KR20120079676A - Novel oleate hydratase and method for the production of 10-hydroxystearic acid by recombinant cells comprising the same - Google Patents

Novel oleate hydratase and method for the production of 10-hydroxystearic acid by recombinant cells comprising the same Download PDF

Info

Publication number
KR20120079676A
KR20120079676A KR1020110000998A KR20110000998A KR20120079676A KR 20120079676 A KR20120079676 A KR 20120079676A KR 1020110000998 A KR1020110000998 A KR 1020110000998A KR 20110000998 A KR20110000998 A KR 20110000998A KR 20120079676 A KR20120079676 A KR 20120079676A
Authority
KR
South Korea
Prior art keywords
leu
glu
asp
gly
val
Prior art date
Application number
KR1020110000998A
Other languages
Korean (ko)
Other versions
KR101303908B1 (en
Inventor
오덕근
김비나
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020110000998A priority Critical patent/KR101303908B1/en
Publication of KR20120079676A publication Critical patent/KR20120079676A/en
Application granted granted Critical
Publication of KR101303908B1 publication Critical patent/KR101303908B1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/20Illuminated signs; Luminous advertising with luminescent surfaces or parts
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B7/00Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00
    • G08B7/06Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources
    • G08B7/066Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources guiding along a path, e.g. evacuation path lighting strip
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/22Advertising or display means on roads, walls or similar surfaces, e.g. illuminated
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/04Signs, boards or panels, illuminated from behind the insignia
    • G09F13/0418Constructional details
    • G09F2013/05Constructional details indicating exit way or orientation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/22Advertising or display means on roads, walls or similar surfaces, e.g. illuminated
    • G09F2019/225Fire evacuation route indicating means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Marketing (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE: A method for preparing 10-hydroxystearic acid is provided to obtain 10-hydroxystearic acid at high yield and to use the product as a starting material of lactone. CONSTITUTION: An oleate hydratase used for producing 10-hydroxystearic acid is selected from the group of sequence numbers 1-4. The enzyme is derived from Lysinibacillus fusiformis, Macrococcus caseolyticus, Propionibacterium acnes, and Stenotrophomonas maltophilia. A gene encoding the oleate hydratase is selected from sequence numbers 5-8. A method for preparing oleate hydratase comprises: a step of preparing the recombinant expression vector containing oleate hydratase gene; a step of culturing microorganism transformed with the recombinant expression vector; a step of inducing the expression of the gene; and a step of purifying and isolating the recombinant proteins.

Description

올레산 수화효소 및 그 효소 함유 재조합 미생물을 이용한 10-하이드록시스테아르 산 제조방법{Novel oleate hydratase and Method for the production of 10-hydroxystearic acid by recombinant cells comprising the same}Novel oleate hydratase and method for the production of 10-hydroxystearic acid by recombinant cells comprising the same

본 발명은 올레산 수화효소 효소 (oleate hydratase) 및 그 효소를 포함하는 형질전환 된 미생물을 이용하여 10-하이드록시스테아르 산 (10-hydroxystearic acid) 를 제조하는 방법에 관한 것으로, 더욱 상세하게는 10-하이드록시스테아르 산 유전자를 포함하는 재조합 발현 벡터, 이로 형질전환 된 미생물 및 이들을 이용하여 10-하이드록시스테아르 산을 고 수율로 얻는 생산방법에 관한 것이다.The present invention relates to a method for preparing 10-hydroxystearic acid by using an oleate hydratase and a transformed microorganism including the enzyme, and more specifically, 10-hydroxystearic acid. The present invention relates to a recombinant expression vector comprising a hydroxystearic acid gene, a microorganism transformed therewith, and a production method for obtaining 10-hydroxystearic acid in high yield using the same.

하이드록시 지방산은 자연계에 존재하는 물질로서 트리글리세롤, 왁스, 세레브로시드, 그밖에 식물이나 곤충 그리고 미생물에 존재하는 지질 등에서 발견 된다. 미생물이 불포화 지방산을 생물학적인 전환을 통하여 생산하는 하이드록시 지방산은 모노하이드록시, 다이하이드록시 그리고 트리하이드록시 지방산의 세 가지 유형이 있다. 하이드록시 지방산은 향신료를 구성하는 락톤 (Lactone)의 전구체로서 중요한 산업적인 물질이며, 다른 하이드록시 지방산이 아닌 지방산에 비하여 반응성이 좋기 때문에 레진, 왁스, 나일론, 플라스틱, 윤활제 그리고 코팅제의 시작 물질로 사용되고 화장품 원료로도 사용된다. Hydroxy fatty acids are naturally occurring substances found in triglycerols, waxes, cerebrosides and other lipids present in plants, insects and microorganisms. There are three types of hydroxy fatty acids in which microorganisms produce unsaturated fatty acids through biological conversion: monohydroxy, dihydroxy and trihydroxy fatty acids. Hydroxy fatty acids are important industrial materials as precursors to lactones that make up spices and are used as starting materials for resins, waxes, nylons, plastics, lubricants and coatings because they are more reactive than non-hydroxy fatty acids. It is also used as a cosmetic ingredient.

10-하이드록시스테아르 산은 윤활제로 사용되고, 가소체 그리고 레진을 합성하는데 사용되는 세바스산을 생산하는 중요한 물질이다. 10-하이드록시스테아르 산과 같은 하이드록시 지방산은 이스트 (yeast)에 의하여 감마-데카락톤 (-decalactone)으로 전환된다. 감마-데카락톤은 복숭아나 살구향을 내는 특징이 있으며, 식품공정에 필수적인 물질이고 식품산업에서 사용이 증가되고 있다. 그러나 이 물질은 몇몇 과일에 소량으로 존재하기 때문에 유기합성에 의한 합성이 되고 있으나, 세계적으로나 국내의 국민 소득의 증가와 천연 음식 및 향장 소재의 요구, 소비재의 고급화 추세로 인한 천연 물질이 안정성과 기호도에서 선호되는 경향으로 생물전환을 이용한 방법이 절대적으로 필요하다. 10-hydroxystearic acid is an important substance that produces sebacic acid, which is used as a lubricant and used to synthesize plasticizers and resins. Hydroxy fatty acids, such as 10-hydroxystearic acid, are converted to gamma-decalactone by yeast. Gamma-dekaralactone is characterized by a peach or apricot flavor and is essential for food processing and is increasingly used in the food industry. However, since these substances are present in a small amount in some fruits, they are synthesized by organic synthesis.However, due to the increase in national income and the demand of natural foods and fragrances, and the high quality of consumer goods, natural substances are stable and highly There is an absolute need for methods using biotransformation as the preferred trend in.

기존에 10-하이드록시스테아르 산을 생산하는 미생물로는 플라보박테리움 (Flavobacterium. sp. NRRL B-14859), 노카디아 콜레스테로리큠(Nocardia cholesterolicum) 루니말 박테리아(runimal bacteria ) 가 있지만 이들 미생물은 10-하이드록시스테아르 산을 낮은 수율로 생산 할 뿐만 아니라 10-케도스테아르 산와 같은 부산물이 같이 생산되어 산업화시 비경제적이다. 또한 효소나 관련효소가 함유된 재조합 미생물을 사용한 경우는 지금까지 보고되지 않고 있다.
Microorganisms producing 10-hydroxystearic acid include Flavobacterium (sp. NRRL B-14859), Nocardia cholesterolicum , and runimal bacteria. bacteria) are, but when these microorganisms are not only produced the 10-hydroxy stearic acid in low yields are produced as a by-product, such as mountains and 10 KEDO stearic industrial uneconomical. In addition, there have been no reports of the use of recombinant microorganisms containing enzymes or related enzymes.

본 발명은 상기의 필요성에 의하여 안출된 것으로서 본 발명의 목적은 신규한 올레산 수화효소를 제공한다.The present invention has been made in view of the above necessity, and an object of the present invention is to provide a novel oleic hydrase.

본 발명의 다른 목적은 상기 올레산 수화효소를 제조하는 방법을 제공한다.Another object of the present invention to provide a method for preparing the oleic acid hydratase.

본 발명의 또 다른 목적은 10-하이드록시스테아르 산의 제조방법을 제공하는것이다.Another object of the present invention is to provide a method for preparing 10-hydroxystearic acid.

상기 목적을 달성하기 위하여, 본 발명은 10-하이드록시스테아르 산(10-hydroxystearic acid)의 생산에 사용되는 올레산 수화효소(oleate hydratase)를 제공한다. 본 발명의 효소는 서열번호 1 내지 4로 구성된 군으로부터 선택된 아니모산 서열을 가지는 것이 바람직하나 이들 서열에 하나 이상의 치환, 결손, 역위와 같은 돌연변이를 유발하여 본 발명이 목적하고자 하는 활성을 가지는 모든 돌연변이체도 본 발명의 보호범위에 포함된다.In order to achieve the above object, the present invention provides an oleate hydratase used for the production of 10-hydroxystearic acid. The enzyme of the present invention preferably has an animonic sequence selected from the group consisting of SEQ ID NOs: 1 to 4, but at least one substitution, deletion, inversion and All mutants having the activity of the present invention by causing the same mutation are also included in the protection scope of the present invention.

본 발명의 일 구현예에 있어서, 상기 효소는 각각 리시니바실러스 후시포르미스 (Lysinibacillus fusiformis ), 마크로코코스 카제리티쿠스 (Macrococcus caseolyticus), 프로피오니박테리움 아크네스 (Propionibacterium acnes ), 스테노트로포모나스 말토필리아 (Stenotrophomonas maltophilia ) 균주로부터 유래한 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the invention, the enzyme is Lysinibacillus ( Lysinibacillus) fusiformis ), Macrococcus caseolyticus, Propionibacterium acnes ), Stenotrophomonas maltophilia ) is preferably derived from, but not limited to.

또 본 발명은 상기 본 발명의 효소 단백질을 코딩하는 유전자를 제공한다.The present invention also provides a gene encoding the enzyme protein of the present invention.

본 발명의 일 구현예에 있어서 상기 유전자 서열은 각각 서열번호 5 내지 8로 구성된 군으로부터 선택된 것이 바람직하나 유전자 코드 디제러시를 고려하고 상기 효소의 돌연변이체를 코딩하는 유전자를 고려할 때 상기 유전자 서열과 적어도 80%의 상동성, 바람직하게는 85%, 더욱 바람직하게는 90%의 상동성을 가지는 모든 유전자 서열도 본 발명의 보호범위에 포함된다.In one embodiment of the present invention, the gene sequence is preferably selected from the group consisting of SEQ ID NOs: 5 to 8, respectively, but considering the gene code degeneracy and the gene encoding the mutant of the enzyme, the gene sequence and at least All gene sequences with 80% homology, preferably 85%, more preferably 90%, are also within the scope of the present invention.

또한 본 발명은 리시니바실러스 후시포르미스 (Lysinibacillus fusiformis ), 마크로코코스 카제리티쿠스 (Macrococcus caseolyticus ), 프로피오니박테리움 아크네스 (Propionibacterium acnes ), 스테노트로포모나스 말토필리아 (Stenotrophomonas maltophilia ) 균주로부터 유래하고, 상기 본 발명의 올레산 수화효소 유전자를 포함하는 재조합 발현 벡터 pET 28(+)a/oleate hydratase를 제공한다.In addition, the present invention Lysinibacillus Fushiformis ( Lysinibacillus fusiformis ), Macrococcus caseolyticus ), Propionibacterium acnes acnes), stems from the Pomona's malto pilriah (Stenotrophomonas maltophilia) strain by stacking notes, provides a recombinant expression vector pET 28 containing the oleic acid hydration enzyme gene of the present invention (+) a / oleate hydratase.

본 발명에 있어서, 재조합 발현 벡터를 10-하이드록시 스테아르 산의 생산에 사용될 수 있는 것이라면 발현 벡터 pET-28a(+)를 포함하여 유전자 재조합 방법에 이용되는 벡터라면 모두 사용가능하고, 상기 재조합 발현 벡터로 형질전환 되는 미생물로는 대장균 ER 2566을 사용하는 것이 바람직하나 재조합 발현 벡터로 형질전환 되어 목적하는 유전자를 과발현하고 활성이 있는 효소 단백질을 생산할 수 있는 균주라면 어느 것이라도 사용가능하다.In the present invention, as long as the recombinant expression vector can be used for the production of 10-hydroxy stearic acid, any vector used in the gene recombination method including the expression vector pET-28a (+) can be used. E. coli ER 2566 is preferably used as the microorganism to be transformed. However, any strain may be used as long as it is transformed with a recombinant expression vector to overexpress the desired gene and produce an active enzyme protein.

본 발명의 일 구현예에 있어서, 상기 발현벡터는 도 6의 개열지도를 가지는 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the invention, the expression vector preferably has a cleavage map of Figure 6, but is not limited thereto.

또한 본 발명은 올레산 수화효소 유전자를 포함하는 상기 본 발명의 재조합 발현 벡터를 제작하고;The present invention also provides a recombinant expression vector of the present invention comprising an oleic acid hydratase gene;

b) 상기 재조합 발현 벡터로 형질전환된 미생물을 배양하고; b) culturing the microorganism transformed with said recombinant expression vector;

c) 상기 올레산 수화효소 유전자의 발현을 유도하고; c) induce expression of said oleic acid hydratase gene;

d) 발현된 재조합 단백질을 분리 및 정제하는 과정을 포함하는 올레산 수화효소 제조방법을 제공한다.d) provides a method for preparing oleic acid hydratase comprising the step of isolating and purifying the expressed recombinant protein.

또한 본 발명은 기질에 상기 본 발명의 올레산 수화효소를 처리하는 단계를 포함하는 10-하이드록시지방산 생산방법을 제공한다.The present invention also provides a 10-hydroxy fatty acid production method comprising the step of treating the oleic acid hydratase of the present invention on a substrate.

본 발명의 일 구현예에 있어서,상기 방법은 기질로 올레산을 사용하는 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the method is preferably, but not limited to using oleic acid as a substrate.

본 발명의 다른 구현예에 있어서, 상기 하이드록시 지방산은 10-하이드록시스테아르 산이 바람직하나 이에 한정되지 아니한다.In another embodiment of the present invention, the hydroxy fatty acid is preferably 10-hydroxystearic acid, but is not limited thereto.

이하 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명자들은 식물의 풍부한 불포화지방산인 올레산을 하이드록시 지방산으로 전환할 수 있는 효소를 조사하였고, 부산물 없이 10-하이드록시스테아르산을 고 수율로 생산할 수 있는 효소 및 재조합 미생물을 선택하였다. The present inventors investigated enzymes capable of converting oleic acid, which is abundant unsaturated fatty acids of plants into hydroxy fatty acids, and selected enzymes and recombinant microorganisms capable of producing 10-hydroxystearic acid in high yield without by-products.

리시니바실러스 후시포르미스 (Lysinibacillus fusiformis ), 마크로코코스 카제리티쿠스 (Macrococcus caseolyticus ), 프로피오니박테리움 아크네스 (Propionibacterium acnes ), 스테노트로포모나스 말토필리아 (Stenotrophomonas maltophilia)로부터 유래한 올레산 수화효소 유전자를 포함하는 재조합 발현 벡터 및 이로 형질전환된 미생물을 구축하고 이들을 이용하여 올레산 수화효소를 대량으로 제조하였고 효소와 형질전환된 미생물을 사용하여 친환경적인 과정으로 부산물의 생성 없이 10-하이드록시스테아르 산을 고 수율로 얻는 최적 반응 조건을 확인하고 본 발명을 완성하게 되었다. Lysinibacillus fusiformis ), Macrococcus construct and use a recombinant expression vector comprising the oleic acid hydratase gene derived from caseolyticus ), Propionibacterium acnes , Stenotrophomonas maltophilia and microorganisms transformed therewith. A large amount of oleic acid hydrase was prepared and the optimal reaction conditions for obtaining 10-hydroxystearic acid in high yield without the production of by-products by using an enzyme and a transformed microorganism were completed and the present invention was completed.

