KR20120077653A - Polymer/carbon nano tube composites and preparation method thereof - Google Patents

Polymer/carbon nano tube composites and preparation method thereof Download PDF

Info

Publication number
KR20120077653A
KR20120077653A KR1020100139691A KR20100139691A KR20120077653A KR 20120077653 A KR20120077653 A KR 20120077653A KR 1020100139691 A KR1020100139691 A KR 1020100139691A KR 20100139691 A KR20100139691 A KR 20100139691A KR 20120077653 A KR20120077653 A KR 20120077653A
Authority
KR
South Korea
Prior art keywords
polymer
carbon nanotube
compound
polybutylene terephthalate
carbon nanotubes
Prior art date
Application number
KR1020100139691A
Other languages
Korean (ko)
Inventor
서은하
이태균
양철민
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020100139691A priority Critical patent/KR20120077653A/en
Publication of KR20120077653A publication Critical patent/KR20120077653A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • C08J5/08Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass

Abstract

PURPOSE: A polymer/carbon nanotube composite and a manufacturing method thereof are provided to drastically increase electrical characteristics and effectiveness of materials. CONSTITUTION: A manufacturing method of a polymer/carbon nanotube composite comprises the following steps: manufacturing a compound using an extruder and mixing apparatus from 80-89.5 wt% of polybutylene terephthalate and 0.5-5.0 wt% of the carbon nanotube; and mixing 10-15 wt% of the compound with glass fiber. The compound manufacturing step and the mixing step are consecutively processed. The polybutylene terephthalate is manufactured at 20 - 70 rpm at 190-300 deg. Celsius. In the compound manufacturing step, the extrusion rate is controlled by 20 - 70 rpm. The compound is manufactured by a melt-mixing method. The carbon nanotube is mixed after preheating the polybutylene terephthalate and coating with dispersing agent in order to increase dispersibility.

Description

고분자/탄소나노튜브 복합체 및 이의 제조방법{POLYMER/CARBON NANO TUBE COMPOSITES AND PREPARATION METHOD THEREOF}Polymer / Carbon Nanotube Composite and Manufacturing Method Thereof {POLYMER / CARBON NANO TUBE COMPOSITES AND PREPARATION METHOD THEREOF}

본 발명은 전도성 및 분산성이 향상된 고분자/탄소나노튜브 복합체 및 이의 제조방법에 관한 것이다.The present invention relates to a polymer / carbon nanotube composite having improved conductivity and dispersibility and a method of manufacturing the same.

탄소나노튜브는 1991년에 발견된 이래, 종래의 물질에서 볼 수 없었던 물리화학적 특성에 의해 다양한 응용 분야에서 우수한 특성을 보이고 있다. 특히, 탄소나노튜브는 종래의 전도성 재료에 비하여 우수한 기계적 특성과 전기적 특성을 보이고 있으며, 이에 대한 연구가 활발하게 진행되고 있다.Since carbon nanotubes were discovered in 1991, the carbon nanotubes exhibit excellent properties in various applications due to physical and chemical properties not found in conventional materials. In particular, carbon nanotubes show excellent mechanical and electrical properties compared to conventional conductive materials, and research on this has been actively conducted.

탄소나노튜브는 높은 전기 전도성, 열적 안정성 및 기계적 강도로 인하여 다양한 복합 재료의 성분으로 활용되고 있다. 그러나, 탄소나노튜브가 갖는 긴 길이 및 탄소나노튜브 상호 간의 강한 인력으로 인하여, 고분자 재료 내에서 낮은 분산도를 가져 그 응용성 및 생산성 면에서 한계를 나타내고 있다.Carbon nanotubes are used as components of various composite materials due to their high electrical conductivity, thermal stability and mechanical strength. However, due to the long length of the carbon nanotubes and the strong attraction between the carbon nanotubes, they have a low dispersion degree in the polymer material, thereby limiting their applicability and productivity.

