KR20120072096A - Use of ire1 gene and hxl1 gene in upr signal pathway for treating mycoses or meningoencephalitis - Google Patents
Use of ire1 gene and hxl1 gene in upr signal pathway for treating mycoses or meningoencephalitis Download PDFInfo
- Publication number
- KR20120072096A KR20120072096A KR1020100133885A KR20100133885A KR20120072096A KR 20120072096 A KR20120072096 A KR 20120072096A KR 1020100133885 A KR1020100133885 A KR 1020100133885A KR 20100133885 A KR20100133885 A KR 20100133885A KR 20120072096 A KR20120072096 A KR 20120072096A
- Authority
- KR
- South Korea
- Prior art keywords
- seq
- gene
- hxl1
- ire1
- meningitis
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1137—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4702—Regulators; Modulating activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/26—Endoribonucleases producing 5'-phosphomonoesters (3.1.26)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/15—Medicinal preparations ; Physical properties thereof, e.g. dissolubility
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/502—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
- G01N33/5041—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects involving analysis of members of signalling pathways
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/178—Oligonucleotides characterized by their use miRNA, siRNA or ncRNA
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/37—Assays involving biological materials from specific organisms or of a specific nature from fungi
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
- G01N2500/10—Screening for compounds of potential therapeutic value involving cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/26—Infectious diseases, e.g. generalised sepsis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/28—Neurological disorders
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Immunology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Pharmacology & Pharmacy (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Public Health (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Toxicology (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Virology (AREA)
- Cell Biology (AREA)
- Epidemiology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oncology (AREA)
Abstract
Description
본 발명은 진균 감염 또는 뇌수막염 치료를 위한 UPR 신호전달 유전자 Ire1및 Hxl1의 용도에 관한 것이다.The present invention relates to the use of the UPR signaling genes Ire1 and Hxl1 for the treatment of fungal infections or meningitis.
UPR(Unfolded protein response) 신호전달경로는 진핵세포에서 소포체 스트레스를 유발하는 다양한 환경 조건에 대항하여 소포체의 항상성을 유지하는데 중요한 역할을 한다. 효모의 UPR 신호전달 경로에서 세포막 Ser/Thr 키나아제 및 엔도리보뉴클라아제인 Ire1은 소포체 스트레스를 감지하고 활성화를 위하여 자기 인산화를 시킨 후, bZIP 전사인자를 코딩하는 HAC1 mRNA의 독특한 인트론을 제거함으로써, 전사인자를 활성화시켜서 소포체 스트레스에 대응하게 한다. 한편, 병원성 진균인 아스퍼질러스 푸미가터스 (Aspergillus . fumigatus)에서 UPR 신호전달 경로와 관련된 HacA (Homologous to Hac1 transcription factor of S. cerevisiae)가 결실이 된 경우 항진균제에 대한 민감성을 보였다(PLoS Pathogens1, Vol 5, Issue 1, January 2009 참조). 하지만, 병원성 진균인 크립토코쿠스 네오포만스(C.neoformans)에서 UPR에 관련된 Ire1이나 목적 전사인자에 대하여 알려진 바가 없었다.
Unfolded protein response (UPR) signaling pathways play an important role in maintaining the endoplasmic reticulum's homeostasis against various environmental conditions that cause vesicle stress in eukaryotic cells. In the yeast UPR signaling pathway, cell membrane Ser / Thr kinase and endoribonuclease Ire1 detects endoplasmic reticulum and self-phosphorylates for activation and then removes the unique introns of HAC1 mRNA encoding bZIP transcription factors. Activate transcription factors to counteract vesicle stress On the other hand, when the pathogenic fungi of Aspergillus Fu Micah Tuscan (Aspergillus. Fumigatus) HacA (Hac1 Homologous to transcription factor of S. cerevisiae) associated with the UPR pathway in the deletion showed a sensitivity to antifungal agents (PLoS Pathogens1, Vol 5,
과거에 진균 감염은 건포상백선, 완선, 아구창 같은 국소적 감염이 많이 발생하였고, 전신적 진균 감염은 드물게 발생했지만, 최근 들어 전체 병원 내 감염에서 네 번째 빈도를 차지할 정도로 흔하게 발생하고 있다. 현재까지 개발된 항진균제는 크게 화학적으로 아졸(azole) 구조를 갖는 항진균제와 아졸 구조를 갖지 않는 항진균제로 분류할 수 있다. 아졸 계열의 항진균제로 케토코나졸(ketoconazole), 플루코나졸(fluconazole), 이트라코나졸(itraconazole), 보리코나졸(voriconazole) 등이 있고, 비-아졸 계열의 항진균제로 테르비나핀(terbinafine),플루사이토신(flucytosine), 암포테리신 B(Amphotericin B), 카스포푼긴(caspofungin) 등이 있다. 아졸 구조를 갖는 케토코나졸, 플루코나졸, 이트라코나졸, 보리코나졸과 알릴아민(allylamines) 계열인 나프티핀, 테르비나핀은 유사한 작용기전을 지니고 있다. 두 계열의 항진균제는 라노스테롤이 진균 세포막의 주성분인 에르고스테롤로 전환되는 과정에 필요한 효소를 억제하는 작용을 나타낸다. 아졸 계열 항진균제는 미세소체 효소를 억제하고, 알릴아민 계열의 항진균제는 스쿠알렌 에폭시데이즈(epoxidase)를 억제하여 위와 같은 효과를 나타낸다. 플루사이토신(5-FC)은 핵산합성을 억제하는 대사길항제로서 진균 RNA의 오부호전달 유발 및 DNA 합성을 비경쟁적으로 길항하여 항진균작용을 나타내며, 폴리엔(Polyenes) 구조를 가진 암포테리신 B는 진균 세포막 내부의 에르고스테롤에 결합하여 세포막의 탈분극을 유발하고, 구멍을 형성하여 세포 내 함유물의 손실을 유발하여 항진균작용을 나타낸다. 에키노칸딘(Echinocandins) 계열의 항진균제인 카스포푼긴은 진균 세포벽 형성을 가역적으로 억제하는 작용을 지니고 있으며, 세포벽에 작용한다는 점에서 위에 언급한 세포막에 작용하는 항진균제와 차이가 있다. 아졸 계열의 약물은 간기능 저하 환자에게 사용 시 간염에 의한 사망을 초래할 수도 있으므로 투여 전에 반드시 간기능 검사가 선행되어야 한다. 플루사이토신은 용량의존적으로 골수 억제 작용, 간독성이 나타나고 소장결장 염이 발생 가능한 것으로 보고되었고, 이런 부작용은 신기능이 저하된 경우 더 증가하므로 환자의 신기능 모니터링이 매우 중요하다. 또한 임산부에서 금기이다. 암포테리신 B의 대표적 독성은 신동맥 수축에 따른 사구체 신독성으로, 용량 의존적이어서 평생 누적 용량이 4~5g 이상일 경우 영구적인 신기능 손실 발생률이 상승한다. 또한, 세뇨관 독성에 의한 칼륨, 마그네슘, 중탄산염의 과도한 소실 및 조혈호르몬 생산 저하 등의 신독성이 일어날 수 있다. 그 외, 급성 반응으로 혈전정맥염, 오한, 떨림, 과호흡 등의 증상이 나타날 수 있다.
In the past, fungal infections have been associated with many local infections such as leukoplakia, erythematosus, thrush, and thrush. Systemic fungal infections have rarely occurred, but recently, they have become the fourth most common infection in all hospitals. Antifungal agents developed to date can be classified into antifungal agents having chemically azole structures and antifungal agents having no azole structure. The azole antifungal agents include ketoconazole, fluconazole, itraconazole and voriconazole, and the non-azole antifungal agents are terbinafine and flucytosine. , Amphotericin B, caspofungin, and the like. Ketoconazole, fluconazole, itraconazole, voriconazole, and allylamine-based naphthypine and terbinapine having an azole structure have similar mechanisms of action. Both classes of antifungal agents inhibit the enzymes necessary for the conversion of lanosterol to ergosterol, a major component of fungal cell membranes. The azole antifungal agent inhibits microsomal enzymes, and the allylamine antifungal agent inhibits squalene epoxidase, thereby exhibiting the above effects. Flucytosine (5-FC) is a metabolic antagonist that inhibits nucleic acid synthesis, and has antifungal action by uncompromising antagonism of fungal RNA and DNA synthesis, and shows antifungal action, and has a polyene structure. Binds to ergosterol inside the fungal cell membrane to induce depolarization of the cell membrane, forms pores, and causes loss of intracellular contents, thereby exhibiting antifungal action. Caspofungin, an antifungal agent of the Echinocandins family, reversibly inhibits the formation of fungal cell walls and differs from the antifungal agents acting on the cell membranes in that they act on the cell walls. Since azole drugs may cause hepatitis death when used in patients with reduced liver function, hepatic function tests must be performed prior to administration. Flucytosine has been reported to be dose-dependently inhibiting myelosuppression, hepatotoxicity, and small intestinal colitis, and this side effect increases when renal function is lowered. Therefore, monitoring renal function of patients is very important. It is also contraindicated in pregnant women. Representative toxicity of amphotericin B is glomerular neotoxicity following renal artery contraction, which is dose dependent, resulting in an increased incidence of permanent renal insufficiency at lifetime cumulative doses of 4-5 g or more. In addition, nephrotoxicity such as excessive loss of potassium, magnesium, and bicarbonate due to tubular toxicity and a decrease in hematopoietic hormone production may occur. In addition, acute reactions may cause symptoms such as thrombophlebitis, chills, tremors and hyperventilation.
이와 같이, 기존에 개발된 항진균제들은 약물의 종류에 따라 각종 부작용을 나타내고 있어, 이러한 부작용은 낮추면서도 항진균 효과는 증진시킬 수 있는 새로운 치료법의 개발이 요구되는바, 본 발명의 발명자는 병원성 진균인 크립토코쿠스 네오포만스(C. neoformans)에서 Ire I 및 이와 관련된 전사인자를 새롭게 동정하여 항균 및 뇌수막염에 효과가 있음을 확인함으로써 발명을 완성하였다.As described above, the antifungal agents developed in the past have various side effects according to the types of drugs, and thus, the development of new therapies that can lower the side effects and enhance the antifungal effect is required. The invention was completed by newly identifying Ire I and related transcription factors in C. neoformans and confirming its effectiveness in antibacterial and meningitis.
본 발명은 신규한 Ire1 및 Hxl1(HAC1 and XBP1-Like gene 1) 단백질 및 이를 코딩하는 유전자를 제공하여, 새로운 항균제 또는 뇌수막염 치료제를 스크리닝하는 방법을 제공하는 데 목적이 있다.The present invention aims to provide a gene encoding the novel protein and Ire1 and Hxl1 (H AC1 and X BP1- L ike gene 1), provides a method for screening new antimicrobial therapeutic agent, or meningitis.
또한, 본 발명은 기존의 항균제 또는 뇌수막염 치료제와 병용투여시 상승효과를 가질 수 있는 스크리닝 방법을 제공하는 데 목적이 있다.In addition, an object of the present invention is to provide a screening method that can have a synergistic effect when co-administered with an existing antimicrobial or meningitis treatment.
또한, 본 발명은 신규한 Ire1 및 Hxl1(HAC1 and XBP1-Like gene 1) 단백질 및 이를 코딩하는 유전자를 억제하여 항균 또는 뇌수막염 치료효과가 있는 약학조성물을 제공하는데 목적이 있다.In addition, the present invention aims to inhibit the gene and protein encoding the novel Ire1 and Hxl1 (AC1 H and X L BP1- ike gene 1) provides a pharmaceutical composition with antimicrobial or therapeutic effects of meningitis.
본 발명의 스크리닝 방법을 언급하면서 사용되는 용어 "시료"는 유전자의 발현량에 영향을 미치거나, 단백질의 양 또는 활성에 영향을 미치는지 여부를 검사하기 위하여 스크리닝에서 이용되는 미지의 후보 물질을 의미한다. 상기 시료는 화학물질, 뉴클레오타이드, 안티센스-RNA, siRNA(small interference RNA) 및 천연물 추출물을 포함하나, 이에 한정되는 것은 아니다.
As used to refer to the screening methods of the present invention, the term "sample" refers to an unknown candidate used in screening to test whether it affects the expression level of a gene or affects the amount or activity of a protein. . The sample includes, but is not limited to, chemicals, nucleotides, antisense-RNAs, small interference RNAs (siRNAs), and natural extracts.
유전자의 발현량 변화의 측정은 당업계에 공지된 다양한 방법을 통해 실시될 수 있다. 예를 들어, RT-PCR(Sambrook 등, Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001)), 노던블롯팅(Peter B. Kaufma et al., Molecular and Cellular Methods in Biology and Medicine, 102-108, CRCpress), cDNA 마이크로어레이를 이용한 혼성화 반응(Sambrook 등, Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001)) 또는 인 시투(in situ) 혼성화 반응(Sambrook 등, Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001))을 이용하여 실시할 수 있다.
Measurement of the change in the expression level of the gene can be carried out through various methods known in the art. For example, RT-PCR (Sambrook et al., Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press (2001)), Northern blotting (Peter B. Kaufma et al., Molecular and Cellular Methods in Biology and Medicine , 102-108, CRCpress), hybridization reactions using cDNA microarrays (Sambrook et al., Molecular Cloning.A Laboratory Manual, 3rd ed. Cold Spring Harbor Press (2001)) or in situ hybridization reactions (Sambrook et al., Molecular Cloning.A Laboratory Manual, 3rd ed.Cold Spring Harbor Press (2001)).
RT-PCR 프로토콜에 따라 실시하는 경우에는 우선, 시료를 처리한 세포에서 총 RNA를 분리한 다음, 올리고 dT 프라이머 및 역전사효소를 이용하여 단일가닥 cDNA를 제조한다. 이어, 단일가닥 cDNA를 주형으로 이용하고, 유전자-특이적 프라이머 세트를 이용하여 PCR 반응을 실시한다. 유전자-특이적 프라이머 세트는 하기 표 2에서 열거 되어 있다. 그런 다음, PCR 증폭 산물을 전기영동하고, 형성된 밴드를 분석하여 유전자의 발현량 변화를 측정한다.
When performed according to the RT-PCR protocol, first, total RNA is isolated from cells treated with a sample, and then single-stranded cDNA is prepared using oligo dT primers and reverse transcriptase. Then, single-stranded cDNA is used as a template, and PCR reaction is performed using a gene-specific primer set. Gene-specific primer sets are listed in Table 2 below. Then, the PCR amplification product is electrophoresed, and the formed band is analyzed to measure the change in the expression level of the gene.
단백질의 양의 변화는 당업계에 공지된 다양한 면역분석 방법을 통해 실시될 수 있다. 예를 들어, 방사능면역분석, 방사능면역침전, 면역침전, ELISA(enzyme-linked immunosorbentassay), 캡처-ELISA, 억제 또는 경재 분석, 그리고 샌드위치 분석을 포함하지만, 이에 한정되는 것은 아니다. 상기 면역분석 또는 면역염색의 방법은 Enzyme Immunoassay, E. T. Maggio, ed., CRC Press, Boca Raton, Florida, 1980; Gaastra, W., Enzyme-linked immunosorbent assay(ELISA), in Methods in Molecular Biology, Vol. 1, Walker, J.M. ed., Humana Press, NJ, 1984; 및 Ed Harlow and David Lane, Using Antibodies:A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1999에 기재되어 있다. 예를 들어, 본 발명의 방법이 방사능면역분석 방법에 따라 실시되는 경우, 방사능동위원소(예컨대, C14, I125, P32 및 S35)로 표지된 단백질-특이 항체가 이용될 수 있다. 본 발명의 방법이 ELISA 방식으로 실시되는 경우, 본 발명의 특정 실시예는 (i) 시료가 처리된 세포로부터 추출물을 고체 기질의 표면에 코팅하는 단계 (ⅱ) 일차항체로서의 Ire1 혹은 단백질-특이 항체와 상기 세포 추출물을 반응시키는 단계 (ⅲ) 상기 단계 (ⅱ)의 결과물을 효소가 결합된 이차항체와 반응시키는 단계 및 (ⅳ) 상기 효소의 활성을 측정하는 단계를 포함한다. 상기 고체 기질로 적합한 것은 탄화수소 폴리머(예컨대, 폴리스틸렌 및 폴리프로필렌), 유리, 금속 또는 젤이며, 가장 바람직하게는 마이크로타이터 플레이트이다. 상기 이차항체에 결합된 효소는 발색반응, 형광반응, 발광반응 또는 적외선 반응을 촉매하는 효소를 포함하나, 이에 한정되지 않으며, 예를 들어, 알칼린 포스파타아제, β-갈락토시다아제, 호스 래디쉬 퍼옥시다아제, 루시 퍼라아제 및 사이토크롬 P450을 포함한다. 상기 이차항체에 결합하는 효소로서 알칼린 포스파타아제가 이용되는 경우에는, 기질로서 브로모클로로인돌일 포스페이트(BCIP), 니트로 블루 테트라졸리움(NBT), 나프톨-ASB1-포스페이트(naphthol-AS-B1-phosphate) 및 ECF(enhanced chemifluorescence)와 같은 발색반응 기질이 이용되고, 호스 래디쉬 퍼옥시다아제가 이용되는 경우에는 클로로나프톨, 아미노에틸카바졸, 디아미노벤지딘, D-루시페린, 루시게닌(비스-N-메틸아크리디늄 니트레이트), 레소루핀 벤질 에테르, 루미놀, 암플렉스 레드 시약(10-아세틸-3,7-디하이드록시페녹사진), TMB(3,3,5,5-tetramethylbenzidine), ABTS(2,2'-Azine-di[3-ethylbenzthiazoline sulfonate]) 및 o-페닐렌디아민(OPD)과 같은 기질이 이용될 수 있다. 상기 ELISA 방법에서 최종적인 효소의 활성 측정 또는 시그널의 측정은 당업계에 공지된 다양한 방법에 따라 실시될 수 있다. 만일, 레이블로서 바이오틴이 이용된 경우에는 스트렙타비딘으로, 루시퍼라아제가 이용된 경우에는 루시페린으로 시그널을 용이하게 검출할 수 있다.
Changes in the amount of protein can be carried out through various immunoassay methods known in the art. Examples include, but are not limited to, radioimmunoassay, radioimmunoprecipitation, immunoprecipitation, enzyme-linked immunosorbentassay (ELISA), capture-ELISA, inhibition or hardwood assays, and sandwich assays. The immunoassay or method of immunostaining is described in Enzyme Immunoassay, ET Maggio, ed., CRC Press, Boca Raton, Florida, 1980; Gaastra, W., Enzyme-linked immunosorbent assay (ELISA), in Methods in Molecular Biology, Vol. 1, Walker, JM ed., Humana Press, NJ, 1984; And Ed Harlow and David Lane, Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1999. For example, when the method of the present invention is carried out in accordance with radioimmunoassay methods, protein-specific antibodies labeled with radioisotopes (eg, C 14 , I 125 , P 32 and S 35 ) can be used. When the method of the invention is carried out in an ELISA mode, certain embodiments of the invention comprise (i) coating an extract from the cells treated with the sample onto the surface of a solid substrate (ii) an Ire1 or protein-specific antibody as a primary antibody. And (i) reacting the resultant of step (ii) with the secondary antibody to which the enzyme is bound, and (iii) measuring the activity of the enzyme. Suitable as the solid substrate are hydrocarbon polymers (eg polystyrene and polypropylene), glass, metal or gel, most preferably microtiter plates. Enzymes bound to the secondary antibody include, but are not limited to, enzymes catalyzing color reaction, fluorescence, luminescence or infrared reaction, for example, alkaline phosphatase, β-galactosidase, hose Radish peroxidase, luciferase and cytochrome P450. When alkaline phosphatase is used as the enzyme binding to the secondary antibody, bromochloroindolyl phosphate (BCIP), nitro blue tetrazolium (NBT), naphthol-ASB1-phosphate (naphthol-AS-B1) as a substrate chloronaphthol, aminoethylcarbazole, diaminobenzidine, D-luciferin, lucigenin (bis-N) when colorimetric substrates such as -phosphate) and enhanced chemifluorescence (ECF) are used, and horse radish peroxidase is used. -Methylacridinium nitrate), resorupin benzyl ether, luminol, amplex red reagent (10-acetyl-3,7-dihydroxyphenoxazine), TMB (3,3,5,5-tetramethylbenzidine), ABTS Substrates such as (2,2'-Azine-di [3-ethylbenzthiazoline sulfonate]) and o-phenylenediamine (OPD) can be used. Measurement of the final enzyme activity or signal in the ELISA method can be carried out according to various methods known in the art. If biotin is used as a label, the signal can be easily detected with streptavidin and luciferase if luciferase is used.