본 발명의 바람직한 일 실시예에서는 리시니바실러스 후시포르미스 (lysinibacillus fusiformis ), 마크로코코스 카제리티쿠스 (Macrococcus caseolyticus ), 프로피오니박테리움 아크네스 (Propionibacterium acnes), 스테노트로포모나스 말토필리아 (Stenotrophomonas maltophilia )균주의 게놈 DNA(genomic DNA)를 주형으로 하고, 서열번호 9 및 10, 서열번호 11 및 12 , 서열번호 13 및 14, 서열번호 15 및 16의 프라이머를 가지고 PCR을 실시하여 올레산 수화효소 유전자(도면 1a, 도면 1b, 도면 1c, 도면 1d)를 포함하는 DNA 절편을 증폭한 다음; 증폭된 올레산 수화효소 유전자를 포함하는 DNA 절편에 제한효소 Nhe 와 Xho , Nhe 와 Xho , Nde 와 Hind , Nhe 와 Xho 으로 각각 처리한 후 발현벡터인 pEt 28(+)에 클로닝하여 재조합 발현벡터 pET28(+)a/올레산 수화효소를 제작하고; 이를 통상적 형질전환방법으로 대장균 ER 2566 균주에 형질전환 하고; 형질전환 된 대장균을 배양한 다음 과발현을 유도하여 올레산 수화효소를 생산하고; 및 발현된 올레산 수화효소를 분리하여 정제한다.In a preferred embodiment of the present invention, Lysinibacillus fusiformis , Macrococcus caseriticus ( Macrococcus) caseolyticus ), Propionibacterium acnes, Stenotrophomonas maltophilia) the genomic DNA (genomic DNA) of the strain as a template and SEQ ID NO: 9 and 10, SEQ ID NO: 11 and 12, SEQ ID NO: 13 and 14, by carrying out PCR oleic hydrated gene with primers of SEQ ID NOS: 15 and 16 Amplifying a DNA fragment comprising (Fig. 1a, Fig. 1b, Fig. 1c, Fig. 1d); DNA fragments containing the amplified oleic acid hydrase genes were treated with restriction enzymes Nhe and Xho, Nhe and Xho, Nde and Hind, Nhe and Xho, respectively, and cloned into pEt 28 (+), an expression vector pET28 ( +) a / oleic acid hydratase was prepared; Transforming E. coli ER 2566 strain by conventional transformation method; Culturing the transformed Escherichia coli and then inducing overexpression to produce oleic acid hydrase; And the expressed oleic hydrase is isolated and purified.

또한, 상기 발현된 올레산 수화효소는 상기 형질전환 된 균주의 배양액의 세포 용액을 파쇄한 후 원심분리하여 상등액을 얻고; 상기 상등액은 고속 단백질 액체 크로마토그래피(fast protein liquid chromatography)로 분리하는 과정을 통해 효소액을 분리 정제할 수 있다.In addition, the expressed oleic acid hydrase is obtained by crushing the cell solution of the culture medium of the transformed strain and then centrifuged to obtain a supernatant; The supernatant may be separated and purified through the process of separation by fast protein liquid chromatography.

또한, 본 발명은 상기와 같은 방법으로 제조되는 올레산 수화효소를 이용하여 10-하이드록시스테아르 산을 고 수율로 얻는 생산방법을 제공한다.In addition, the present invention provides a production method for obtaining a high yield of 10-hydroxystearic acid using the oleic acid hydrase prepared by the above method.

구체적으로, 본 발명은 부산물의 생성 없이 산화환원 보조인자를 조효소로 첨가하여 10-하이드록시스테아르 산만을 선별적으로 합성할 수 있는 상기 올레산 수화효소를 이용한 10-하이드록시스테아르 산의 생산방법을 제공한다.Specifically, the present invention provides a method for producing 10-hydroxystearic acid using the oleic acid hydrolase which can selectively synthesize 10-hydroxystearic acid by adding a redox cofactor as a coenzyme without generating by-products. do.

상기 올레산 수화효소는 상기와 같이 올레산 수화효소 유전자를 포함하는 재조합 발현벡터로 형질전환된 대장균을 배양하여 재조합 효소 유전자의 발현을 유도한 다음 발현된 단백질을 분리 및 정제하는 과정으로 제조된 것을 사용하는 것이 바람직하다.The oleic acid hydrase is prepared by inducing the expression of the recombinant enzyme gene by culturing E. coli transformed with the recombinant expression vector containing the oleic acid hydratase gene as described above, and then separating and purifying the expressed protein. It is preferable.

또한, 기질로서 지방산을 사용하는 것이 바람직하고, 더욱 바람직하게는 올레산(oleate)를 사용하는 것이 좋다. 또한, 상기 기질의 농도는5 내지 30g/의 범위인 것이 바람직하고, 10 g/ℓ내지 20 g/ℓ 내외의 범위인 것을 더욱 바람직하다. It is also preferable to use fatty acids as the substrate, more preferably oleate. In addition, the concentration of the substrate is preferably in the range of 5 to 30 g /, more preferably in the range of about 10 g / l to 20 g / l.

또한, 상기 효소와 균주 반응은 pH 5 내지 7.0의 범위에서 이루어지는 것이 바람직하며, 더욱 바람직하게는 pH 7.0 내외 범위에서 이루어지는 것이 좋다. In addition, the enzyme and strain reaction is preferably made in the range of pH 5 to 7.0, more preferably in the range of pH 7.0.

또한, 상기 효소와 균주 반응은 온도 20℃ 내지 40℃ 범위에서 이루어지는 것이 바람직하며, 더욱 바람직하게는 30℃ 내외의 온도 범위에서 이루어지는 것이 좋다.In addition, the enzyme and the strain reaction is preferably made in the temperature range of 20 ℃ to 40 ℃, more preferably in the temperature range of about 30 ℃.

또한, 상기 효소와 균주 반응의 시간을 통상적인 방법에 따라 적절히 조절할 수 있다.In addition, the time of the enzyme and strain reaction can be appropriately adjusted according to a conventional method.

본 발명은 올레산 수화효소 유전자를 포함하는 재조합 발현벡터, 이로 형질전환 된 미생물 및 이들을 이용하여 올레산 수화효소를 대량으로 얻는 제조방법, 그리고 올레산 수화효소를 이용하여 10-하이드록시스테아르 산을 고수율로 얻는 생산방법을 제공하는 효과가 있다.The present invention provides a recombinant expression vector containing an oleic acid hydratase gene, a microorganism transformed therewith, a method for producing a large amount of oleic acid hydrase using them, and a high yield of 10-hydroxystearic acid using oleic acid hydratase. It is effective to provide a production method.

본 발명의 리시니바실러스 후시포르미스 (Lysinibacillus fusiformis), 마크로코코스 카제리티쿠스 (Macrococcus caseolyticus), 프로피오니박테리움 아크네스 (Propionibacterium acnes), 스테노트로포모나스 말토필리아 (Stenotrophomonas maltophilia) 로부터 유래한 올레산 수화효소는 높은 특이성과 친환경적인 방법으로 산업품의 원료 물질인 10-하이드록시스테아르 산을 높은 수율로 생산할 수 있으며, 이렇게 생산된 10-하이드록시스테아르 산은 다양한 락톤의 합성 시작물질로서 유용하게 사용될 수 있다. Oleic acid derived from Lysinibacillus fusiformis, Macrococcus caseolyticus, Propionibacterium acnes, Stenotrophomonas maltophilia of the present invention The hydratase can produce 10-hydroxystearic acid, a raw material of industrial products, in high yield in a high specificity and environmentally friendly way, and the 10-hydroxystearic acid thus produced can be usefully used as a starting material for synthesis of various lactones. .

도 1의 본 발명의 올레산 수화효소의 유전자 서열을 나타낸 것으로, 도 1a:리시니바실러스 후시포르미스, 도 1b: 마크로코코스 카제리티쿠스, 도 1c :프로피오니박테리움 아크네스, 도 1d : 스테노트로포모나스 말토필리아 균주 유래 서열을 나타낸다.
도 2는 본 발명의 재조합 된 올레산 수화효소를 이용한 올레산으로부터 10-하이드록시스테아르 산의 전환율를 비교하여 나타낸 것이다.
도 3은 본 발명의 재조합 균주를 이용한 올레산으로부터 10-하이드록시스테아르 산의 전환율을 비교하여 나타낸 것이다. ( ■: 올레산, □: 리놀레산)
도 4는 본 발명의 재조합 된 올레산 수화효소를 이용한 10-하이드록시스테아르 산 시간별 생산량을 나타낸 것이다. (● : 프로피오니박테리움 아크네스 올레산, ○: 프로피오니박테리움 아크네스 10-하이드록시스테아르 산, ■: 스테노트로포모나스 말토필리아 올레산, □: 스테노트로포모나스 말토필리아 10-하이드록시스테아르 산, ▲ : 마크로코코스 카제리티쿠스 올레산, △ : 마크로코코스 카제리티쿠스 10-하이드록시스테아르 산, ◆:리시니바실러스 후시포르미스 올레산, ◇ : 리시니바실러스 후시포르미스 10-하이드록시스테아르 산 )
도 5는 본 발명의 재조합 균주를 이용한 10-하이드록시스테아르 산 시간별 생산량을 나타낸 것이다. (● : 프로피오니박테리움 아크네스 올레산, ○: 프로피오니박테리움 아크네스 10-하이드록시스테아르 산, ■: 스테노트로포모나스 말토필리아 올레산, □: 스테노트로포모나스 말토필리아 10-하이드록시스테아르 산, ▲ : 마크로코코스 카제리티쿠스 올레산, △ : 마크로코코스 카제리티쿠스 10-하이드록시스테아르 산, ◆:리시니바실러스 후시포르미스 올레산, ◇ : 리시니바실러스 후시포르미스 10-하이드록시스테아르 산 )
Figure 1 shows the gene sequence of the oleic acid hydratase of the present invention, Figure 1a: Lysinibacillus Fushiformis, Figure 1b: Macrococcus kageritix, Figure 1c: Propionibacterium Acnes, Figure 1d: Stenott Ropomonas maltophilia strain derived sequence is shown.
Figure 2 shows a comparison of the conversion rate of 10-hydroxystearic acid from oleic acid using the recombinant oleic acid hydrase of the present invention.
Figure 3 shows a comparison of the conversion rate of 10-hydroxystearic acid from oleic acid using the recombinant strain of the present invention. (■: oleic acid, □: linoleic acid)
Figure 4 shows the hourly production of 10-hydroxystearic acid using the recombinant oleic acid hydrase of the present invention. (●: Propionibacterium Acnes Oleic acid, ○: Propionibacterium acnes 10-hydroxystearic acid, ■: stenotropomonas maltophilia oleic acid, □: stenotropomonas maltophilia 10-hydroxystearic acid, ▲: macrococcus casericicus oleic acid, △: macrococos casericitis 10-hydroxystearic acid, ◆: Ricinibacillus fusiformis oleic acid, ◇: Ricinibacillus fusiformis 10-hydroxystearic acid)
Figure 5 shows the 10-hydroxystearic acid hourly production using the recombinant strain of the present invention. (●: Propionibacterium Acnes Oleic acid, ○: Propionibacterium acnes 10-hydroxystearic acid, ■: stenotropomonas maltophilia oleic acid, □: stenotropomonas maltophilia 10-hydroxystearic acid, ▲: macrococcus casericicus oleic acid, △: macrococos casericitis 10-hydroxystearic acid, ◆: Ricinibacillus fusiformis oleic acid, ◇: Ricinibacillus fusiformis 10-hydroxystearic acid)

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 지방산업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art of fatty acids that the scope of the present invention is not to be construed as being limited by these examples.

실시예Example 1. 올레산 수화효소 유전자를 포함하는 재조합 발현벡터 및 형질전환 미생물의 제조 1. Preparation of recombinant expression vector and transformed microorganism comprising oleic acid hydratase gene

본 발명의 올레산 수화효소 유전자를 제조하기 위하여, 리시니바실러스 후시포르미스 (Lysinibacillus fusiformis), 마크로코코스 카제리티쿠스 (Macrococcus caseolyticus ), 프로피오니박테리움 아크네스 (Propionibacterium acnes ), 스테노트로포모나스 말토필리아 (Stenotrophomonas maltophilia ) 균주로부터 유래한 올레산 수화효소 유전자를 먼저 분리하였다.In order to prepare the oleic acid hydratase gene of the present invention, Lysinibacillus fusiformis, Macrococcus caseriticus ( Macrococcus) caseolyticus ), Propionibacterium acnes , Stenotrophomonas a gene derived from oleic acid, hydrated maltophilia) the strain was first separated.

구체적으로, 유전자 염기서열과 아미노산 서열이 이미 특정되어 있는 리시니바실러스 후시포르미스 (Lysinibacillus fusiformis ) KCTC 3454, 마크로코코스 카제리티쿠스 (Macrococcus caseolyticus ) KCTC 3582, 프로피오니박테리움 아크네스 (Propionibacterium acnes ) KCTC 3314, 스테노트로포모나스 말토필리아 (Stenotrophomonas maltophilia .) KCCM 40552 균주를 선별하고, 이로부터 유래한 올레산 수화효소의 DNA 염기서열(Genebank Accession No.ZP_07049769; 도면 1a), (Genebank Accession No. YP_002559479.1; 도면 1b), (Genebank Accession No. AE017283.1; 도면 1c), (Genebank Accession No. AM743169; 도면 1d)을 기초로 하여 다음의 프라이머(primer)를 고안하였다.Specifically, the gene sequence and re shinny Bacillus Fushimi in the amino acid sequence has already been specified formate miss (Lysinibacillus fusiformis) KCTC 3454, a mark Cocos helicase utility kusu (Macrococcus caseolyticus ) KCTC 3582 , Propionibacterium acnes ) KCTC 3314 , Stenotrophomonas maltophilia .) KCCM 40552 strains were selected and DNA sequences of oleic acid hydratase derived therefrom (Genebank Accession No.ZP_07049769; Fig. 1a), (Genebank Accession No. YP_002559479.1; Fig. 1b), (Genebank Accession No. The following primers were designed based on AE017283.1; FIG. 1c), (Genebank Accession No. AM743169; FIG. 1d).

