 다시 에탄올로 씻어준 후 원심분리하고 상층액을 제거하였다. 물과 에탄올을 이용하여 위의 과정을 3~4번 반복한 후 진공오븐에서 80℃로 16시간 동안 건조시켰다.0.1 g of graphene oxide (GO) was added to 40 ml of N, N-dimethylformamide. The dispersion was sonicated for 1 hour to disperse the graphene oxide. 0.2 g of aluminum chloride (AlCl 3 ) and 0.45 g of benzyl vinyl chloride (vinylbenzylchoride) were added to a GO dispersion well dispersed in a vacuum, and mixed under nitrogen at room temperature. The reaction mixture was stirred for 30 minutes while maintaining 100 ℃ through the electromagnetic wave irradiation equipment. After the reaction was completed, the reaction mixture was precipitated at 2500 rpm for 20 minutes through a centrifuge, and then the supernatant was removed, washed with ethanol again, centrifuged and the supernatant was removed. After repeating the above process 3-4 times using water and ethanol and dried for 16 hours at 80 ℃ in a vacuum oven.

상기 제조된 그라펜옥사이드-폴리(염화벤질비닐)(GO-PVBC)의 FT-IR 스펙트럼, 열중량 분석(TGA) 데이터, 주사 전자현미경(SEM) 영상, EDS(Energy dispersive spectroscopy) 데이터는 각각 도 1 내지 도 5에 나타내었다.The FT-IR spectrum, thermogravimetric analysis (TGA) data, scanning electron microscopy (SEM) image, and energy dispersive spectroscopy (EDS) data of the prepared graphene oxide-poly (benzylvinyl chloride) (GO-PVBC) are respectively shown. 1 to 5 are shown.

도 1에 나타난 바와 같이, (a)그라펜옥사이드의 FT-IR 스펙트럼은 3440cm-1에서 O-H 피크, 1660cm-1에서 C=O 피크, 1090cm-1에서는 C-O 피크가 나타났다. (b)그라펜옥사이드-폴리(염화벤질비닐)의 FT-IR 스펙트럼은 그라펜옥사이드와 말단기가 비슷하게 나타났고, 다만 560cm-1에서 그라펜옥사이드에는 없는 말단 C-Cl 결합이 나타남을 확인하였다.As shown in Fig. 1, (a) Gras FT-IR spectrum of the OH peak is pen-oxide, C = O peak at 1660cm -1 at 3440cm -1, 1090cm -1 showed the CO peaks. (b) FT-IR spectra of graphene oxide-poly (benzylvinyl chloride) showed similar terminal groups to graphene oxide, but it was confirmed that terminal C-Cl bonds which were not present in graphene oxide appeared at 560 cm −1 .

기존의 문헌들에서 그라펜옥사이드는 산화되는 정도에 따라 타는 양이 다르나 200℃에서 타는 것으로 알려져 있다. 따라서, 도 2에 나타난 바와 같이 (a)그라펜옥사이드는 200℃에서 급격한 무게 손실을 나타내어 수분을 제외하고 70Wt% 정도가 탄 것을 확인하였으며, 실제로 수분을 제외한다면 200에서 30Wt% 정도의 그라펜옥사이드가 남아있다는 것을 알 수 있었다. 반면, (b)그라펜옥사이드-폴리(염화벤질비닐)은 120~320℃까지 서서히 타면서 적은 무게 손실을 나타내어 열적 안정성이 우수함을 알 수 있었다.Graphene oxide is known to burn at 200 ° C. although the amount of burning varies depending on the degree of oxidation. Therefore, as shown in FIG. 2, (a) graphene oxide showed a rapid weight loss at 200 ° C., and it was confirmed that about 70 Wt% of burnt was excluded except for moisture. Could see that it remained. On the other hand, (b) graphene oxide-poly (benzylvinyl chloride) was slowly burned to 120 ~ 320 ℃ showed a small weight loss was found to be excellent thermal stability.

도 3에 나타난 바와 같이, (a)그라펜옥사이드와 (b)그라펜옥사이드-폴리(염화벤질비닐)을 위에서 관찰한 SEM 영상의 경우, (a)그라펜옥사이드 표면은 그라펜 층이 불규칙하게 자라면서 거친 단면을 관찰할 수 있었다. 반면에, (b)그라펜옥사이드-폴리(염화벤질비닐)의 표면은 (a)그라펜옥사이드의 거친 표면과 달리 폴리(염화벤질비닐)이 표면에 성장하면서 거칠지 않고 매끄러운 표면을 관찰할 수 있었다.As shown in FIG. 3, in the SEM image of (a) graphene oxide and (b) graphene oxide-poly (benzylvinyl chloride) observed above, (a) the graphene oxide surface has irregular graphene layers. As it grew up, rough sections were observed. On the other hand, the surface of (b) graphene oxide-poly (benzylvinyl chloride), unlike the rough surface of (a) graphene oxide, was observed to have a rough and smooth surface as poly (benzylvinyl chloride) grew on the surface. .