본 발명의 약제학적 조성물은 화학물질, 뉴클레오타이드, 안티센스, siRNA 올리고뉴클레오타이드 및 천연물 추출물을 유효성분으로 포함할 수 있다. 본 발명의 항진균용 의약 조성물 또는 항진균 복합 제제는 유효 성분 이외에 약제학적으로 적합하고 생리학적으로 허용되는 보조제를 사용하여 제조될 수 있으며, 상기 보조제로는 부형제, 붕해제, 감미제, 결합제, 피복제, 팽창제, 윤활제, 활택제 또는 향미제 등의 가용화제를 사용할 수 있다. 본 발명의 항진균용 의약 조성물은 투여를 위해서 유효 성분 이외에 추가로 약제학적으로 허용 가능한 담체를 1 종 이상 포함하여 의약 조성물로 바람직하게 제제화할 수 있다. 액상 용액으로 제제화되는 조성물에 있어서 허용 가능한 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. 더 나아가 해당분야의 적절한 방법으로 Remington's Pharmaceutical Science, MackPublishing Company, Easton PA에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다. 본 발명의 의약 조성물의 약제 제제 형태는 과립제, 산제, 피복정, 정제, 캡슐제, 좌제, 시럽, 즙, 현탁제, 유제, 점적제 또는 주사 가능한 액제 및 활성 화합물의 서방출형 제제 등이 될 수 있다. 본 발명의 의약 조성물은 정맥내, 동맥내, 복강내, 근육내, 동맥내, 복강내, 흉골내, 경피, 비측내, 흡입, 국소, 직장, 경구, 안구내 또는 피내 경로를 통해 통상적인 방식으로 투여할 수 있다. 본 발명의 의약 조성물의 유효성분의 유효량은 질환의 예방 또는 치료 요구되는 양을 의미한다. 따라서, 질환의 종류, 질환의 중증도, 조성물에 함유된 유효 성분 및 다른 성분의 종류 및 함량, 제형의 종류 및 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 분비율, 치료 기간, 동시 사용되는 약물을 비롯한 다양한 인자에 따라 조절될 수 있다. 이에 제한되는 것은 아니나, 예컨대, 성인의 경우, 1일 1회 내지 수회 투여시, 본 발명의 저해제는 1일 1회 내지 수회 투여시, 화합물일 경우 0.1ng/kg~10g/kg, 폴리펩타이드, 단백질 또는 항체일 경우 0.1ng/kg~10g/kg, 안티센스올리고뉴클레오타이드, siRNA, shRNAi, miRNA일 경우 0.01ng/kg~10g/kg의 용량으로 투여할 수 있다.
The pharmaceutical composition of the present invention may include chemicals, nucleotides, antisenses, siRNA oligonucleotides, and natural extracts as active ingredients. The antifungal pharmaceutical composition or antifungal complex preparation of the present invention may be prepared using a pharmaceutically acceptable and physiologically acceptable adjuvant in addition to the active ingredient, and the adjuvant may include excipients, disintegrants, sweeteners, binders, coatings, Solubilizers such as swelling agents, lubricants, lubricants or flavoring agents can be used. The antifungal pharmaceutical composition of the present invention can be preferably formulated into a pharmaceutical composition comprising one or more pharmaceutically acceptable carriers in addition to the active ingredient for administration. Acceptable pharmaceutical carriers in compositions formulated in liquid solutions are sterile and physiologically compatible, including saline, sterile water, Ringer's solution, buffered saline, albumin injectable solutions, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers and bacteriostatic agents may be added as necessary. Diluents, dispersants, surfactants, binders and lubricants may also be added in addition to formulate into injectable formulations, pills, capsules, granules or tablets such as aqueous solutions, suspensions, emulsions and the like. Furthermore, the method disclosed in Remington's Pharmaceutical Science, Mack Publishing Company, Easton PA can be formulated according to each disease or component according to the appropriate method in the art. Pharmaceutical formulation forms of the pharmaceutical compositions of the present invention may be granules, powders, coated tablets, tablets, capsules, suppositories, syrups, juices, suspensions, emulsions, drops or injectable solutions and sustained release formulations of the active compounds, and the like. Can be. The pharmaceutical compositions of the present invention may be administered in a conventional manner via intravenous, intraarterial, intraperitoneal, intramuscular, intraarterial, intraperitoneal, sternum, transdermal, nasal, inhalation, topical, rectal, oral, intraocular or intradermal routes. Can be administered. An effective amount of the active ingredient of the pharmaceutical composition of the present invention means an amount required to prevent or treat a disease. Thus, the type of disease, the severity of the disease, the type and amount of the active and other ingredients contained in the composition, the type of formulation and the age, weight, general health, sex and diet, sex and diet, time of administration, route of administration and composition of the patient. It can be adjusted according to various factors including the rate of secretion, the duration of treatment, and the drug used concurrently. For example, in adults, when administered once or several times a day, the inhibitor of the present invention is administered once or several times a day, when the compound is 0.1ng / kg to 10g / kg, a polypeptide, In the case of protein or antibody, 0.1ng / kg ~ 10g / kg, antisense oligonucleotide, siRNA, shRNAi, miRNA can be administered at a dose of 0.01ng / kg ~ 10g / kg.
본 발명에 있어서, 그 대상은 인간, 오랑우탄, 침팬지, 마우스, 랫트, 개, 소, 닭, 돼지, 염소, 양 등을 포함하나, 이들 예에 한정되는 것은 아니다.
In the present invention, the subject includes, but is not limited to, humans, orangutans, chimpanzees, mice, rats, dogs, cattle, chickens, pigs, goats, sheep, and the like.
본 발명에서 용어 "안티센스 올리고뉴클레오타이드"란 특정 mRNA의 서열에 상보적인 핵산 서열을 함유하고 있는 DNA 또는 RNA 또는 이들의 유도체를 의미하고, mRNA내의 상보적인 서열에 결합하여 mRNA의 단백질로의 번역을 저해하는 작용을 한다. 안티센스 핵산의 길이는 6내지 100 염기이고, 바람직하게는 8 내지 60 염기이고, 보다 바람직하게는 10 내지 40 염기이다. 상기 안티센스 핵산은 효능을 증진시키기 위하여 하나 이상의 염기, 당 또는 골격(backbone)의 위치에서 변형될수 있다(De Mesmaeker et al., Curr Opin Struct Biol., 5(3):343-55(1995)). 핵산 골격은 포스포로티오에이트, 포스포트리에스테르, 메틸 포스포네이트, 단쇄 알킬, 시클로알킬, 단쇄 헤테로아토믹, 헤테로시클릭 당간 결합 등으로 변형될 수 있다. 또한, 안티센스 핵산은 하나 이상의 치환된 당 모이어티(sugar moiety)를 포함할 수 있다. 안티센스 핵산은 변형된 염기를 포함할 수 있다. 변형된 염기에는 하이포크잔틴, 6-메틸아데닌, 5-Me 피리미딘(특히 5-메틸시토신), 5-하이드록시메틸시토신(HMC), 글리코실 HMC, 젠토비오실 HMC, 2-아미노아데닌, 2-티오우라실, 2-티오티민, 5-브로모우라실, 5-하이드록시메틸우라실, 8-아자구아닌, 7-데아자구아닌, N6(6-아미노헥실)아데닌, 2,6-디아미노퓨린 등이 있다. 또한 본 발명의 안티센스 핵산은 상기 안티센스 핵산의 활성 및 세포 흡착성을 향상시키는 하나 이상의 모이어티(moiety) 또는 컨쥬게이트(conjugate)와 화학적으로 결합될 수 있다. 콜레스테롤 모이어티, 콜레스테릴 모이어티, 콜릭산, 티오에테르, 티오콜레스테롤, 지방성 사슬, 인지질, 폴리아민, 폴리에틸렌 글리콜 사슬, 아다맨탄 아세트산, 팔미틸 모이어티, 옥타데실아민, 헥실아미노-카르보닐-옥시콜에스테롤 모이어티 등의 지용성 모이어티 등이 있고 이에 제한되지는 않는다. 지용성 모이어티를 포함하는 올리고뉴클레오티드와 제조 방법은 본 발명의 기술 분야에서 이미 잘 알려져 있다(미국특허 제5,138,045호, 제5,218,105호 및 제5,459,255호 참조). 상기 변형된 핵산은 뉴클레아제에 대한 안정성을 증가시키고 안티센스 핵산과 표적 mRNA와의 결합 친화력을 증가시킬 수 있다. 안티센스 올리고뉴클레오타이드의 경우 통상의 방법으로 시험관에서 합성되어 생체 내로 투여하거나 생체 내에서 안티센스 올리고뉴클레오타이드가 합성되도록 할 수 있다. 시험관에서 안티센스 올리고뉴클레오타이드를 합성하는 한 예는 RNA 중합효소 I를 이용하는 것이다. 생체 내에서 안티센스 RNA가 합성되도록 하는 한 가지 예는 인식부위(MCS)의 기원이 반대 방향에 있는 벡터를 사용하여 안티센스 RNA가 전사되도록 하는 것이다. 이런 안티센스 RNA는 서열 내에 번역 중지 코돈이 존재하도록 하여 펩타이드 서열로 번역되지 않도록 하는 것이 바람직하다.
As used herein, the term "antisense oligonucleotide" means a DNA or RNA or a derivative thereof containing a nucleic acid sequence complementary to a sequence of a particular mRNA, and binds to the complementary sequence in the mRNA to inhibit translation of the mRNA into a protein. It works. The antisense nucleic acid has a length of 6 to 100 bases, preferably 8 to 60 bases, and more preferably 10 to 40 bases. The antisense nucleic acid can be modified at the position of one or more bases, sugars or backbones to enhance efficacy (De Mesmaeker et al., Curr Opin Struct Biol., 5 (3): 343-55 (1995)). . The nucleic acid backbone can be modified with phosphorothioate, phosphoroester, methyl phosphonate, short chain alkyl, cycloalkyl, short chain heteroatomic, heterocyclic intersaccharide linkages and the like. In addition, antisense nucleic acids may comprise one or more substituted sugar moieties. Antisense nucleic acids can include modified bases. Modified bases include hypoxanthine, 6-methyladenine, 5-Me pyrimidine (particularly 5-methylcytosine), 5-hydroxymethylcytosine (HMC), glycosyl HMC, gentobiosyl HMC, 2-aminoadenine, 2 Thiouracil, 2-thiothymine, 5-bromouracil, 5-hydroxymethyluracil, 8-azaguanine, 7-deazaguanine, N6 (6-aminohexyl) adenine, 2,6-diaminopurine, etc. There is this. In addition, the antisense nucleic acids of the present invention may be chemically bound to one or more moieties or conjugates that enhance the activity and cellular adsorption of the antisense nucleic acids. Cholesterol moieties, cholesteryl moieties, cholic acid, thioethers, thiocholesterols, fatty chains, phospholipids, polyamines, polyethylene glycol chains, adamantane acetic acid, palmityl moieties, octadecylamine, hexylamino-carbonyl-oxy Fat-soluble moieties such as a cholesterol ester moiety, and the like. Oligonucleotides comprising fat-soluble moieties and methods of preparation are already well known in the art (see US Pat. Nos. 5,138,045, 5,218,105 and 5,459,255). The modified nucleic acid can increase stability to nucleases and increase the binding affinity of the antisense nucleic acid with the target mRNA. Antisense oligonucleotides can be synthesized in vitro by conventional methods to be administered in vivo or to allow antisense oligonucleotides to be synthesized in vivo. One example of synthesizing antisense oligonucleotides in vitro is using RNA polymerase I. One example of allowing antisense RNA to be synthesized in vivo is to allow the antisense RNA to be transcribed using a vector whose origin is in the opposite direction of the recognition site (MCS). Such antisense RNA is desirable to ensure that there is a translation stop codon in the sequence so that it is not translated into the peptide sequence.
본 발명에서 용어 "siRNA"는 RNA 방해 또는 유전자 사일런싱을 매개할 수 있는 핵산 분자를 의미한다(참조: WO00/44895, WO 01/36646, WO 99/32619, WO 01/29058, WO 99/07409 및 WO 00/44914). siRNA는 표적 유전자의 발현을 억제할 수 있기 때문에 효율적인 유전자 넉다운 방법으로서 또는 유전자치료 방법으로 제공된다. siRNA는 식물, 벌레, 초파리 및 기생충에서 처음으로 발견되었으나, 최근에 siRNA를 개발/이용하여 포유류 세포 연구에 응용되었다(8-10). 본 발명의 siRNA 분자는, 센스 가닥(mRNA 서열에 상응하는 서열)과 안티센스 가닥(mRNA 서열에 상보적인 서열)이 서로 반대쪽에 위치하여 이중쇄를 이루는 구조를 가질 수 있다. 또한, 다른 구현예에 따르면, 본 발명의 siRNA 분자는, 자기-상보성(self-complementary) 센스 및 안티센스 가닥을 가지는 단일쇄 구조를 가질 수 있다. siRNA는 RNA끼리 짝을 이루는 이중사슬 RNA 부분이 완전히 쌍을 이루는 것에 한정되지 않고 미스매치(대응하는 염기가 상보적이지 않음), 벌지(일방의 사슬에 대응하는 염기가 없음) 등에 의하여 쌍을 이루지 않는 부분이 포함될 수 있다. 전체 길이는 10 내지 100 염기, 바람직하게는 15 내지 80 염기, 더욱 바람직하게는 20 내지 70 염기이다. siRNA 말단 구조는 유전자의 발현을 RNAi 효과에 의하여 억제할 수 있는 것이면 평활(blunt) 말단 혹은 점착(cohesive) 말단 모두 가능하다. 점착 말단 구조는 3'-말단 돌출 구조와 5'-말단 돌출 구조 모두 가능하다. 본 발명의 siRNA 분자는, 자기-상보성(self-complementary) 센스 및 안티센스 가닥 사이에 짧은 뉴클레오타이드 서열(예컨대, 약 5-15 nt)이 삽입된 형태를 가질 수 있으며, 이 경우 뉴클레오타이드 서열의 발현에 의해 형성된 siRNA 분자는 분자내 혼성화에 의하여 헤어핀 구조를 형성하게 되며, 전체적으로는 스템-앤드-루프 구조를 형성하게 된다. 이 스템-앤드-루프 구조는 in vitro 또는 in vivo에서 프로세싱되어 RNAi를 매개할 수 있는 활성의 siRNA 분자를 생성한다.
As used herein, the term "siRNA" refers to a nucleic acid molecule capable of mediating RNA interference or gene silencing (see WO00 / 44895, WO 01/36646, WO 99/32619, WO 01/29058, WO 99/07409). And WO 00/44914). siRNA is provided as an efficient gene knockdown method or gene therapy method because it can inhibit the expression of the target gene. siRNA was first discovered in plants, worms, fruit flies, and parasites, but recently has been applied to mammalian cell research by developing / using siRNA (8-10). The siRNA molecule of the present invention may have a structure in which a sense strand (a sequence corresponding to an mRNA sequence) and an antisense strand (a sequence complementary to an mRNA sequence) are positioned opposite to each other to form a double strand. In addition, according to another embodiment, siRNA molecules of the present invention may have a single chain structure having self-complementary sense and antisense strands. siRNAs are not limited to completely paired double-stranded RNA moieties paired with RNA, but paired by mismatches (the corresponding bases are not complementary), bulges (there are no bases corresponding to one chain), and the like. May be included. The total length is 10 to 100 bases, preferably 15 to 80 bases, more preferably 20 to 70 bases. The siRNA terminal structure can be either blunt or cohesive, as long as the expression of the gene can be inhibited by the RNAi effect. The cohesive end structure is possible for both 3'-end protrusion structures and 5'-end protrusion structures. The siRNA molecules of the invention may have a form in which a short nucleotide sequence (eg, about 5-15 nt) is inserted between a self-complementary sense and an antisense strand, in which case by expression of the nucleotide sequence The formed siRNA molecules form a hairpin structure by intramolecular hybridization, and form a stem-and-loop structure as a whole. This stem-and-loop structure is processed in vitro or in vivo to produce an active siRNA molecule capable of mediating RNAi.
한편, 본 발명에서 용어 ""shRNA(small hairpin RNA)""는 목적유전자 siRNA 염기서열의 sense와 상보적인 nonsense 사이에 3-10개의 염기 linker를 연결하는 올리고 DNA를 합성한 후 프라스미드 벡터에 클로닝하거나 또는 shRNA를 레트로바이러스인 렌티바이러스(lentivirus) 및 아데노바이러스(adenovirus)에 삽입하여 발현시키면 loop가 있는 헤어핀 구조의 shRNA (short hairpin RNA)가 만들어지고 세포 내의 Dicer에 의해 siRNA로 전환되어 RNAi 효과를 나타내는 것을 말한다. 상기 shRNA는 siRNA에 비해 비교적 장기간 RNAi 효과를 나타낸다.
Meanwhile, in the present invention, the term "shRNA (small hairpin RNA)" refers to a oligo DNA linking 3-10 base linkers between the sense of the target gene siRNA and the complementary nonsense, and then cloned into a plasmid vector. Or expressing by inserting shRNA into the retroviruses lentivirus and adenovirus, a looped hairpin structured shRNA (short hairpin RNA) is produced and converted into siRNA by Dicer in the cell Say what it represents. The shRNA has a relatively long RNAi effect compared to siRNA.
일 구체예에서, 본 발명은 (a) 서열번호 1 로 표시되는 Hxl1 단백질 또는 서열번호 3으로 표시되는 Ire1 단백질를 포함하는 세포에 분석할 시료를 접촉시키는 단계 (b) 상기 단백질의 양 또는 활성을 측정하는 단계 및 (c) 상기 Hxl1 단백질의 양 또는 활성이 감소조절(down regulation)되는 것으로 측정될 때, 상기 시료가 항균제임을 판별하는 단계를 포함하는 항균제 스크리닝 방법을 제공한다. 또한, 일 구체예에서, 본 발명은 (a) 서열번호 2로 표시되는 HXL1 유전자 또는 서열번호 4로 표시되는 IRE1 유전자를 포함하는 세포에 분석할 시료를 접촉시키는 단계 (b) 상기 유전자의 발현량을 측정하는 단계 및 (c) 상기 유전자의 발현량이 감소조절(down-regulation)되는 것으로 측정될 때, 상기 시료가 항균제임을 판별하는 단계를 포함하는 항균제 스크리닝 방법을 제공한다. 또 다른 구체예에서, 본 발명은 (a) 서열번호 1로 표시되는 Hxl1 단백질 또는 서열번호 3으로 표시되는 Ire1 단백질을 포함하는 세포에 항균제를 접촉시키고, 상기 단백질의 양 또는 활성을 측정하는 제 1 측정 단계 (b) 서열번호 1로 표시되는 Hxl1 단백질 또는 서열번호 3으로 표시되는 Ire1 단백질을 포함하는 세포에 분석할 시료 및 상기 항균제를 접촉시키고, 상기 단백질의 양 또는 활성을 측정하는 제 2 측정 단계 및 (c) 제 1 및 제 2 측정 단계의 측정값을 비교하여, 제 2 측정 단계의 측정값이 제 1 측정 단계의 측정값보다 감소조절(down-regulation)될 때, 상기 시료가 병용 투여용 항균제임을 판별하는 병용 투여용 항균제 스크리닝 방법을 제공한다. 또 다른 구체예에서, 본 발명은 (a) 서열번호 2로 표시되는 HXL1 유전자 또는 서열번호 4로 표시되는 IRE1 유전자를 포함하는 세포에 항균제를 접촉시키고, 상기 유전자의 발현량을 측정하는 제 1 측정 단계 (b) 서열번호 2로 표시되는 HXL1 유전자 또는 서열번호 4로 표시되는 IRE1 유전자를 포함하는 세포에 분석할 시료 및 상기 항균제를 접촉시키고, 상기 유전자의 발현량을 측정하는 제 2 측정 단계 및 (c) 제 1 및 제 2 측정 단계의 측정값을 비교하여, 제 2 측정 단계의 측정값이 제 1 측정 단계의 측정값보다 감소조절(down-regulation)될 때, 상기 시료가 병용 투여용 항균제임을 판별하는 병용 투여용 항균제 스크리닝 방법을 제공한다. 이때, 서열번호 1은 UPR이 유도되어 스플라이싱이 일어난 mRNA가 번역된 단백질의 아미노산 서열이고, 서열번호 2는 UPR이 유도되어 스플라이싱이 일어난 mRNA의 cDNA이다. 또한, 서열번호 3은 Ire1 단백질의 아미노산 서열이고, 서열번호 4는 Ire1 단백질을 코딩하는 유전자 뉴클레오티드 서열이다.
In one embodiment, the present invention comprises the steps of (a) contacting a sample to be analyzed with a cell comprising an Hxl1 protein represented by SEQ ID NO: 1 or an Ire1 protein represented by SEQ ID NO: 3, (b) measuring the amount or activity of the protein And (c) determining that the sample is an antimicrobial agent when the amount or activity of the Hxl1 protein is measured to be down regulated. In one embodiment, the present invention comprises the steps of (a) contacting a sample to be analyzed with a cell comprising the HXL1 gene represented by SEQ ID NO: 2 or the IRE1 gene represented by SEQ ID NO: 4, (b) the expression amount of the gene It provides a method for screening antimicrobials comprising the step of measuring and (c) determining that the sample is an antimicrobial agent when it is determined that the expression level of the gene is down-regulated. In another embodiment, the present invention provides a method of contacting a cell comprising (a) an Hxl1 protein represented by SEQ ID NO: 1 or an Ire1 protein represented by SEQ ID NO: 3, wherein the first antimicrobial agent measures the amount or activity of the protein. Measurement step (b) a second measurement step of contacting a sample to be analyzed and the antimicrobial agent to a cell comprising the Hxl1 protein represented by SEQ ID NO: 1 or the Ire1 protein represented by SEQ ID NO: 3, and measuring the amount or activity of the protein And (c) comparing the measured values of the first and second measuring steps such that when the measured value of the second measuring step is down-regulated than the measured value of the first measuring step, Provided are antimicrobial screening methods for concomitant administration for determining antimicrobial agents. In another embodiment, the present invention is (a) a first measurement of contacting an antimicrobial agent to a cell comprising the HXL1 gene represented by SEQ ID NO: 2 or the IRE1 gene represented by SEQ ID NO: 4, and measuring the expression level of the gene Step (b) a second measurement step of contacting a sample to be analyzed and the antimicrobial agent to a cell comprising the HXL1 gene represented by SEQ ID NO: 2 or the IRE1 gene represented by SEQ ID NO: 4, and measuring the expression level of the gene; c) comparing the measured values of the first and second measuring steps so that the sample is an antimicrobial agent for concomitant administration when the measured value of the second measuring step is down-regulated from the measured value of the first measuring step. Provided are antimicrobial screening methods for concomitant administration. At this time, SEQ ID NO: 1 is the amino acid sequence of the protein is translated by the mRNA splicing UPR is induced, SEQ ID NO: 2 is cDNA of the mRNA spliced by UPR is induced. SEQ ID NO: 3 is the amino acid sequence of the Ire1 protein, and SEQ ID NO: 4 is the gene nucleotide sequence encoding the Ire1 protein.