서열번호 9(정방향프라이머):   SEQ ID NO: 9 (forward primer):

5'-GCTAGCATGTATTACAGTAATGGTAACTATGAA-3' 5'- GCTAGC ATGTATTACAGTAATGGTAACTATGAA-3 '

서열번호 10 (역방향 프라이머):  SEQ ID NO: 10 (reverse primer):

5'-GGCTCGAGCTATATTAGTTTACTTTCTTTCA-3' 5'-GG CTCGAG CTATATTAGTTTACTTTCTTTCA-3 '

서열번호 11(정방향 프라이머):  SEQ ID NO: 11 (forward primer):

5'-GGGGCTAGCATGTACTATAGTAATGGA-35'-GGG GCTAGC ATGTACTATAGTAATGGA-3

서열번호 12(역방향 프라이머):   SEQ ID NO: 12 (reverse primer):

5'-AGGCTCGAGTTATATCAAATTTGCTTC-3' 5'-AGG CTCGAG TTATATCAAATTTGCTTC-3 '

서열번호 13(정방향 프라이머):  SEQ ID NO: 13 (Forward primer):

5'-GGGCATATGACGAACTTCCAACAC-3' 5'-GGG CATATG ACGAACTTCCAACAC-3 '

서열번호 14(역방향 프라이머):   SEQ ID NO: 14 (Reverse primer):

5'-TTTAAGCTTTCACGGCAGGATGTC-3' 5'-TTT AAGCTT TCACGGCAGGATGTC-3 '

서열번호 15(정방향 프라이머):   SEQ ID NO: 15 (Forward primer):

5'-GGGGCTAGCATGTACTACAGCAGTGGC-3'5'-GGG GCTAGC ATGTACTACAGCAGTGGC-3 '

서열번호 16(역방향 프라이머):   SEQ ID NO: 16 (reverse primer):

5'-AAACTCGAGTCAGTCCTCCTGCACCAG-3'5'-AAA CTCGAG TCAGTCCTCCTGCACCAG-3 '

상기 서열번호 9 내지 12 및 15 내지 16 프라이머는 NheXho ,서열번호 13 내지 14 프라이머는 NdeHind 제한효소 절단부분으로 설계되었으며 상기 프라이머를 이용한 중합효소 연쇄반응(PCR)을 실시하여 해당 유전자의 염기서열을 증폭하였다. The primers SEQ ID NOS: 9-12 and 15-16 were designed for Nhe and Xho , and SEQ ID NOs: 13-14 were designed for cleavage of Nde and Hind restriction enzymes. The sequence was amplified.

대량으로 얻은 올레산 수화효소 유전자는 제한효소 NheXho 또는 NdeHind 을 사용하여 플라스미드 벡터 pET 28(+)(Novagen사 제품)에 삽입하여 pET 28(+)a/올레산 수화효소를 제작하였다. The oleic hydrase gene obtained in large quantities is a restriction enzyme. Nhe and Xho or Nde and Hind Was inserted into the plasmid vector pET 28 (+) (manufactured by Novagen) to prepare pET 28 (+) a / oleic acid hydrolase.

상기와 같이 얻은 재조합 발현벡터는 통상적인 형질전환 방법에 의하여 대장균 ER 2566 균주(New Englands Biolabs, Herfordshire, UK)에 형질 전환하고, 상기 형질전환된 미생물은 20% 글리세린(glycerine) 용액을 첨가하여 10-하이드록시스테아르 산의 생산을 위한 배양을 실시하기 전에 냉동 보관하였다.
The recombinant expression vector obtained as described above was transformed into E. coli ER 2566 strain (New Englands Biolabs, Herfordshire, UK) by a conventional transformation method, the transformed microorganism was added by adding 20% glycerin solution 10 It was stored frozen before incubation for the production of hydroxystearic acid.

실시예Example 2. 올레산 수화효소의 제조 2. Preparation of Oleic Acid Hydrolase

본 발명의 올레산 수화효소를 대량 생산하기 위하여, 냉동 보관된 재조합 대장균 ER 2566 균주를 LB 배지 3ml가 들어있는 시험관(test tube)에 접종하고, 600nm에서 흡광도가 2.0이 될 때까지 37℃의 진탕 배양기로 종균 배양을 실시하였다. 그런 다음, 상기 종균 배양된 배양액을 LB 배지 500ml가 들어있는 2,000ml 플라스크에 첨가하여 본 배양을 실시하였다.In order to mass-produce the oleic acid hydrase of the present invention, the frozen E. coli ER 2566 strain was inoculated into a test tube containing 3 ml of LB medium, and shaker at 37 ° C. at 600 nm until the absorbance was 2.0. The spawn culture was carried out. Then, the seed cultured culture was added to a 2,000 ml flask containing 500 ml of LB medium to carry out the main culture.

또한, 600nm에서 흡광도가 0.6이 될 때, 0.1mM IPTG를 첨가하여 올레산 수화효소의 대량 발현을 유도하였다. 이때, 교반 속도는 200rpm, 배양 온도는 37℃로 유지하였으며, IPTG 첨가 후에는 교반 속도 150rpm, 배양 온도 16℃로 조정하여 배양하였다.In addition, when the absorbance became 0.6 at 600 nm, 0.1 mM IPTG was added to induce mass expression of oleic acid hydratase. At this time, the stirring speed was maintained at 200rpm, the culture temperature was maintained at 37 ℃, after the addition of IPTG was adjusted to the stirring speed 150rpm, culture temperature 16 ℃ and incubated.

또한, 상기와 같이 과발현 되어 생산된 올레산 수화효소는, 상기 형질전환된 균주의 배양액을 6,000xg로 4℃에서 30분 동안 원심분리하여 0.85% 염화나트륨(NaCl)으로 두 번 세척한 다음, 50mM 제일인산나트륨, 300mM 염화나트륨, 10mM 이미다졸(immidazole), 0.1mM 단백분해 효소 저해제(phenylmethylsulfonyl fluoride)를 첨가하여 상기 세포 용액을 파쇄기(sonicator)로 파쇄하였다. 상기 세포 파쇄물은 다시 13,000xg로 4℃에서 20분 동안 원심분리하고, 세포 펠렛을 제거한 후 세포 상등액만을 얻어 고속 단백질 액체 크로마토그래피(fast protein liquid chromatography system; Bio-Rad Laboratories, Hercules, CA, USA)에 히스텍(His-tag)를 이용한 히스트랩 에이치피(Histrap HP) 흡착 컬럼을 장착하여 10-하이드록시스테아르 산 생산에 사용되는 효소액으로서 분리하였다.
In addition, the oleic acid hydrase produced by overexpression as described above, the culture medium of the transformed strain was washed twice with 0.85% sodium chloride (NaCl) by centrifugation at 6,000xg for 30 minutes at 4 ℃, 50mM phosphate The cell solution was disrupted with a sonicator by adding sodium, 300 mM sodium chloride, 10 mM immidazole, 0.1 mM protease inhibitor (phenylmethylsulfonyl fluoride). The cell lysate was again centrifuged at 13,000 × g for 20 minutes at 4 ° C., cell pellets were removed, and only cell supernatant was obtained for fast protein liquid chromatography (Bio-Rad Laboratories, Hercules, CA, USA). It was equipped with a Hisrap HP adsorption column using a His-tag, and separated as an enzyme liquid used for the production of 10-hydroxystearic acid.

실시예Example 3.재조합된 올레산 수화효소의 10- 3.10- of Recombinant Oleic Acid Hydrolase 하이드록시스테아르Hydroxy stearic acid 산 전환능력 비교 Acid conversion capacity comparison

본 발명의 리시니바실러스 후시포르미스 (Lysinibacillus fusiformis ), 마크로코코스 카제리티쿠스 (Macrococcus caseolyticus ), 프로피오니박테리움 아크네스(Propionibacterium acnes ), 스테노트로포모나스 말토필리아 (Stenotrophomonas maltophilia ) 균주 유래의 올레산 수화효소를 상기와 같이 분리한 후 10-하이드록시스테아르 산의 전환능력을 확인하기 위하여, 효소의 최적 pH 6.5, 온도 (30℃)에서 올레산을 기질로 하여 10-하이드록시스테아르 산으로의 전환능력을 비교하였다. 그 결과 리시니바실러스 후시포르미스 (Lysinibacillus fusiformis )유래 올레산 수화효소의 전환율은 17.2%, 마크로코코스 카제리티쿠스 (Macrococcus caseolyticus )유래 올레산 수화효소의 전환율은 15.5%, 프로피오니박테리움 아크네스 (Propionibacterium acnes )유래 올레산 수화효소의 전환율은 3.6%, 스테노트로포모나스 말토필리아 (Stenotrophomonas maltophilia ) 유래 올레산 수화효소의 전환율은 11.8%로 확인되었다. (도 2)
Lysinibacillus of the present invention ( Lysinibacillus) fusiformis ), Macrococcus caseolyticus , Propionibacterium acnes ), Stenotrophomonas maltophilia) to the enzymes of the strains derived from oleic acid hydrate to determine the conversion capacity of 10-hydroxystearic acid was separated as described above, the 10-hydroxy oleic acid as a substrate in the optimal pH 6.5, the temperature (30 ℃) of enzyme hydroxy The ability to convert to stearic acid was compared. As a result, Lee shinny Bacillus backsight formate miss (Lysinibacillus fusiformis) derived from the conversion of oleic acid, hydrated enzyme was 17.2%, a mark Cocos helicase utility kusu (Macrococcus caseolyticus) conversion of the resulting oleic hydrated enzyme was 15.5%, propionic sludge tumefaciens arc Ness (Propionibacterium acnes ) derived from the conversion of oleic acid, hydrated enzyme was 3.6%, the conversion of malto Pomona's pilriah (Stenotrophomonas maltophilia) derived from oleic acid, hydrated enzyme Ste note was identified as 11.8%. (Fig. 2)

실시예Example 4. 재조합 균주의 10- 4. 10- of recombinant strains 하이드록시Hydroxy 스테아릭Stearic 엑시드의Exsidic 전환능력 비교 Conversion ability comparison

본 발명의 재조합된 리시니바실러스 후시포르미스 (Lysinibacillus fusiformis ), 마크로코코스 카제리티쿠스 (Macrococcus caseolyticus ), 프로피오니박테리움 아크네스 (Propionibacterium acnes ), 스테노트로포모나스 말토필리아 (Stenotrophomonas maltophilia ) 균주를 이용한 10-하이드록시스테아르 산 전환능력을 비교하기 위하여 효소의 최적 pH 6.5, 온도 (25℃)에서 올레산을 기질로 하여 10-하이드록시스테아르 산으로의 전환능력을 비교하였다. 그 결과 리시니바실러스 후시포르미스 (lysinibacillus fusiformis ) 의 전환율은 10.6%, 마크로코코스 카제리티쿠스 (Macrococcus caseolyticus )의 전환율은 0%, 프로피오니박테리움 아크네스 (Propionibacterium acnes ) 의 전환율은 4.6%, 스테노트로포모나스 말토필리아 (Stenotrophomonas maltophilia ) 의 전환율은 11.8%로 확인되었다. (도 3)
Recombinant Lysinibacillus Fushiformis of the present invention ( Lysinibacillus) fusiformis ), Macrococcus caseolyticus ), Propionibacterium acnes acnes ), Stenotrophomonas In order to compare the conversion ability of 10-hydroxystearic acid using maltophilia ) strains, the conversion ability of 10-hydroxystearic acid was compared with oleic acid as a substrate at an optimum pH of 6.5 and temperature (25 ° C). The result is Lysinibacillus lysinibacillus fusiformis ) has a conversion rate of 10.6% and Macrococcus Conversion of caseolyticus) has a conversion rate of 0%, propionic sludge tumefaciens arc Ness (conversion rate of 4.6%, Pomona's malto pilriah (Stenotrophomonas maltophilia) in Ste note of Propionibacterium acnes) was identified as 11.8%. (Fig. 3)

실시예Example 5. 올레산 수화효소를 이용한 10- 5. 10- Using Oleic Acid Hydase 하이드록시스테아르Hydroxy stearic acid 산의 생산 Production of acid

본 발명의 올레산 수화효소를 이용한 10-하이드록시스테아르 산의 생산성을 확인하기 위하여, 효소의 최적 pH 6.5, 온도(25℃)에서 10 g/ℓ의 올레산을 기질로 하여 10-하이드록시스테아르 산의 시간별 생산량을 측정하였다.In order to confirm the productivity of 10-hydroxystearic acid using the oleic acid hydrase of the present invention, 10-hydroxystearic acid was prepared using 10 g / l oleic acid as a substrate at an optimum pH of 6.5 and a temperature of 25 ° C. Hourly yield was measured.

그 결과, 리시니바실러스 후시포르미스 (Lysinibacillus fusiformis )는 반응 5.5시간 후에 10g/ℓ의 올레산에서 7g/ℓ의 10-하이드록시스테아르 산을 생산하여 시간당 1.27g/ℓ의 생산성과 70%의 전환수율을 나타냈었다. 마크로코코스 카제리티쿠스 (Macrococcus caseolyticus )는 6.6g/ℓ의 10-하이드록시스테아르 산을 생산하여 1.2g/ℓ의 생산성과 66%의 전환수율을 나타내었다. 프로피오니박테리움 아크네스 (Propionibacterium acnes )는 1.8g/ℓ의 10-하이드록시스테아르 산을 생산하여 0.33g/ℓ의 생산성과 18%의 전환수율을 나타내었다. 스테노트로포모나스 말토필리아 (Stenotrophomonas maltophilia ) 는 8.2 g/ℓ의 10-하이드록시스테아르 산을 생산하여 시간당 1.5 g/ℓ의 생산성과 82%의 전환수율을 나타내었다.(도 4)
As a result, Lysinibacillus fusiformis ) produced 7 g / l of 10-hydroxystearic acid at 10 g / l of oleic acid after 5.5 hours of reaction, yielding 1.27 g / l of productivity and 70% conversion yield. Macrococcus Kaceritikkusu ( Macrococcus caseolyticus ) produced 6.6 g / l of 10-hydroxystearic acid, yielding 1.2 g / l of productivity and 66% conversion yield. Propionibacterium acnes ) produced 1.8 g / l of 10-hydroxystearic acid, yielding 0.33 g / l of productivity and 18% conversion yield. Stenotrophomonas maltophilia ) produced 8.2 g / l of 10-hydroxystearic acid, yielding 1.5 g / l of productivity and 82% conversion yield per hour (FIG. 4).

실시예Example 6. 재조합 균주를 이용한 10- 6. 10- Using Recombinant Strains 하이드록시스테아르Hydroxy stearic acid 산의 생산 Production of acid

본 발명의 재조합 균주를 이용한 10-하이드록시스테아르 산의 생산성을 확인하기 위하여, 효소의 최적 pH 6.5, 온도(25℃)에서 20 g/ℓ의 올레산을 기질로 하여 10-하이드록시스테아르 산의 시간별 생산량을 측정하였다.In order to confirm the productivity of 10-hydroxystearic acid using the recombinant strain of the present invention, the optimum time of 10-hydroxystearic acid based on 20 g / l oleic acid at the optimum pH 6.5, temperature (25 ℃) of the enzyme The yield was measured.