도 4에 나타난 바와 같이, (a)그라펜옥사이드와 (b)그라펜옥사이드-폴리(염화벤질비닐)을 측면에서 관찰한 SEM 영상의 경우, (a)그라펜옥사이드의 표면은 그라펜옥사이드의 층들이 잘 관찰되고 표면이 거친 반면에, (b)그라펜옥사이드-폴리(염화벤질비닐)의 표면은 그라펜의 각각의 층들을 폴리(염화벤질비닐)이 대부분 감싸고 있어서 그라펜옥사이드의 층들을 관찰할 수 없고 표면이 상당히 매끄러움을 확인하였다. As shown in FIG. 4, in the SEM image of (a) graphene oxide and (b) graphene oxide-poly (benzylvinyl chloride) observed from the side, (a) the surface of graphene oxide was While the layers are well observed and rough, the surface of (b) graphene oxide-poly (benzylvinyl chloride) is mostly surrounded by poly (benzylvinyl chloride), which covers each layer of graphene, It was not observed and the surface was found to be quite smooth.

도 5에 나타난 바와 같이, (a)그라펜옥사이드의 EDS 데이터는 탄소, 산소, 나트륨, 황, 백금이 관찰된다. 백금의 경우에는 주사전자현미경(SEM) 측정시 코팅제이다. 또한, 그라펜을 그라펜옥사이드로 산화시키는 과정에서 수산화나트륨과 황산을 사용하므로 나트륨과 황은 각각 0.79 At%와 1.11 At%로 미량 감지되었다. (b)그라펜옥사이드-폴리(염화벤질비닐)은 탄소의 Wt%(무게비율) 및 At%(원자비율)가 각각 59.19 Wt% 및 68.80 At%에서 80.81 Wt% 및 91.67 At%로 증가하였는데, 이는 폴리(염화벤질비닐)의 고분자 사슬이 탄소를 다수 함유하고 있어서 상대적으로 탄소가 증가한 것으로 생각된다. 반면에 산소의 Wt% 및 At%는 모두 감소하였다. (b)그라펜옥사이드-폴리(염화벤질비닐)에서 염소의 Wt%와 At%는 각각 10.22% 와 3.93%로 측정되었다.As shown in Figure 5, (a) graphene oxide EDS data of carbon, oxygen, sodium, sulfur, platinum is observed. Platinum is a coating for scanning electron microscopy (SEM). In addition, since sodium hydroxide and sulfuric acid were used in the process of oxidizing the graphene to graphene oxide, trace amounts of sodium and sulfur were 0.79 At% and 1.11 At%, respectively. (b) Graphene oxide-poly (benzylvinyl chloride) increased the Wt% (weight ratio) and At% (atomic ratio) of carbon from 59.19 Wt% and 68.80 At% to 80.81 Wt% and 91.67 At%, respectively. It is considered that the polymer chain of poly (benzylvinyl chloride) contains a large amount of carbon, and the carbon is relatively increased. On the other hand, both Wt% and At% of oxygen decreased. (b) Wt% and At% of chlorine in graphene oxide-poly (benzylvinyl chloride) were measured to be 10.22% and 3.93%, respectively.

도 6에 나타난 바와 같이, (a)그라펜옥사이드의 XPS 데이터는 1S 궤도의 산소는 520 Ey에서 37%로 나타났고, 1S 궤도의 탄소는 290 Ey에서 67%로 나타났다. (b)그라펜옥사이드-폴리(염화벤질비닐)의 XPS 데이터는 520 Ey에서 검출되는 산소는 37%에서 11%로 상대적으로 감소하였고, 290 Ey에서 검출되는 탄소는 67%에서 82%로 상대적으로 증가하였으며, 염소는 200Ey에서 7% 검출되었다.As shown in FIG. 6, (a) XPS data of graphene oxide showed 37% at 520 Ey of oxygen at 1S orbit and 67% at 290 Ey of 1S orbital. (b) XPS data of graphene oxide-poly (benzylvinyl chloride) showed that the oxygen detected at 520 Ey decreased from 37% to 11%, and the carbon detected at 290 Ey was 67% to 82%. Chlorine was detected at 7% at 200Ey.