일 구체예에서 본 발명의 스크리닝 방법의 항균제는 아졸계열 또는 비 아졸계열 항균제인 병용투여용 항균제를 스크리닝하는 방법을 제고한다. 이러한 구체예에서, 본 발명의 아졸계열 항균제는 플루코나졸(fluconazole),이트라코나졸(itraconazole), 보리코나졸(voriconazole) 및 케토코나졸(ketoconazole) 중 어느 하나 이상인 병용투여용 항균제를 스크리닝하는 방법을 제공한다. 또한, 이러한 구체예에서, 본 발명의 비 아졸계열 항균제는 암포테라신 B 또는 플루디옥소닐(fludioxonil)인 병용투여용 항균제를 스크리닝하는 방법을 제공한다.
In one embodiment, the antimicrobial agent of the screening method of the present invention improves a method of screening a concomitant antimicrobial agent that is an azole or non-azole antibacterial agent. In this embodiment, the azole-based antimicrobial agent of the present invention provides a method for screening a concomitant antimicrobial agent of any one or more of fluconazole, itraconazole, voriconazole and ketoconazole. In addition, in this embodiment, the non-azole based antimicrobial agent of the present invention provides a method for screening a concomitant antimicrobial agent that is amphotericin B or fludioxonil.
일 구체예에서 본 발명의 스크리닝 방법은 (a) 단계를 35℃ 내지 40℃에서 수행하는 항균제 스크리닝 방법을 제공하고, (a) 단계의 세포는 크립토코쿠스 네오포만스인 항균제 스크리닝 방법을 제공한다.
In one embodiment, the screening method of the present invention provides an antimicrobial screening method of performing step (a) at 35 ° C. to 40 ° C., and the cell of step (a) provides an antimicrobial screening method of Cryptococcus neoforms. .
일 구체예에서, 본 발명은 서열번호 2 또는 4로 표시되는 뉴클레오타이드 서열에 상보적인 서열을 가지는 안티센스 또는 siRNA(small interference RNA) 올리고뉴클레오타이드를 유효성분으로 포함하는 항균용 약제학적 조성물을 제공하고, 상기 안티센스 또는 siRNA 올리고뉴클레오타이드는 서열번호 2의 뉴클레오타이드 서열 88 -617번째 뉴클레오타이드에 상보적인 서열을 가지는 항균용 약제학적 조성물을 제공하며, 상기 안티센스 또는 siRNA 올리고뉴클레오타이드는 서열번호 4의 뉴클레오타이드 서열 1935-2421번째 뉴클레오타이드에 상보적인 서열을 가지는 항균용 약제학적 조성물을 제공한다.
In one embodiment, the present invention provides an antimicrobial pharmaceutical composition comprising an antisense or siRNA (small interference RNA) oligonucleotide having a sequence complementary to the nucleotide sequence represented by SEQ ID NO: 2 or 4 as an active ingredient, and The antisense or siRNA oligonucleotide provides a pharmaceutical composition for antimicrobial having a sequence complementary to the nucleotide sequence 88-617th nucleotide of SEQ ID NO: 2, wherein the antisense or siRNA oligonucleotide is the nucleotide sequence 1935-2421th nucleotide of SEQ ID NO: 4 It provides a pharmaceutical composition for antimicrobial having a sequence complementary to.
일 구체예에서, 본 발명은 (a) 서열번호 1 로 표시되는 Hxl1 단백질 또는 서열번호 3으로 표시되는 Ire1 단백질를 포함하는 세포에 분석할 시료를 접촉시키는 단계 (b) 상기 단백질의 양 또는 활성을 측정하는 단계 및 (c) 상기 Hxl1 단백질의 양 또는 활성이 감소조절(down regulation)되는 것으로 측정될 때, 상기 시료가 뇌수막염 치료제임을 판별하는 단계를 포함하는 뇌수막염 치료제 스크리닝 방법을 제공한다. 또한, 일 구체예에서, 본 발명은 (a) 서열번호 2로 표시되는 HXL1 유전자 또는 서열번호 4로 표시되는 IRE1 유전자를 포함하는 세포에 분석할 시료를 접촉시키는 단계 (b) 상기 유전자의 발현량을 측정하는 단계 및 (c) 상기 유전자의 발현량이 감소조절(down-regulation)되는 것으로 측정될 때, 상기 시료가 뇌수막염 치료제임을 판별하는 단계를 포함하는 뇌수막염 치료제 스크리닝 방법을 제공한다. 또 다른 구체예에서, 본 발명은 (a) 서열번호 1로 표시되는 Hxl1 단백질 또는 서열번호 3으로 표시되는 Ire1 단백질을 포함하는 세포에 뇌수막염 치료제를 접촉시키고, 상기 단백질의 양 또는 활성을측정하는 제 1 측정 단계 (b) 서열번호 1로 표시되는 Hxl1 단백질 또는 서열번호 3으로 표시되는 Ire1 단백질을 포함하는 세포에 분석할 시료 및 상기 뇌수막염 치료제를 접촉시키고, 상기 단백질의 양 또는 활성을 측정하는 제 2 측정 단계 및 (c) 제 1 및 제 2 측정 단계의 측정값을 비교하여, 제 2 측정 단계의 측정값이 제 1 측정 단계의 측정값보다 감소조절(down-regulation)될 때, 상기 시료가 병용 투여용 뇌수막염 치료제임을 판별하는 병용 투여용 뇌수막염 치료제 스크리닝 방법을 제공한다. 또 다른 구체예에서, 본 발명은 (a) 서열번호 2로 표시되는 HXL1 유전자 또는 서열번호 4로 표시되는 IRE1 유전자를 포함하는 세포에 뇌수막염 치료제를 접촉시키고, 상기 유전자의 발현량을 측정하는 제 1 측정 단계 (b) 서열번호 2로 표시되는 HXL1 유전자 또는 서열번호 4로 표시되는 IRE1 유전자를 포함하는 세포에 분석할 시료 및 상기 뇌수막염 치료제를 접촉시키고, 상기 유전자의 발현량을 측정하는 제 2 측정 단계 및 (c) 제 1 및 제 2 측정 단계의 측정값을 비교하여, 제 2 측정 단계의 측정값이 제 1 측정 단계의 측정값보다 감소조절(down-regulation)될 때, 상기 시료가 병용 투여용 뇌수막염 치료제임을 판별하는 병용 투여용 뇌수막염 치료제 스크리닝 방법을 제공한다.
In one embodiment, the present invention comprises the steps of (a) contacting a sample to be analyzed with a cell comprising an Hxl1 protein represented by SEQ ID NO: 1 or an Ire1 protein represented by SEQ ID NO: 3, (b) measuring the amount or activity of the protein And (c) determining that the sample is a meningitis therapeutic agent when the amount or activity of the Hxl1 protein is measured to be down regulated. In one embodiment, the present invention comprises the steps of (a) contacting a sample to be analyzed with a cell comprising the HXL1 gene represented by SEQ ID NO: 2 or the IRE1 gene represented by SEQ ID NO: 4, (b) the expression amount of the gene It provides a method for screening a meningitis therapeutic agent comprising the step of determining and (c) when the expression level of the gene is determined to be down-regulation, the sample is a meningitis therapeutic agent. In another embodiment, the present invention provides an agent for (a) contacting a cell comprising the Hxl1 protein represented by SEQ ID NO: 1 or the Ire1 protein represented by SEQ ID NO: 3, and measuring the amount or activity of the meningitis therapeutic agent. 1 Measurement step (b) A second step of contacting a sample to be analyzed with a cell containing the Hxl1 protein represented by SEQ ID NO: 1 or the Ire1 protein represented by SEQ ID NO: 3 and the therapeutic agent for meningitis, and measuring the amount or activity of the protein The sample is used in combination when the measured value of the second measuring step is down-regulated compared to the measured value of the first measuring step by comparing the measured values of the measuring step and (c) the first and second measuring steps. The present invention provides a method for screening a concomitant meningitis therapeutic agent for discriminating that it is a therapeutic meningitis therapeutic agent. In another embodiment, the present invention is (a) a first method for contacting a cell comprising the HXL1 gene represented by SEQ ID NO: 2 or the IRE1 gene represented by SEQ ID NO: 4 to the meningitis therapeutic agent, and measuring the expression level of the gene Measurement step (b) a second measurement step of contacting a sample to be analyzed with a cell containing the HXL1 gene represented by SEQ ID NO: 2 or the IRE1 gene represented by SEQ ID NO: 2 and the therapeutic agent for meningitis, and measuring the expression level of the gene And (c) comparing the measured values of the first and second measuring steps such that when the measured value of the second measuring step is down-regulated than the measured value of the first measuring step, The present invention provides a method for screening a meningitis therapeutic agent for concomitant administration to determine whether a meningitis therapeutic agent is used.
일 구체예에서 본 발명의 스크리닝 방법의 뇌수막염 치료제는 아졸계열 또는 비 아졸계열 뇌수막염 치료제인 병용투여용 뇌수막염 치료제를 스크리닝하는 방법을 제고한다. 이러한 구체예에서, 본 발명의 아졸계열 뇌수막염 치료제는 플루코나졸(fluconazole), 이트라코나졸(itraconazole), 보리코나졸(voriconazole) 및 케토코나졸(ketoconazole) 중 어느 하나 이상인 병용투여용 뇌수막염 치료제를 스크리닝하는 방법을 제공한다. 또한, 이러한 구체예에서, 본 발명의 비 아졸계열 뇌수막염 치료제는 암포테라신 B 또는 플루디옥소닐(fludioxonil)인 병용투여용 뇌수막염 치료제를 스크리닝하는 방법을 제공한다.
In one embodiment, the meningitis therapeutic agent of the screening method of the present invention improves a method of screening a concomitant meningitis therapeutic agent that is an azole or non-azole type meningitis therapeutic. In this embodiment, the azole-based meningitis therapeutic agent of the present invention provides a method for screening a concomitant meningitis therapeutic agent which is any one or more of fluconazole, itraconazole, voriconazole, and ketoconazole. . Also in this embodiment, the non-azole-based meningitis therapeutic agent of the present invention provides a method for screening a concomitant meningitis therapeutic agent which is amphotericin B or fludioxonil.
일 구체예에서 본 발명의 스크리닝 방법은 (a) 단계를 35℃ 내지 40℃에서 수행하는 뇌수막염 치료제 스크리닝 방법을 제공하고, (a) 단계의 세포는 크립토코쿠스 네오포만스인 뇌수막염 치료제 스크리닝 방법을 제공한다.
In one embodiment, the screening method of the present invention provides a method for screening a meningitis therapeutic agent which performs step (a) at 35 ° C to 40 ° C, and the cell of step (a) is a method for screening a meningitis therapeutic agent that is Cryptococcus neoformus to provide.
일 구체예에서, 본 발명은 서열번호 2 또는 4로 표시되는 뉴클레오타이드 서열에 상보적인 서열을 가지는 안티센스 또는 siRNA(small interference RNA) 올리고뉴클레오타이드를 유효성분으로 포함하는 항균용 약제학적 조성물을 제공하고, 상기 안티센스 또는 siRNA 올리고뉴클레오타이드는 서열번호 2의 뉴클레오타이드 서열 88 -617번째 뉴클레오타이드에 상보적인 서열을 가지는 항균용 약제학적 조성물을 제공하며, 상기 안티센스 또는 siRNA 올리고뉴클레오타이드는 서열번호 4의 뉴클레오타이드 서열 1935-2421번째 뉴클레오타이드에 상보적인 서열을 가지는 항균용 약제학적 조성물을 제공한다.
In one embodiment, the present invention provides an antimicrobial pharmaceutical composition comprising an antisense or siRNA (small interference RNA) oligonucleotide having a sequence complementary to the nucleotide sequence represented by SEQ ID NO: 2 or 4 as an active ingredient, and The antisense or siRNA oligonucleotide provides a pharmaceutical composition for antimicrobial having a sequence complementary to the nucleotide sequence 88-617th nucleotide of SEQ ID NO: 2, wherein the antisense or siRNA oligonucleotide is the nucleotide sequence 1935-2421th nucleotide of SEQ ID NO: 4 It provides a pharmaceutical composition for antimicrobial having a sequence complementary to.
일 구체예에서, 본 발명은 서열번호 1로 표시되는 Hxl1(HAC1 and XBP1 Like gene 1) 단백질을 제공하고, 이 단백질을 코딩하는 HXL1 유전자을 제공하며, 서열번호 2로 표시되는 HXL1 유전자를 제공하며, 이 유전자가 결실된 숙주를 제공한다.
In one embodiment, the present invention provides a Hxl1 (H AC1 and X BP1 L ike gene 1) protein shown in SEQ ID NO: 1 and provide, HXL1 yujeonjaeul coding for the protein, the HXL1 gene shown in SEQ ID NO: 2 Providing a host from which this gene has been deleted.
본 발명의 "항균제"는 세균 및/또는 곰팡이류의 번식을 억제하는 것으로, 무기계 항균제, 유기계 천연물 추출계 항균제, 유기계 지방족 화합물 항균제 및 유기계 방향족 화합물 항균제를 포함한다. 또한, 이에 한정되지 않지만, 무기계 항균제로서는, 차아염소 나트륨으로 대표되는 염소 화합물 과산화 수소로 대표되는 과산화물 붕산, 붕산 나트륨으로 대표되는 붕산 화합물 황산동으로 대표되는 동화합물 황산 아연, 염화 아연으로 대표되는 아연 화합물 유황, 다황산 석회, 수화 유황으로 대표되는 유황계물 산화 칼슘으로 대표되는 칼슘 화합물 티오술파이트 은착염, 질산은으로 대표되는 은화합물 그 밖에, 옥소(沃素), 실리코플루오리드 나트륨 등을 들 수 있고, 유기계 천연물 추출계 항균제로서는, 히노키티올, 맹종죽(孟宗竹) 추출액, 크레오소트유(油) 등을 들 수 있다.
The "antibacterial agent" of the present invention inhibits the propagation of bacteria and / or fungi, and includes an inorganic antibacterial agent, an organic natural product extraction antimicrobial agent, an organic aliphatic compound antimicrobial agent, and an organic aromatic compound antimicrobial agent. In addition, the inorganic antibacterial agent includes, but is not limited to, a chlorine compound represented by sodium hypochlorite, a peroxide represented by hydrogen peroxide, a borated compound represented by sodium borate, a copper compound represented by copper sulfate, and a zinc compound represented by zinc chloride. Calcium compounds represented by sulfur-based calcium oxide, thiosulphite silver complex salt, silver compounds represented by silver nitrate, sulfur compounds such as sulfur, polysulfuric acid lime, and hydrated sulfur, and oxo and sodium silicofluoride, Examples of the organic-based natural product extracting antibacterial agents include hinokithiol, bamboo shoots, creosote oil, and the like.
본 발명의 "뇌수막염"은 거미막과 연질막 사이에 존재하는 거미막밑 공간(subarachnoid space)에 염증이 발생하는 다양한 질환으로, 거미막밑공간에 바이러스나 세균이 침투하여 발생하는 수막염이지만, 특정 화학 물질에 의한 염증, 암세포의 뇌척수액공간으로의 파종에 의해 발생하는 것을 말한다.
In the present invention, "meningitis" is a variety of diseases in which inflammation occurs in the subarachnoid space between the arachnoid and the soft membrane, and is a meningitis caused by a virus or bacteria invading the subarachnoid space, but a specific chemical substance By inflammation and seeding of cancer cells into the cerebrospinal fluid space.
참조 문헌References
1. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519-529.Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response.Nat Rev Mol Cell Biol 8: 519-529.
2. Bernales S, Papa FR, Walter P (2006) Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol 22:487-508.Bernales S, Papa FR, Walter P (2006) Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol 22: 487-508.
3. Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18:716-731.Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18: 716-731.
4. Lin JH, Walter P, Yen TSB (2008) Endoplasmic Reticulum Stress in Disease Pathogenesis. Annu Rev Path : Mech Dis 3:399-425.Lin JH, Walter P, Yen TSB (2008) Endoplasmic Reticulum Stress in Disease Pathogenesis. Annu Rev Path : Mech Dis 3: 399-425.
5. Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455-462.Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454: 455-462.
6. Travers KJ, et al. (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249-258.6. Travers KJ, et al. (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101: 249-258.
7. Lin JH, et al. (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944-949.7. Lin JH, et al. (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318: 944-949.
8. Cox JS, Shamu CE, Walter P (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73:1197-1206.8. Cox JS, Shamu CE, Walter P (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73: 1197-1206.
9. Cox JS, Walter P (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87:391-404.9. Cox JS, Walter P (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87: 391-404.
10. Kawahara T, Yanagi H, Yura T, Mori K (1997) Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response. Mol Biol Cell 8:1845-1862.10.Kawahara T, Yanagi H, Yura T, Mori K (1997) Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p / Ern4p that activates the unfolded protein response. Mol Biol Cell 8: 1845-1862.
11. Kawahara T, Yanagi H, Yura T, Mori K (1998) Unconventional splicing of HAC1/ERN4 mRNA required for the unfolded protein response. Sequence-specific and non-sequential cleavage of the splice sites. J Biol Chem 273:1802-1807.11.Kawahara T, Yanagi H, Yura T, Mori K (1998) Unconventional splicing of HAC1 / ERN4 mRNA required for the unfolded protein response. Sequence-specific and non-sequential cleavage of the splice sites. J Biol Chem 273: 1802-1807.
12. Ruegsegger U, Leber JH, Walter P (2001) Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response. Cell 107:103-114.12.Ruesegger U, Leber JH, Walter P (2001) Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response. Cell 107: 103-114.
13. Calfon M, et al. (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP -1 mRNA. Nature 415:92-96.13. Calfon M, et al. (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP -1 mRNA. Nature 415: 92-96.
14. Yoshida H, et al. (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881-891.14. Yoshida H, et al. (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107: 881-891.
15. Tirosh B, Iwakoshi NN, Glimcher LH, Ploegh HL (2006) Rapid turnover of unspliced Xbp-1 as a factor that modulates the unfolded protein response. J Biol Chem 281:5852-5860.15. Tirosh B, Iwakoshi NN, Glimcher LH, Ploegh HL (2006) Rapid turnover of unspliced Xbp-1 as a factor that modulates the unfolded protein response. J Biol Chem 281: 5852-5860.
16. Richie DL, et al. (2009) A role for the unfolded protein response (UPR) in virulence and antifungal susceptibility in Aspergillus fumigatus. PLoS Pathog 5:e1000258.16. Richie DL, et al. (2009) A role for the unfolded protein response (UPR) in virulence and antifungal susceptibility in Aspergillus fumigatus . PLoS Pathog 5: e1000258.
17. Wimalasena TT, et al. (2008) Impact of the unfolded protein response upon genome-wide expression patterns, and the role of Hac1 in the polarized growth, of Candida albicans. Fungal Genet Biol 45:1235-1247.17. Wimalasena TT, et al. (2008) Impact of the unfolded protein response upon genome-wide expression patterns, and the role of Hac1 in the polarized growth, of Candida albicans . Fungal genet Biol 45: 1235-1247.
18. Casadevall A, Perfect JR (1998) Cryptococcus neoformans (ASM Press, Washington, D.C.) pp viii, 541 p.18.Casadevall A, Perfect JR (1998) Cryptococcus neoformans (ASM Press, Washington, DC) pp viii, 541 p.
19. Chen Y, et al. (2005) Identification of mitogen-activated protein kinase signaling pathways that confer resistance to endoplasmic reticulum stress in Saccharomyces cerevisiae. Mol Cancer Res 3:669-677.19. Chen Y, et al. (2005) Identification of mitogen-activated protein kinase signaling pathways that confer resistance to endoplasmic reticulum stress in Saccharomyces cerevisiae . Mol Cancer Res 3: 669-677.
20. Scrimale T, Didone L, de Mesy Bentley KL, Krysan DJ (2009) The unfolded protein response is induced by the cell wall integrity mitogen-activated protein kinase signaling cascade and is required for cell wall integrity in Saccharomyces cerevisiae. Mol Biol Cell 20:164-175.20.Scrimale T, Didone L, de Mesy Bentley KL, Krysan DJ (2009) The unfolded protein response is induced by the cell wall integrity mitogen-activated protein kinase signaling cascade and is required for cell wall integrity in Saccharomyces cerevisiae . Mol Biol Cell 20: 164-175.
21. Odom A, et al. (1997) Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J 16:2576-2589.21. Odom A, et al. (1997) Calcineurin is required for virulence of Cryptococcus neoformans . EMBO J 16: 2576-2589.
22. Alspaugh JA, Cavallo LM, Perfect JR, Heitman J (2000) RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Mol Microbiol 36:352-365.Alspaugh JA, Cavallo LM, Perfect JR, Heitman J (2000) RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans . Mol Microbiol 36: 352-365.
23. Kraus PR, Fox DS, Cox GM, Heitman J (2003) The Cryptococcus neoformans MAP kinase Mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Mol Microbiol 48:1377-1387.Kraus PR, Fox DS, Cox GM, Heitman J (2003) The Cryptococcus neoformans MAP kinase Mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Mol Microbiol 48: 1377-1387.