그 결과,리시니바실러스 후시포르미스 (Lysinibacillus fusiformis )는 반응 3시간 후에 20g/ℓ의 올레산에서 19g/ℓ의 10-하이드록시스테아르 산을 생산하여 시간당 6.3 g/의 생산성과 91%의 전환수율을 나타냈었다. 마크로코코스 카제리티쿠스 (Macrococcus caseolyticus )는 18.3 g/ℓ의 10-하이드록시스테아르 산을 생산하여 6.1 g/ℓ의 생산성과 88%의 전환수율을 나타내었다. 프로피오니박테리움 아크네스 (Propionibacterium acnes )는 8.5 g/ℓ의 10-하이드록시스테아르 산를 생산하여 2.8g/ℓ의 생산성과 18%의 전환수율을 나타내었다. 스테노트로포모나스 말토필리아 (Stenotrophomonas maltophilia ) 는 18 g/ℓ의 10-하이드록시스테아르 산을 생산하여 시간당 6 g/ℓ의 생산성과 90%의 전환수율을 나타내었다.(도 5) As a result, Lysinibacillus fusiformis ) produced 19 g / l of 10-hydroxystearic acid at 20 g / l of oleic acid after 3 hours of reaction, yielding 6.3 g / hour of productivity and 91% conversion yield. Macrococcus Kaceritikkusu ( Macrococcus caseolyticus ) produced 18.3 g / l of 10-hydroxystearic acid, yielding 6.1 g / l of productivity and 88% conversion yield. Propionibacterium acnes ) produced 8.5 g / l of 10-hydroxystearic acid, yielding 2.8 g / l of productivity and 18% conversion yield. Producing malto Pomona's pilriah (Stenotrophomonas maltophilia), is 18 g / ℓ 10- hydroxy stearic acid to stearyl note indicated by the hour 6 g / ℓ of productivity and conversion yield of 90%. (5)

이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 지방산업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. As described above, specific portions of the contents of the present invention have been described in detail, and for those skilled in the art of fatty acids, these specific techniques are merely preferred embodiments, and the scope of the present invention is not limited thereto. Will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