도 7에 나타난 바와 같이, 투과전자현미경(TEM)을 관찰한 결과, (a)그라펜옥사이드는 자체가 2차원 구조를 가지고 있기 때문에, 투명한 하나의 층과 같이 보여지나, (b)그라펜옥사이드-폴리(염화벤질비닐)은 한 개의 층의 그라펜옥사이드를 폴리(염화벤질비닐)이 덮고 있는 이미지를 관찰할 수 있었다.
As shown in FIG. 7, the results of observing the transmission electron microscope (TEM) show that (a) graphene oxide itself has a two-dimensional structure, and thus looks like a single transparent layer, (b) graphene oxide. Poly (benzylvinyl chloride) was able to observe an image in which one layer of graphene oxide was covered with poly (benzylvinyl chloride).

Claims (4)

(가) 그라펜옥사이드를 유기용매에 넣고 초음파분해하여 분산시키는 단계; 및
(나) 상기 분산된 그라펜옥사이드 혼탁액에 단량체와 촉매를 가하여 혼합하고, 상기 혼합물을 전자기파 조사 장비에 넣고 80~120℃를 유지하면서 20~50분 동안 전자기파를 조사하여 반응시켜, 그라펜 옥사이드-고분자 나노복합체를 형성하는 단계;를 포함하는 그라펜옥사이드의 표면 개질 방법.
(A) dispersing the graphene oxide in an organic solvent by sonication; And
(B) Adding a monomer and a catalyst to the dispersed graphene oxide turbidity liquid, and mixing, putting the mixture into the electromagnetic wave irradiation equipment and reacting by irradiating electromagnetic waves for 20 to 50 minutes while maintaining 80 ~ 120 ℃, graphene oxide -Forming a polymer nanocomposite; surface modification method of the graphene oxide comprising a.
제 1항에 있어서, 상기 (가)단계에서 유기용매는 톨루엔, 디클로로메탄, 디메틸설폭시드(DMSO), 디메틸포름아미드(DMF), 테트라히드로퓨란(THF), 아세톤, 디에틸에테르, 에틸아세테이트 및 헥산으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 그라펜옥사이드의 표면 개질 방법.The method of claim 1, wherein the organic solvent in the step (a) is toluene, dichloromethane, Graphene oxide, characterized in that it comprises one or more selected from the group consisting of dimethyl sulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofuran (THF), acetone, diethyl ether, ethyl acetate and hexane Surface modification method. 제 1항에 있어서, 상기 (나)단계에서 고분자는 폴리(염화벤질비닐)[PVBC], 폴리(염화비닐리덴)[PVDC] 또는 폴리(염화비닐)[PVC]인 것을 특징으로 하는, 그라펜옥사이드의 표면 개질 방법.According to claim 1, wherein in the step (b) the polymer is poly (benzyl vinyl chloride) [PVBC], poly (vinylidene chloride) [PVDC] or poly (vinyl chloride) [PVC], characterized in that the graphene Method for Surface Modification of Oxides. 제 1항에 있어서, 상기 (나)단계에서 촉매는 염화알루미늄(AlCl3) 또는 염화철(FeCl3)인 것을 특징으로 하는, 그라펜옥사이드의 표면 개질 방법.


The method of claim 1, wherein the catalyst in step (b) is aluminum chloride (AlCl 3 ) or iron chloride (FeCl 3 ).


KR1020120073826A 2012-07-06 2012-07-06 Method for surface modification of grapheneoxide using surface initiated polymerization by microwave irradiation KR101186365B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120073826A KR101186365B1 (en) 2012-07-06 2012-07-06 Method for surface modification of grapheneoxide using surface initiated polymerization by microwave irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120073826A KR101186365B1 (en) 2012-07-06 2012-07-06 Method for surface modification of grapheneoxide using surface initiated polymerization by microwave irradiation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020100024678A Division KR20110105504A (en) 2010-03-19 2010-03-19 Method for surface modification of grapheneoxide using surface initiated polymerization of polymer by microwave irradiation

Publications (2)

Publication Number Publication Date
KR20120085700A true KR20120085700A (en) 2012-08-01
KR101186365B1 KR101186365B1 (en) 2012-09-26

Family

ID=46871885

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120073826A KR101186365B1 (en) 2012-07-06 2012-07-06 Method for surface modification of grapheneoxide using surface initiated polymerization by microwave irradiation

Country Status (1)