24. Gerik KJ, et al. (2005) Cell wall integrity is dependent on the PKC1 signal transduction pathway in Cryptococcus neoformans. Mol Microbiol 58:393-408.24. Gerik KJ, et al. (2005) Cell wall integrity is dependent on the PKC1 signal transduction pathway in Cryptococcus neoformans . Mol Microbiol 58: 393-408.
25. Kraus PR, et al. (2004) Identification of Cryptococcus neoformans temperature-regulated genes with a genomic-DNA microarray. Eukaryotic Cell 3:1249-1260.25. Kraus PR, et al. (2004) Identification of Cryptococcus neoformans temperature-regulated genes with a genomic-DNA microarray. Eukaryotic Cell 3: 1249-1260.
26. Ko YJ, et al. (2009) Remodeling of global transcription patterns of Cryptococcus neoformans genes mediated by the stress-activated HOG signaling pathways. Eukaryot Cell 8:1197-1217.26. Ko YJ, et al. (2009) Remodeling of global transcription patterns of Cryptococcus neoformans genes mediated by the stress-activated HOG signaling pathways. Eukaryot Cell 8: 1197-1217.
27. Ma H, May RC (2009) Chapter 5 Virulence in Cryptococcus Species. Adv Appl Microbiol, eds Allen I. Laskin SS & Geoffrey MG (Academic Press), Vol Volume 67, pp 131-190.27. Ma H, May RC (2009) Chapter 5 Virulence in Cryptococcus Species. Adv Appl Microbiol , eds Allen I. Laskin SS & Geoffrey MG (Academic Press), Vol Volume 67, pp 131-190.
28. Aksenov SI, Babyeva IP, Golubev VI (1973) On the mechanism of adaptation of micro-organisms to conditions of extreme low humidity. Life Sci Space Res 11:55-61.28.Aksenov SI, Babyeva IP, Golubev VI (1973) On the mechanism of adaptation of micro-organisms to conditions of extreme low humidity. Life Sci Space Res 11: 55-61.
29. Kuge S, et al. (2001) Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation. Mol Cell Biol 21:6139-6150.29. Kuge S, et al. (2001) Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation. Mol Cell Biol 21: 6139-6150.
30. Plummer JL, Smith BR, Sies H, Bend JR (1981) Chemical depletion of glutathione in vivo. Methods Enzymol 77:50-59.30. Plummer JL, Smith BR, Sies H, Bend JR (1981) Chemical depletion of glutathione in vivo. Methods Enzymol 77: 50-59.
31. Roisch K (2005) ENDOPLASMIC RETICULUM-ASSOCIATED Annu Rev Cell Dev Biol 21:435-456.31.Roisch K (2005) ENDOPLASMIC RETICULUM-ASSOCIATED Annu Rev Cell Dev Biol 21: 435-456.
32. Samuelson J, et al. (2005) The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc Natl Acad Sci USA 102:1548-1553.32. Samuelson J, et al. (2005) The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc Natl Acad Sci USA 102: 1548-1553.
33. Banerjee S, et al. (2007) The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation. Proc Natl Acad Sci USA 104:11676-11681.33. Banerjee S, et al. (2007) The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation. Proc Natl Acad Sci USA 104: 11676-11681.
34. Saloheimo M, Valkonen M, Penttila M (2003) Activation mechanisms of the HAC1-mediated unfolded protein response in filamentous fungi. Mol Microbiol 47:1149-1161.34. Saloheimo M, Valkonen M, Penttila M (2003) Activation mechanisms of the HAC1 -mediated unfolded protein response in filamentous fungi. Mol Microbiol 47: 1149-1161.
35. Oh MH, Cheon SA, Kang HA, Kim JY (2010) Functional characterization of the unconventional splicing of Yarrowia lipolytica HAC1 mRNA induced by unfolded protein response. Yeast.35.Oh MH, Cheon SA, Kang HA, Kim JY (2010) Functional characterization of the unconventional splicing of Yarrowia lipolytica HAC1 mRNA induced by unfolded protein response. Yeast .
36. Kupfer DM, et al. (2004) Introns and splicing elements of five diverse fungi. Eukaryot Cell 3:1088-1100.36. Kupfer DM, et al. (2004) Introns and splicing elements of five diverse fungi. Eukaryot Cell 3: 1088-1100.
37. Aragon T, et al. (2009) Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature 457:736-740.37. Aragon T, et al. (2009) Messenger RNA targeting to endoplasmic reticulum stress signaling sites. Nature 457: 736-740.
38. Nikawa J, Yamashita S (1992) IRE1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositol phototrophy in Saccharomyces cerevisiae. Mol Microbiol 6:1441-1446.38.Nikawa J, Yamashita S (1992) IRE1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositol phototrophy in Saccharomyces cerevisiae . Mol Microbiol 6: 1441-1446.
39. Perfect JR (2006) Cryptococcus neoformans: the yeast that likes it hot. FEMS Yeast Research 6:463-468.39.Perfect JR (2006) Cryptococcus neoformans : the yeast that likes it hot. FEMS Yeast Research 6: 463-468.
40. Rosa e Silva LK, et al. (2008) Identification of novel temperature-regulated genes in the human pathogen Cryptococcus neoformans using representational difference analysis. Res Microbiol 159:221-229.40. Rosa e Silva LK, et al. (2008) Identification of novel temperature-regulated genes in the human pathogen Cryptococcus neoformans using representational difference analysis. Res Microbiol 159: 221-229.
41. Parodi AJ (2000) PROTEIN GLUCOSYLATION AND ITS ROLE IN PROTEIN FOLDING. Annu Rev Biochem 69:69-93.Parodi AJ (2000) PROTEIN GLUCOSYLATION AND ITS ROLE IN PROTEIN FOLDING. Annu Rev Biochem 69: 69-93.
42. Nakatsukasa K, et al. (2004) Roles of O-Mannosylation of Aberrant Proteins in Reduction of the Load for Endoplasmic Reticulum Chaperones in Yeast. J Biol Chem 279:49762-49772.42. Nakatsukasa K, et al. (2004) Roles of O-Mannosylation of Aberrant Proteins in Reduction of the Load for Endoplasmic Reticulum Chaperones in Yeast. J Biol Chem 279: 49762-49772.
43. Shen X, Ellis RE, Sakaki K, Kaufman RJ (2005) Genetic Interactions Due to Constitutive and Inducible Gene Regulation Mediated by the Unfolded Protein Response in <italic>C. elegans</italic>. PLoS Genet 1:e37.43. Shen X, Ellis RE, Sakaki K, Kaufman RJ (2005) Genetic Interactions Due to Constitutive and Inducible Gene Regulation Mediated by the Unfolded Protein Response in <italic> C. elegans </ italic>. PLoS Genet 1: e37.
44. Hollien J, et al. (2009) Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. The Journal of Cell Biology 186:323-331.44. Hollien J, et al. (2009) Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. The Journal of Cell Biology 186: 323-331.
45. Hollien J, Weissman JS (2006) Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313:104-107.45. Hollien J, Weissman JS (2006) Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313: 104-107.
46. Hicks JK, D'Souza CA, Cox GM, Heitman J (2004) Cyclic AMP-dependent protein kinase catalytic subunits have divergent roles in virulence factor production in two varieties of the fungal pathogen Cryptococcus neoformans. Eukaryotic Cell 3:14-26.46.Hicks JK, D'Souza CA, Cox GM, Heitman J (2004) Cyclic AMP-dependent protein kinase catalytic subunits have divergent roles in virulence factor production in two varieties of the fungal pathogen Cryptococcus neoformans . Eukaryotic Cell 3: 14-26.
47. Bahn YS, et al. (2004) Adenylyl cyclase-associated protein Aca1 regulates virulence and differentiation of Cryptococcus neoformans via the cyclic AMP-protein kinase A cascade. Eukaryot Cell 3:1476-1491.47. Bahn YS, et al. (2004) Adenylyl cyclase-associated protein Aca1 regulates virulence and differentiation of Cryptococcus neoformans via the cyclic AMP-protein kinase A cascade. Eukaryot Cell 3: 1476-1491.
48. Gerik KJ, et al. (2008) PKC1 is essential for protection against both oxidative and nitrosative stresses, cell integrity, and normal manifestation of virulence factors in the pathogenic fungus Cryptococcus neoformans. Eukaryot Cell 7:1685-1698.48. Gerik KJ, et al. (2008) PKC1 is essential for protection against both oxidative and nitrosative stresses, cell integrity, and normal manifestation of virulence factors in the pathogenic fungus Cryptococcus neoformans . Eukaryot Cell 7: 1685-1698.
49. Bahn YS, Kojima K, Cox GM, Heitman J (2005) Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans. Mol Biol Cell 16:2285-2300.49.Bahn YS, Kojima K, Cox GM, Heitman J (2005) Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans . Mol Biol Cell 16: 2285-2300.
50. Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37:D229-D232.
50. Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic acids Res 37: D229-D232.
본 발명은 신규한 Ire1 및 Hxl1(HAC1 and XBP1 Like gene 1) 단백질 및 이를 코딩하는 유전자를 저해시키는 항균 또는 뇌수막염 치료효과를 가지는 효과적인 후보물질을 탐색할 수 있다. 나아가, 기존의 항균제 또는 뇌수막염 치료제와 병용투여시 상승효과를 가질 수 있는 후보물질을 스크리닝 방법을 제공하며, 신규한 Ire1 및 Hxl1(HAC1 and XBP1 Like gene 1) 단백질 및 이를 코딩하는 유전자를 억제하여 항균 또는 뇌수막염 치료효과가 있는 약학조성물을 제공할 수 있다.
The invention may search for an effective candidate substance having the antimicrobial or therapeutic effects of meningitis inhibit the gene and protein encoding the novel Ire1 and Hxl1 (H AC1 and X BP1 L ike gene 1). Further, the conventional antibacterial agent or meningitis with a therapeutic agent for co-administration during the candidate substance which can have a synergistic effect and provides a screening method, the gene novel Ire1 and protein and encoding the Hxl1 (H AC1 and X BP1 L ike gene 1) By inhibiting it can provide a pharmaceutical composition having an antimicrobial or meningitis therapeutic effect.
도 1은 RT-PCR을 수행하기 위한 프라이머 제조 방법에 대한 개괄적인 그림을 도시하고 있다.
도 2는 RT-PCR을 통한 Ire1 센서 키나아제/리보뉴클레아제(kinase/ribonuclease)의 목적 유전자 동정에 대한 것이다. RT-PCR을 통하여 특이적인 스플라이싱 패턴을 RT-PCR1 과 RT-PCR2을 통해 확인하였다. KAR2와 ACT1은 대조군으로 확인하였다.
도 3은 ire1 Δ 돌연변이 균주에서의 HXL1 유전자의 특이적인 스플라이싱 패턴 변화를 보여주고 있다. UPR 스트레스를 유발하는 DTT와 투니카마이신(tunicamycin)을 처리한 후 RT-PCR2을 통하여 ire1 Δ 돌연변이 균주에서 HXL1 유전자의 특이적인 스플라이싱 패턴 변화가 일어나지 않음을 확인하였고 이는 HXL1이 Ire1 센서 키나아제/리보뉴클레이즈(kinase/ribonclease)의 목적임을 보여준다.
도 4는 Ire1 센서 키나아제(kinase)의 목적 단백질의 계통수를 보여준다.
[An: Aspergillus nidulans, Af: Aspergillus fumigatus, Tr : Trichoderma reesei , Sc: Saccharomyces cerevisiae, Ca: Candida albicans, Yl: Yarrowia lipolytica, Hs: Homo sapiens, Mm:Mus musculus , Ce: Caenorhabditis elegans, Cn: Cryptococcus neoformans]
도 5는 UPR 신호전달 경로 유전자 결실이 온도 감수성에 미치는 영향을 보여준다. UPR 신호전달 경로 유전자인 IRE1또는 HXL1이 결실이 일어났을 때 온도 감수성이 증가한다는 것을 알 수 있다. 특히, hxl1 Δ 돌연변이 균주가 ire1 Δ 돌연변이 균주보다 더 낮은 온도에서도 온도 감수성이 나타남을 알 수 있다. 실험에 사용된 균주는 다음과 같다 [야생형(WT), ire1 Δ(YSB552), ire1 Δ+IRE1(YSB1000), hxl1 Δ(YSB723), hxl1 Δ+HXL1(YSB762), ire1 Δ+HXL1 U (YSB1125), ire1 Δ+HXL1 S (YSB1127), mpk1Δ(KK3), cna1 Δ(KK1), ras1 Δ(YSB53)]
도 6은 UPR 신호전달 경로 유전자 결실이 항진균제 감수성에 미치는 영향을 보여준다. UPR 신호전달 경로 유전자인 IRE1또는 HXL1이 결실이 일어났을 때 항진균제의 감수성이 증가한다는 것을 알아 내었다. 실험에 사용된 약물의 농도는 다음과 같다. [케토코나졸(ketoconazole, 0.1μg/ml) 플루코나졸(fluconazole, 14μg/ml), 이트라코나졸(itraconazole, 0.5μg/ml), 암포테라신 B(amphotericin B, 0.8μg/ml), 플루디옥소닐(fludioxonil, 0.5μg/ml)] 실험에 사용된 균주는 다음과 같다 [야생형(WT), ire1 Δ(YSB552), ire1 Δ+IRE1(YSB1000), hxl1 Δ(YSB723), hxl1 Δ+HXL1(YSB762), ire1 Δ +HXL1 U (YSB1125), ire1 Δ+HXL1 S (YSB1127)]
도 7은 IRE1 유전자 발현을 억제하기 위한 siRNA 설계를 보여준다. ACT1 프로모터와 GAL7 프로모터를 이용하여 IRE1 유전자의 센스와 안티센스 부분 앞 쪽에 삽입시켰으며 센스와 안티센스가 스템 루프(Stem-loop)을 형성할 수 있도록 연결고리(lineker)을 삽입시켜 주었다. 이 연결고리는 참조문헌에서 언급한 바와 같이 GFP 단백질을 이용할 수 있다.
도 8은 HXL1 유전자 발현을 억제하기 위한 siRNA 설계를 보여준다. ACT1 프로모터와 GAL7 프로모터를 이용하여 HXL1 유전자의 센스와 안티센스 부분 앞 쪽에 삽입시켰으며 센스와 안티센스가 스템 루프(Stem-loop)을 형성할 수 있도록 연결고리(lineker)을 삽입시켜 주었다. 이 연결고리는 참조문헌에서 언급한 바와 같이 GFP 단백질을 이용할 수 있다.
도 9는 UPR 신호전달 경로 유전자인 IRE1 결실이 In vivo상의 병원성에 미치는 영향을 보여준다. UPR신호전달 경로 유전자인 IRE1이 결실 되었을 경우 In vivo상에서 병원성이 약화되었음을 보여준다. [야생형(WT), ire1 Δ(YSB552), ire1 Δ+IRE1(YSB1000)]
도 10은 UPR 신호전달 경로 유전자인 HXL1 결실이 In vivo상의 병원성에 미치는 영향을 보여준다. UPR신호전달 경로 유전자인 HXL1이 결실 되었을 경우 In vivo상에서 병원성이 약화되었음을 보여준다. [야생형(WT), hxl1 Δ(YSB723), hxl1 Δ+HXL1(YSB762)]Figure 1 shows an overview of the primer preparation method for performing RT-PCR.
2 is for the identification of the target gene of Ire1 sensor kinase / ribonuclease via RT-PCR. Specific splicing patterns through RT-PCR were identified through RT-PCR1 and RT-PCR2. KAR2 and ACT1 were identified as controls.
Figure 3 shows the specific splicing pattern change of the HXL1 gene in the ire1 Δ mutant strain. After processing the DTT and pitcher NIKA azithromycin (tunicamycin) that causes UPR stress was confirmed that the specific splicing pattern changes in HXL1 gene in ire1 Δ mutant strain through the RT-PCR2 not occur which HXL1 the Ire1 sensor kinase / It shows the purpose of ribonucleases (kinase / ribonclease).
4 shows the phylogenetic tree of the target protein of Ire1 sensor kinase.
[An: Aspergillus nidulans , Af: Aspergillus fumigatus , Tr : Trichoderma reesei , Sc: Saccharomyces cerevisiae , Ca: Candida albicans , Yl: Yarrowia lipolytica , Hs: Homo sapiens , Mm: Mus musculus , Ce: Caenorhabditis elegans , Cn: Cryptococcus neoformans ]
5 shows the effect of UPR signaling pathway gene deletion on temperature sensitivity. It can be seen that the temperature sensitivity is increased when the UPR signaling pathway gene IRE1 or HXL1 is deleted. In particular, hxl1 Δ mutant strain can be seen that this temperature sensitivity in the temperature lower than appears ire1 Δ mutant strain. The strains used in the experiment are as follows (wild type (WT), ire1 Δ (YSB552), ire1 Δ + IRE1 (YSB1000), hxl1 Δ (YSB723), hxl1 Δ + HXL1 (YSB762), ire1 Δ + HXL1 U (YSB1125), ire1 Δ + HXL1 S (YSB1127), mpk1Δ (KK3), cna1 Δ (KK1), ras1 Δ (YSB53)]
6 shows the effect of UPR signaling pathway gene deletion on antifungal drug sensitivity. The UPR signaling pathway genes, IRE1 or HXL1, were found to increase the sensitivity of antifungal agents when deletions occurred. The concentration of drug used in the experiment is as follows. [Ketoconazole (ketoconazole, 0.1 μg / ml) fluconazole (14 μg / ml), itraconazole (itraconazole, 0.5 μg / ml), amphotericin B (amphotericin B, 0.8 μg / ml), fludioxonil (fludioxonil, 0.5 μg / ml)] strains used in the experiment are as follows (wild type (WT), ire1 Δ (YSB552), ire1 Δ + IRE1 (YSB1000), hxl1 Δ (YSB723), hxl1 Δ + HXL1 (YSB762), ire1 Δ + HXL1 U (YSB1125), ire1 Δ + HXL1 S (YSB1127)]
7 shows an siRNA design to inhibit IRE1 gene expression. The ACT1 promoter and GAL7 promoter were used to insert the front of the sense and antisense portions of the IRE1 gene, and a lineker was inserted so that the sense and antisense form a stem-loop. This linkage can utilize GFP proteins as mentioned in the references.
8 is It shows siRNA design to inhibit HXL1 gene expression. The ACT1 promoter and GAL7 promoter were used to insert the front of the sense and antisense portions of the HXL1 gene, and a lineker was inserted so that the sense and antisense form a stem-loop. This linkage can utilize GFP proteins as mentioned in the references.
9 shows the effect of IRE1 deletion, an UPR signaling pathway gene, on pathogenicity in vivo. Deletion of the UPR signaling pathway gene, IRE1 , suggests that pathogenicity is weakened in vivo. [Wild type (WT), ire1 Δ (YSB552), ire1 Δ + IRE1 (YSB1000)]
Figure 10 shows the effect of HXL1 deletion, a UPR signaling pathway gene on the pathogenicity in vivo. The deletion of the UPR signaling pathway gene, HXL1 , suggests that pathogenicity is weakened in vivo. [Wild type (WT), hxl1 Δ (YSB723), hxl1 Δ + HXL1 (YSB762)]
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .
<균주 및 배양 조건><Strain and culture conditions>
본 실시예는 하기 표 1에 나타낸 크립토코쿠스 네오포만스를 균주로 사용하였다. 액체 배지로는 이스트 추출물-펩톤-덱스트로스(YPD)을 이용하였고, 30℃에서 210rpm으로 상기 균주들을 배양하였다. In this example, Cryptococcus neoformus shown in Table 1 was used as a strain. Yeast extract-peptone-dextrose (YPD) was used as the liquid medium, and the strains were incubated at 30 ° C. at 210 rpm.
(* 각 NAT - STM #는 고유 서명 태그(unique signature tag)를 가진 Natr 마커를 의미함)
(* Each NAT - STM # stands for a Nat r marker with a unique signature tag.)
<스트레스 민감도 테스트 방법><Stress Sensitivity Test Method>
"Bahn YS, Kojima K, Cox GM, Heitman J (2005) Mol Biol Cell 16: 2285-2300." 및 "Bahn YS, Kojima K, CoxGM, Heitman J (2006) Mol Biol Cell 17: 3122-3135"에서 기술한 방법과 같이, 각 균주를 5ml의 YPD 배지에서 16시간 동안 30℃로 배양하고 세척한 후, dH2O에서 순차적으로 희석하였다(1내지 104희석도). 그 다음에, 지시된 농도의 항진균제를 포함하는 고체 YPD배지에 스팟팅하였다.
"Bahn YS, Kojima K, Cox GM, Heitman J (2005) Mol Biol Cell 16: 2285-2300." And each strain was incubated at 30 ° C. for 16 hours in 5 ml of YPD medium and washed, as described in “Bahn YS, Kojima K, CoxGM, Heitman J (2006) Mol Biol Cell 17: 3122-3135”. , serially diluted in dH 2 O (1 to 10 4 dilution). Next, spotted in solid YPD medium containing the indicated concentration of antifungal agent.
항진균제에 대한 약제 민감도를 확인하기 위하여, 균주들을 폴리엔계 약물인 암포테라신B(Sigma), 아졸계 약물인 플루코나졸(Sigma), 이트라코나졸(Sigma), 및 케토코나졸(Sigma), 및 페닐피롤계 약물인 플루디옥소닐을 포함하는YPD 배지에 스팟팅하였다. 스팟팅 이후에 30℃로 배양하고, 2-4일 동안 관찰한 내용을 사진 촬영하였다.
To identify drug sensitivity to antifungal agents, strains were identified as polyene-based drugs, amphoteracin B (Sigma), azole-based fluconazole (Sigma), itraconazole (Sigma), and ketoconazole (Sigma), and phenylpyrrole-based drugs. Spotted in YPD medium containing fludioxonil. After spotting, the cells were incubated at 30 ° C., and photographed for 2-4 days.