탄소나노튜브의 이러한 분산성 문제를 해결하기 위한 방법 중 하나는, 질산, 황산 또는 이들의 혼합 용액과 같은 산 수용액에 탄소나노튜브를 함침시켜 표면을 산화시킴으로써 탄소나노튜브의 분산성을 향상시키는 것이다. 탄소나노튜브를 산처리 하면, 탄소나노튜브의 표면에 카르복시기의 작용기가 형성되어 탄소나노튜브 상호 간의 정전기적 인력을 극복할 수 있어 분산성이 향상된다. 다만, 이러한 산 처리는 탄소나노튜브의 표면을 손상시켜 탄소나노튜브의 물성을 저하시키는 문제점을 갖고 있다. 또한, 산 처리 공정은 작업의 안정성 문제와 오염물의 처리 문제와 같은 환경 문제를 수반하므로 또 다른 문제점을 야기하고 있다.One way to solve this dispersibility problem of carbon nanotubes is to improve the dispersibility of carbon nanotubes by oxidizing the surface by impregnating carbon nanotubes in an aqueous acid solution such as nitric acid, sulfuric acid or a mixed solution thereof. . When acid treatment of carbon nanotubes, carboxyl functional groups are formed on the surface of the carbon nanotubes to overcome the electrostatic attraction between the carbon nanotubes, thereby improving dispersibility. However, such acid treatment has a problem of deteriorating the surface of the carbon nanotubes, thereby deteriorating the physical properties of the carbon nanotubes. In addition, the acid treatment process introduces another problem, as it entails environmental problems such as operational stability problems and treatment of contaminants.

폴리카보네이트(polycarbonate)는 엔지니어링 플라스틱의 일종으로, 투명하면서도 기계적 강도 및 충격 강도가 뛰어날 뿐만 아니라, 높은 내열성을 갖고 있어 다양한 분야에서 사용되고 있다. 다만, 이러한 폴리카보네이트는 성형 온도가 높고 용융 점도가 높아 성형 시에 어려움이 있다. 또한, 내약품성이 취약하여 수분에 의하여 가수분해 될 수 있다는 단점이 있다. 따라서, 이러한 폴리카보네이트의 사용을 대체할 수 있는 고분자/탄소나노튜브 복합체의 제조방법 개발에 대한 시장의 요구는 점점 더 커지고 있다.Polycarbonate is a kind of engineering plastic, and is used in various fields because it is transparent, has excellent mechanical strength and impact strength, and has high heat resistance. However, such a polycarbonate has a high molding temperature and a high melt viscosity, thus making it difficult to mold. In addition, there is a disadvantage that the chemical resistance is weak and can be hydrolyzed by moisture. Therefore, the market demand for the development of a method for producing a polymer / carbon nanotube composite that can replace the use of such polycarbonate is increasing.

본 발명의 고분자/탄소나노튜브 복합체의 제조방법은, 폴리부틸렌테레프탈레이트 80 내지 89.5 중량% 및 탄소나노튜브 0.5 내지 5.0 중량%를 압출기 및 믹서기를 이용하여 컴파운드를 제조하는 단계; 및 상기 컴파운드에 글래스 섬유 10 내지 15 중량% 를 혼합하는 단계를 포함한다.Method for producing a polymer / carbon nanotube composite of the present invention comprises the steps of preparing a compound using 80 to 89.5% by weight of polybutylene terephthalate and 0.5 to 5.0% by weight of carbon nanotubes using an extruder and a mixer; And mixing 10 to 15% by weight of glass fibers in the compound.

상기 컴파운드 제조 단계 및 혼합 단계는 동시적 및/또는 연속적으로 이루어질 수 있다. 폴리부틸렌테레프탈레이트는 190 내지 300℃의 온도 및 20 내지 70 rpm으로 제조된 것을 사용하는 것이 바람직하다. 상기 컴파운드 제조에 있어서, 압출 속도를 20 내지 70 rpm으로 조절하는 것이 바람직하며, 컴파운드는 용융혼합법에 의해 제조되는 것이 특히 바람직하다.The compound preparation step and the mixing step may be performed simultaneously and / or continuously. The polybutylene terephthalate is preferably used at a temperature of 190 to 300 ℃ and 20 to 70 rpm. In the production of the compound, it is preferable to control the extrusion speed to 20 to 70 rpm, and the compound is particularly preferably produced by melt mixing.