<110> Konkuk University Industrial Cooperation Corp. <120> Novel oleate hydratase and Method for the production of 10-hydroxystearic acid by recombinant cells comprising the same <160> 16 <170> KopatentIn 1.71 <210> 1 <211> 590 <212> PRT <213> Lysinibacillus fusiformis <400> 1 Met Tyr Tyr Ser Asn Gly Asn Tyr Glu Ala Phe Ala Arg Pro Lys Lys 1 5 10 15 Pro Glu Gly Val Asp Gly Lys Ser Ala Tyr Leu Ile Gly Ser Gly Leu 20 25 30 Ala Ser Leu Ser Ala Ala Cys Phe Leu Ile Arg Asp Gly Gln Met Lys 35 40 45 Gly Glu Asn Ile His Ile Leu Glu Glu Leu Asp Ile Ser Gly Gly Ser 50 55 60 Leu Asp Gly Ile Leu Asn Pro Thr Arg Gly Phe Ile Ile Arg Gly Gly 65 70 75 80 Arg Glu Met Glu Asp His Phe Glu Cys Leu Trp Asp Leu Phe Arg Ser 85 90 95 Ile Pro Ser Leu Glu Val Asp Asn Ala Ser Val Leu Asp Glu Phe Tyr 100 105 110 Trp Leu Asn Lys Glu Asp Pro Asn Tyr Ser Lys Cys Arg Leu Ile Lys 115 120 125 Asp Arg Gly Gln Arg Leu Glu Asp Asp Gly Lys Phe Thr Leu Ser Asp 130 135 140 Gln Ser Ser Glu Glu Met Ile Lys Leu Phe Phe Thr Pro Glu Glu Lys 145 150 155 160 Leu Glu Asp Lys Lys Ile Thr Asp Val Phe Ser Glu Glu Phe Phe Glu 165 170 175 Ser Asn Phe Trp Leu Tyr Trp Ser Thr Met Phe Ala Phe Glu Lys Trp 180 185 190 His Ser Ala Met Glu Met Arg Arg Tyr Ile Met Arg Phe Ile His His 195 200 205 Ile Gly Gly Leu Pro Asp Leu Ser Ala Leu Lys Phe Thr Lys Tyr Asn 210 215 220 Gln Tyr Glu Ser Leu Val Leu Pro Met Ile Lys Tyr Leu Glu Gly His 225 230 235 240 Asp Val Asp Phe Gln Tyr Asn Thr Val Val Glu Asn Val Leu Val Asp 245 250 255 Lys Val Gly Asp Lys Lys Val Ala His Thr Leu Val Leu Arg Lys Asn 260 265 270 Gly Val Lys Glu Asn Ile Glu Leu Thr Glu Asn Glu Leu Val Phe Val 275 280 285 Thr Asn Gly Ser Ile Thr Glu Ser Thr Thr Tyr Gly Asp Asn Tyr Thr 290 295 300 Pro Ala Pro Val Asn Lys Glu Leu Gly Gly Ser Trp Ser Leu Trp Lys 305 310 315 320 Asn Ile Ala Ala Gln Asp Thr Asp Phe Gly Arg Pro Glu Lys Phe Cys 325 330 335 Asp Asn Leu Pro Lys Glu Ser Trp Phe Val Ser Ala Thr Leu Thr Thr 340 345 350 Leu Asp Asp Arg Val Ala Pro Tyr Ile Glu Lys Ile Ser Lys Arg Asp 355 360 365 Pro Tyr Ala Gly Lys Val Val Thr Gly Gly Ile Val Thr Ala Thr Asp 370 375 380 Ser Asn Trp Met Leu Ser Tyr Thr Leu Asn Arg Gln Pro His Phe Lys 385 390 395 400 His Gln Pro Lys Asp Gln Leu Val Val Trp Ile Tyr Gly Leu Leu Ser 405 410 415 Asn Lys Pro Gly Asp Phe Ile Lys Lys Ser Ile Thr Glu Cys Ser Gly 420 425 430 Ile Glu Ile Ala Gln Glu Trp Leu Tyr His Met Gly Val Pro Val Asp 435 440 445 Glu Ile Pro Asp Ile Ala Gln Asn Ser Cys Asn Thr Ile Pro Cys Tyr 450 455 460 Met Pro Tyr Ile Thr Ser Tyr Phe Met Pro Arg Ala Met Gly Asp Arg 465 470 475 480 Pro Leu Val Val Pro Glu Gly Ser Ala Asn Leu Ala Phe Ile Gly Asn 485 490 495 Phe Ser Glu Thr Val Arg Asp Thr Val Phe Thr Thr Glu Tyr Ser Val 500 505 510 Arg Thr Ala Met Glu Ala Val Tyr Gln Leu Leu Asn Ile Asp Arg Gly 515 520 525 Val Pro Glu Val Phe Ala Ser Ser Phe Asp Val Arg Thr Leu Leu Ala 530 535 540 Ser Thr Ala Arg Leu Leu Asp Gly Lys Lys Leu Thr Asp Ile Asp Ala 545 550 555 560 Pro Phe Ile Leu Lys Gln Ile Gly Lys Leu Gly Ile His Lys Thr Lys 565 570 575 Asp Thr Ile Ile Tyr Asp Leu Leu Lys Glu Ser Lys Leu Ile 580 585 590 <210> 2 <211> 589 <212> PRT <213> Macrococcus caseolyticus <400> 2 Met Tyr Tyr Ser Asn Gly Asn Tyr Glu Ala Phe Ala Arg Pro Lys Lys 1 5 10 15 Pro Glu Gly Val Asp Asn Lys Ser Ala Tyr Leu Val Gly Ser Gly Leu 20 25 30 Ala Ser Leu Ala Ala Ala Ser Phe Leu Ile Arg Asp Gly Lys Met Lys 35 40 45 Gly Glu Asn Ile His Ile Leu Glu Glu Leu Asp Leu Pro Gly Gly Ser 50 55 60 Leu Asp Gly Ile Leu Asn Pro Glu Arg Gly Tyr Ile Met Arg Gly Gly 65 70 75 80 Arg Glu Met Glu Asn His Phe Glu Cys Leu Trp Asp Leu Phe Arg Ser 85 90 95 Val Pro Ser Leu Glu Val Glu Asp Ala Ser Val Leu Asp Glu Phe Tyr 100 105 110 Trp Leu Asn Lys Glu Asp Pro Asn Tyr Ser Lys Cys Arg Val Ile Glu 115 120 125 Asn Arg Gly Gln Arg Leu Glu Ser Asp Gly Lys Met Thr Leu Thr Lys 130 135 140 Lys Ala Asn Lys Glu Ile Ile Gln Leu Cys Leu Met Lys Glu Glu Gln 145 150 155 160 Leu Asn Asp Val Lys Ile Ser Asp Val Phe Ser Lys Asp Phe Leu Asp 165 170 175 Ser Asn Phe Trp Ile Tyr Trp Lys Thr Met Phe Ala Phe Glu Pro Trp 180 185 190 His Ser Ala Met Glu Met Arg Arg Tyr Leu Met Arg Phe Ile His His 195 200 205 Ile Gly Gly Leu Ala Asp Phe Ser Ala Leu Lys Phe Thr Lys Phe Asn 210 215 220 Gln Phe Glu Ser Leu Val Met Pro Leu Ile Glu His Leu Lys Ala Lys 225 230 235 240 Asn Val Thr Phe Glu Tyr Gly Val Thr Val Lys Asn Ile Gln Val Glu 245 250 255 Cys Ser Lys Glu Ser Lys Val Ala Lys Ala Ile Asp Ile Val Arg Arg 260 265 270 Gly Asn Glu Glu Ser Ile Pro Leu Thr Glu Asn Asp Leu Val Phe Val 275 280 285 Thr Asn Gly Ser Ile Thr Glu Ser Thr Thr Tyr Gly Asp Asn Asp Thr 290 295 300 Pro Ala Pro Pro Thr Thr Lys Pro Gly Gly Ala Trp Gln Leu Trp Glu 305 310 315 320 Asn Leu Ser Thr Gln Cys Glu Glu Phe Gly Asn Pro Ala Lys Phe Tyr 325 330 335 Lys Asp Leu Pro Glu Lys Ser Trp Phe Val Ser Ala Thr Ala Thr Thr 340 345 350 Asn Asn Lys Glu Val Ile Asp Tyr Ile Gln Lys Ile Cys Lys Arg Asp 355 360 365 Pro Leu Ser Gly Arg Thr Val Thr Gly Gly Ile Val Thr Val Asp Asp 370 375 380 Ser Asn Trp Gln Leu Ser Phe Thr Leu Asn Arg Gln Gln Gln Phe Lys 385 390 395 400 Asn Gln Pro Asp Asp Gln Val Ser Val Trp Ile Tyr Ala Leu Tyr Ser 405 410 415 Asp Glu Arg Gly Glu Arg Thr Asn Lys Thr Ile Val Glu Cys Ser Gly 420 425 430 Lys Glu Ile Cys Glu Glu Trp Leu Tyr His Met Gly Val Pro Glu Glu 435 440 445 Lys Ile Ser Ala Leu Ala Ala Glu Cys Asn Thr Ile Pro Ser Tyr Met 450 455 460 Pro Tyr Ile Thr Ala Tyr Phe Met Pro Arg Lys Glu Gly Asp Arg Pro 465 470 475 480 Leu Val Val Pro His Gly Ser Lys Asn Ile Ala Phe Ile Gly Asn Phe 485 490 495 Ala Glu Thr Glu Arg Asp Thr Val Phe Thr Thr Glu Tyr Ser Val Arg 500 505 510 Thr Ala Met Glu Ala Val Tyr Lys Leu Leu Glu Val Asp Arg Gly Val 515 520 525 Pro Glu Val Phe Ala Ser Val Tyr Asp Val Arg Ile Leu Leu His Ala 530 535 540 Leu Ser Val Leu Asn Asp Gly Lys Lys Leu Asp Glu Ile Asp Met Pro 545 550 555 560 Ile Tyr Glu Arg Leu Val Glu Lys Arg Leu Leu Lys Lys Ala Ser Gly 565 570 575 Thr Phe Ile Glu Glu Leu Leu Glu Glu Ala Asn Leu Ile 580 585 <210> 3 <211> 594 <212> PRT <213> Propionibacterium acnes <400> 3 Met Thr Asn Phe Gln His Ile Tyr Gln Arg Ser Tyr Pro Val Ser Pro 1 5 10 15 Asp Gly Asn Pro Phe Val Gln Asn Asp Leu Gly Arg Tyr Thr Gln Asn 20 25 30 His Pro Val Pro Pro Asp Asp Val Ala Glu Arg Lys Ala Tyr Leu Val 35 40 45 Gly Ser Gly Ile Ala Ser Leu Leu Ser Ala Ala Tyr Leu Ile Arg Asp 50 55 60 Ala Gln Met Pro Gly Glu Asn Ile Thr Ile Leu Glu Glu Met Ser Glu 65 70 75 80 Pro Gly Gly Ala Phe Asp Gly Ala Gly Asp Thr Glu Lys Gly Phe Ile 85 90 95 Ala Arg Gly Gly Arg Glu Met Gly Gln His Phe Glu Cys Phe Trp Asp 100 105 110 Ile Met Lys Asp Ile Pro Ala Leu Glu Met Pro Glu Pro Tyr Ser Val 115 120 125 Leu Asp Glu Phe Arg Ile Val Asn Glu Asn Asp Pro Asn Ile Asn Pro 130 135 140 Cys Arg Ile Ile Asn Asn Arg Gly His Lys Arg Asp Ala Ser Lys Met 145 150 155 160 Gly Leu Asn Lys Lys Gly Gln Leu Asp Ile Val Arg Leu Leu Leu Ala 165 170 175 Lys Glu Ser Asp Thr Tyr Tyr Lys Ser Ile Glu Asp Trp Phe Asp Glu 180 185 190 Asp Phe Leu Gln Ser Thr Phe Tyr Leu Leu Trp Lys Thr Met Phe Ala 195 200 205 Phe Glu Gln Trp Gln Ser Leu Thr Glu Leu Lys Arg Tyr Met His Arg 210 215 220 Phe Leu Gln Tyr Leu Pro Gly Phe Ser Asn Leu Ser Cys Leu Arg Phe 225 230 235 240 Ser Arg Tyr Asn Gln His Asp Ser Phe Val Val Pro Leu Val Lys Trp 245 250 255 Leu Thr Glu Lys Gly Val Asn Phe Gln Tyr Asp Thr Leu Val Tyr Asp 260 265 270 Val Asp Leu Glu Ile Thr Ala His Arg Lys Ile Ala Arg Gly Ile Leu 275 280 285 Trp Arg Asp Lys Glu Gly Gly Glu His Arg Ile Asp Met Ser Ala Lys 290 295 300 Asp Leu Val Phe Val Thr Asn Gly Ser Leu Thr Glu Cys Thr Gly Tyr 305 310 315 320 Gly Asp Met Asp Thr Pro Ala Pro Tyr His Lys Asp Met Gln Ala Gly 325 330 335 Trp Glu Leu Trp Arg Asn Leu Val Arg Arg Ser Pro Ala Phe Gly Arg 340 345 350 Pro Asp Val Phe Cys Gly Asp Ala Asp Lys Thr Val Trp Gln Ser Ile 355 360 365 Ser Phe Asn Phe Ile Gly Arg Asp His Pro Phe Leu Glu Lys Ile Lys 370 375 380 Glu Leu Thr Gly Asn Asp Pro Leu Ser Gly Arg Thr Val Thr Gly Gly 385 390 395 400 Ile Ile Thr Ala Glu Asp Ser Ser Trp Cys Ile Ser Leu Thr Met Asn 405 410 415 Arg Gln Pro Gln Phe His Gly Gln Pro Glu Asp Trp Gly Val Ala Trp 420 425 430 Ala Tyr Gly Leu Tyr Pro Phe Glu Lys Gly Asp Val Val Asn Lys Thr 435 440 445 Met Leu Glu Cys Thr Gly Glu Glu Leu Leu Lys Glu Tyr Cys Tyr His 450 455 460 Phe Gly Leu Leu Asp Gln Phe Glu Glu Val Lys Ala His Thr Lys Val 465 470 475 480 Arg Ile Ala Thr Met Pro Trp Ile Thr Ala Phe Phe Met Pro Arg Gly 485 490 495 Lys Gly Asp Arg Pro Glu Val Ile Pro Asp Gly Cys Val Asn Leu Ala 500 505 510 Cys Leu Gly Gln Phe Val Glu Thr Pro Asp Asp Cys Val Phe Thr Thr 515 520 525 Glu Gly Ser Ala Arg Thr Ala Met Met Ala Val Tyr Gly Leu Leu Asp 530 535 540 Leu Asp Arg Asp Ile Pro Pro Ile Trp Pro Thr Gln Tyr Asp Ile Arg 545 550 555 560 Ser Leu Leu Ala Ser Ala Lys Thr Leu Asn Asn Gly Arg Leu Pro Gly 565 570 575 Ser Trp Leu Leu Ser Lys Leu Leu Lys Asn Thr Tyr Tyr Glu Asp Ile 580 585 590 Leu Pro <210> 4 <211> 589 <212> PRT <213> Stenotrophomonas maltophilia <400> 4 Met Tyr Tyr Ser Ser Gly Asn Tyr Glu Ala Phe Ala Arg Pro Arg Lys 1 5 10 15 Pro Ala Gly Val Asp Gly Lys Arg Ala Trp Phe Val Gly Ser Gly Leu 20 25 30 Ala Ser Leu Ala Gly Ala Ala Phe Leu Val Arg Asp Gly His Met Ala 35 40 45 Gly Glu Cys Ile Thr Ile Leu Glu Gln Gln Gln Ile Pro Gly Gly Ala 50 55 60 Leu Asp Gly Leu Lys Val Pro Glu Lys Gly Phe Val Ile Arg Gly Gly 65 70 75 80 Arg Glu Met Glu Asp His Phe Glu Cys Leu Trp Asp Leu Phe Arg Ser 85 90 95 Ile Pro Ser Leu Glu Ile Glu Asp Ala Ser Val Leu Asp Glu Phe Tyr 100 105 110 Trp Leu Asn Lys Asp Asp Pro Asn Tyr Ser Leu Gln Arg Ala Thr Ile 115 120 125 Asn Arg Gly Glu Asp Ala His Thr Asp Gly Leu Phe Thr Leu Thr Glu 130 135 140 Gln Ala Gln Arg Asp Ile Val Ala Leu Phe Leu Ala Thr Arg Gln Glu 145 150 155 160 Met Glu Asn Lys Arg Ile Asn Glu Val Leu Gly Arg Asp Phe Leu Asp 165 170 175 Ser Asn Phe Trp Leu Tyr Trp Arg Thr Met Phe Ala Phe Glu Glu Trp 180 185 190 His Ser Ala Leu Glu Met Lys Leu Tyr Leu His Arg Phe Ile His His 195 200 205 Ile Gly Gly Leu Pro Asp Phe Ser Ala Leu Lys Phe Thr Lys Tyr Asn 210 215 220 Gln Tyr Glu Ser Leu Val Leu Pro Leu Val Lys Trp Leu Gln Asp Gln 225 230 235 240 Gly Val Val Phe Gln Tyr Gly Thr Glu Val Thr Asp Val Asp Phe Asp 245 250 255 Leu Gln Pro Asp Arg Lys Gln Ala Thr Arg Ile His Trp Met His Asp 260 265 270 Gly Val Ala Gly Gly Val Glu Leu Gly Ala Asp Asp Leu Leu Phe Met 275 280 285 Thr Ile Gly Ser Leu Thr Glu Asn Ser Asp Asn Gly Asp His His Thr 290 295 300 Ala Ala Arg Leu Asn Glu Gly Pro Ala Pro Ala Trp Asp Leu Trp Arg 305 310 315 320 Arg Ile Ala Ala Lys Asp Asp Ala Phe Gly Arg Pro Asp Val Phe Gly 325 330 335 Ala His Ile Pro Glu Thr Lys Trp Glu Ser Ala Thr Val Thr Thr Leu 340 345 350 Asp Ala Arg Ile Pro Ala Tyr Ile Gln Lys Ile Ala Lys Arg Asp Pro 355 360 365 Phe Ser Gly Lys Val Val Thr Gly Gly Ile Val Ser Val Arg Asp Ser 370 375 380 Arg Trp Leu Met Ser Trp Thr Val Asn Arg Gln Pro His Phe Lys Asn 385 390 395 400 Gln Pro Lys Asp Gln Ile Val Val Trp Val Tyr Ser Leu Phe Val Asp 405 410 415 Thr Pro Gly Asp Tyr Val Lys Lys Pro Met Gln Asp Cys Thr Gly Glu 420 425 430 Glu Ile Thr Arg Glu Trp Leu Tyr His Leu Gly Val Pro Val Glu Glu 435 440 445 Ile Asp Glu Leu Ala Ala Thr Gly Ala Lys Thr Val Pro Val Met Met 450 455 460 Pro Tyr Ile Thr Ala Phe Phe Met Pro Arg Gln Ala Gly Asp Arg Pro 465 470 475 480 Asp Val Val Pro Glu Gly Ala Val Asn Phe Ala Phe Ile Gly Gln Phe 485 490 495 Ala Glu Ser Lys Gln Arg Asp Cys Ile Phe Thr Thr Glu Tyr Ser Val 500 505 510 Arg Thr Pro Met Glu Ala Val Tyr Thr Leu Leu Gly Ile Glu Arg Gly 515 520 525 Val Pro Glu Val Phe Asn Ser Thr Tyr Asp Val Arg Ser Leu Leu Ala 530 535 540 Ala Thr Gly Arg Leu Arg Asp Gly Lys Glu Leu Asp Ile Pro Gly Pro 545 550 555 560 Ala Phe Leu Arg Asn Leu Leu Met Asn Lys Leu Asp Lys Thr Gln Ile 565 570 575 Gly Gly Leu Leu Arg Glu Phe Lys Leu Val Gln Glu Asp 580 585 <210> 5 <211> 1770 <212> DNA <213> Lysinibacillus fusiformis <400> 5 atgtattaca gtaatggtaa ctatgaagct ttcgcacgtc ctaaaaaacc ggagggagta 60 gatggaaaat ctgcttatct cattggttcg ggcctagcct cgctgtcagc agcatgtttt 120 ttaattcgtg atggccaaat gaaaggtgag aacattcata ttctggaaga gctagatatt 180 tcaggaggca gtcttgatgg catacttaat ccgacgagag gatttattat tcgcggtggt 240 cgagaaatgg aagatcattt tgaatgctta tgggatttat tccgttccat tccttcctta 300 gaggtagaca atgcttctgt gttagatgaa ttttattggt taaacaaaga ggaccccaat 360 tattcaaaat gtcgtttaat aaaagataga ggtcaaagac ttgaagatga tggcaagttt 420 actttatcgg atcagtcatc tgaggaaatg attaaattat tctttacacc tgaggaaaag 480 ttagaggata aaaaaattac agatgttttc tcagaggaat tttttgaatc gaacttttgg 540 ctgtattggt ccactatgtt tgcgtttgaa aaatggcatt ctgcaatgga aatgcgccgt 600 tatattatgc gtttcattca ccatattggt ggattaccag atctatcagc attgaaattt 660 acaaaatata accaatatga atcgttagtg ctaccgatga taaaatattt agaaggtcat 720 gatgttgatt ttcaatataa tacggtagta gagaatgttt tggtcgataa agtgggcgac 780 aaaaaagtag ctcatacatt agttttaaga aaaaatggtg tgaaagagaa tattgagcta 840 acagaaaatg aattggtatt tgtgacaaat ggtagtatta cggagagtac aacatacggg 900 gataattata ccccagcccc tgtcaataaa gaattaggtg gaagctggtc actgtggaaa 960 aacatcgctg cccaagatac tgactttgga cgaccagaaa agttctgtga taatcttcca 1020 aaagaaagct ggtttgtttc cgccactcta acgactttag acgatcgtgt ggctccttat 1080 attgaaaaaa ttagtaaaag ggacccgtat gcaggcaaag tagtaacagg aggtattgtc 1140 acagctacag attctaattg gatgctaagc tatacgttaa accgacaacc tcattttaaa 1200 catcaaccaa aagaccaatt agtcgtttgg atttatggtt tactatcaaa taaaccaggt 1260 gattttatta aaaaaagcat taccgaatgt tcaggtattg agatagcaca agagtggttg 1320 taccatatgg gtgtaccggt tgatgaaatt ccagacatcg cacaaaattc ttgtaacacg 1380 attccatgct atatgcctta catcacctct tatttcatgc caagagccat gggggatcgt 1440 ccattagttg tgccagaagg gtctgctaat ttagccttca ttggcaactt tagtgaaact 1500 gtaagagata ccgtttttac tactgaatat tcagtaagaa ctgcgatgga ggcagtctat 1560 caattattaa atattgatcg tggagttcca gaagtattcg catcttcttt tgatgttcgc 1620 acattattag cttcaactgc tcgcttatta gatggcaaaa aattaacaga tattgatgcg 1680 ccatttattt taaaacaaat tggtaaatta ggaattcaca aaacaaaaga tacaattatt 1740 tatgacttac tgaaagaaag taaactaata 1770 <210> 6 <211> 1767 <212> DNA <213> Macrococcus caseolyticus <400> 6 atgtactata gtaatggaaa ctatgaggca tttgcaagac cgaagaagcc ggaaggggta 60 gataataagt ctgcatattt agttggttct ggtttagcgt cattagcagc ggcaagtttt 120 ttaatacgag atggtaaaat gaaaggtgaa aatattcata tattagaaga actcgatctc 180 cctggaggaa gcttggatgg aatattgaat cctgaacgtg gctatataat gcgtggcggt 240 cgtgagatgg agaatcattt tgaatgctta tgggatttat ttcgttcagt accatcattg 300 gaagtcgaag atgcttctgt tctggatgaa ttttactggt taaataaaga agatccaaac 360 tattcgaagt gccgcgtaat agaaaatcgt ggacaacgcc tagaatcaga tggaaaaatg 420 actctaacaa aaaaagcaaa taaagaaatt atccagctat gcttaatgaa agaagaacag 480 ctgaatgatg tgaagatctc tgatgtcttc agtaaagact tcttagactc aaacttctgg 540 atctactgga aaacgatgtt tgcatttgaa ccttggcatt ctgctatgga gatgcgtcga 600 tatttaatgc gtttcatcca tcatattggc ggacttgcag acttttcagc cctaaaattt 660 acgaagttca atcagttcga atcacttgtt atgcctctga ttgagcatct taaagcgaag 720 aacgttacat ttgaatatgg tgtaaccgtt aagaatatac aagttgaatg ttcaaaagag 780 tcaaaagttg caaaggcaat agacatcgtg cgcagaggta acgaggaatc aattccttta 840 actgaaaatg atttagtatt tgtaacaaat ggcagcatca ctgaaagtac tacttatgga 900 gataatgata cacctgcacc gcctacaaca aaacctggtg gcgcatggca actatgggaa 960 aacttaagta cgcaatgtga ggagtttggt aatccagcta aattctataa agatttacca 1020 gaaaaaagct ggttcgtgtc tgctacagca acaacaaata ataaagaagt tatagattat 1080 attcaaaaaa tttgtaaacg cgatccatta tcaggtcgta cagtaaccgg cggtatcgtt 1140 actgtagatg attcaaattg gcagttaagc tttacgctaa atcgacaaca gcagtttaaa 1200 aatcaacctg atgatcaagt gagtgtatgg atttacgcac tttattcaga tgaacgtgga 1260 gaacgtacaa ataaaacaat tgttgagtgt tctggtaaag aaatttgtga agaatggctt 1320 tatcatatgg gtgttcctga agagaagatt tcagcactag cagcagaatg taatacaatt 1380 ccaagctata tgccgtacat taccgcttac tttatgccgc gtaaagaagg agaccgtcct 1440 ttagtagtac cacatggttc aaagaatatt gcatttatag gtaactttgc agaaacagaa 1500 agagataccg tatttacaac agaatattca gtaagaactg ctatggaagc ggtgtataaa 1560 cttctagaag tagaccgtgg agtgcctgaa gtattcgctt cagtatacga tgtgagaatt 1620 ttattacatg cgttatctgt actgaatgat ggcaagaaac tagatgaaat tgatatgcca 1680 atctatgaaa gattggtaga aaaacgctta ttgaagaaag catctggtac attcattgaa 1740 gaactattag aagaagcaaa tttgata 1767 <210> 7 <211> 1782 <212> DNA <213> Propionibacterium acnes <400> 7 atgacgaact tccaacacat ttatcaacgc agctaccctg tgagcccgga tggcaaccct 60 ttcgtgcaga acgacctcgg ccgctacacc cagaaccacc ctgtaccgcc cgatgacgtc 120 gctgagcgca aggcatacct cgtcggctcg ggcatcgcct cgcttctttc cgctgcctac 180 ttgattcgcg acgcccagat gcctggggag aacatcacca tcctcgagga aatgtcagaa 240 cccggcggcg cgttcgacgg agcaggggat acggagaagg gcttcatcgc tcgcggtggt 300 cgtgagatgg ggcaacactt cgagtgtttc tgggacatca tgaaagacat cccagccttg 360 gagatgcccg aaccctacag cgttctggat gaattccgga tcgtgaacga gaacgacccc 420 aacatcaatc cgtgtcggat tatcaataat cgcggtcaca agcgcgacgc ctcaaagatg 480 gggctcaaca agaaaggcca gctcgacatc gtgaggctct tgctggccaa ggagtcggac 540 acctactaca agtcgatcga ggactggttc gacgaggact tcctgcagtc caccttctac 600 ctgctgtgga agacgatgtt cgccttcgag cagtggcagt cccttaccga gctcaaacgg 660 tacatgcacc gcttcctgca gtatcttccc ggtttctcga atctgtcctg tctgcgattc 720 agtcgctaca accagcacga ctccttcgtc gtcccgttgg tgaagtggct caccgaaaag 780 ggcgtgaact tccagtacga caccctcgtc tacgacgtcg acctagagat caccgcccac 840 cgcaagatcg cccgcggcat cctgtggcgc gataaggagg gtggcgagca tcgcatcgac 900 atgtccgcca aggacctggt gttcgtgacc aacggttcac ttaccgagtg caccggatac 960 ggcgacatgg acacccctgc cccttaccac aaagacatgc aggccggctg ggagctgtgg 1020 cgcaacctgg ttcgccgctc ccccgcgttc ggacgtcccg atgtcttctg cggcgacgct 1080 gacaagacgg tgtggcaatc aatcagcttc aacttcatcg gtcgtgacca cccgttcctc 1140 gagaagatca aggagctgac cggcaacgat ccgttgtccg ggcgcaccgt caccggcggc 1200 atcatcaccg ccgaggactc gtcgtggtgc atctcgctga cgatgaatcg tcagccacag 1260 ttccatggcc agcctgaaga ctggggcgtg gcatgggcct acgggctgta cccgttcgaa 1320 aagggcgacg tcgtcaacaa gacaatgctg gaatgcaccg gcgaggaact gctcaaagag 1380 tactgctatc acttcggact gctcgaccag ttcgaggagg tcaaggccca caccaaggtg 1440 cgaatcgcga cgatgccgtg gatcacggcc ttcttcatgc cccgcggcaa gggcgatcgc 1500 ccggaggtca tcccggacgg ctgcgtcaac ctggcttgcc taggccagtt cgtcgaaacc 1560 cccgatgact gcgtcttcac caccgagggt tcggcacgca ccgcaatgat ggccgtctac 1620 ggcctgctcg accttgaccg tgacatcccg ccgatctggc caacccagta cgacatccgc 1680 tccctgctgg cctccgccaa aaccctcaac aatggtcgct tgcccggtag ctggctgttg 1740 tcgaagctat tgaagaacac ctactacgag gacatcctgc cg 1782 <210> 8 <211> 1767 <212> DNA <213> Stenotrophomonas maltophilia <400> 8 atgtactaca gcagtggcaa ttacgaagcc ttcgcgcgcc cgcgcaagcc cgccggtgtg 60 gatggcaagc gtgcatggtt cgtcggttcg ggcctggcct cgttggccgg tgccgcgttc 120 ctggtgcgcg acggccacat ggccggtgag tgcatcacca tccttgagca gcagcagatt 180 ccgggcggcg cgctggacgg cctgaaagtg ccggaaaagg gtttcgtgat ccgtggtggc 240 cgcgagatgg aagatcattt cgagtgcctg tgggacctgt tccgctcgat accgtcgctg 300 gagatcgaag atgccagcgt gctggacgag ttctactggt tgaacaagga cgacccgaac 360 tattcgctgc agcgcgccac catcaatcgc ggcgaggatg cacacaccga tggcctgttc 420 acgctgaccg agcaggcaca gagggacatc gtcgcgctgt tcctggccac ccgtcaggag 480 atggagaaca agcgcatcaa cgaagtactg ggccgtgatt tcctggacag caacttctgg 540 ctgtactggc gaaccatgtt cgcgttcgaa gagtggcatt cggcgctgga gatgaagctg 600 tacctgcatc gcttcatcca ccatatcggc ggcctgccgg atttctcggc gctgaagttc 660 acgaagtaca accagtacga atcgctggtg ctgccgctgg tgaagtggtt gcaggaccag 720 ggcgtggtgt tccagtacgg taccgaggtg accgacgtcg actttgatct gcagccggac 780 cgcaagcagg ccacgcgcat ccattggatg catgacggtg tagccggtgg cgtggaactc 840 ggcgcggatg atctgctgtt catgaccatc ggttcgctga ccgagaactc ggataatggc 900 gaccaccaca ctgcggcacg cctgaacgaa ggcccggcgc ctgcctggga cctgtggcgc 960 cgcattgccg cgaaggatga cgcgttcggg cgtccggatg tgttcggcgc gcacattcca 1020 gaaaccaagt gggaatcggc aacggtgacc acgctggatg cgcgcattcc ggcctacatc 1080 cagaagatcg ccaagcgcga tcccttcagc ggcaaagtgg tgaccggcgg catcgtcagc 1140 gtgcgcgact cgcgctggct gatgagctgg acggtgaatc gccagccaca tttcaagaac 1200 cagcccaagg accagatcgt ggtctgggtg tattcgttgt tcgtggatac gcccggcgac 1260 tacgtgaaga agccgatgca ggactgcacc ggcgaggaga tcacgcgcga atggctgtat 1320 cacctgggcg tgccggtgga agagatcgat gagctggccg cgaccggcgc gaagacagtg 1380 ccggtgatga tgccgtacat cacggcgttc ttcatgccac gccaggcagg tgaccgcccg 1440 gacgtggtgc cggaaggtgc ggtgaacttc gctttcatcg gccagttcgc cgaatcgaag 1500 cagcgcgact gcatcttcac caccgagtac tcggtgcgca cgccgatgga ggcggtgtac 1560 accttgctgg ggatcgagcg tggcgtgccg gaggtgttca attccacgta tgacgtgcgc 1620 tcgctgctgg ccgcgaccgg gcgcctgcgt gatggcaagg aactggacat tcccgggcca 1680 gcgttcctgc gcaacctgct gatgaacaag ctggacaaga cccagatcgg tggtctgctg 1740 cgcgagttca agctggtgca ggaggac 1767 <210> 9 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 gctagcatgt attacagtaa tggtaactat gaa 33 <210> 10 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 ggctcgagct atattagttt actttctttc a 31 <210> 11 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 ggggctagca tgtactatag taatgga 27 <210> 12 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 aggctcgagt tatatcaaat ttgcttc 27 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 gggcatatga cgaacttcca acac 24 <210> 14 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 tttaagcttt cacggcagga tgtc 24 <210> 15 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 ggggctagca tgtactacag cagtggc 27 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 aaactcgagt cagtcctcct gcaccag 27 <110> Konkuk University Industrial Cooperation Corp. <120> Novel oleate hydratase and Method for the production of          10-hydroxystearic acid by recombinant cells comprising the same <160> 16 <170> Kopatentin 1.71 <210> 1 <211> 590 <212> PRT <213> Lysinibacillus fusiformis <400> 1 Met Tyr Tyr Ser Asn Gly Asn Tyr Glu Ala Phe Ala Arg Pro Lys Lys   1 5 10 15 Pro Glu Gly Val Asp Gly Lys Ser Ala Tyr Leu Ile Gly Ser Gly Leu              20 25 30 Ala Ser Leu Ser Ala Ala Cys Phe Leu Ile Arg Asp Gly Gln Met Lys          35 40 45 Gly Glu Asn Ile His Ile Leu Glu Glu Leu Asp Ile Ser Gly Gly Ser      