온도 민감도를 확인하기 위하여 상기와 마찬가지로 각 균주를 5ml의 YPD 배지에서 16시간 동안 30℃로 배양하여 세척한 후, dH2O에서 순차적으로 희석하고 (1내지 104희석도), 고체 YPD배지에 스팟팅하였다. 스팟팅 이후에 각 균주를 30℃, 35℃ 및 37℃에서 배양하고 2-4일 동안 관찰한 내용을 사진 촬영하였다.
In order to check the temperature sensitivity, each strain was incubated at 30 ° C. for 16 hours in 5 ml of YPD medium, washed, and then sequentially diluted in dH 2 O (1 to 10 4 dilution) to a solid YPD medium. Spotted. After spotting, each strain was incubated at 30 ° C., 35 ° C. and 37 ° C. and photographed for 2-4 days.
<< RNARNA 추출 및 Extraction and RTRT -- PCRPCR 방법> Method>
RNA를 추출하기 위하여, 균주들을YPD 배지에서 16시간 동안 30℃로 배양하였다. 그 후 초기 균주를 100 ml의 신선한 YPD배지로 접종하고, 600nm에서의 광학밀도(OD600)를 0.15로 조정한 후 OD600가 0.5에 이를 때까지 30℃에서 배양하였다. 제로-타임 샘플을 얻기 위하여 100ml 중 50ml의 배양액을 표본으로 추출하여 DEPC가 처리된 dH2O로 두 번 세척한 후에 액체 질소에서 급속히 냉동시켰다. 남은 50ml의 배양액에 8 μg/ml의 튜니카마이신(tunicamycin), 또는 20mM의 DTT을 처리하여 1시간 또는 2시간 후에 균주를 수득하였다. 이 균주를 DEPC가 처리된 dH2O로 두 번 세척한 후에 액체 질소에서 급속히 냉동시켰다. 전체 RNA는 RNeasy Mini Kit (Qiagen)을 이용하여 추출하였고 MMLV 리버스 트랜스크립타아제 (Invitrogen)를 이용하여cDNA을 합성하였다. Maxime™™ PCR PreMix (i-Taq) (iNtRON Biotechnology)을 이용하여, RT-PCR(Reverse transcriptase polymerase chain reaction)을 수행하였다.
To extract RNA, strains were incubated at 30 ° C. for 16 hours in YPD medium. Thereafter, the initial strain was inoculated with 100 ml of fresh YPD medium, the optical density at 600 nm (OD 600 ) was adjusted to 0.15, and then cultured at 30 ° C. until the OD 600 reached 0.5. To obtain a zero-time sample, 50 ml of the culture solution in 100 ml was sampled and washed twice with DEPC treated dH 2 O followed by rapid freezing in liquid nitrogen. The remaining 50 ml of the culture was treated with 8 μg / ml of tunicamycin, or 20 mM of DTT, to obtain strains after 1 or 2 hours. This strain was washed twice with DEPC treated dH 2 O and then rapidly frozen in liquid nitrogen. Total RNA was extracted using RNeasy Mini Kit (Qiagen) and cDNA was synthesized using MMLV reverse transcriptase (Invitrogen). Reverse transcriptase polymerase chain reaction (RT-PCR) was performed using Maxime ™ PCR PreMix (i-Taq) (iNtRON Biotechnology).
<< UPRUPR 신호전달 유전자의 기능파괴 방법> Function breakdown method of signaling gene>
유전자의 기능파괴(disruption)를 위하여, 각각의 유전자에 대한 게놈 DNA 구조의 정보를 항원형 A C. neoformans의 게놈 데이터베이스(http://www.broadinstitute.org/annotation/genome/cryptococcus_neoformans/MultiHome.html)로부터 수득하였고, ""Davidson RC, et al. (2002) A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology 148:2607-2615"" 및 ""Kim MS, et al. (2009) An efficient gene-disruption method in Cryptococcus neoformans by double-joint PCR with NAT-split markers. Biochem Biophys Res Commun 390:983-988""에 기재된 방법과 같이, 스플릿 마커(split-marker)와 유전자주입 형질전환(biolistic transformation)을 통해 오버랩 PCR과 더블 조인트 PCR에 의해 C. neoformans 항원 A H99균주에서 IRE1 (CNAG_03670.2) 및 HXL1 (CNAG_06134.2)의 기능을 파괴하였다. 유전자 기능파괴에 필요한 프라이머는 하기 표 2에 나타내었다. 금 마이크로캐리어 비드 (0.6 μm [Bio-Rad])에 오버랩 PCR 또는 더블 조인트 PCR에 의해 생산된 젤-추출된 제거 카세트 (gel-extracted deletion cassettes)를 코팅하고 항원 A H99균주를 형질전환시켰다. 노르세오트리신(Nourseothricin)을 포함하는 YPD 배지에서 성장이 잘 되는 균주를 선택하여 진단용 PCR을 통해 일차적으로 선별한 후, 유전자 특이적 프로브를 이용한 서던 블롯 분석을 통해 유전자 결실의 형질전환 균주를 확인하였다.For disruption of genes, genomic DNA structure information for each gene can be obtained from the genome database of antigenic type A C. neoformans ( http://www.broadinstitute.org/annotation/genome/cryptococcus_neoformans/MultiHome.html). ) And "" Davidson RC, et al. (2002) A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology 148: 2607-2615 "and""Kim MS, et al. (2009) An efficient gene-disruption method in Cryptococcus neoformans by double-joint PCR with NAT-split markers. Biochem Biophys Res As described in Commun 390: 983-988 "", IRE1 ( C1 neoformans antigen A H99 strain in C. neoformans antigen A H99 strain by overlap PCR and double joint PCR via split-marker and biolistic transformation. CNAG_03670.2) and HXL1 (CNAG_06134.2) disrupted the function. Primers required for gene function destruction are shown in Table 2 below. Gold microcarrier beads (0.6 μm [Bio-Rad]) were coated with gel-extracted deletion cassettes produced by overlap PCR or double joint PCR and transformed with antigen A H99 strain. Strains that grow well in YPD medium containing Norseothricin were selected first through diagnostic PCR, and the transformed strains of the gene deletion were identified through Southern blot analysis using gene-specific probes. It was.
RT-PCR 프라이머(RT-PCR1)H99 CNAG_03976.2
RT-PCR Primer (RT-PCR1)
RT-PCR 프라이머(RT-PCR2)H99 CNAG_03976.2
RT-PCR Primer (RT-PCR2)
RT-PCR 프라이머(RT-PCR1)H99 CNAG_07560.2
RT-PCR Primer (RT-PCR1)
RT-PCR 프라이머(RT-PCR2)H99 CNAG_07560.2
RT-PCR Primer (RT-PCR2)
RT-PCR 프라이머(RT-PCR1)H99 CNAG_07940.2
RT-PCR Primer (RT-PCR1)
RT-PCR 프라이머(RT-PCR2)H99 CNAG_07940.2
RT-PCR Primer (RT-PCR2)
RT-PCR 프라이머(RT-PCR1)H99 CNAG_00871.2
RT-PCR Primer (RT-PCR1)
RT-PCR 프라이머(RT-PCR2)H99 CNAG_00871.2
RT-PCR Primer (RT-PCR2)
RT-PCR 프라이머(RT-PCR1)H99 CNAG_06134.2
RT-PCR Primer (RT-PCR1)
RT-PCR 프라이머(RT-PCR2)H99 CNAG_06134.2
RT-PCR Primer (RT-PCR2)
RT-PCR 프라이머Of CNAG_06443.2
RT-PCR Primer
RT-PCR 프라이머CNAG_00072.2
RT-PCR Primer
a 프라이머에서 밑줄 친 서열은 이후의 서브클로닝에 대한 제한 효소 부분이고, 볼드체로 표시된 서열은 융합 PCR에 대한 상보 서열이다.
The underlined sequence in a primer is the restriction enzyme portion for subsequent subcloning and the sequence shown in bold is the complementary sequence for fusion PCR.
<< UPRUPR 신호전달 유전자 결실에 대한 For signaling gene deletion 보충균의Supplementary 제조 방법> Manufacturing method>
UPR 신호전달 유전자의 결실로 인한 항진균제에 대한 민감성을 확인하기 위하여, 각각의 UPR 신호전달 유전자 결실 형질전환 균주에 대한 보충균을 제조하였다. 그 중 IRE1 보충균주를 제조하기 위하여, 0.78 킬로베이스(kb)의 프로모터, 3.52 킬로베이스(kb)의 ORF (Open Reading Frame), 및 0.53 킬로베이스(kb)의 터미네이터를 포함하는 IRE1 유전자 단편을 제한효소 사이트가 포함된 프라이머를 이용하여 PCR을 통해 증폭하고, 이것을 pTOP-V2 플라즈미드(Enzynomics 구입)에 서브클로닝한 후 DNA 염기서열을 확인하였다. 염기서열이 일치하는 플라즈미드를 이용하여 4.8 킬로베이스(kb)의 IRE1 유전자 삽입물을 NEO 마커(Neomycin/G418-resistant marker)를 가지고 있는 pJAF12 벡터(James A. Fraser제공, Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia)에 서브클로닝하였다. 이 서브클로닝한 플라즈미드를 Mlu1 제한효소로 잘라주고, 이것으로 IRE1 결실 돌연변이 균주를 형질전환시켰다To confirm the sensitivity to antifungal agents due to the deletion of the UPR signaling gene, supplementary bacteria were prepared for each of the UPR signaling gene deletion transforming strains. Among them, in order to prepare an IRE1 supplement strain, an IRE1 gene fragment including a 0.78 kilobase (kb) promoter, an 3.52 kilobase (kb) Open Reading Frame (ORF), and a terminator of 0.53 kilobase (kb) was restricted. Amplification was carried out by PCR using a primer containing an enzyme site, and then subcloned into pTOP-V2 plasmid (purchased by Enzynomics), and the DNA sequence was confirmed. A 4.8 kilobase (IRE) IRE1 gene insert using a plasmid with identical sequencing was used as a pJAF12 vector with a NEO marker (Neomycin / G418-resistant marker) (James A. Fraser, Center for Infectious Disease Research, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia). This subcloned plasmid was cut with Mlu1 restriction enzyme and transformed with the IRE1 deletion mutant strain.
..
마찬가지로 HXL1 보충균주를 제조하기 위하여, HXL1 유전자의 1 킬로베이스(kb)의 프로모터, 1.8 킬로베이스(kb)의 ORF (Open Reading Frame), 및 0.6 킬로베이스(kb)의 터미네이터 부분을 프라이머(C35/C38)를 이용하여 PCR을 통하여 증폭하고, NEO 마커를 가지고 있는 벡터 pJAFS1(pJAF12의 숨겨진 Sac1 제한효소 부분을 제거한 벡터)에 서브클로닝하였다. 이 서브클로닝한 플라즈미드를 Sac1 제한효소로 잘라주고, 이것으로 HXL1 결실 돌연변이 균주를 형질전환시켰다.
Likewise, in order to prepare HXL1 supplement strains, one kilobase (kb) promoter of HXL1 gene, 1.8 kilobase (kb) Open Reading Frame (ORF), and the terminator portion of 0.6 kilobase (kb) were prepared using primers (C35 / C38) was used to amplify by PCR and subcloned into a vector pJAFS1 with a NEO marker (vector from which the hidden Sac1 restriction enzyme portion of pJAF12 was removed). This subcloned plasmid was cut with Sac1 restriction enzyme and transformed with HXL1 deletion mutant strain.
<< HXL1HXL1 스플라이싱Splicing (( splicingsplicing ) 유전자 및 ) Genes and 언스플라이싱Unsplicing (( unsplicingunsplicing ) 유전자의 A) gene IRE1IRE1 결실 fruition 돌연변이균주로의Mutant strain 형질전환> Transformation>
IRE1 결실에 따른 항진균제에 대한 민감성이 HXL1 의존성인지 알아보기 위하여, UPR(Unfolded protein response) 유도체인 튜니카마이신(tunicamycin)이 처리되거나 비처리된 세포로부터 분리된 전체 RNA 유래의 cDNA로부터 HXL1 유전자의 스플라이싱(splicing) mRNA와 언스플라이싱(unsplicing) mRNA을 각각 수득하였다. 얻어낸 mRNA을 통하여 DNA을 얻어내고 이것을 HXL1 프로모터와 터미네이터가 있는 pJAFS1-HXL1PT(pJAF12의 숨겨진 SacI 제한효소 부분을 제거한 후 HXL1 프로모터와 터미네이터가 있는 벡터) 플라즈미드에 서브클로닝하여 pJAFS1-HXL1U 플라즈미드와 pJAFS1-HXL1S 플라즈미드를 얻었다. 이 플라즈미드를 Sac1 제한효소로 자른 후, 이것으로 IRE1 결실 돌연변이 균주를 형질전환시켰다.
To determine whether the susceptibility to antifungal agents due to IRE1 deletion was HXL1 dependent, the HXL1 gene was exchanged from cDNA derived from whole RNA isolated from cells treated with or without tunicamycin, an unfolded protein response (UPR) derivative. Splicing mRNA and unsplicing mRNA were obtained, respectively. DNA was obtained from the obtained mRNA and subcloned into pJAFS1-HXL1PT (HJA1 promoter and terminator vector) plasmid pJAFS1-HXL1PT with HXL1 promoter and terminator, and then subcloned into pJAFS1-HXL1U plasmid and pJAFS1-HXL1S. Obtained plasmid. This plasmid was cut with Sac1 restriction enzyme and then transformed with the IRE1 deletion mutant strain.
<< 크립토코쿠시스Cryptococcus 마우스 모델을 통한 Through mouse model InIn vivovivo 상의 top HXL1HXL1 유전자 및 Gene and IRE1IRE1 유전자 결실 돌연변이의 병원성 확인> Confirm pathogenicity of gene deletion mutations>
UPR 신호전달 경로에 중요한 역할을 하는 Ire1 센서 키나아제/리보뉴클레아제(kinase/ribonuclease)및 그의 목적 유전자인 HXL1이 In vivo상의 병원성에 대하여 어떠한 영향을 알아보기 위하여 4-6주의 A/Jcr mice(Jackson Laboratory, 18-22g)을 이용하였다. 야생형 및 ire1 Δ hxl1 Δ돌연변이 균주및 회복균 균주를 YPD 배지에 24℃에서 16시간 배양한 후에 PBS(phosphate buffered saline) 버퍼 용액에 세척을 한 후에 ㎖당에 106 cell이 되도록 cell수를 맞추어 주었다. 각 야생형, 돌연변이 균주, 및 회복균주당 마우스를 10마리씩 이용하였고 비강안쪽에 105 cell 수 만큼 주입시키는 방법으로 감염을 시켰다. 마우스의 생존은 하루에 2번씩, 6주 동안 관찰하였다.
To investigate the effect of Ire1 sensor kinase / ribonuclease and its target gene, HXL1 , on in vivo pathogenicity, play an important role in UPR signaling pathways. Jackson Laboratory, 18-22 g). Wild-type and ire1 Δ hxl1 Δ mutant strains and restorative strains were incubated in YPD medium at 24 ° C. for 16 hours, washed in PBS (phosphate buffered saline) buffer solution, and the number of cells was adjusted to 10 6 cells per ml. . Ten mice were used per wild type, mutant strain, and recovery strain, and infected by injecting 10 5 cells into the nasal cavity. Survival of mice was observed twice a day for 6 weeks.
<< 실시예Example 1> 1> IRE1IRE1 의 목적 유전자 Gene of interest HXL1HXL1 의 동정The identification of
UPR 신호전달 경로에서 Ire1 키나아제/ 리보뉴클레아제 의 목적 유전자를 찾기 위해, S. cerevisiae에서 목적으로 알려진 Hac1 전사인자의 bZIP 도메인 서열을 이용하여 항원형 A C. neoformans 게놈(genome) 데이터베이스(http://www.broadinstitute.org/annotation/genome/cryptococcus_neoformans/MultiHome.html)를 통하여 후보 유전자를 탐색하였다. 그 결과 5개의 CNAG_00671.2, CNAG_03670.2, CNAG_07560.2, CNAG_07940.2 및 CNAG_03976.2 후보 유전자를 선별하였다.To find the target gene of Ire1 kinase / ribonuclease in the UPR signaling pathway, an antigenic A C. neoformans genome database (http: The candidate genes were searched through //www.broadinstitute.org/annotation/genome/cryptococcus_neoformans/MultiHome.html). As a result, five CNAG_00671.2, CNAG_03670.2, CNAG_07560.2, CNAG_07940.2 and CNAG_03976.2 candidate genes were selected.
Ire1키나아제/ 리보뉴클레아제는 비전통적인 방법으로 목적 mRNA를 특이적 스플라이싱하는 특징이 있다. 따라서, 스플라이싱 양상을 알아보기 위하여 표 2와 같이 RT-PCR 프라이머를 제조하였다. RT-PCR 1 및 2로 나누어 실험을 진행하였다(도 1 참조). UPR 스트레스를 유발하는 DTT와 튜니카마이신을 처리하였을 때 1번과 2번에서 나타나는 스플라이싱 패턴변화를 통해 목적 유전자를 동정하였다(도 2 참조). 이 실험 결과에서 특이적인 스플라이싱이 일어난 CNAG_03670.2이 ire1 Δ 돌연변이 균주에서 스플라이싱이 일어나는지 확인하기 위하여, 위와 동일한 UPR 스트레스를 유발하는 DTT와 튜니카마이신을 처리하고 RT-PCR2을 실행하였다. 그 결과 특이적인 스플라이싱이 야생형에서는 나타났지만 ire1 Δ 돌연변이 균주에서는 나타나지 않았다(도 3 참조) 이 실험 결과를 통해 CNAG_03670.2 mRNA는 Ire1 센서 키나아제/리보뉴클레아제의 목적 유전자라는 것을 확인하였다. 이 실험 결과 밝혀진 CNAG_03670.2이 기존에 알려진 Ire1 센서 키나아제/리보뉴클레아제의 목적 단백질과의 단백질 서열 유사성을 알아보기 위해 계통수 조사(phylogenetic tree)를 실시하였다. 그 결과 기존에 알려진 Ire1 센서 키나아제/리보뉴클레아제의 목적 유전자와의 단백질 서열 유사성이 상당히 상이했다(도 4 참조). 비록 단백질 서열 유사성이 많이 부족하지만 유전자의 이름을 진균에서의 Hac1 전사인자와 인간에서의 Xbp1 전사인자와 특이적인 스플라이싱 유사한 특징을 근거로 HXL1 (HAC1 and XBP1 Like gene 1)이라고 명명하였다.
Ire1 kinase / ribonuclease is characterized by specific splicing of target mRNAs in a non-traditional manner. Therefore, RT-PCR primers were prepared as shown in Table 2 to determine the splicing behavior. The experiment was performed by dividing by RT-
<< 실시예Example 2> 2> ire1ire1 ΔΔ 돌연변이 균주와 Mutant strains and hxl1hxl1 ΔΔ 돌연변이 균주의 Mutant strain UPRUPR 신호전달 경로 저해에 따른 온도 감수성 확인 Determination of temperature sensitivity due to signal transduction inhibition
크립토코쿠스 네오포만스의 병원성에 영향을 미치는 병원성 결정인자로는 식균작용(phagocytosis)을 방해하는 캡슐, 항산화 작용을 하는 멜라닌 및 숙주인 인간의 체온에서 자랄 수 있는 능력이다. 그 중 숙주의 온도인 37℃에서 자랄 수 있는 능력은 병원성을 일으키는데 매우 중요한 요소라고 할 수 있다.
Pathogenic determinants affecting the pathogenicity of Cryptococcus neoforms are capsules that interfere with phagocytosis, antioxidant melanin, and their ability to grow at the body temperature of the host. Among them, the ability to grow at the host temperature of 37 ℃ can be said to be a very important factor in causing pathogenicity.
이러한 온도 민감성이 UPR 신호전달 경로상에서 어떠한 역할을 하는지 알아보기 위하여, 온도 민감성 실험을 수행하였다. 그 결과 ire1 Δ 돌연변이 균주와 hxl1 Δ 돌연변이 균주 모두가 야생형에 비해 37℃에서 상당히 생장이 저해되었다.
In order to examine how this temperature sensitivity plays a role in the UPR signaling pathway, temperature sensitivity experiments were conducted. As a result, both the ire1 Δ mutant strain and the hxl1 Δ mutant strain were significantly inhibited at 37 ° C. compared with the wild type.
ire1 Δ 돌연변이 균주의 경우, HXL1 스플라이싱(splicing) 유전자를 형질전환하더라도 37℃에서의생장이 야생형과 같이 회복되지 않았다. hxl1 Δ 돌연변이 균주의 경우, 35℃에서도 생장이 야생형에 비해 많이 감소된다는 점에서 보다 높은 온도 민감성을 보였다(도 5 참조).
For the ire1 Δ mutant strain, growth at 37 ° C. did not recover as wild type even when the HXL1 splicing gene was transformed. In the case of hxl1 Δ mutant strain, even at 35 ℃ showed a higher temperature sensitivity in that the growth is much reduced compared to the wild type (see Figure 5).