또한, 상기 컴파운드 제조 단계에 있어서, 분산성 향상을 위하여 상기 폴리부틸렌테레프탈레이트를 예열한 후, 분산제를 골고루 묻힌 후에 탄소 나노튜브를 혼합하는 것이 바람직하다.In addition, in the compound manufacturing step, it is preferable to preheat the polybutylene terephthalate in order to improve dispersibility, and then mix the carbon nanotubes after evenly dispersing the dispersant.

본 발명은 또한, 폴리부틸렌테레프탈레이트 80 내지 89.5 중량%; 탄소나노튜브 0.5 내지 5.0 중량%; 및 글래스 섬유 10 내지 15 중량%를 포함하는 고분자/탄소나노튜브 복합체를 제공한다.The present invention also provides a polybutylene terephthalate of 80 to 89.5% by weight; 0.5 to 5.0 wt% carbon nanotubes; And it provides a polymer / carbon nanotube composite comprising a glass fiber 10 to 15% by weight.

본 발명의 고분자/탄소나노튜브 복합체는, 고가의 탄소나노튜브를 적은 양으로 사용하더라도 우수한 전기적 특성을 나타내어 재료의 효율성을 높일 수 있고, 복합체 내의 탄소나노튜브의 분산도가 향상되어 전기 전도성이 우수하다.The polymer / carbon nanotube composite of the present invention exhibits excellent electrical properties even when using a small amount of expensive carbon nanotubes, thereby increasing the efficiency of the material, and excellent electrical conductivity due to improved dispersion of carbon nanotubes in the composite. Do.

탄소나노튜브는 탄소원자들이 육각형의 평행한 튜브 형태로 이루어져 화학적으로 매우 안정하며, 그 자체로도 뛰어난 기계적, 전자적 성질을 지니고 있다. 또한, 다른 보강 섬유에 비하여 강성, 강도, 내식성 등이 매우 우수한 특성을 지니고 있으나, 고분자 재료 내에서 낮은 분산도를 가져 그 응용성 및 생산성 면에서 한계를 나타내고 있었다. 고분자/탄소나노튜브 복합체를 제조하는 경우, 벌크 밀도가 너무 낮아서 다루기 힘든 탄소나노튜브의 제어가 용이하여지므로, 고가의 탄소나노튜브를 적은 양 사용하고도 우수한 전기적 특성을 나타낼 수 있어 재료의 효율성이 높아지고, 복합체 내의 탄소나노튜브의 분산도가 향상되어 전기 전도성이 개선되는 효과가 있다.Carbon nanotubes are chemically very stable because carbon atoms are in the form of hexagonal parallel tubes, and have excellent mechanical and electronic properties by themselves. In addition, the stiffness, strength, corrosion resistance, etc. are very excellent compared to other reinforcing fibers, but has a low dispersion degree in the polymer material, showing its limitations in application and productivity. In the case of manufacturing polymer / carbon nanotube composites, the bulk density is so low that it is easy to control carbon nanotubes that are difficult to handle. Therefore, the material efficiency can be improved due to excellent electrical properties even with a small amount of expensive carbon nanotubes. It is increased, the dispersion degree of carbon nanotubes in the composite is improved, there is an effect that the electrical conductivity is improved.

이와 같은 고분자/탄소나노튜브 복합체의 제조에 있어서, 고분자로서 폴리카보네이트(polycarbonate)가 주로 사용되어 왔다. 폴리카보네이트는 엔지니어링 플라스틱의 일종으로, 투명하면서도 기계적 강도 및 충격 강도가 뛰어날 뿐만 아니라, 높은 내열성을 갖고 있어 다양한 분야에서 사용되고 있다. 다만, 이러한 폴리카보네이트는 성형 온도가 높고 용융 점도가 높아 성형 시에 어려움이 있다. 또한, 내약품성이 취약하여 수분에 의하여 가수분해 될 수 있다는 단점이 있다. In the production of such polymer / carbon nanotube composites, polycarbonate has been mainly used as a polymer. Polycarbonate is a kind of engineering plastics, and is used in various fields because it is transparent, has excellent mechanical strength and impact strength, and has high heat resistance. However, such a polycarbonate has a high molding temperature and a high melt viscosity, thus making it difficult to mold. In addition, there is a disadvantage that the chemical resistance is weak and can be hydrolyzed by moisture.