Country Link
KR (1) KR101186365B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101423118B1 (en) * 2012-10-15 2014-07-25 한국원자력연구원 Manufacturing method of water soluble polymer - graphene oxide composite and organic electronic element by the same
CN108218386A (en) * 2018-01-23 2018-06-29 贵州省建材产品质量监督检验院 Chlorosilane modified graphene oxide/silica heat-preserving complex material preparation method
CN110054176A (en) * 2018-01-18 2019-07-26 国家纳米科学中心 A kind of High conductivity graphene, preparation method and its usage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104826128B (en) * 2015-04-30 2018-04-24 中国药科大学 The graphene oxide carrier of polyose modification of organism lesions position triggering drug release and its preparation of pharmaceutical compositions and application

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327851A (en) * 2002-05-16 2003-11-19 National Institute Of Advanced Industrial & Technology Method for producing layer inorganic crystal substance- polymer composite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101423118B1 (en) * 2012-10-15 2014-07-25 한국원자력연구원 Manufacturing method of water soluble polymer - graphene oxide composite and organic electronic element by the same
CN110054176A (en) * 2018-01-18 2019-07-26 国家纳米科学中心 A kind of High conductivity graphene, preparation method and its usage
CN108218386A (en) * 2018-01-23 2018-06-29 贵州省建材产品质量监督检验院 Chlorosilane modified graphene oxide/silica heat-preserving complex material preparation method
CN108218386B (en) * 2018-01-23 2021-01-08 贵州省建材产品质量监督检验院 Preparation method of chlorosilane modified graphene oxide/silicon dioxide heat-insulation composite material

Also Published As

Publication number Publication date
KR101186365B1 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
Gairola et al. Barium ferrite and graphite integrated with polyaniline as effective shield against electromagnetic interference
Duan et al. Microwave-absorption properties of SiOC ceramics derived from novel hyperbranched ferrocene-containing polysiloxane
Kumar et al. Synthesis and characterization of hybrid PANI/MWCNT nanocomposites for EMI applications
Zhang et al. Preparation and dielectric properties of core–shell structured Ag@ polydopamine/poly (vinylidene fluoride) composites
Wan et al. Synthesis and electromagnetic interference shielding of cellulose-derived carbon aerogels functionalized with α-Fe2O3 and polypyrrole
Mondal et al. Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance
Farukh et al. Enhanced electromagnetic shielding behavior of multi-walled carbon nanotube entrenched poly (3, 4-ethylenedioxythiophene) nanocomposites
Virtanen et al. Dielectric breakdown strength of epoxy bimodal-polymer-brush-grafted core functionalized silica nanocomposites
Kim et al. Effect of oxyfluorination on electromagnetic interference shielding of polypyrrole-coated multi-walled carbon nanotubes
Zhang et al. Grafting of polystyrene onto reduced graphene oxide by emulsion polymerization for dielectric polymer composites: High dielectric constant and low dielectric loss tuned by varied grafting amount of polystyrene
Cui et al. A facile “graft from” method to prepare molecular‐level dispersed graphene–polymer composites
CN113329603A (en) Light porous MXene-based composite film electromagnetic shielding material and preparation method thereof
KR101186365B1 (en) Method for surface modification of grapheneoxide using surface initiated polymerization by microwave irradiation
Massoumi et al. In situ chemical oxidative graft polymerization of aniline from phenylamine end-caped poly (ethylene glycol)-functionalized multi-walled carbon nanotubes
KR20110105504A (en) Method for surface modification of grapheneoxide using surface initiated polymerization of polymer by microwave irradiation
Yu et al. Titanium dioxide core/polymer shell hybrid composite particles prepared by two-step dispersion polymerization
Khaldi et al. Synthesis, characterization and conducting properties of nanocomposites of intercalated 2-aminophenol with aniline in sodium-montmorillonite
Basavaraja et al. Electrical conductivity studies on water‐soluble polypyrrole–graphene oxide composites
Grinou et al. Polyaniline nanofiber-coated polystyrene/graphene oxide core-shell microsphere composites
Khezri et al. Reversible addition fragmentation chain transfer polymerization of styrene from the edge of graphene oxide nanolayers
Madakbaş et al. Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
Mrlik et al. Surface-initiated atom transfer radical polymerization from graphene oxide: A way towards fine tuning of electric conductivity and electro-responsive capabilities
Zhang et al. Enhanced breakdown strength and suppressed dielectric loss of polymer nanocomposites with BaTiO 3 fillers modified by fluoropolymer
Imran et al. Study of the electroconductive properties of conductive polymers‐graphene/graphene oxide nanocomposites synthesized via in situ emulsion polymerization
Doğan et al. A novel shape-controlled synthesis of bifunctional organic polymeric nanoparticles

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180814

Year of fee payment: 7