<< 실시예Example 3> 3> ire1ire1 ΔΔ 돌연변이 균주와 Mutant strains and hxl1hxl1 ΔΔ 돌연변이 균주의 Mutant strain UPRUPR 신호전달 경로 저해에 따른 종래 항진균제의 작용 확인 Confirmation of Action of Conventional Antifungal Agents on Signaling Pathway Inhibition
크립토코쿠스 네오포만스의 UPR 신호전달 경로 돌연변이 균주들의 항진균제에 대한 약물 감수성이 있는지를 조사하였다. 그 결과 폴리엔계열의 암포테라신 B 에서 야생형에 비하여 ire1 Δ 돌연변이 균주와 hxl1 Δ 돌연변이 균주 모두 암포테라신 B 감수성이 나타났다. ire1 Δ 돌연변이 균주에 HXL1 스플라이싱(splicing) 유전자를 형질전환시킨 균주에서는 야생형 수준으로 회복되었다. ire1 Δ 돌연변이 균주의 암포테라신 B 감수성은 Hxl1에 의존한다는 것을 보여주었다(도 6).
We investigated whether the drug susceptibility to antifungal agents of the strains of the UPR signaling pathway mutant of Cryptococcus neoforms was investigated. As a result, both the ire1 Δ mutant strain and the hxl1 Δ mutant strain showed amphotericin B susceptibility compared to the wild type in the polyene-based amphoteracin B. The strains in which the HXL1 splicing gene was transformed into the ire1 Δ mutant strain recovered to wild-type levels. It was shown that amphotericin B susceptibility of the ire1 Δ mutant strain was dependent on Hxl1 (FIG. 6).
아졸계열의 약물인 플루코나졸(fluconazole), 이트라코나졸(itraconazole), 케토코나졸(ketoconazole)에 대한 약물 민감성 실험을 한 결과 야생형에 비해 상당히 높은 민감성이 나타났다. 특히 플루코나졸에 대해서는 hxl1 Δ 돌연변이 균주가 ire1 Δ 돌연변이 균주보다 10배 이상의 민감성을 보였다. 이러한 사실은 Hxl1의 조절이 Ire1 뿐만 아니라 다른 상위 조절 단백질에 의해 조절된다는 것을 보여준다고 할 수 있다. ire1 Δ 돌연변이 균주에 HXL1 스플라이싱(splicing) 유전자를 형질전환시킨 균주에서는 야생형 수준으로 회복되는 것을 볼 수 있다. 마찬가지로 아졸계열의 약물 감수성 또한 UPR 신호전달 경로에서 Hxl1에 의존한다는 것을 보여준다(도 6).
Drug sensitivity experiments with azole drugs such as fluconazole, itraconazole and ketoconazole showed significantly higher sensitivity than wild type. In particular, the hxl1 Δ mutant strain was more than 10 times more sensitive to fluconazole than the ire1 Δ mutant strain. This fact suggests that the regulation of Hxl1 is regulated by Ire1 as well as other upregulatory proteins. It can be seen that the strains transformed with the HXL1 splicing gene to the ire1 Δ mutant strain are restored to wild-type levels. Likewise, the drug susceptibility of the azole family also depends on Hxl1 in the UPR signaling pathway (FIG. 6).
페닐피롤 계열의 플루디옥소닐(fludioxonil)에 대한 약물 감수성 실험 결과에서도 마찬가지로 ire1 Δ 돌연변이 균주와 hxl1 Δ 돌연변이 균주 모두 감수성을 보였고, 플루코나졸과 마찬가지로 hxl1 Δ 돌연변이가 ire1 Δ 돌연변이 균주에 비해 100배 정도 민감성이 더 나타났다. 이는 위에서 언급한 바와 같이 Hxl1의 조절이 Ire1 뿐만 아니라 다른 상위 조절 단백질에 의해 조절된 다는 것을 보여준다고 할 수 있다.(도 6).
Phenyl Similarly, in the drug susceptibility results for the pyrrole-based platform Rudy oxo carbonyl (fludioxonil) of ire1 Δ mutant strain with hxl1 Δ mutant strains both showed a sensitivity, as with fluconazole hxl1 Δ mutation ire1 Δ mutant strain sensitivity about 100 times that of This appeared more. This suggests that, as mentioned above, the regulation of Hxl1 is regulated by Ire1 as well as other upregulatory proteins (FIG. 6).
<<
실시예Example
4> 4>
IRE1IRE1
및 And
HXL1HXL1
유전자에 대한 For genes
siRNAsiRNA
를 이용한 Using
UPRUPR
신호전달 경로 저해에 따른 항균 효과 확인 Confirmation of antimicrobial effect by inhibition of signaling pathway
IRE1 및 HXL1 유전자 발현의 사일런싱 실험을 수행할 목적으로 SilencerTM siRNA 칵테일 키트(RNase III; Ambion사)를 이용하여 siRNA를 합성할 수 있다. IRE1 에 대한 dsRNA 합성을 위해 사용된 올리고뉴클레오티드는 아래와 같다: IRE1 And siRNA may be synthesized using a Silencer ™ siRNA cocktail kit (RNase III; Ambion) for the purpose of performing a silencing experiment of HXL1 gene expression. Oligonucleotides used for dsRNA synthesis for IRE1 are as follows:
5'-GATCTCAGATACTATCATTGGTTTTGGATC-3' 및 5'- CAAGTTGTTCGCCGTCGGCGCAAAGGAT-35'-GATCTCAGATACTATCATTGGTTTTGGATC-3 'and 5'- CAAGTTGTTCGCCGTCGGCGCAAAGGAT-3
또한, HXL1 에 dsRNA 합성을 위해 사용된 올리고뉴클레오티드는 아래와 같다:In addition, oligonucleotides used for dsRNA synthesis in HXL1 are as follows:
5'- CCTATCAAGCGTCCTCGTCAATCTAGT -3' 및 5'- CCTATCAAGCGTCCTCGTCAATCTAGT -3'.
5'-CCTATCAAGCGTCCTCGTCAATCTAGT-3 'and 5'-CCTATCAAGCGTCCTCGTCAATCTAGT -3'.
siRNA 염기서열은 IRE1의 경우 431bp(서열번호 4의 서열 1935-2421번째), HXL1의 경우 530bp(서열번호 3의 88 -617번째 뉴클레오타이드) 크기 범위에서 선발하였다(Ahn JH, et al: Identification of the genes differentially expressed in human dendritic cell subsets by cDNA subtraction and microarray analysis. Blood 2002, 100(5):1742-1754 및 Yang YHet al: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 2002, 30(4):e15. 20, 21) 참조). IRE1 및 HXL1 siRNA 설계는 도 7 및 8과 같다. (Hong Liu, et al: RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics, 2002, 160:463-470 참조) 위와 같이 설계한 siRNA을 이용하여 선형화된 siRNA을 전기천공법(electroporation)을 이용하여 야생형 균주을 형질전환시켰다. 이러한 siRNA을 이용한 IRE1 또는 HXL1 유전자의 발현 억제는 유전자 결실에 따른 항진균제 민감성과 병원성, 온도 민감성과 같은 효과가 나타났다.
siRNA sequences were selected from 431 bp for IRE1 (SEQ ID NOs: 1935-2421) and 530 bp for HXL1 (88-617 nucleotides of SEQ ID NO: 3) (Ahn JH, et al: Identification of the genes differentially expressed in human dendritic cell subsets by cDNA subtraction and microarray analysis.Blood 2002, 100 (5): 1742-1754 and Yang YH et al: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Acids Res 2002, 30 (4): e15. 20, 21). IRE1 and HXL1 siRNA designs are shown in FIGS. 7 and 8. (Hong Liu, et al: RNA interference in the pathogenic fungus Cryptococcus neoformans . Genetics, 2002, 160: 463-470) Using the siRNA designed as described above, the linearized siRNA was transformed into wild-type strains by electroporation. Inhibition of the expression of IRE1 or HXL1 gene by siRNA showed effects such as antifungal agent sensitivity, pathogenicity and temperature sensitivity.
<< 실시예Example 5> 5> IRE1IRE1 유전자 및 Gene and HXL1HXL1 유전자 결실에 따른 Due to gene deletion UPRUPR 신호전달 경로 저해가In Signaling Pathway Inhibition In vivovivo 상의 병원성에 미치는 영향 확인 Effects on pathogenicity
크립토코쿠스 네오포만스의 UPR 신호전달 경로 돌연변이 균주들의 병원성을 마우스모델을 통해 조사하였다. 그 결과 UPR 신호전달 경로 돌연변이인 ire1 Δ 및 hxl1 Δ 돌연변이 균주의 병원성이 야생형에 비해 현저히 저하됨을 확인할 수 있었다. 이는 UPR 신호전달 경로가 크립토코쿠스의 병원성에 중요한 역할을 함을 알 수 있다.(도9 및 10).
The pathogenicity of the mutants of the UPR signaling pathway mutant of Cryptococcus neoforms was investigated using a mouse model. As a result, it was confirmed that the pathogenicity of the ire1 Δ and hxl1 Δ mutant strains, UPR signaling pathway mutations are significantly reduced compared to the wild type. It can be seen that the UPR signaling pathway plays an important role in the pathogenicity of Cryptococcus (FIGS. 9 and 10).
<110> Industry-Academic Cooperation Foundation, Yonsei University <120> Use of IRE1 gene and HXL1 gene in UPR signal pathway for treating mycoses or meningoencephalitis <130> IPDB39767 <160> 4 <170> KopatentIn 2.0 <210> 1 <211> 426 <212> PRT <213> Cryptococcus neoformans <400> 1 Met Ala Thr Ala Val Ala Ser Pro Ser Ser Phe Ser Pro Ile Pro Ser 1 5 10 15 Thr Ser Lys Arg Ser Ala Pro Ser Pro Ser Ser Ser Gln Pro Ile Lys 20 25 30 Arg Pro Arg Gln Ser Ser Ser Ser Pro Arg Asp Glu Asp Glu Ala Ala 35 40 45 Ala Ser Asp Glu Asp Leu Asp Glu Glu Ala Arg Ala Lys Leu Ala Arg 50 55 60 Lys Glu Ala Arg Thr Ile Arg Asn Arg Glu Ser Ala Gln Arg Ser Arg 65 70 75 80 Asn Ala Arg Lys Ala His Val Ala Trp Leu Glu Lys Arg Val Val Glu 85 90 95 Leu Glu Ala Glu Asn Arg Ser Leu Lys Gly Glu Pro Pro Thr Ser Thr 100 105 110 Asp Pro Val Pro Ala Ala Ala Thr Pro Glu Pro Thr Ala Gln Pro Leu 115 120 125 Thr Arg Glu Ala Ser Thr Glu His Asp Val Leu Ser Phe Ala Asn Asp 130 135 140 Leu Gly Ile Pro Thr Glu Ile Val Ser Ser Gly Val Ser Leu Ser Asn 145 150 155 160 Val Ala Pro Pro Pro Ser Ser Val Asp Val Asp Val Lys Pro Ile Ile 165 170 175 Glu Pro Ser Pro Leu Thr Leu Ala Ser Pro Ala Val Val Leu Thr Ser 180 185 190 Asn Asp Asp Leu Val Ala Ile Lys Thr Glu Asn Ala Ser Leu Arg Gln 195 200 205 Arg Val Thr Leu Leu Glu Asn Leu Val Lys Gln Val Val Ala Ile Ala 210 215 220 Asn Phe Ser Pro Pro Val Pro Ser Thr Ser Gln Arg Thr Pro Val Asn 225 230 235 240 Gln Phe Ala Ser Leu Pro Ser Gln Ser Ser Leu Asp Trp Ser Ser Thr 245 250 255 Leu Ser Ala Thr Ser Val Leu Pro Ala Gly Leu Ser Ser Thr Leu Ser 260 265 270 Pro Gly Leu Pro Ala Arg Asn Ser Thr Val Ser Thr Thr Ser Ala Ser 275 280 285 Gln Leu Thr His His Ala Gln Thr Ser Gln Pro Glu Leu Ala Ser Ser 290 295 300 Gln Asn Val Ser Asn Pro Val Ala Cys His Ser Ala Ala Gly Glu Gly 305 310 315 320 Glu Leu Phe Asp Ala Leu Phe Gly Val Gly Val Gly Glu Gly Arg Glu 325 330 335 Ala Asn Gly Ala Gly Ser Glu Val Asn His Arg Leu Gly Glu Thr Gln 340 345 350 Gly Leu Asp Ile Ser Ser Ser Thr Ile Gln Ser Thr Ser Gly His Gly 355 360 365 Val Glu Gly Met Phe Gly Arg Glu Glu Met Gln Ala Ala Val Glu Ser 370 375 380 Trp Asp Glu Ala Met Lys Ala Leu Ile Glu Asp Leu Glu Gly Gly Gln 385 390 395 400 Lys Glu Glu Lys Ala Asp Asp Arg Glu Glu Glu Gln Lys Gly Met Glu 405 410 415 Trp Leu Asn Val Glu Arg Gly Ile Met Ala 420 425 <210> 2 <211> 1281 <212> DNA <213> Cryptococcus neoformans <400> 2 atggctaccg ctgtcgcttc tccttcctca ttctccccta ttccttcgac ttccaagcga 60 tctgccccct ctccttcatc atcgcaacct atcaagcgtc ctcgtcaatc tagttcatca 120 cccagggatg aggacgaggc agccgcaagt gatgaagatc tggatgaaga agcccgtgca 180 aagctggccc gtaaagaagc tagaaccatc cgtaaccgcg aatcagctca aagatcacgt 240 aacgcccgca aagcccatgt tgcatggcta gagaagcgcg tagtcgagtt ggaggccgaa 300 aatcgctccc tgaaaggaga gccaccaacg tcgacggatc cggttccggc tgcggctacc 360 cccgagccca ctgcacagcc tcttacccga gaagcttcca cagagcacga cgtattgtcc 420 ttcgccaacg accttggtat cccaacagaa atcgttagca gtggtgtaag cttgtcaaac 480 gtcgcacctc ctccgtcgag cgtagatgta gacgtcaagc caataatcga gccttcacct 540 ctcacactcg catcgcctgc ggtagtgttg acctcgaatg acgatctagt ggctatcaag 600 acggagaacg caagcctgag acaaagagta acgttgctgg agaacctcgt taagcaggtt 660 gtggccattg ccaatttcag cccgcctgtc ccttctacat ctcaacggac cccagtcaac 720 caatttgcat cattaccttc gcagtcgtct cttgattggt cgtcgacgct ctcggcgaca 780 tccgttttgc ccgccggtct ttcttctacc ctttcgcctg gcctccctgc ccgtaactcc 840 actgtgtcca ccacctcggc ttctcagctt acgcaccatg cccagacctc ccaaccggaa 900 ctggcgtctt cccaaaatgt atcgaacccc gtcgcttgcc actcagcagc gggcgagggg 960 gaattattcg atgcactctt tggcgttggc gttggcgaag gacgagaagc gaatggcgca 1020 ggtagcgagg ttaatcatcg ccttggcgag acacaagggc tggatatctc atcctcgacg 1080 atccaatcaa cctctggaca cggcgtggaa gggatgtttg gaagggagga gatgcaggca 1140 gcggtcgaga gttgggatga ggcgatgaag gcgttaattg aggatcttga gggagggcag 1200 aaggaggaga aggcagatga cagagaggaa gagcagaaag gaatggagtg gttgaatgtt 1260 gagaggggta ttatggcttg a 1281 <210> 3 <211> 1072 <212> PRT <213> Cryptococcus neoformans <400> 3 Met Leu Tyr Phe Leu Phe Leu Leu Pro Leu Leu Ile Ala Tyr Ala Ala 1 5 10 15 Pro Glu Pro Ala Ala Leu Ile Pro Phe Pro His His Thr Leu Arg Ala 20 25 30 Leu Ala Pro Ser Ser Thr Ala Thr Leu Pro Val Gln Ile Asp His Asp 35 40 45 Leu His Pro Leu Val Leu Val Ser Thr Ile Asp Gly Ala Leu His Ala 50 55 60 Leu Glu Arg Ser Thr Gly Lys Glu Lys Trp Val Leu Glu Gly Asp Pro 65 70 75 80 Leu Val Gly Gly Lys Met Lys Gly Gly Val Glu Glu Tyr Ile Val Glu 85 90 95 Pro Leu Ser Gly Ser Leu Tyr Val His Glu Asp Lys Asp Gly Glu Met 100 105 110 Arg Met Arg Lys Leu Pro Leu Ser Val Asp Gln Leu Ile Glu Leu Ser 115 120 125 Pro Phe Thr Phe Pro Glu Ser Pro Thr Gln Ile Phe Thr Gly Ser Lys 130 135 140 His Thr Ser Leu Met Ser Val Asp Leu Arg Thr Gly Glu Gln Val Asp 145 150 155 160 Cys Phe Ser Pro Thr Ala Asn Leu Ser Gln Tyr Asp Gly Ser Ser Val 165 170 175 Cys Asp Asp Leu Asp Asp Leu Glu Arg Arg Gly Ser Ser Gln Arg Asp 180 185 190 Thr Leu Phe Ile Gly Arg Thr Asp Tyr Arg Leu Thr Ile His Ser Pro 195 200 205 Ser Ser Ser Gln Gly Leu Ser Thr Tyr Thr Ser Ala Ala Tyr Pro Ala 210 215 220 Glu Lys Lys Ser Ala Pro Ala Val Gln Glu Ile Ser Tyr Ser Thr Tyr 225 230 235 240 Thr Pro Asn Ala Tyr Asn Arg Pro Leu Ala Glu Ser Trp Val Lys Ala 245 250 255 Gly Val Ala His Gln Ser Trp Gly Pro Asp Asn Glu Glu Pro Arg Ile 260 265 270 Arg Ile Glu Leu Gly Phe Asn Gly Lys Ala Leu Gly Val Lys Pro Gly 275 280 285 Gly Gly Leu Ile Trp Asn Arg Glu Leu Glu His Ile Gly Val Gly Val 290 295 300 Tyr Glu Ile Leu Ile Pro Arg Glu Asn Pro Leu Gly Ala Pro Ile Leu 305 310 315 320 Val Pro Gln Pro Pro Ala His Leu Pro Ala Leu Phe Pro Gly Gln Asn 325 330 335 Asp Pro Arg Ala Phe Asn Ile His Asp Ala Pro Pro Ser Thr Tyr Ile 340 345 350 Ala Thr Leu Pro Glu Cys Leu Thr Leu Pro Ser Ser Asn Thr Thr Ser 355 360 365 Gly Asn Ala Thr Ala Gly Asn Lys Asp Thr Lys Pro Leu His Phe Ala 370 375 380 Leu Ser Ser Ser Ser Tyr Pro Leu Ile Asn Phe Ala Arg Pro Pro Pro 385 390 395 400 Pro Gly His Leu Ser Asp Gly Leu Phe Tyr Asn Ala Asp Asp Gly Asp 405 410 415 Ser Ser Asp Leu Asp His Ser Arg Gly Arg Gly Leu Leu Ser Gly Leu 420 425 430 Ile Asp Pro Pro Arg Glu His Glu Thr Ile Asp Pro Pro Phe Ile Glu 435 440 445 Arg Gln Ala Gly Pro Ala Lys Asn Gly Trp Trp Arg Trp Val Val Ala 450 455 460 Leu Gly Met Leu Leu Ile Leu Leu Gly Gly Val Met Val Arg Phe Gly 465 470 475 480 Arg Gly Lys Gly Ser Val Pro Gly Ser Val Glu Ser Lys Val Asp Glu 485 490 495 Lys Met Pro Leu Leu Ala Val Pro Val His Glu Val Arg Leu Glu Glu 500 505 510 Lys Glu Glu Glu Glu Glu Glu Asp Val Leu Pro Val Val Lys Ser Ala 515 520 525 Pro Val Val Arg Ile Gln Glu Pro Ser Ser Thr Pro Glu Asp Ser Pro 530 535 540 Pro Arg Ser Glu Gly Thr Pro Glu Thr His Gln Thr Ala Thr Pro Pro 545 550 555 560 Pro Lys Lys Lys Ser Thr Arg Arg Arg Val Arg Gly Lys Lys Lys Lys 565 570 575 Pro Asp Ala Thr Thr Thr Ala Thr Ala Ala Gly Leu Thr Ala Glu Glu 580 585 590 Arg Asp Gly Glu Asn Glu Asp Glu Asp His Glu Lys Asp Lys Glu Asp 595 600 605 Phe Ser Pro Arg Ala Thr Pro Lys Gly Gly Asn Lys Pro Leu Pro Glu 610 615 620 Leu Pro Arg Glu Leu Ser Ser Thr Asp Leu Leu Asp Tyr Asp Gln Asp 625 630 635 640 Lys Glu Arg Leu Ala Ile Ser Asp Thr Ile Ile Gly Phe Gly Ser His 645 650 655 Gly Thr Val Val Leu Lys Gly Thr Trp Gly Gly Arg Pro Val Ala Val 660 665 670 Lys Arg Leu Leu Ser Asp Phe Thr Arg Leu Ala Ser Gln Glu Val Lys 675 680 685 Leu Leu Gln Ala Ser Asp Asp His Pro Asn Val Ile Arg Tyr Tyr Cys 690 695 700 Gln Glu Lys Arg Asp Asn Phe Leu Tyr Ile Ala Leu Asp Leu Cys Gln 705 710 715 720 Ala Ser Leu Ala Asp Leu Ile Glu Ser Pro Glu Lys His Arg Glu Leu 725 730 735 Ala Asp Gln Leu Asp Arg Lys Arg Ala Leu Met Glu Val Thr Lys Gly 740 745 750 Leu Lys His Leu His Gly Met Lys Ile Ile His