50 55 60 Leu Asp Gly Ile Leu Asn Pro Thr Arg Gly Phe Ile Ile Arg Gly Gly  65 70 75 80 Arg Glu Met Glu Asp His Phe Glu Cys Leu Trp Asp Leu Phe Arg Ser                  85 90 95 Ile Pro Ser Leu Glu Val Asp Asn Ala Ser Val Leu Asp Glu Phe Tyr             100 105 110 Trp Leu Asn Lys Glu Asp Pro Asn Tyr Ser Lys Cys Arg Leu Ile Lys         115 120 125 Asp Arg Gly Gln Arg Leu Glu Asp Asp Gly Lys Phe Thr Leu Ser Asp     130 135 140 Gln Ser Ser Glu Glu Met Ile Lys Leu Phe Phe Thr Pro Glu Glu Lys 145 150 155 160 Leu Glu Asp Lys Lys Ile Thr Asp Val Phe Ser Glu Glu Phe Phe Glu                 165 170 175 Ser Asn Phe Trp Leu Tyr Trp Ser Thr Met Phe Ala Phe Glu Lys Trp             180 185 190 His Ser Ala Met Glu Met Arg Arg Tyr Ile Met Arg Phe Ile His His         195 200 205 Ile Gly Gly Leu Pro Asp Leu Ser Ala Leu Lys Phe Thr Lys Tyr Asn     210 215 220 Gln Tyr Glu Ser Leu Val Leu Pro Met Ile Lys Tyr Leu Glu Gly His 225 230 235 240 Asp Val Asp Phe Gln Tyr Asn Thr Val Val Glu Asn Val Leu Val Asp                 245 250 255 Lys Val Gly Asp Lys Lys Val Ala His Thr Leu Val Leu Arg Lys Asn             260 265 270 Gly Val Lys Glu Asn Ile Glu Leu Thr Glu Asn Glu Leu Val Phe Val         275 280 285 Thr Asn Gly Ser Ile Thr Glu Ser Thr Thr Tyr Gly Asp Asn Tyr Thr     290 295 300 Pro Ala Pro Val Asn Lys Glu Leu Gly Gly Ser Trp Ser Leu Trp Lys 305 310 315 320 Asn Ile Ala Ala Gln Asp Thr Asp Phe Gly Arg Pro Glu Lys Phe Cys                 325 330 335 Asp Asn Leu Pro Lys Glu Ser Trp Phe Val Ser Ala Thr Leu Thr Thr             340 345 350 Leu Asp Asp Arg Val Ala Pro Tyr Ile Glu Lys Ile Ser Lys Arg Asp         355 360 365 Pro Tyr Ala Gly Lys Val Val Thr Gly Gly Ile Val Thr Ala Thr Asp     370 375 380 Ser Asn Trp Met Leu Ser Tyr Thr Leu Asn Arg Gln Pro His Phe Lys 385 390 395 400 His Gln Pro Lys Asp Gln Leu Val Val Trp Ile Tyr Gly Leu Leu Ser                 405 410 415 Asn Lys Pro Gly Asp Phe Ile Lys Lys Ser Ile Thr Glu Cys Ser Gly             420 425 430 Ile Glu Ile Ala Gln Glu Trp Leu Tyr His Met Gly Val Pro Val Asp         435 440 445 Glu Ile Pro Asp Ile Ala Gln Asn Ser Cys Asn Thr Ile Pro Cys Tyr     450 455 460 Met Pro Tyr Ile Thr Ser Tyr Phe Met Pro Arg Ala Met Gly Asp Arg 465 470 475 480 Pro Leu Val Val Pro Glu Gly Ser Ala Asn Leu Ala Phe Ile Gly Asn                 485 490 495 Phe Ser Glu Thr Val Arg Asp Thr Val Phe Thr Thr Glu Tyr Ser Val             500 505 510 Arg Thr Ala Met Glu Ala Val Tyr Gln Leu Leu Asn Ile Asp Arg Gly         515 520 525 Val Pro Glu Val Phe Ala Ser Ser Phe Asp Val Arg Thr Leu Leu Ala     530 535 540 Ser Thr Ala Arg Leu Leu Asp Gly Lys Lys Leu Thr Asp Ile Asp Ala 545 550 555 560 Pro Phe Ile Leu Lys Gln Ile Gly Lys Leu Gly Ile His Lys Thr Lys                 565 570 575 Asp Thr Ile Ile Tyr Asp Leu Leu Lys Glu Ser Lys Leu Ile             580 585 590 <210> 2 <211> 589 <212> PRT <213> Macrococcus caseolyticus <400> 2 Met Tyr Tyr Ser Asn Gly Asn Tyr Glu Ala Phe Ala Arg Pro Lys Lys   1 5 10 15 Pro Glu Gly Val Asp Asn Lys Ser Ala Tyr Leu Val Gly Ser Gly Leu              20 25 30 Ala Ser Leu Ala Ala Ala Ser Phe Leu Ile Arg Asp Gly Lys Met Lys          35 40 45 Gly Glu Asn Ile His Ile Leu Glu Glu Leu Asp Leu Pro Gly Gly Ser      50 55 60 Leu Asp Gly Ile Leu Asn Pro Glu Arg Gly Tyr Ile Met Arg Gly Gly  65 70 75 80 Arg Glu Met Glu Asn His Phe Glu Cys Leu Trp Asp Leu Phe Arg Ser                  85 90 95 Val Pro Ser Leu Glu Val Glu Asp Ala Ser Val Leu Asp Glu Phe Tyr             100 105 110 Trp Leu Asn Lys Glu Asp Pro Asn Tyr Ser Lys Cys Arg Val Ile Glu         115 120 125 Asn Arg Gly Gln Arg Leu Glu Ser Asp Gly Lys Met Thr Leu Thr Lys     130 135 140 Lys Ala Asn Lys Glu Ile Ile Gln Leu Cys Leu Met Lys Glu Glu Gln 145 150 155 160 Leu Asn Asp Val Lys Ile Ser Asp Val Phe Ser Lys Asp Phe Leu Asp                 165 170 175 Ser Asn Phe Trp Ile Tyr Trp Lys Thr Met Phe Ala Phe Glu Pro Trp             180 185 190 His Ser Ala Met Glu Met Arg Arg Tyr Leu Met Arg Phe Ile His His         195 200 205 Ile Gly Gly Leu Ala Asp Phe Ser Ala Leu Lys Phe Thr Lys Phe Asn     210 215 220 Gln Phe Glu Ser Leu Val Met Pro Leu Ile Glu His Leu Lys Ala Lys 225 230 235 240 Asn Val Thr Phe Glu Tyr Gly Val Thr Val Lys Asn Ile Gln Val Glu                 245 250 255 Cys Ser Lys Glu Ser Lys Val Ala Lys Ala Ile Asp Ile Val Arg Arg             260 265 270 Gly Asn Glu Glu Ser Ile Pro Leu Thr Glu Asn Asp Leu Val Phe Val         275 280 285 Thr Asn Gly Ser Ile Thr Glu Ser Thr Thr Tyr Gly Asp Asn Asp Thr     290 295 300 Pro Ala Pro Pro Thr Thr Lys Pro Gly Gly Ala Trp Gln Leu Trp Glu 305 310 315 320 Asn Leu Ser Thr Gln Cys Glu Glu Phe Gly Asn Pro Ala Lys Phe Tyr                 325 330 335 Lys Asp Leu Pro Glu Lys Ser Trp Phe Val Ser Ala Thr Ala Thr Thr             340 345 350 Asn Asn Lys Glu Val Ile Asp Tyr Ile Gln Lys Ile Cys Lys Arg Asp         355 360 365 Pro Leu Ser Gly Arg Thr Val Thr Gly Gly Ile Val Thr Val Asp Asp     370 375 380 Ser Asn Trp Gln Leu Ser Phe Thr Leu Asn Arg Gln Gln Gln Phe Lys 385 390 395 400 Asn Gln Pro Asp Asp Gln Val Ser Val Trp Ile Tyr Ala Leu Tyr Ser                 405 410 415 Asp Glu Arg Gly Glu Arg Thr Asn Lys Thr Ile Val Glu Cys Ser Gly             420 425 430 Lys Glu Ile Cys Glu Glu Trp Leu Tyr His Met Gly Val Pro Glu Glu         435 440 445 Lys Ile Ser Ala Leu Ala Ala Glu Cys Asn Thr Ile Pro Ser Tyr Met     450 455 460 Pro Tyr Ile Thr Ala Tyr Phe Met Pro Arg Lys Glu Gly Asp Arg Pro 465 470 475 480 Leu Val Val Pro His Gly Ser Lys Asn Ile Ala Phe Ile Gly Asn Phe                 485 490 495 Ala Glu Thr Glu Arg Asp Thr Val Phe Thr Thr Glu Tyr Ser Val Arg             500 505 510 Thr Ala Met Glu Ala Val Tyr Lys Leu Leu Glu Val Asp Arg Gly Val         515 520 525 Pro Glu Val Phe Ala Ser Val Tyr Asp Val Arg Ile Leu Leu His Ala     530 535 540 Leu Ser Val Leu Asn Asp Gly Lys Lys Leu Asp Glu Ile Asp Met Pro 545 550 555 560 Ile Tyr Glu Arg Leu Val Glu Lys Arg Leu Leu Lys Lys Ala Ser Gly                 565 570 575 Thr Phe Ile Glu Glu Leu Leu Glu Glu Ala Asn Leu Ile             580 585 <210> 3 <211> 594 <212> PRT Propionibacterium acnes <400> 3 Met Thr Asn Phe Gln His Ile Tyr Gln Arg Ser Tyr Pro Val Ser Pro   1 5 10 15 Asp Gly Asn Pro Phe Val Gln Asn Asp Leu Gly Arg Tyr Thr Gln Asn              20 25 30 His Pro Val Pro Pro Asp Asp Val Ala Glu Arg Lys Ala Tyr Leu Val          35 40 45 Gly Ser Gly Ile Ala Ser Leu Leu Ser Ala Ala Tyr Leu Ile Arg Asp      50 55 60 Ala Gln Met Pro Gly Glu Asn Ile Thr Ile Leu Glu Glu Met Ser Glu  65 70 75 80 Pro Gly Gly Ala Phe Asp Gly Ala Gly Asp Thr Glu Lys Gly Phe Ile                  85 90 95 Ala Arg Gly Gly Arg Glu Met Gly Gln His Phe Glu Cys Phe Trp Asp             100 105 110 Ile Met Lys Asp Ile Pro Ala Leu Glu Met Pro Glu Pro Tyr Ser Val         115 120 125 Leu Asp Glu Phe Arg Ile Val Asn Glu Asn Asp Pro Asn Ile Asn Pro     130 135 140 Cys Arg Ile Ile Asn Asn Arg Gly His Lys Arg Asp Ala Ser Lys Met 145 150 155 160 Gly Leu Asn Lys Lys Gly Gln Leu Asp Ile Val Arg Leu Leu Leu Ala                 165 170 175 Lys Glu Ser Asp Thr Tyr Tyr Lys Ser Ile Glu Asp Trp Phe Asp Glu             180 185 190 Asp Phe Leu Gln Ser Thr Phe Tyr Leu Leu Trp Lys Thr Met Phe Ala         195 200 205 Phe Glu Gln Trp Gln Ser Leu Thr Glu Leu Lys Arg Tyr Met His Arg     210 215 220 Phe Leu Gln Tyr Leu Pro Gly Phe Ser Asn Leu Ser Cys Leu Arg Phe 225 230 235 240 Ser Arg Tyr Asn Gln His Asp Ser Phe Val Val Pro Leu Val Lys Trp                 245 250 255 Leu Thr Glu Lys Gly Val Asn Phe Gln Tyr Asp Thr Leu Val Tyr Asp             260 265 270 Val Asp Leu Glu Ile Thr Ala His Arg Lys Ile Ala Arg Gly Ile Leu         275 280 285 Trp Arg Asp Lys Glu Gly Gly Glu His Arg Ile Asp Met Ser Ala Lys     290 295 300 Asp Leu Val Phe Val Thr Asn Gly Ser Leu Thr Glu Cys Thr Gly Tyr 305 310 315 320 Gly Asp Met Asp Thr Pro Ala Pro Tyr His Lys Asp Met Gln Ala Gly                 325 330 335 Trp Glu Leu Trp Arg Asn Leu Val Arg Arg Ser Pro Ala Phe Gly Arg             340 345 350 Pro Asp Val Phe Cys Gly Asp Ala Asp Lys Thr Val Trp Gln Ser Ile         355 360 365 Ser Phe Asn Phe Ile Gly Arg Asp His Pro Phe Leu Glu Lys Ile Lys     370 375 380 Glu Leu Thr Gly Asn Asp Pro Leu Ser Gly Arg Thr Val Thr Gly Gly 385 390 395 400 Ile Ile Thr Ala Glu Asp Ser Ser Trp Cys Ile Ser Leu Thr Met Asn                 405 410 415 Arg Gln Pro Gln Phe His Gly Gln Pro Glu Asp Trp Gly Val Ala Trp             420 425 430 Ala Tyr Gly Leu Tyr Pro Phe Glu Lys Gly Asp Val Val Asn Lys Thr         435 440 445 Met Leu Glu Cys Thr Gly Glu Glu Leu Leu Lys Glu Tyr Cys Tyr His     450 455 460 Phe Gly Leu Leu Asp Gln Phe Glu Glu Val Lys Ala His Thr Lys Val 465 470 475 480 Arg Ile Ala Thr Met Pro Trp Ile Thr Ala Phe Phe Met Pro Arg Gly                 485 490 495 Lys Gly Asp Arg Pro Glu Val Ile Pro Asp Gly Cys Val Asn Leu Ala             500 505 510 Cys Leu Gly Gln Phe Val Glu Thr Pro Asp Asp Cys Val Phe Thr Thr         515 520 525 Glu Gly Ser Ala Arg Thr Ala Met Met Ala Val Tyr Gly Leu Leu Asp     530 535 540 Leu Asp Arg Asp Ile Pro Pro Ile Trp Pro Thr Gln Tyr Asp Ile Arg 545 550 555 560 Ser Leu Leu Ala Ser Ala Lys Thr Leu Asn Asn Gly Arg Leu Pro Gly                 565 570 575 Ser Trp Leu Leu Ser Lys Leu Leu Lys Asn Thr Tyr Tyr Glu Asp Ile             580 585 590 Leu pro         <210> 4 <211> 589 <212> PRT <213> Stenotrophomonas maltophilia <400> 4 Met Tyr Tyr Ser Ser Gly Asn Tyr Glu Ala Phe Ala Arg Pro Arg Lys   1 5 10 15 Pro Ala Gly Val Asp Gly Lys Arg Ala Trp Phe Val Gly Ser Gly Leu              20 25 30 Ala Ser Leu Ala Gly Ala Ala Phe Leu Val Arg Asp Gly His Met Ala          35 40 45 Gly Glu Cys Ile Thr Ile Leu Glu Gln Gln Gln Ile Pro Gly Gly Ala      50 55 60 Leu Asp Gly Leu Lys Val Pro Glu Lys Gly Phe Val Ile Arg Gly Gly  65 70 75 80 Arg Glu Met Glu Asp His Phe Glu Cys Leu Trp Asp Leu Phe Arg Ser                  85 90 95 Ile Pro Ser Leu Glu Ile Glu Asp Ala Ser Val Leu Asp Glu Phe Tyr             100 105 110 Trp Leu Asn Lys Asp Asp Pro Asn Tyr Ser Leu Gln Arg Ala Thr Ile         115 120 125 Asn Arg Gly Glu Asp Ala His Thr Asp Gly Leu Phe Thr Leu Thr Glu     130 135 140 Gln Ala Gln Arg Asp Ile Val Ala Leu Phe Leu Ala Thr Arg Gln Glu 145 150 155 160 Met Glu Asn Lys Arg Ile Asn Glu Val Leu Gly Arg Asp Phe Leu Asp                 165 170 175 Ser Asn Phe Trp Leu Tyr Trp Arg Thr Met Phe Ala Phe Glu Glu Trp             180 185 190 His Ser Ala Leu Glu Met Lys Leu Tyr Leu His Arg Phe Ile His His         195 200 205 Ile Gly Gly Leu Pro Asp Phe Ser Ala Leu Lys Phe Thr Lys Tyr Asn     210 215 220 Gln Tyr Glu Ser Leu Val Leu Pro Leu Val Lys Trp Leu Gln Asp Gln 225 230 235 240 Gly Val Val Phe Gln Tyr Gly Thr Glu Val Thr Asp Val Asp Phe Asp                 245 250 255 Leu Gln Pro Asp Arg Lys Gln Ala Thr Arg Ile His Trp Met His Asp             260 265 270 Gly Val Ala Gly Gly Val Glu Leu Gly Ala Asp Asp Leu Leu Phe Met         275 280 285 Thr Ile Gly Ser Leu Thr Glu Asn Ser Asp Asn Gly Asp His His Thr     290 295 300 Ala Ala Arg Leu Asn Glu Gly Pro Ala Pro Ala Trp Asp Leu Trp Arg 305 310 315 320 Arg Ile Ala Ala Lys Asp Asp Ala Phe Gly Arg Pro Asp Val Phe Gly                 325 330 335 Ala His Ile Pro Glu Thr Lys Trp Glu Ser Ala Thr Val Thr Thr Leu             340 345 350 Asp Ala Arg Ile Pro Ala Tyr Ile Gln Lys Ile Ala Lys Arg Asp Pro         355 360 365 Phe Ser Gly Lys Val Val Thr Gly Gly Ile Val Ser Val Arg Asp Ser     370 375 380 Arg Trp Leu Met Ser Trp Thr Val Asn Arg Gln Pro His Phe Lys Asn 385 390 395 400 Gln Pro Lys Asp Gln Ile Val Val Trp Val Tyr Ser Leu Phe Val Asp                 405 410 415 Thr Pro Gly Asp Tyr Val Lys Lys Pro Met Gln Asp Cys Thr Gly Glu             420 425 430 Glu Ile Thr Arg Glu Trp Leu Tyr His Leu Gly Val Pro Val Glu Glu         435 440 445 Ile Asp Glu Leu Ala Ala Thr Gly Ala Lys Thr Val Pro Val Met Met     450 455 460 Pro Tyr Ile Thr Ala Phe Phe Met Pro Arg Gln Ala Gly Asp Arg Pro 465 470 475 480 Asp Val Val Pro Glu Gly Ala Val Asn Phe Ala Phe Ile Gly Gln Phe                 485 490 495 Ala Glu Ser Lys Gln Arg Asp Cys Ile Phe Thr Thr Glu Tyr Ser Val             500 505 510 Arg Thr Pro Met Glu Ala Val Tyr Thr Leu Leu Gly Ile Glu Arg Gly         515 520 525 Val Pro Glu Val Phe Asn Ser Thr Tyr Asp Val Arg Ser Leu Leu Ala     530 535 540 Ala Thr Gly Arg Leu Arg Asp Gly Lys Glu Leu Asp Ile Pro Gly Pro 545 550 555 560 Ala Phe Leu Arg Asn Leu Leu Met Asn Lys Leu Asp Lys Thr Gln Ile                 565 570 575 Gly Gly Leu Leu Arg Glu Phe Lys Leu Val Gln Glu Asp             580 585 <210> 5 <211> 1770 <212> DNA <213> Lysinibacillus fusiformis <400> 5 atgtattaca gtaatggtaa ctatgaagct ttcgcacgtc ctaaaaaacc ggagggagta 60 gatggaaaat ctgcttatct cattggttcg ggcctagcct cgctgtcagc agcatgtttt 120 ttaattcgtg atggccaaat gaaaggtgag aacattcata ttctggaaga gctagatatt 180 tcaggaggca gtcttgatgg catacttaat ccgacgagag gatttattat tcgcggtggt 240 cgagaaatgg aagatcattt tgaatgctta tgggatttat tccgttccat tccttcctta 300 gaggtagaca atgcttctgt gttagatgaa ttttattggt taaacaaaga ggaccccaat 360 tattcaaaat gtcgtttaat aaaagataga ggtcaaagac ttgaagatga tggcaagttt 420 actttatcgg atcagtcatc tgaggaaatg attaaattat tctttacacc tgaggaaaag 480 ttagaggata aaaaaattac agatgttttc tcagaggaat tttttgaatc gaacttttgg 540 ctgtattggt ccactatgtt tgcgtttgaa aaatggcatt ctgcaatgga aatgcgccgt 600 tatattatgc gtttcattca ccatattggt ggattaccag atctatcagc attgaaattt 660 acaaaatata accaatatga atcgttagtg ctaccgatga taaaatattt agaaggtcat 720 gatgttgatt ttcaatataa tacggtagta gagaatgttt tggtcgataa agtgggcgac 780 aaaaaagtag ctcatacatt agttttaaga aaaaatggtg tgaaagagaa tattgagcta 840 acagaaaatg aattggtatt tgtgacaaat ggtagtatta cggagagtac aacatacggg 900 gataattata ccccagcccc tgtcaataaa gaattaggtg gaagctggtc actgtggaaa 960 aacatcgctg cccaagatac tgactttgga cgaccagaaa agttctgtga taatcttcca 1020 aaagaaagct ggtttgtttc cgccactcta acgactttag acgatcgtgt ggctccttat 1080 attgaaaaaa ttagtaaaag ggacccgtat gcaggcaaag tagtaacagg aggtattgtc 1140 acagctacag attctaattg gatgctaagc tatacgttaa accgacaacc tcattttaaa 1200 catcaaccaa aagaccaatt agtcgtttgg atttatggtt tactatcaaa taaaccaggt 1260 gattttatta aaaaaagcat taccgaatgt tcaggtattg agatagcaca agagtggttg 1320 taccatatgg gtgtaccggt tgatgaaatt ccagacatcg cacaaaattc ttgtaacacg 1380 attccatgct atatgcctta catcacctct tatttcatgc caagagccat gggggatcgt 1440 ccattagttg tgccagaagg gtctgctaat ttagccttca ttggcaactt tagtgaaact 1500 gtaagagata ccgtttttac tactgaatat tcagtaagaa ctgcgatgga ggcagtctat 1560 caattattaa atattgatcg tggagttcca gaagtattcg catcttcttt tgatgttcgc 1620 acattattag cttcaactgc tcgcttatta gatggcaaaa aattaacaga tattgatgcg 1680 ccatttattt taaaacaaat tggtaaatta ggaattcaca aaacaaaaga tacaattatt 1740 tatgacttac tgaaagaaag taaactaata 1770 <210> 6 <211> 1767 <212> DNA <213> Macrococcus caseolyticus <400> 6 atgtactata gtaatggaaa ctatgaggca tttgcaagac cgaagaagcc ggaaggggta 60 gataataagt ctgcatattt agttggttct ggtttagcgt cattagcagc ggcaagtttt 120 ttaatacgag atggtaaaat gaaaggtgaa aatattcata tattagaaga actcgatctc 180 cctggaggaa gcttggatgg aatattgaat cctgaacgtg gctatataat gcgtggcggt 240 cgtgagatgg agaatcattt tgaatgctta tgggatttat ttcgttcagt accatcattg 300 gaagtcgaag atgcttctgt tctggatgaa ttttactggt taaataaaga agatccaaac 360 tattcgaagt gccgcgtaat agaaaatcgt ggacaacgcc tagaatcaga tggaaaaatg 420 actctaacaa aaaaagcaaa taaagaaatt atccagctat gcttaatgaa agaagaacag 480 ctgaatgatg tgaagatctc tgatgtcttc agtaaagact tcttagactc aaacttctgg 540 atctactgga aaacgatgtt tgcatttgaa ccttggcatt ctgctatgga gatgcgtcga 600 tatttaatgc gtttcatcca tcatattggc ggacttgcag acttttcagc cctaaaattt 660 acgaagttca atcagttcga atcacttgtt atgcctctga ttgagcatct taaagcgaag 720 aacgttacat ttgaatatgg tgtaaccgtt aagaatatac aagttgaatg ttcaaaagag 780 tcaaaagttg caaaggcaat agacatcgtg cgcagaggta acgaggaatc aattccttta 840 actgaaaatg atttagtatt tgtaacaaat ggcagcatca ctgaaagtac tacttatgga 900 gataatgata cacctgcacc gcctacaaca aaacctggtg gcgcatggca actatgggaa 960 aacttaagta cgcaatgtga ggagtttggt aatccagcta aattctataa agatttacca 1020 gaaaaaagct ggttcgtgtc tgctacagca acaacaaata ataaagaagt tatagattat 1080 attcaaaaaa tttgtaaacg cgatccatta tcaggtcgta cagtaaccgg cggtatcgtt 1140 actgtagatg attcaaattg gcagttaagc tttacgctaa atcgacaaca gcagtttaaa 1200 aatcaacctg atgatcaagt gagtgtatgg atttacgcac tttattcaga tgaacgtgga 1260 gaacgtacaa ataaaacaat tgttgagtgt tctggtaaag aaatttgtga agaatggctt 1320 tatcatatgg gtgttcctga agagaagatt tcagcactag cagcagaatg taatacaatt 1380 ccaagctata tgccgtacat taccgcttac tttatgccgc gtaaagaagg agaccgtcct 1440 ttagtagtac cacatggttc aaagaatatt gcatttatag gtaactttgc agaaacagaa 1500 agagataccg tatttacaac agaatattca gtaagaactg ctatggaagc ggtgtataaa 1560 cttctagaag tagaccgtgg agtgcctgaa gtattcgctt cagtatacga tgtgagaatt 1620 ttattacatg cgttatctgt actgaatgat ggcaagaaac tagatgaaat tgatatgcca 1680 atctatgaaa gattggtaga aaaacgctta ttgaagaaag catctggtac attcattgaa 1740 gaactattag aagaagcaaa tttgata 1767 <210> 7 <211> 1782 <212> DNA Propionibacterium acnes <400> 7 atgacgaact tccaacacat ttatcaacgc agctaccctg tgagcccgga tggcaaccct 60 ttcgtgcaga acgacctcgg ccgctacacc cagaaccacc ctgtaccgcc cgatgacgtc 120 gctgagcgca aggcatacct cgtcggctcg ggcatcgcct cgcttctttc cgctgcctac 180 ttgattcgcg acgcccagat gcctggggag aacatcacca tcctcgagga aatgtcagaa 240 cccggcggcg cgttcgacgg agcaggggat acggagaagg gcttcatcgc tcgcggtggt 300 cgtgagatgg ggcaacactt cgagtgtttc tgggacatca tgaaagacat cccagccttg 360 gagatgcccg aaccctacag cgttctggat gaattccgga tcgtgaacga gaacgacccc 420 aacatcaatc cgtgtcggat tatcaataat cgcggtcaca agcgcgacgc ctcaaagatg 480 gggctcaaca agaaaggcca gctcgacatc gtgaggctct tgctggccaa ggagtcggac 540 acctactaca agtcgatcga ggactggttc gacgaggact tcctgcagtc caccttctac 600 ctgctgtgga agacgatgtt cgccttcgag cagtggcagt cccttaccga gctcaaacgg 660 tacatgcacc gcttcctgca gtatcttccc ggtttctcga atctgtcctg tctgcgattc 720 agtcgctaca accagcacga ctccttcgtc gtcccgttgg tgaagtggct caccgaaaag 780 ggcgtgaact tccagtacga caccctcgtc tacgacgtcg acctagagat caccgcccac 840 cgcaagatcg cccgcggcat cctgtggcgc gataaggagg gtggcgagca tcgcatcgac 900 atgtccgcca aggacctggt gttcgtgacc aacggttcac ttaccgagtg caccggatac 960 ggcgacatgg acacccctgc cccttaccac aaagacatgc aggccggctg ggagctgtgg 1020 cgcaacctgg ttcgccgctc ccccgcgttc ggacgtcccg atgtcttctg cggcgacgct 1080 gacaagacgg tgtggcaatc aatcagcttc aacttcatcg gtcgtgacca cccgttcctc 1140 gagaagatca aggagctgac cggcaacgat ccgttgtccg ggcgcaccgt caccggcggc 1200 atcatcaccg ccgaggactc gtcgtggtgc atctcgctga cgatgaatcg tcagccacag 1260 ttccatggcc agcctgaaga ctggggcgtg gcatgggcct acgggctgta cccgttcgaa 1320 aagggcgacg tcgtcaacaa gacaatgctg gaatgcaccg gcgaggaact gctcaaagag 1380 tactgctatc acttcggact gctcgaccag ttcgaggagg tcaaggccca caccaaggtg 1440 cgaatcgcga cgatgccgtg gatcacggcc ttcttcatgc cccgcggcaa gggcgatcgc 1500 ccggaggtca tcccggacgg ctgcgtcaac ctggcttgcc taggccagtt cgtcgaaacc 1560 cccgatgact gcgtcttcac caccgagggt tcggcacgca ccgcaatgat ggccgtctac 1620 ggcctgctcg accttgaccg tgacatcccg ccgatctggc caacccagta cgacatccgc 1680 tccctgctgg cctccgccaa aaccctcaac aatggtcgct tgcccggtag ctggctgttg 1740 tcgaagctat tgaagaacac ctactacgag gacatcctgc cg 1782 <210> 8 <211> 1767 <212> DNA <213> Stenotrophomonas maltophilia <400> 8 atgtactaca gcagtggcaa ttacgaagcc ttcgcgcgcc cgcgcaagcc cgccggtgtg 60 gatggcaagc gtgcatggtt cgtcggttcg ggcctggcct cgttggccgg tgccgcgttc 120 ctggtgcgcg acggccacat ggccggtgag tgcatcacca tccttgagca gcagcagatt 180 ccgggcggcg cgctggacgg cctgaaagtg ccggaaaagg gtttcgtgat ccgtggtggc 240 cgcgagatgg aagatcattt cgagtgcctg tgggacctgt tccgctcgat accgtcgctg 300 gagatcgaag atgccagcgt gctggacgag ttctactggt tgaacaagga cgacccgaac 360 tattcgctgc agcgcgccac catcaatcgc ggcgaggatg cacacaccga tggcctgttc 420 acgctgaccg agcaggcaca gagggacatc gtcgcgctgt tcctggccac ccgtcaggag 480 atggagaaca agcgcatcaa cgaagtactg ggccgtgatt tcctggacag caacttctgg 540 ctgtactggc gaaccatgtt cgcgttcgaa gagtggcatt cggcgctgga gatgaagctg 600 tacctgcatc gcttcatcca ccatatcggc ggcctgccgg atttctcggc gctgaagttc 660 acgaagtaca accagtacga atcgctggtg ctgccgctgg tgaagtggtt gcaggaccag 720 ggcgtggtgt tccagtacgg taccgaggtg accgacgtcg actttgatct gcagccggac 780 cgcaagcagg ccacgcgcat ccattggatg catgacggtg tagccggtgg cgtggaactc 840 ggcgcggatg atctgctgtt catgaccatc ggttcgctga ccgagaactc ggataatggc 900 gaccaccaca ctgcggcacg cctgaacgaa ggcccggcgc ctgcctggga cctgtggcgc 960 cgcattgccg cgaaggatga cgcgttcggg cgtccggatg tgttcggcgc gcacattcca 1020 gaaaccaagt gggaatcggc aacggtgacc acgctggatg cgcgcattcc ggcctacatc 1080 cagaagatcg ccaagcgcga tcccttcagc ggcaaagtgg tgaccggcgg catcgtcagc 1140 gtgcgcgact cgcgctggct gatgagctgg acggtgaatc gccagccaca tttcaagaac 1200 cagcccaagg accagatcgt ggtctgggtg tattcgttgt tcgtggatac gcccggcgac 1260 tacgtgaaga agccgatgca ggactgcacc ggcgaggaga tcacgcgcga atggctgtat 1320 cacctgggcg tgccggtgga agagatcgat gagctggccg cgaccggcgc gaagacagtg 1380 ccggtgatga tgccgtacat cacggcgttc ttcatgccac gccaggcagg tgaccgcccg 1440 gacgtggtgc cggaaggtgc ggtgaacttc gctttcatcg gccagttcgc cgaatcgaag 1500 cagcgcgact gcatcttcac caccgagtac tcggtgcgca cgccgatgga ggcggtgtac 1560 accttgctgg ggatcgagcg tggcgtgccg gaggtgttca attccacgta tgacgtgcgc 1620 tcgctgctgg ccgcgaccgg gcgcctgcgt gatggcaagg aactggacat tcccgggcca 1680 gcgttcctgc gcaacctgct gatgaacaag ctggacaaga cccagatcgg tggtctgctg 1740 cgcgagttca agctggtgca ggaggac 1767 <210> 9 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 gctagcatgt attacagtaa tggtaactat gaa 33 <210> 10 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 ggctcgagct atattagttt actttctttc a 31 <210> 11 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 ggggctagca tgtactatag taatgga 27 <210> 12 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 aggctcgagt tatatcaaat ttgcttc 27 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 gggcatatga cgaacttcca acac 24 <210> 14 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 tttaagcttt cacggcagga tgtc 24 <210> 15 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 ggggctagca tgtactacag cagtggc 27 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 aaactcgagt cagtcctcct gcaccag 27