본 발명자들은 고분자/탄소나노튜브 복합체의 제조에 있어서 고분자로서 폴리부틸렌테레프탈레이트(polybutyleneterephthalate)를 사용하여 제조 공정을 단순화함으로써 대용량화가 가능하고 제조단가를 현저히 낮출 수 있는 제조방법을 제시하였다.The present inventors have proposed a manufacturing method which can increase the capacity and significantly lower the manufacturing cost by simplifying the manufacturing process using polybutylene terephthalate as a polymer in the preparation of the polymer / carbon nanotube composite.

본 발명의 일 실시예에 따른 고분자/탄소나노튜브 복합체의 제조방법은, 폴리부틸렌테레프탈레이트 80 내지 89.5 중량% 및 탄소나노튜브 0.5 내지 5.0 중량%를 압출기 및 믹서기를 이용하여 컴파운드를 제조하는 단계; 및 상기 컴파운드에 글래스 섬유 10 내지 15 중량% 를 혼합하는 단계를 포함하며, 상기 컴파운드 제조 단계 및 혼합 단계는 실질적으로는 동시적 및/또는 연속적으로 이루어진다. In the method for preparing a polymer / carbon nanotube composite according to an embodiment of the present invention, preparing a compound using 80 to 89.5 wt% of polybutylene terephthalate and 0.5 to 5.0 wt% of carbon nanotubes using an extruder and a mixer ; And mixing 10 to 15% by weight of glass fibers in the compound, wherein the compound manufacturing step and mixing step are substantially simultaneously and / or continuously.

열가소성 폴리부틸렌테레프탈레이트는 190 내지 300℃의 온도 및 20 내지 70 rpm으로 제조된 것을 사용하는 것이 바람직하다. 종래 사용되었던 열가소성 폴리카르보네이트는 성형 온도가 높아 350 ℃ 이상의 온도 및 200 rpm에서 제조하여야 하여 공정상 취급의 어려움이 있었으나, 폴리부틸렌테레프탈레이트는 더 낮은 온도 및 혼합 속도에서 취급이 용이한 장점이 있다.Thermoplastic polybutylene terephthalate is preferably used at a temperature of 190 to 300 ℃ and 20 to 70 rpm. The thermoplastic polycarbonate used in the prior art has a high molding temperature, so it has to be manufactured at a temperature of 350 ° C. or higher and 200 rpm, which makes handling difficult. However, polybutylene terephthalate is easy to handle at a lower temperature and mixing speed. There is this.

상기 컴파운드 제조에 있어서, 압출 속도를 20 내지 70 rpm으로 조절하는 것이 바람직하다. rpm이 너무 높은 경우에는 수지가 잘 녹지 않아 스크류 또는 실린더에 부하가 발생할 수 있으며, 탄소나노튜브의 분산도 잘 이루어지지 않는다. rpm이 너무 낮은 경우에는 충분한 혼합이 이루어지지 않고, 수지의 열화가 발생할 수 있다.In the production of the compound, it is preferable to control the extrusion speed to 20 to 70 rpm. If the rpm is too high, the resin will not melt well and may cause a load on the screw or cylinder, and the dispersion of carbon nanotubes will also be difficult. If the rpm is too low, sufficient mixing will not be achieved, and deterioration of the resin may occur.