Arg Asp Ile Lys Pro 755 760 765 Gln Asn Val Leu Val Ser Gln Thr Pro Ser Gly Leu Arg Ile Leu Val 770 775 780 Ser Asp Phe Gly Leu Ala Arg Arg Leu Gly Gln Asp Gln Ser Ser Phe 785 790 795 800 Ala Pro Thr Ala Asn Asn Leu Ala Gly Ser Leu Gly Trp Arg Ala Pro 805 810 815 Glu Cys Ile Arg Gly Val Val Arg Leu Asn Glu Gly Phe Asp Ala Ser 820 825 830 Ser Ser Val Gly Ser Ser Gly Gly Ile Ala Asn Ala Glu Asp Gly Val 835 840 845 Ala Arg Ser Arg Leu Thr Lys Ala Val Asp Leu Phe Ala Leu Gly Cys 850 855 860 Leu Tyr Phe Trp Val Leu Leu Ser Gly Glu His Pro Phe Gly Glu Thr 865 870 875 880 Tyr Asn Arg Glu Ser Asn Ile Val Lys Gly Glu Ala Val Asn Met Gly 885 890 895 Met Leu Ser Leu Leu Gly Glu Glu Arg Glu Glu Val Glu Asp Leu Val 900 905 910 Lys Met Leu Leu Ser Thr Glu Pro Asp Ala Arg Pro Ser Thr Ser Glu 915 920 925 Cys Leu Thr His Pro Ile Phe Trp Pro Ala Ala Lys Arg Leu Gly Phe 930 935 940 Leu Cys Asp Ala Ser Asp Arg Phe Glu Ile Met Gln Thr Glu Pro Ala 945 950 955 960 Glu Pro Thr Leu Val Leu Leu Glu Gln Gly Ala Gln Ser Val Val Gly 965 970 975 Lys Asp Trp Tyr Ser Arg Leu Asp Lys Thr Phe Thr Gly Ser Leu Gly 980 985 990 Lys Tyr Arg Lys Tyr Lys Gly Gly Ser Val Arg Asp Met Leu Arg Ala 995 1000 1005 Met Arg Asn Lys Lys His His Tyr Gln Asp Leu Glu Pro Ala Val Gln 1010 1015 1020 Lys His Leu Gly Ala Leu Pro Ala Gly Phe Leu Leu Tyr Phe Ser Ser 1025 1030 1035 1040 Arg Tyr Pro Lys Leu Leu Met His Val Tyr Arg Thr Val Lys Glu Ser 1045 1050 1055 Glu Leu Arg Glu Glu Ser Met Phe Glu Gly Cys Phe Gln Glu Ala Val 1060 1065 1070 <210> 4 <211> 1072 <212> DNA <213> Cryptococcus neoformans <400> 4 MLYFLFLLPL LIAYAAPEPA ALIPFPHHTL RALAPSSTAT LPVQIDHDLH PLVLVSTIDG 60 ALHALERSTG KEKWVLEGDP LVGGKMKGGV EEYIVEPLSG SLYVHEDKDG EMRMRKLPLS 120 VDQLIELSPF TFPESPTQIF TGSKHTSLMS VDLRTGEQVD CFSPTANLSQ YDGSSVCDDL 180 DDLERRGSSQ RDTLFIGRTD YRLTIHSPSS SQGLSTYTSA AYPAEKKSAP AVQEISYSTY 240 TPNAYNRPLA ESWVKAGVAH QSWGPDNEEP RIRIELGFNG KALGVKPGGG LIWNRELEHI 300 GVGVYEILIP RENPLGAPIL VPQPPAHLPA LFPGQNDPRA FNIHDAPPST YIATLPECLT 360 LPSSNTTSGN ATAGNKDTKP LHFALSSSSY PLINFARPPP PGHLSDGLFY NADDGDSSDL 420 DHSRGRGLLS GLIDPPREHE TIDPPFIERQ AGPAKNGWWR WVVALGMLLI LLGGVMVRFG 480 RGKGSVPGSV ESKVDEKMPL LAVPVHEVRL EEKEEEEEED VLPVVKSAPV VRIQEPSSTP 540 EDSPPRSEGT PETHQTATPP PKKKSTRRRV RGKKKKPDAT TTATAAGLTA EERDGENEDE 600 DHEKDKEDFS PRATPKGGNK PLPELPRELS STDLLDYDQD KERLAISDTI IGFGSHGTVV 660 LKGTWGGRPV AVKRLLSDFT RLASQEVKLL QASDDHPNVI RYYCQEKRDN FLYIALDLCQ 720 ASLADLIESP EKHRELADQL DRKRALMEVT KGLKHLHGMK IIHRDIKPQN VLVSQTPSGL 780 RILVSDFGLA RRLGQDQSSF APTANNLAGS LGWRAPECIR GVVRLNEGFD ASSSVGSSGG 840 IANAEDGVAR SRLTKAVDLF ALGCLYFWVL LSGEHPFGET YNRESNIVKG EAVNMGMLSL 900 LGEEREEVED LVKMLLSTEP DARPSTSECL THPIFWPAAK RLGFLCDASD RFEIMQTEPA 960 EPTLVLLEQG AQSVVGKDWY SRLDKTFTGS LGKYRKYKGG SVRDMLRAMR NKKHHYQDLE 1020 PAVQKHLGAL PAGFLLYFSS RYPKLLMHVY RTVKESELRE ESMFEGCFQE AV 1072 <110> Industry-Academic Cooperation Foundation, Yonsei University <120> Use of IRE1 gene and HXL1 gene in UPR signal pathway for treating mycoses or meningoencephalitis <130> IPDB39767 <160> 4 <170> KopatentIn 2.0 <210> 1 <211> 426 <212> PRT <213> Cryptococcus neoformans <400> 1 Met Ala Thr Ala Val Ala Ser Pro Ser Ser Phe Ser Pro Ile Pro Ser 1 5 10 15 Thr Ser Lys Arg Ser Ala Pro Ser Pro Ser Ser Ser Gln Pro Ile Lys 20 25 30 Arg Pro Arg Gln Ser Ser Ser Ser Pro Arg Asp Glu Asp Glu Ala Ala 35 40 45 Ala Ser Asp Glu Asp Leu Asp Glu Glu Ala Arg Ala Lys Leu Ala Arg 50 55 60 Lys Glu Ala Arg Thr Ile Arg Asn Arg Glu Ser Ala Gln Arg Ser Arg 65 70 75 80 Asn Ala Arg Lys Ala His Val Ala Trp Leu Glu Lys Arg Val Val Glu 85 90 95 Leu Glu Ala Glu Asn Arg Ser Leu Lys Gly Glu Pro Pro Thr Ser Thr 100 105 110 Asp Pro Val Pro Ala Ala Ala Thr Pro Glu Pro Thr Ala Gln Pro Leu 115 120 125 Thr Arg Glu Ala Ser Thr Glu His Asp Val Leu Ser Phe Ala Asn Asp 130 135 140 Leu Gly Ile Pro Thr Glu Ile Val Ser Ser Gly Val Ser Leu Ser Asn 145 150 155 160 Val Ala Pro Pro Pro Ser Ser Val Asp Val Asp Val Lys Pro Ile Ile 165 170 175 Glu Pro Ser Pro Leu Thr Leu Ala Ser Pro Ala Val Val Leu Thr Ser 180 185 190 Asn Asp Asp Leu Val Ala Ile Lys Thr Glu Asn Ala Ser Leu Arg Gln 195 200 205 Arg Val Thr Leu Leu Glu Asn Leu Val Lys Gln Val Val Ala Ile Ala 210 215 220 Asn Phe Ser Pro Pro Val Pro Ser Thr Ser Gln Arg Thr Pro Val Asn 225 230 235 240 Gln Phe Ala Ser Leu Pro Ser Gln Ser Ser Leu Asp Trp Ser Ser Thr 245 250 255 Leu Ser Ala Thr Ser Val Leu Pro Ala Gly Leu Ser Ser Thr Leu Ser 260 265 270 Pro Gly Leu Pro Ala Arg Asn Ser Thr Val Ser Thr Thr Ser Ala Ser 275 280 285 Gln Leu Thr His His Ala Gln Thr Ser Gln Pro Glu Leu Ala Ser Ser 290 295 300 Gln Asn Val Ser Asn Pro Val Ala Cys His Ser Ala Ala Gly Glu Gly 305 310 315 320 Glu Leu Phe Asp Ala Leu Phe Gly Val Gly Val Gly Glu Gly Arg Glu 325 330 335 Ala Asn Gly Ala Gly Ser Glu Val Asn His Arg Leu Gly Glu Thr Gln 340 345 350 Gly Leu Asp Ile Ser Ser Ser Thr Ile Gln Ser Thr Ser Gly His Gly 355 360 365 Val Glu Gly Met Phe Gly Arg Glu Glu Met Gln Ala Ala Val Glu Ser 370 375 380 Trp Asp Glu Ala Met Lys Ala Leu Ile Glu Asp Leu Glu Gly Gly Gln 385 390 395 400 Lys Glu Glu Lys Ala Asp Asp Arg Glu Glu Glu Gln Lys Gly Met Glu 405 410 415 Trp Leu Asn Val Glu Arg Gly Ile Met Ala 420 425 <210> 2 <211> 1281 <212> DNA <213> Cryptococcus neoformans <400> 2 atggctaccg ctgtcgcttc tccttcctca ttctccccta ttccttcgac ttccaagcga 60 tctgccccct ctccttcatc atcgcaacct atcaagcgtc ctcgtcaatc tagttcatca 120 cccagggatg aggacgaggc agccgcaagt gatgaagatc tggatgaaga agcccgtgca 180 aagctggccc gtaaagaagc tagaaccatc cgtaaccgcg aatcagctca aagatcacgt 240 aacgcccgca aagcccatgt tgcatggcta gagaagcgcg tagtcgagtt ggaggccgaa 300 aatcgctccc tgaaaggaga gccaccaacg tcgacggatc cggttccggc tgcggctacc 360 cccgagccca ctgcacagcc tcttacccga gaagcttcca cagagcacga cgtattgtcc 420 ttcgccaacg accttggtat cccaacagaa atcgttagca gtggtgtaag cttgtcaaac 480 gtcgcacctc ctccgtcgag cgtagatgta gacgtcaagc caataatcga gccttcacct 540 ctcacactcg catcgcctgc ggtagtgttg acctcgaatg acgatctagt ggctatcaag 600 acggagaacg caagcctgag acaaagagta acgttgctgg agaacctcgt taagcaggtt 660 gtggccattg ccaatttcag cccgcctgtc ccttctacat ctcaacggac cccagtcaac 720 caatttgcat cattaccttc gcagtcgtct cttgattggt cgtcgacgct ctcggcgaca 780 tccgttttgc ccgccggtct ttcttctacc ctttcgcctg gcctccctgc ccgtaactcc 840 actgtgtcca ccacctcggc ttctcagctt acgcaccatg cccagacctc ccaaccggaa 900 ctggcgtctt cccaaaatgt atcgaacccc gtcgcttgcc actcagcagca gggcgagggg 960 gaattattcg atgcactctt tggcgttggc gttggcgaag gacgagaagc gaatggcgca 1020 ggtagcgagg ttaatcatcg ccttggcgag acacaagggc tggatatctc atcctcgacg 1080 atccaatcaa cctctggaca cggcgtggaa gggatgtttg gaagggagga gatgcaggca 1140 gcggtcgaga gttgggatga ggcgatgaag gcgttaattg aggatcttga gggagggcag 1200 aaggaggaga aggcagatga cagagaggaa gagcagaaag gaatggagtg gttgaatgtt 1260 gagaggggta ttatggcttg a 1281 <210> 3 <211> 1072 <212> PRT <213> Cryptococcus neoformans <400> 3 Met Leu Tyr Phe Leu Phe Leu Leu Pro Leu Leu Ile Ala Tyr Ala Ala 1 5 10 15 Pro Glu Pro Ala Ala Leu Ile Pro Phe Pro His His Thr Leu Arg Ala 20 25 30 Leu Ala Pro Ser Ser Thr Ala Thr Leu Pro Val Gln Ile Asp His Asp 35 40 45 Leu His Pro Leu Val Leu Val Ser Thr Ile Asp Gly Ala Leu His Ala 50 55 60 Leu Glu Arg Ser Thr Gly Lys Glu Lys Trp Val Leu Glu Gly Asp Pro 65 70 75 80 Leu Val Gly Gly Lys Met Lys Gly Gly Val Glu Glu Tyr Ile Val Glu 85 90 95 Pro Leu Ser Gly Ser Leu Tyr Val His Glu Asp Lys Asp Gly Glu Met 100 105 110 Arg Met Arg Lys Leu Pro Leu Ser Val Asp Gln Leu Ile Glu Leu Ser 115 120 125 Pro Phe Thr Phe Pro Glu Ser Pro Thr Gln Ile Phe Thr Gly Ser Lys 130 135 140 His Thr Ser Leu Met Ser Val Asp Leu Arg Thr Gly Glu Gln Val Asp 145 150 155 160 Cys Phe Ser Pro Thr Ala Asn Leu Ser Gln Tyr Asp Gly Ser Ser Val 165 170 175 Cys Asp Asp Leu Asp Asp Leu Glu Arg Arg Gly Ser Ser Gln Arg Asp 180 185 190 Thr Leu Phe Ile Gly Arg Thr Asp Tyr Arg Leu Thr Ile His Ser Pro 195 200 205 Ser Ser Ser Gln Gly Leu Ser Thr Tyr Thr Ser Ala Ala Tyr Pro Ala 210 215 220 Glu Lys Lys Ser Ala Pro Ala Val Gln Glu Ile Ser Tyr Ser Thr Tyr 225 230 235 240 Thr Pro Asn Ala Tyr Asn Arg Pro Leu Ala Glu Ser Trp Val Lys Ala 245 250 255 Gly Val Ala His Gln Ser Trp Gly Pro Asp Asn Glu Glu Pro Arg Ile 260 265 270 Arg Ile Glu Leu Gly Phe Asn Gly Lys Ala Leu Gly Val Lys Pro Gly 275 280 285 Gly Gly Leu Ile Trp Asn Arg Glu Leu Glu His Ile Gly Val Gly Val 290 295 300 Tyr Glu Ile Leu Ile Pro Arg Glu Asn Pro Leu Gly Ala Pro Ile Leu 305 310 315 320 Val Pro Gln Pro Pro Ala His Leu Pro Ala Leu Phe Pro Gly Gln Asn 325 330 335 Asp Pro Arg Ala Phe Asn Ile His Asp Ala Pro Pro Ser Thr Tyr Ile 340 345 350 Ala Thr Leu Pro Glu Cys Leu Thr Leu Pro Ser Ser Asn Thr Thr Ser 355 360 365 Gly Asn Ala Thr Ala Gly Asn Lys Asp Thr Lys Pro Leu His Phe Ala 370 375 380 Leu Ser Ser Ser Ser Tyr Pro Leu Ile Asn Phe Ala Arg Pro Pro Pro 385 390 395 400 Pro Gly His Leu Ser Asp Gly Leu Phe Tyr Asn Ala Asp Asp Gly Asp 405 410 415 Ser Ser Asp Leu Asp His Ser Arg Gly Arg Gly Leu Leu Ser Gly Leu 420 425 430 Ile Asp Pro Pro Arg Glu His Glu Thr Ile Asp Pro Pro Phe Ile Glu 435 440 445 Arg Gln Ala Gly Pro Ala Lys Asn Gly Trp Trp Arg Trp Val Val Ala 450 455 460 Leu Gly Met Leu Leu Ile Leu Leu Gly Gly Val Met Val Arg Phe Gly 465 470 475 480 Arg Gly Lys Gly Ser Val Pro Gly Ser Val Glu Ser Lys Val Asp Glu 485 490 495 Lys Met Pro Leu Leu Ala Val Pro Val His Glu Val Arg Leu Glu Glu 500 505 510 Lys Glu Glu Glu Glu Glu Glu Asp Val Leu Pro Val Val Lys Ser Ala 515 520 525 Pro Val Val Arg Ile Gln Glu Pro Ser Ser Thr Pro Glu Asp Ser Pro 530 535 540 Pro Arg Ser Glu Gly Thr Pro Glu Thr His Gln Thr Ala Thr Pro Pro 545 550 555 560 Pro Lys Lys Lys Ser Thr Arg Arg Arg Val Arg Gly Lys Lys Lys Lys 565 570 575 Pro Asp Ala Thr Thr Thr Ala Thr Ala Ala Gly Leu Thr Ala Glu Glu 580 585 590 Arg Asp Gly Glu Asn Glu Asp Glu Asp His Glu Lys Asp Lys Glu Asp 595 600 605 Phe Ser Pro Arg Ala Thr Pro Lys Gly Gly Asn Lys Pro Leu Pro Glu 610 615 620 Leu Pro Arg Glu Leu Ser Ser Thr Asp Leu Leu Asp Tyr Asp Gln Asp 625 630 635 640 Lys Glu Arg Leu Ala Ile Ser Asp Thr Ile Ile Gly Phe Gly Ser His 645 650 655 Gly Thr Val Val Leu Lys Gly Thr Trp Gly Gly Arg Pro Val Ala Val 660 665 670 Lys Arg Leu Leu Ser Asp Phe Thr Arg Leu Ala Ser Gln Glu Val Lys 675 680 685 Leu Leu Gln Ala Ser Asp Asp His Pro Asn Val Ile Arg Tyr Tyr Cys 690 695 700 Gln Glu Lys Arg Asp Asn Phe Leu Tyr Ile Ala Leu Asp Leu Cys Gln 705 710 715 720 Ala Ser Leu Ala Asp Leu Ile Glu Ser Pro Glu Lys His Arg Glu Leu 725 730 735 Ala Asp Gln Leu Asp Arg Lys Arg Ala Leu Met Glu Val Thr Lys Gly 740 745 750 Leu Lys His Leu His Gly Met Lys Ile Ile His Arg Asp Ile Lys Pro 755 760 765 Gln Asn Val Leu Val Ser Gln Thr Pro Ser Gly Leu Arg Ile Leu Val 770 775 780 Ser Asp Phe Gly Leu Ala Arg Arg Leu Gly Gln Asp Gln Ser Ser Phe 785 790 795 800 Ala Pro Thr Ala Asn Asn Leu Ala Gly Ser Leu Gly Trp Arg Ala Pro 805 810 815 Glu Cys Ile Arg Gly Val Val Arg Leu Asn Glu Gly Phe Asp Ala Ser 820 825 830 Ser Ser Val Gly Ser Ser Gly Gly Ile Ala Asn Ala Glu Asp Gly Val 835 840 845 Ala Arg Ser Arg Leu Thr Lys Ala Val Asp Leu Phe Ala Leu Gly Cys 850 855 860 Leu Tyr Phe Trp Val Leu Leu Ser Gly Glu His Pro Phe Gly Glu Thr 865 870 875 880 Tyr Asn Arg Glu Ser Asn Ile Val Lys Gly Glu Ala Val Asn Met Gly 885 890 895 Met Leu Ser Leu Leu Gly Glu Glu Arg Glu Glu Val Glu Asp Leu Val 900 905 910 Lys Met Leu Leu Ser Thr Glu Pro Asp Ala Arg Pro Ser Thr Ser Glu 915 920 925 Cys Leu Thr His Pro Ile Phe Trp Pro Ala Ala Lys Arg Leu Gly Phe 930 935 940 Leu Cys Asp Ala Ser Asp Arg Phe Glu Ile Met Gln Thr Glu Pro Ala 945 950 955 960 Glu Pro Thr Leu Val Leu Leu Glu Gln Gly Ala Gln Ser Val Val Gly 965 970 975 Lys Asp Trp Tyr Ser Arg Leu Asp Lys Thr Phe Thr Gly Ser Leu Gly 980 985 990 Lys Tyr Arg Lys Tyr Lys Gly Gly Ser Val Arg Asp Met Leu Arg Ala 995 1000 1005 Met Arg Asn Lys Lys His His Tyr Gln Asp Leu Glu Pro Ala Val Gln 1010 1015 1020 Lys His Leu Gly Ala Leu Pro Ala Gly Phe Leu Leu Tyr Phe Ser Ser 1025 1030 1035 1040 Arg Tyr Pro Lys Leu Leu Met His Val Tyr Arg Thr Val Lys Glu Ser 1045 1050 1055 Glu Leu Arg Glu Glu Ser Met Phe Glu Gly Cys Phe Gln Glu Ala Val 1060 1065 1070 <210> 4 <211> 1072 <212> DNA <213> Cryptococcus neoformans <400> 4 MLYFLFLLPL LIAYAAPEPA ALIPFPHHTL RALAPSSTAT LPVQIDHDLH PLVLVSTIDG 60 ALHALERSTG KEKWVLEGDP LVGGKMKGGV EEYIVEPLSG SLYVHEDKDG EMRMRKLPLS 120 VDQLIELSPF TFPESPTQIF TGSKHTSLMS VDLRTGEQVD CFSPTANLSQ YDGSSVCDDL 180 DDLERRGSSQ RDTLFIGRTD YRLTIHSPSS SQGLSTYTSA AYPAEKKSAP AVQEISYSTY 240 TPNAYNRPLA ESWVKAGVAH QSWGPDNEEP RIRIELGFNG KALGVKPGGG LIWNRELEHI 300 GVGVYEILIP RENPLGAPIL VPQPPAHLPA LFPGQNDPRA FNIHDAPPST YIATLPECLT 360 LPSSNTTSGN ATAGNKDTKP LHFALSSSSY PLINFARPPP PGHLSDGLFY NADDGDSSDL 420 DHSRGRGLLS GLIDPPREHE TIDPPFIERQ AGPAKNGWWR WVVALGMLLI LLGGVMVRFG 480 RGKGSVPGSV ESKVDEKMPL LAVPVHEVRL EEKEEEEEED VLPVVKSAPV VRIQEPSSTP 540 EDSPPRSEGT PETHQTATPP PKKKSTRRRV RGKKKKPDAT TTATAAGLTA EERDGENEDE 600 DHEKDKEDFS PRATPKGGNK PLPELPRELS STDLLDYDQD KERLAISDTI IGFGSHGTVV 660 LKGTWGGRPV AVKRLLSDFT RLASQEVKLL QASDDHPNVI RYYCQEKRDN FLYIALDLCQ 720 ASLADLIESP EKHRELADQL DRKRALMEVT KGLKHLHGMK IIHRDIKPQN VLVSQTPSGL 780 RILVSDFGLA RRLGQDQSSF APTANNLAGS LGWRAPECIR GVVRLNEGFD ASSSVGSSGG 840 IANAEDGVAR SRLTKAVDLF ALGCLYFWVL LSGEHPFGET YNRESNIVKG EAVNMGMLSL 900 LGEEREEVED LVKMLLSTEP DARPSTSECL THPIFWPAAK RLGFLCDASD RFEIMQTEPA 960 EPTLVLLEQG AQSVVGKDWY SRLDKTFTGS LGKYRKYKGG SVRDMLRAMR NKKHHYQDLE 1020 PAVQKHLGAL PAGFLLYFSS RYPKLLMHVY RTVKESELRE ESMFEGCFQE AV 1072
Claims (32)
(b) 상기 단백질의 양 또는 활성을 측정하는 단계; 및
(c) 상기 Hxl1 단백질의 양 또는 활성이 감소조절(down regulation)되는 것으로 측정될 때, 상기 시료가 항균제임을 판별하는 단계를 포함하는 항균제 스크리닝 방법.(a) contacting a sample to be analyzed with a cell comprising an Hxl1 protein represented by SEQ ID NO: 1 or an Ire1 protein represented by SEQ ID NO: 3;
(b) measuring the amount or activity of the protein; And
(c) determining that the sample is an antimicrobial agent when the amount or activity of the Hxl1 protein is determined to be down regulated.