Claims (10)

서열번호 1 내지 4로 구성된 군으로부터 선택된 10-하이드록시스테아르 산(10-hydroxystearic acid)의 생산에 사용되는 올레산 수화효소(oleate hydratase).Oleate hydratase used for the production of 10-hydroxystearic acid selected from the group consisting of SEQ ID NOs: 1-4. 제 1항에 있어서, 상기 효소는 각각 리시니바실러스 후시포르미스 (Lysinibacillus fusiformis ), 마크로코코스 카제리티쿠스 (Macrococcus caseolyticus), 프로피오니박테리움 아크네스 (Propionibacterium acnes ), 스테노트로포모나스 말토필리아 (Stenotrophomonas maltophilia ) 균주로부터 유래한 것을 특징으로 하는 올레산 수화효소(oleate hydratase).The method of claim 1, wherein the enzyme is Lysinibacillus fusiformis , Macrococcus caseolyticus, Propionibacterium acnes, respectively acnes ), Stenotrophomonas maltophilia ) oleate hydratase, characterized in that it is derived from. 제 1항 또는 제2항의 효소 단백질을 코딩하는 유전자.A gene encoding the enzyme protein of claim 1. 제 3항에 있어서 상기 유전자 서열은 각각 서열번호 5 내지 8로 구성된 군으로부터 선택된 것을 특징으로 하는 유전자.The gene of claim 3, wherein the gene sequence is selected from the group consisting of SEQ ID NOs: 5 to 8, respectively. 리시니바실러스 후시포르미스 (Lysinibacillus fusiformis ), 마크로코코스 카제리티쿠스 (Macrococcus caseolyticus ), 프로피오니박테리움 아크네스 (Propionibacterium acnes ), 스테노트로포모나스 말토필리아 (Stenotrophomonas maltophilia) 균주로부터 유래하고, 제 3항 또는 제4항의 올레산 수화효소 유전자를 포함하는 재조합 발현 벡터 pET 28a(+). Lysinibacillus fusiformis ), Macrococcus caseolyticus), propynyl sludge tumefaciens arc Ness (Propionibacterium acnes), Pomona's malto pilriah (Stenotrophomonas maltophilia) derived from the strain, and the recombinant expression containing 3 or claim 4 of the oleic acid hydrate gene by stacking notes vector pET 28a ( +). 제 5항에 있어서, 상기 발현벡터는 도 6의 개열지도를 가지는 것을 특징으로 하는 재조합 발현 벡터 pET 28(+)a.The recombinant expression vector pET 28 (+) a according to claim 5, wherein the expression vector has a cleavage map of FIG. a) 올레산 수화효소 유전자를 포함하는 제 5항 또는 제6항의 재조합 발현 벡터를 제작하고;
b) 상기 재조합 발현 벡터로 형질전환된 미생물을 배양하고;
c) 상기 올레산 수화효소 유전자의 발현을 유도하고;
d) 발현된 재조합 단백질을 분리 및 정제하는 과정을 포함하는 올레산 수화효소 제조방법.
a) preparing a recombinant expression vector of claim 5 or 6 comprising an oleic acid hydratase gene;
b) culturing the microorganism transformed with said recombinant expression vector;
c) induce expression of said oleic acid hydratase gene;
d) a method for preparing oleic acid hydratase comprising the step of isolating and purifying the expressed recombinant protein.
기질에 제 1항 또는 제2항의 올레산 수화효소를 처리하는 단계를 포함하는 10-하이드록시지방산 생산방법.10-hydroxyfatty acid production method comprising the step of treating the oleic acid hydrase of claim 1 to the substrate. 제 8항에 있어서,상기 방법은 기질로 올레산을 사용하는 것을 특징으로 하는 10-하이드록지방산 생산방법.The method of claim 8, wherein the method uses oleic acid as a substrate. 제 8항에 있어서,
상기 하이드록시 지방산은 10-하이드록시스테아르 산인 것을 특징으로 하는 10-하이드록지방산 생산방법.
The method of claim 8,
The hydroxy fatty acid is 10-hydroxystearic acid production method, characterized in that 10-hydroxystearic acid.
KR1020110000998A 2011-01-05 2011-01-05 Novel oleate hydratase and Method for the production of 10-hydroxystearic acid by recombinant cells comprising the same KR101303908B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110000998A KR101303908B1 (en) 2011-01-05 2011-01-05 Novel oleate hydratase and Method for the production of 10-hydroxystearic acid by recombinant cells comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110000998A KR101303908B1 (en) 2011-01-05 2011-01-05 Novel oleate hydratase and Method for the production of 10-hydroxystearic acid by recombinant cells comprising the same