폴리부틸렌테레프탈레이트와 탄소나노튜브는 용융혼합법에 의해 나노복합체로 제조되는 것이 특히 바람직하다. 즉, 압출기 및 믹서기를 이용하여 높은 온도와 고 전단력 하에서 탄소나노튜브를 고분자 기질 내로 고르게 분산시켜 나노 복합체를 제조함으로써, 인시츄 중합법 및 용액혼합법에 비하여 대용량화가 가능하고 제조단가를 낮출 수 있다. 또한, 압출기 및 믹서기를 이용함으로써 고분자/탄소나노튜브 복합체 내 유동층 다중벽 탄소나노튜브의 분산도를 향상시키고, 유동층 다중벽 탄소나노튜브를 용이하게 취급할 수 있게 되어, 대용량의 제조에 매우 우수한 효과가 있다.It is particularly preferable that the polybutylene terephthalate and the carbon nanotubes are made of a nanocomposite by melt mixing. That is, by dispersing the carbon nanotubes evenly into the polymer substrate under high temperature and high shear force by using an extruder and a mixer, the nanocomposite can be prepared, and thus the capacity can be increased and the manufacturing cost can be lowered compared to the in situ polymerization method and the solution mixing method. . In addition, by using an extruder and a mixer, the dispersion degree of the fluidized-bed multi-walled carbon nanotubes in the polymer / carbon nanotube composite can be improved, and the fluidized-bed multi-walled carbon nanotubes can be easily handled. There is.

컴파운드 제조 단계에 있어서, 유동층 탄소나노튜브를 골고루 섞이게 하기 위해서는 분산 기술의 적용이 필요하다. 일반 열가소성 칩을 일정 온도로 예열한 후 분산제를 골고루 묻히는 단계가 필요하다. 분산제를 골고루 묻힌 후에는 유동층 탄소나노튜브를 넣고 텀블 드라이어 또는 믹서기를 이용하여 잘 섞은 후에 압출기를 이용하여 컴파운드 칩을 제조한다.In the compound preparation step, the dispersion technique is required to evenly mix the fluidized bed carbon nanotubes. After preheating the general thermoplastic chip to a certain temperature, a step of evenly dispersing the dispersant is necessary. After evenly spreading the dispersant, the fluidized bed carbon nanotubes are added, mixed well using a tumble dryer or a mixer, and then a compound chip is manufactured using an extruder.

본 발명은 또한, 폴리부틸렌테레프탈레이트 80 내지 89.5 중량%; 탄소나노튜브 0.5 내지 5.0 중량%; 및 글래스 섬유 10 내지 15 중량%를 포함하는 고분자/탄소나노튜브 복합체를 제공한다.
The present invention also provides a polybutylene terephthalate of 80 to 89.5% by weight; 0.5 to 5.0 wt% carbon nanotubes; And it provides a polymer / carbon nanotube composite comprising a glass fiber 10 to 15% by weight.

본 발명을 이하 실시예를 통하여 더욱 상세히 설명하며, 다만, 본 발명은 하기 실시예에 한정되는 것은 아니다.
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.

폴리부틸렌테레프탈레이트 85중량%를 예열한 후 분산제를 골고루 묻힌 후에 탄소나노튜브 1중량%를 가하여 텀블 드라이어 및 믹서기를 이용하여 잘 혼합하였다. 압출기를 이용하여 컴파운드 칩을 제조한 후, 글래스 섬유 15중량%를 혼합하여 폴리부틸렌테레프탈레이트/탄소나노튜브 복합체를 제조하였다. 온도는 245℃로 조절하였고, 압출 속도는 50 rpm으로 조절하였다.After preheating 85% by weight of polybutylene terephthalate and evenly dispersing the dispersant, 1% by weight of carbon nanotubes were added and mixed well using a tumble dryer and a mixer. After preparing a compound chip using an extruder, 15% by weight of glass fibers were mixed to prepare a polybutylene terephthalate / carbon nanotube composite. The temperature was adjusted to 245 ° C. and the extrusion rate was adjusted to 50 rpm.

압출 속도를 100 rpm 을 제외하고는 상기 실시예 1과 동일하게 제조하였다.Extrusion rate was prepared in the same manner as in Example 1 except 100 rpm.