(b) 상기 유전자의 발현량을 측정하는 단계; 및
(c) 상기 유전자의 발현량이 감소조절(down-regulation)되는 것으로 측정될 때, 상기 시료가 항균제임을 판별하는 단계를 포함하는 항균제 스크리닝 방법.(a) contacting a sample to be analyzed with a cell comprising the HXL1 gene represented by SEQ ID NO: 2 or the IRE1 gene represented by SEQ ID NO: 4;
(b) measuring the expression level of the gene; And
(c) when the expression level of the gene is measured to be down-regulation, determining that the sample is an antimicrobial agent.
(b) 서열번호 1로 표시되는 Hxl1 단백질 또는 서열번호 3으로 표시되는 Ire1 단백질을 포함하는 세포에 분석할 시료 및 상기 항균제를 접촉시키고, 상기 단백질의 양 또는 활성을 측정하는 제 2 측정 단계; 및
(c) 제 1 및 제 2 측정 단계의 측정값을 비교하여, 제 2 측정 단계의 측정값이 제 1 측정 단계의 측정값보다 감소조절(down-regulation)될 때, 상기 시료가 병용 투여용 항균제임을 판별하는 병용 투여용 항균제 스크리닝 방법.(a) a first measurement step of contacting an antimicrobial agent to a cell comprising an Hxl1 protein represented by SEQ ID NO: 1 or an Ire1 protein represented by SEQ ID NO: 3, and measuring the amount or activity of the protein;
(b) a second measurement step of contacting a sample to be analyzed with a cell containing Hxl1 protein represented by SEQ ID NO: 1 or Ire1 protein represented by SEQ ID NO: 3 and the antimicrobial agent, and measuring the amount or activity of the protein; And
(c) comparing the measured values of the first and second measuring steps such that when the measured value of the second measuring step is down-regulated than the measured value of the first measuring step, the sample is antimicrobial for concomitant administration. Antimicrobial screening method for concomitant administration to determine whether or not.
(b) 서열번호 2로 표시되는 HXL1 유전자 또는 서열번호 4로 표시되는 IRE1 유전자를 포함하는 세포에 분석할 시료 및 상기 항균제를 접촉시키고, 상기 유전자의 발현량을 측정하는 제 2 측정 단계; 및
(c) 제 1 및 제 2 측정 단계의 측정값을 비교하여, 제 2 측정 단계의 측정값이 제 1 측정 단계의 측정값보다 감소조절(down-regulation)될 때, 상기 시료가 병용 투여용 항균제임을 판별하는 병용 투여용 항균제 스크리닝 방법.(a) a first measurement step of contacting an antimicrobial agent to a cell comprising the HXL1 gene represented by SEQ ID NO: 2 or the IRE1 gene represented by SEQ ID NO: 4, and measuring the expression level of the gene;
(b) a second measurement step of contacting a sample to be analyzed and the antimicrobial agent to a cell including the HXL1 gene represented by SEQ ID NO: 2 or the IRE1 gene represented by SEQ ID NO: 4, and measuring the expression level of the gene; And
(c) comparing the measured values of the first and second measuring steps such that when the measured value of the second measuring step is down-regulated than the measured value of the first measuring step, the sample is antimicrobial for concomitant administration. Antimicrobial screening method for concomitant administration to determine whether or not.
항균제는 아졸계열 또는 비 아졸계열 항균제인 병용투여용 항균제 스크리닝 방법.The method according to claim 3 or 4,
The antimicrobial agent screening method for concomitant administration of antimicrobial agents is an azole or non-azole antibacterial agent.
아졸계열 항균제는 플루코나졸(fluconazole), 이트라코나졸(itraconazole), 보리코나졸(voriconazole) 및 케토코나졸(ketoconazole) 중 어느 하나 이상인 병용투여용 항균제 스크리닝 방법.The method according to claim 3 or 4,
The azole-based antibacterial agent is any one or more of fluconazole, itraconazole, voriconazole and ketoconazole.
비 아졸계열 항균제는 암포테라신 B 또는 플루디옥소닐(fludioxonil)인 병용투여용 항균제 스크리닝 방법.The method according to claim 3 or 4,
A non-azole antibacterial agent is amphoteracin B or fludioxonil, a combination antimicrobial screening method.
(a) 단계를 35℃ 내지 40℃에서 수행하는 항균제 스크리닝 방법.3. The method according to claim 1 or 2,
(A) The antimicrobial screening method is carried out at 35 ℃ to 40 ℃.
(a) 단계의 세포는 크립토코쿠스 네오포만스인 항균제 스크리닝 방법.3. The method according to claim 1 or 2,
The method of screening an antimicrobial agent in step (a) is Cryptococcus neoformus.
(a) 및 (b) 단계를 35℃ 내지 40℃에서 수행하는 병용투여용 항균제 스크리닝 방법.The method according to claim 3 or 4,
Conjugated antimicrobial screening method for performing steps (a) and (b) at 35 ° C to 40 ° C.
(a) 및 (b) 단계의 세포는 크립토코쿠스 네오포만스인 병용투여용 항균제 스크리닝 방법.The method according to claim 3 or 4,
The method of (a) and (b), wherein the cells are Cryptococcus neoforms screening method of antimicrobial agent for concomitant use.
상기 안티센스 또는 siRNA 올리고뉴클레오타이드는 서열번호 2의 뉴클레오타이드 서열 88 -617번째 뉴클레오타이드에 상보적인 서열을 가지는 항균용 약제학적 조성물.The method of claim 12,
The antisense or siRNA oligonucleotide is an antimicrobial pharmaceutical composition having a sequence complementary to the nucleotide sequence 88 -617th nucleotide of SEQ ID NO: 2.
상기 안티센스 또는 siRNA 올리고뉴클레오타이드는 서열번호 4의 뉴클레오타이드 서열 1935-2421번째 뉴클레오타이드에 상보적인 서열을 가지는 항균용 약제학적 조성물.
The method of claim 12,
The antisense or siRNA oligonucleotide is an antimicrobial pharmaceutical composition having a sequence complementary to the nucleotide sequence 1935-2421 nucleotide of SEQ ID NO: 4.
(b) 상기 단백질의 양 또는 활성을 측정하는 단계; 및
(c) 상기 Hxl1 단백질의 양 또는 활성이 감소조절(down regulation)되는 것으로 측정될 때, 상기 시료가 뇌수막염 치료제임을 판별하는 단계를 포함하는 뇌수막염 치료제 스크리닝 방법.(a) contacting a sample to be analyzed with a cell comprising an Hxl1 protein represented by SEQ ID NO: 1 or an Ire1 protein represented by SEQ ID NO: 3;
(b) measuring the amount or activity of the protein; And
(c) determining that the sample is a meningitis therapeutic agent when the amount or activity of the Hxl1 protein is determined to be down regulated.
(b) 상기 유전자의 발현량을 측정하는 단계; 및
(c) 상기 유전자의 발현량이 감소조절(down-regulation)되는 것으로 측정될 때, 상기 시료가 뇌수막염 치료제임을 판별하는 단계를 포함하는 뇌수막염 치료제 스크리닝 방법.(a) contacting a sample to be analyzed with a cell comprising the HXL1 gene represented by SEQ ID NO: 2 or the IRE1 gene represented by SEQ ID NO: 4;
(b) measuring the expression level of the gene; And
(c) when the amount of expression of the gene is determined to be down-regulation, determining that the sample is a meningitis therapeutic agent.
(b) 서열번호 1로 표시되는 Hxl1 단백질 또는 서열번호 3으로 표시되는 Ire1 단백질을 포함하는 세포에 분석할 시료 및 상기 뇌수막염 치료제를 접촉시키고, 상기 단백질의 양 또는 활성을 측정하는 제 2 측정 단계; 및
(c) 제 1 및 제 2 측정 단계의 측정값을 비교하여, 제 2 측정 단계의 측정값이 제 1 측정 단계의 측정값보다 감소조절(down-regulation)될 때, 상기 시료가 병용 투여용 뇌수막염 치료제임을 판별하는 병용 투여용 뇌수막염 치료제 스크리닝 방법.(a) a first measurement step of contacting a cell containing a Hxl1 protein represented by SEQ ID NO: 1 or an Ire1 protein represented by SEQ ID NO: 3 with a therapeutic agent for meningitis and measuring the amount or activity of the protein;
(b) a second measurement step of contacting a sample to be analyzed with a cell containing the Hxl1 protein represented by SEQ ID NO: 1 or the Ire1 protein represented by SEQ ID NO: 3, and the therapeutic agent for meningitis, and measuring the amount or activity of the protein; And
(c) comparing the measured values of the first and second measuring steps, when the measured value of the second measuring step is down-regulated than the measured value of the first measuring step, the sample is used for meningitis for co-administration Meningitis therapeutic agent screening method for concomitant administration to determine if it is a therapeutic agent.
(b) 서열번호 2로 표시되는 HXL1 유전자 또는 서열번호 4로 표시되는 IRE1 유전자를 포함하는 세포에 분석할 시료 및 상기 뇌수막염 치료제를 접촉시키고, 상기 유전자의 발현량을 측정하는 제 2 측정 단계; 및
(c) 제 1 및 제 2 측정 단계의 측정값을 비교하여, 제 2 측정 단계의 측정값이 제 1 측정 단계의 측정값보다 감소조절(down-regulation)될 때, 상기 시료가 병용 투여용 뇌수막염 치료제임을 판별하는 병용 투여용 뇌수막염 치료제 스크리닝 방법.(a) a first measurement step of contacting a cell containing a HXL1 gene represented by SEQ ID NO: 2 or an IRE1 gene represented by SEQ ID NO: 4 with a therapeutic agent for meningitis, and measuring the expression level of the gene;
(b) a second measurement step of contacting a sample to be analyzed with a cell containing the HXL1 gene represented by SEQ ID NO: 2 or the IRE1 gene represented by SEQ ID NO: 4, and the meningitis therapeutic agent, and measuring the expression level of the gene; And
(c) comparing the measured values of the first and second measuring steps, when the measured value of the second measuring step is down-regulated than the measured value of the first measuring step, the sample is used for meningitis for co-administration Meningitis therapeutic agent screening method for concomitant administration to determine if it is a therapeutic agent.
뇌수막염 치료제는 아졸계열 또는 비 아졸계열 뇌수막염 치료제인 병용투여용 뇌수막염 치료제 스크리닝 방법.The method of claim 17 or 18,
The meningitis therapeutic agent is a azole-type or non-azole-type meningitis therapeutic agent.
아졸계열 뇌수막염 치료제는 플루코나졸(fluconazole), 이트라코나졸 (itraconazole), 보리코나졸(voriconazole) 및 케토코나졸(ketoconazole) 중 어느 하나 이상인 병용투여용 뇌수막염 치료제 스크리닝 방법.The method of claim 17 or 18,
The azole-based meningitis therapeutic agent is any one or more of fluconazole, itraconazole, voriconazole and ketoconazole.
비 아졸계열 뇌수막염 치료제는 암포테라신 B 또는 플루디옥소닐(fludioxonil)인 병용투여용 뇌수막염 치료제 스크리닝 방법.The method of claim 17 or 18,
A non-azole-based meningitis therapeutic agent is amphotericin B or fludioxonil.
(a) 단계를 35℃ 내지 40℃에서 수행하는 뇌수막염 치료제 스크리닝 방법.17. The method according to claim 15 or 16,
(a) Meningitis treatment agent screening method is carried out at 35 ℃ to 40 ℃.
(a) 단계의 세포는 크립토코쿠스 네오포만스인 뇌수막염 치료제 스크리닝 방법.17. The method according to claim 15 or 16,
The method of screening the meningitis therapeutic agent cell (a) is Cryptococcus neoformus.
(a) 및 (b) 단계를 35℃ 내지 40℃에서 수행하는 병용투여용 뇌수막염 치료제 스크리닝 방법.The method of claim 17 or 18,
A method for screening a concomitant meningitis therapeutic agent, wherein steps (a) and (b) are performed at 35 ° C to 40 ° C.
(a) 및 (b) 단계의 세포는 크립토코쿠스 네오포만스인 병용투여용 뇌수막염 치료제 스크리닝 방법.The method of claim 17 or 18,
The method of (a) and (b) the cells are Cryptococcus neo-formance screening method for concomitant meningitis therapeutics.
상기 안티센스 또는 siRNA 올리고뉴클레오타이드는 서열번호 2의 뉴클레오타이드 서열 88 -617번째 뉴클레오타이드에 상보적인 서열을 가지는 뇌수막염 치료용 약제학적 조성물.The method of claim 26,
The antisense or siRNA oligonucleotide is a pharmaceutical composition for treating meningitis having a sequence complementary to the nucleotide sequence 88 -617th nucleotide of SEQ ID NO: 2.
상기 안티센스 또는 siRNA 올리고뉴클레오타이드는 서열번호 4의 뉴클레오타이드 서열 1935-2421번째 뉴클레오타이드에 상보적인 서열을 가지는 뇌수막염 치료용 약제학적 조성물.The method of claim 26,
The antisense or siRNA oligonucleotide is a pharmaceutical composition for treating meningitis having a sequence complementary to the nucleotide sequence 1935-2421 nucleotide of SEQ ID NO: 4.
서열번호 2로 표시되는 HXL1 유전자. 31. The method of claim 30,
HXL1 gene represented by SEQ ID NO: 2.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100133885A KR101311196B1 (en) | 2010-12-23 | 2010-12-23 | Use of IRE1 gene and HXL1 gene in UPR signal pathway for treating mycoses or meningoencephalitis |
PCT/KR2011/009862 WO2012087004A2 (en) | 2010-12-23 | 2011-12-20 | Use of upr signaling pathway genes ire1 and hxl1 for treatment of fungal infection and meningitis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100133885A KR101311196B1 (en) | 2010-12-23 | 2010-12-23 | Use of IRE1 gene and HXL1 gene in UPR signal pathway for treating mycoses or meningoencephalitis |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120143893A Division KR101403862B1 (en) | 2012-12-11 | 2012-12-11 | Use of IRE1 gene and HXL1 gene in UPR signal pathway for treating mycoses or meningoencephalitis |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120072096A true KR20120072096A (en) | 2012-07-03 |
KR101311196B1 KR101311196B1 (en) | 2013-09-27 |
Family
ID=46314614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100133885A KR101311196B1 (en) | 2010-12-23 | 2010-12-23 | Use of IRE1 gene and HXL1 gene in UPR signal pathway for treating mycoses or meningoencephalitis |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101311196B1 (en) |
WO (1) | WO2012087004A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101683002B1 (en) * | 2015-07-03 | 2016-12-07 | 배재대학교 산학협력단 | USE OF sppA GENE AND SppA PROTEIN FOR TREATMENT OF ASPERGILLOSIS |
WO2021054786A3 (en) * | 2019-09-18 | 2021-05-14 | (주)앰틱스바이오 | Use of gene involved in passage through brain-blood barrier and survival inside brain of causative fungi of meningoencephalitis |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104164443B (en) * | 2014-07-14 | 2016-11-16 | 东华大学 | A kind of Dual-Luciferase detecting live body yeast cells UPR level monitors plasmid and structure thereof and application |
SI3209319T1 (en) * | 2014-10-21 | 2022-01-31 | Hexima Limited | A method of treatment of fungal infections |
EP3279330A4 (en) * | 2015-03-30 | 2019-02-20 | Amtixbio Co., Ltd. | Novel gene regulating virulence ofcryptococcus neoformans |
CN109476714A (en) * | 2016-07-22 | 2019-03-15 | 诺维信公司 | Improved filamentous fungi host |
KR20160117380A (en) | 2016-07-25 | 2016-10-10 | (주)앰틱스바이오 | Novel genes for regulating the virulence of Cryptococcus neoformans and their use |
KR20160118162A (en) | 2016-07-25 | 2016-10-11 | (주)앰틱스바이오 | Novel target genes for anti-fungal agent of Cryptococcus neoformans and their use |
KR20170078561A (en) | 2017-05-23 | 2017-07-07 | (주)앰틱스바이오 | Novel genes for regulating the virulence of Cryptococcus neoformans and their use |
CN107308178B (en) * | 2017-07-31 | 2020-11-10 | 苏州大学附属儿童医院 | A medicine for treating parenteral nutrition-related liver disease |
-
2010
- 2010-12-23 KR KR1020100133885A patent/KR101311196B1/en active IP Right Grant
-
2011
- 2011-12-20 WO PCT/KR2011/009862 patent/WO2012087004A2/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101683002B1 (en) * | 2015-07-03 | 2016-12-07 | 배재대학교 산학협력단 | USE OF sppA GENE AND SppA PROTEIN FOR TREATMENT OF ASPERGILLOSIS |
WO2021054786A3 (en) * | 2019-09-18 | 2021-05-14 | (주)앰틱스바이오 | Use of gene involved in passage through brain-blood barrier and survival inside brain of causative fungi of meningoencephalitis |
Also Published As
Publication number | Publication date |
---|---|
KR101311196B1 (en) | 2013-09-27 |
WO2012087004A2 (en) | 2012-06-28 |
WO2012087004A3 (en) | 2012-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101311196B1 (en) | Use of IRE1 gene and HXL1 gene in UPR signal pathway for treating mycoses or meningoencephalitis | |
Kelly et al. | The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence | |
Wartenberg et al. | Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant | |
Gerik et al. | Cell wall integrity is dependent on the PKC1 signal transduction pathway in Cryptococcus neoformans | |
KR101403862B1 (en) | Use of IRE1 gene and HXL1 gene in UPR signal pathway for treating mycoses or meningoencephalitis | |
Gelis et al. | Pga13 in Candida albicans is localized in the cell wall and influences cell surface properties, morphogenesis and virulence | |
Park et al. | Transcriptional responses of Candida albicans to epithelial and endothelial cells | |
Chiang et al. | Candida albicans protein kinase CK2 governs virulence during oropharyngeal candidiasis | |
Bednenko et al. | Two GW repeat proteins interact with Tetrahymena thermophila argonaute and promote genome rearrangement | |
Thomas et al. | The activity of RTA2, a downstream effector of the calcineurin pathway, is required during tunicamycin-induced ER stress response in Candida albicans | |
Yu et al. | Histone acetylation regulator Gcn5 mediates drug resistance and virulence of Candida glabrata | |
Sussholz et al. | SlRLK‐like is a malectin‐like domain protein affecting localization and abundance of LeEIX2 receptor resulting in suppression of EIX‐induced immune responses | |
Zheng et al. | A newly characterized dense granule protein (GRA76) is important for the growth and virulence of Toxoplasma gondii | |
US9017956B2 (en) | Use of the genes in the Hog, Ras and cAMP pathway for treatment of fungal infection | |
US20210130867A1 (en) | Novel kinase for treating and preventing fungal infections, and use thereof | |
Sanglard et al. | Molecular principles of antifungal drug resistance | |
Zeng et al. | Inactivating the mannose-ethanolamine phosphotransferase Gpi7 confers caspofungin resistance in the human fungal pathogen Candida albicans | |
KR20110124941A (en) | Use of tco1, mbp1, atf1 or ras1 for treatment of fungal infection | |
KR20170077848A (en) | Bud32 Protein for the treatment and prevention of fungal infection and the use thereof | |
KR102670084B1 (en) | Novel kinase for treatment and prevention of fungal infection and the use thereof | |
Deshmukh et al. | Depletion of splicing factor Cdc5 in Toxoplasma disrupts transcriptome integrity, induces stress-driven abortive bradyzoite formation, and triggers host protective immunity | |
Mansisidor | Mechanisms of Ribosomal DNA Copy-number Regulation | |
Boucher et al. | Phenotypic landscape of a fungal meningitis pathogen reveals its unique biology | |
Chen et al. | The Cryptococcus neoformans | |
KR20170076628A (en) | Mps1 Protein for the treatment and prevention of fungal infection and the use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
A107 | Divisional application of patent | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160919 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170901 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180910 Year of fee payment: 6 |