Publications (2)

Publication Number Publication Date
KR20120079676A true KR20120079676A (en) 2012-07-13
KR101303908B1 KR101303908B1 (en) 2013-09-10

Family

ID=46712548

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110000998A KR101303908B1 (en) 2011-01-05 2011-01-05 Novel oleate hydratase and Method for the production of 10-hydroxystearic acid by recombinant cells comprising the same

Country Status (1)

Country Link
KR (1) KR101303908B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451123A (en) * 2013-06-08 2013-12-18 江苏省农业科学院 Macrococcus caseolyticus and preparation method as well as application thereof
WO2021028560A1 (en) * 2019-08-14 2021-02-18 B.R.A.I.N. Biotechnology Research And Information Network Ag Novel oleate hydratases

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451123A (en) * 2013-06-08 2013-12-18 江苏省农业科学院 Macrococcus caseolyticus and preparation method as well as application thereof
CN103451123B (en) * 2013-06-08 2015-10-21 江苏省农业科学院 Large coccus of molten junket and its preparation method and application
WO2021028560A1 (en) * 2019-08-14 2021-02-18 B.R.A.I.N. Biotechnology Research And Information Network Ag Novel oleate hydratases

Also Published As

Publication number Publication date
KR101303908B1 (en) 2013-09-10

Similar Documents

Publication Publication Date Title
CN108795916B (en) Lysine decarboxylase mutant, coding gene thereof, expression and application thereof
KR20090005052A (en) Method for the enzymatic production of 2-hydroxy-2-methyl carboxylic acids
CN112391372B (en) Glutamic acid decarboxylase mutant, genetically engineered bacterium and application thereof
CN109477082A (en) 3- methyl crotonic acid decarboxylase (MDC) variant
CN112899261B (en) Lysine decarboxylase mutant, coding gene and application thereof
WO2004056990A1 (en) Novel nitrile hydratase
CN106566823B (en) Cloning and application of glutamate decarboxylase gene
CN113122527B (en) Aspartase mutant with improved enzyme activity and changed optimal pH
KR101749429B1 (en) Oleate Hydratase Gene, Expression Vector Containing the Gene, and Transformant Transformed by the Vector
KR20120079676A (en) Novel oleate hydratase and method for the production of 10-hydroxystearic acid by recombinant cells comprising the same
KR100876662B1 (en) Streptomyces sp. strain having an alginate hydrolysis activity and alginate lyase
CN111748535B (en) Alanine dehydrogenase mutant and application thereof in fermentation production of L-alanine
KR101383591B1 (en) Novel oleate hydratase and Method for the production of 10-hydroxystearic acid by recombinant cells comprising the same
CN110004125A (en) A kind of marine bacteria source development of new type alkali-resistant fibre organic solvent-resistant esterase and application
CN112725315B (en) Application of chitosanase and mutant thereof in preparation of chitosan oligosaccharide
CN110144341A (en) Alginate lyase mutant
KR20140048516A (en) Novel beta-agarase producing gene and transformed bacterial strain using thereof
CN114806899B (en) Trichoderma reesei engineering bacteria for producing L-malic acid and application thereof
CN109943550A (en) A kind of marine bacteria source esterase Erp3 and its encoding gene and application
CN110234767A (en) The method for producing the microorganism of the corynebacterium of L-arginine and producing L-arginine using it
CN114854717B (en) Lipase and encoding gene and application thereof
CN110904076B (en) Potassium chloride-resistant xylosidase mutant K317D and application thereof
CN110862977B (en) Sodium chloride and potassium chloride resistant xylosidase mutant H328D and application thereof
KR101248598B1 (en) Method for the production of 10-hydroxystearic acid by recombinant cells containing oleate hydratase from Stenotrophomonas maltophilia
CN108866017B (en) Method for preparing β -hydroxy- β -methylbutyric acid by enzyme method

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160824

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170821

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180813

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190819

Year of fee payment: 7