분산제를 첨가한 것을 제외하고는 상기 실시예 1과 동일하게 제조하였다.It was prepared in the same manner as in Example 1 except that a dispersant was added.

분산제를 첨가한 것을 제외하고는 상기 실시예 2와 동일하게 제조하였다.It was prepared in the same manner as in Example 2 except that a dispersant was added.

폴리부틸렌테레프탈레이트를 85 중량%, 탄소나노튜브를 0.5 중량%, 글래스 섬유를 15중량%로 사용하고, 분산제를 첨가한 것을 제외하고는 상기 실시예 1과 동일하게 제조하였다.85 wt% of polybutylene terephthalate, 0.5 wt% of carbon nanotube, and 15 wt% of glass fiber were prepared in the same manner as in Example 1 except that a dispersant was added.

폴리부틸렌테레프탈레이트를 85 중량%, 탄소나노튜브를 0.5 중량%, 글래스 섬유를 15중량%로 사용하고, 압출 속도를 100 rpm으로 조절하며, 분산제를 첨가한 것을 제외하고는 상기 실시예 1과 동일하게 제조하였다.
Example 1 except that 85% by weight of polybutylene terephthalate, 0.5% by weight of carbon nanotubes, 15% by weight of glass fibers, the extrusion rate is adjusted to 100 rpm, and the dispersant is added The same was prepared.

비교예Comparative example 1 One

폴리부틸렌테레프탈레이트를 85 중량%, 탄소나노튜브를 2 중량%, 글래스 섬유를 15중량%로 사용한 것을 제외하고는 상기 실시예 1과 동일하게 제조하였다.
Except for using 85% by weight of polybutylene terephthalate, 2% by weight of carbon nanotube, 15% by weight of glass fiber was prepared in the same manner as in Example 1.

비교예Comparative example 2 2

폴리부틸렌테레프탈레이트를 85 중량%, 탄소나노튜브를 3 중량%, 글래스 섬유를 15중량%로 사용한 것을 제외하고는 상기 실시예 1과 동일하게 제조하였다.Except for using 85% by weight of polybutylene terephthalate, 3% by weight of carbon nanotube, 15% by weight of glass fiber was prepared in the same manner as in Example 1.

상기 실시예 1 내지 6 및 비교예 1 및 2에 있어서 제조된 고분자/탄소나노튜브 복합체의 전기전도도를 하기 표 1에 표시하였다.The electrical conductivity of the polymer / carbon nanotube composites prepared in Examples 1 to 6 and Comparative Examples 1 and 2 are shown in Table 1 below.

구분division 카본나노
튜브농도(%)
Carbon Nano
Tube concentration (%)
글래스 섬유 함량(%)Glass fiber content (%) 가공온도
(℃)
Processing temperature
(℃)
압출속도
(RPM)
Extrusion speed
(RPM)
분산제유무Dispersant 전기전도도(ohm/cm)Electrical Conductivity (ohm / cm)



Com
wave
luck
De
실시예Example 1One 1515 245245 5050 XX XX
1One 1515 245245 100100 XX XX 1One 1515 245245 5050 OO 1One 1515 245245 100100 OO OO 0.50.5 1515 245245 5050 OO OO 0.50.5 1515 245245 100100 OO 비교예Comparative example 22 1515 245245 5050 XX XX 33 1515 245245 5050 XX

상기 표 1을 참조하면, 유동층 다중벽 탄소나노튜브를 사용하여 제조한 고분자/탄소나노튜브 복합체에 있어서, 가공 온도를 245℃로 조절한 경우 압출 속도가 50 rpm 인 경우에 100 rpm 인 경우보다 전기 전도도가 우수함을 확인할 수 있었으며, 분산제의 첨가에 의해 전기 전도도가 향상될 수 있음을 확인할 수 있었다.Referring to Table 1, in the polymer / carbon nanotube composite prepared using the fluidized-bed multi-walled carbon nanotube, when the processing temperature is adjusted to 245 ° C., the extrusion rate is 50 rpm, compared to 100 rpm. It was confirmed that the conductivity is excellent, it was confirmed that the electrical conductivity can be improved by the addition of a dispersant.

Claims (7)

폴리부틸렌테레프탈레이트 80 내지 89.5 중량% 및 탄소나노튜브 0.5 내지 5.0 중량%를 압출기 및 믹서기를 이용하여 컴파운드를 제조하는 단계;
상기 컴파운드에 글래스 섬유 10 내지 15 중량% 를 혼합하는 단계를 포함하는, 고분자/탄소나노튜브 복합체의 제조방법.
Preparing a compound using 80 to 89.5% by weight of polybutylene terephthalate and 0.5 to 5.0% by weight of carbon nanotubes using an extruder and a mixer;
10 to 15% by weight of the glass fiber in the compound comprising the step of producing a polymer / carbon nanotube composite.
제1항에 있어서,
상기 컴파운드 제조 단계 및 혼합 단계는 연속적으로 이루어지는, 고분자/탄소나노튜브 복합체의 제조방법.
The method of claim 1,
The compound manufacturing step and the mixing step is a continuous, polymer / carbon nanotube composite manufacturing method.
제1항에 있어서,
상기 폴리부틸렌테레프탈레이트는 190 내지 300℃의 온도 및 20 내지 70 rpm으로 제조되는 것을 특징으로 하는, 고분자/탄소나노튜브 복합체의 제조방법
The method of claim 1,
The polybutylene terephthalate is produced at a temperature of 190 to 300 ℃ and 20 to 70 rpm, the method of producing a polymer / carbon nanotube composite
제1항에 있어서,
상기 컴파운드 제조 단계에 있어서, 압출 속도를 20 내지 70 rpm으로 조절하는 것을 특징으로 하는, 고분자/탄소나노튜브 복합체의 제조방법.
The method of claim 1,
In the compound manufacturing step, characterized in that the extrusion speed is adjusted to 20 to 70 rpm, the polymer / carbon nanotube composite production method.
제1항에 있어서,
상기 컴파운드는 용융혼합법에 의해 제조되는 것을 특징으로 하는, 고분자/탄소나노튜브 복합체의 제조방법.
The method of claim 1,
The compound is characterized in that produced by the melt mixing method, a method for producing a polymer / carbon nanotube composite.
제1항에 있어서,
상기 컴파운드 제조 단계에 있어서, 분산성 향상을 위하여 상기 폴리부틸렌테레프탈레이트를 예열한 후, 분산제를 골고루 묻힌 후에 탄소 나노튜브를 혼합하는 것을 특징으로 하는, 고분자/탄소나노튜브 복합체의 제조방법.
The method of claim 1,
In the compound production step, characterized in that after preheating the polybutylene terephthalate to improve the dispersibility, the carbon nanotubes are mixed after evenly dispersing the dispersant, the method of producing a polymer / carbon nanotube composite.
폴리부틸렌테레프탈레이트 80 내지 89.5 중량%;
탄소나노튜브 0.5 내지 5.0 중량%; 및
글래스 섬유 10 내지 15 중량%를 포함하는 고분자/탄소나노튜브 복합체.
80 to 89.5 wt% polybutylene terephthalate;
0.5 to 5.0 wt% carbon nanotubes; And
Polymer / carbon nanotube composite comprising 10 to 15% by weight of glass fibers.
KR1020100139691A 2010-12-30 2010-12-30 Polymer/carbon nano tube composites and preparation method thereof KR20120077653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100139691A KR20120077653A (en) 2010-12-30 2010-12-30 Polymer/carbon nano tube composites and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100139691A KR20120077653A (en) 2010-12-30 2010-12-30 Polymer/carbon nano tube composites and preparation method thereof

Publications (1)

Publication Number Publication Date
KR20120077653A true KR20120077653A (en) 2012-07-10

Family

ID=46711106

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100139691A KR20120077653A (en) 2010-12-30 2010-12-30 Polymer/carbon nano tube composites and preparation method thereof

Country Status (1)

Country Link
KR (1) KR20120077653A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20121083A1 (en) * 2012-12-14 2014-06-15 Plastic Components And Modules Auto Motive S P A COMPOSITE MATERIAL FOR THE REALIZATION OF A COMPONENT OR A STRUCTURAL PART, PARTICULARLY FOR THE INSTALLATION OF A VEHICLE ON BOARD, TO INTEGRATE DEVICES AND ELECTRICAL CONNECTIONS.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20121083A1 (en) * 2012-12-14 2014-06-15 Plastic Components And Modules Auto Motive S P A COMPOSITE MATERIAL FOR THE REALIZATION OF A COMPONENT OR A STRUCTURAL PART, PARTICULARLY FOR THE INSTALLATION OF A VEHICLE ON BOARD, TO INTEGRATE DEVICES AND ELECTRICAL CONNECTIONS.
EP2743291A1 (en) * 2012-12-14 2014-06-18 Plastic Components and Modules Automotive S.p.A. Method for the production of a component or a structural part on-board a vehicle adapted to integrate electrical devices and connections, and composite material for the realization of said component or structural part
US9865370B2 (en) 2012-12-14 2018-01-09 PLASTIC COMPONENTS AND MUDULES AUTOMOTIVE S.p.A. Method for the production of a component or a structural part on-board a vehicle adapted to integrate electrical devices and connections, and composite material for the realization of said component or structural part

Similar Documents

Publication Publication Date Title
KR20120077647A (en) Polymer/carbon nano tube composites and preparation method thereof
KR101090729B1 (en) Highly conductive resin composition having carbon composite
KR101256792B1 (en) Electroconductive curable resins
KR101183016B1 (en) Carbon Nanotube-polymer Nanocomposite Improved In Electrical Conductivity And Preparation Method Thereof
KR101666881B1 (en) Manufacturing method of metal-free CNT Composite materials having excellent chemical resistance and electric resistance, CNT pellet used the same that, product manufactured thereby
KR100959883B1 (en) Manufacturing method for conductive thermoplastic polyurethane sheet and thermoplastic polyurethane sheet using the same
JP2014529352A (en) Nanotube and finely pulverized carbon fiber polymer composite composition and production method
KR20080107382A (en) Nanotube polymer composite compositions and methods of making
KR20140126292A (en) Production method for conductive resin composition, and conductive resin composition
KR20150041400A (en) Polymer nanocomposites containing nano carbon materials having multiple hydrogen bonding motifs and their fabrication method
KR100895696B1 (en) A Method for Preparation of Silicone Rubber/Carbon Nanotube Composites with Electrical Insulating Properties
KR101164287B1 (en) Carbon Nanotube-polymer Nanocomposite Improved In Electrical Conductivity And Preparation Method Thereof
KR20130134446A (en) Functionalized graphene and polymer-functionalized graphene hybrid complex and the fabrication methods thereof
KR101055620B1 (en) Polymer / carbon nanotube composite with excellent electrical properties and its manufacturing method
KR101621126B1 (en) Polymer pellet for extrusion, polymer composites and method for preparing them
EP2881428B1 (en) Resin composition containing carbon nanomaterial and plastic molded product
KR101637632B1 (en) nylon composite And Method of nylon composite
KR101654638B1 (en) Hybrid filler composite and preparing method of the same
KR20120077653A (en) Polymer/carbon nano tube composites and preparation method thereof
JP5054344B2 (en) Heat-resistant resin composite composition and method for producing the same
KR20150026277A (en) Thermoplastic polymer bonded with carbon-nanomaterial and method for preparing the same
KR101269088B1 (en) Biodagradable polymer/carbon nano tube composite comprising bio-compatibilizer and the preparation thereof
EP3918004A1 (en) Polymeric blend composite and a process for preparing the same
KR102021377B1 (en) Method for manufacturing electroconductive polycarbonate nanocomposite having cabon-based filler and electroconductive polycarbonate nanocomposite manufactured thereby
KR101559554B1 (en) Composite containing nylon and carbon nanotube and preparing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application