KR20120063501A - 클라우드 토폴로지 내 기업 확장을 위한 확장 가능 구조 - Google Patents

클라우드 토폴로지 내 기업 확장을 위한 확장 가능 구조 Download PDF

Info

Publication number
KR20120063501A
KR20120063501A KR1020127008396A KR20127008396A KR20120063501A KR 20120063501 A KR20120063501 A KR 20120063501A KR 1020127008396 A KR1020127008396 A KR 1020127008396A KR 20127008396 A KR20127008396 A KR 20127008396A KR 20120063501 A KR20120063501 A KR 20120063501A
Authority
KR
South Korea
Prior art keywords
cloud
address
enterprise network
data center
network
Prior art date
Application number
KR1020127008396A
Other languages
English (en)
Other versions
KR101355721B1 (ko
Inventor
리 에란 리
토마스 우
Original Assignee
알까뗄 루슨트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 알까뗄 루슨트 filed Critical 알까뗄 루슨트
Publication of KR20120063501A publication Critical patent/KR20120063501A/ko
Application granted granted Critical
Publication of KR101355721B1 publication Critical patent/KR101355721B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/54Organization of routing tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation

Abstract

다양한 실시예들은 클라우드 데이터 센터, 클라우드 데이터 센터를 포함하는 시스템, 및 관련 방법에 대한 것이다. 클라우드 데이터 센터는 클라우드 네트워크 안의 논리적 네트워크 내 어드레스들과 사기업 네트워크 내 어드레스들 사이에 패킷을 전송하기 위한 논리적 고객 에지 라우터를 포함할 수 있다. 논리적 네트워크는 사기업 네트워크에 할당되며 가상 머신들이라 알려진 자원들을 가질 수 있으며, 사기업 네트워크와 공통 IP 어드레스 공간을 공유할 수 있다. 클라우드 데이터 센터에 있는 디렉토리가 논리적 네트워크 안의 위치 IP 어드레스 및 클라우드 IP 어드레스와 가상 머신들의 기업 IP 어드레스들을 연관시킬 수 있다. 클라우드 데이터 센터는 패킷을 논리적 네트워크 내 어떤 목적지로 전송할 때, 두 개의 특정 헤더들인 cloudIP 및 locIP 헤더와 함께 패킷들을 이중 캡슐화할 수 있다.

Description

클라우드 토폴로지 내 기업 확장을 위한 확장 가능 구조{SCALABLE ARCHITECTURE FOR ENTERPRISE EXTENSION IN A CLOUD TOPOLOGY}
여기에 개시된 실시예들은 일반적으로 네트워크 기반구조 및 인터넷 통신에 관한 것이다.
클라우드 컴퓨팅 네트워크는 고도로 확장 가능한 동적 서비스로서, 클라우드 컴퓨팅 제공자들이 인터넷을 통해 고객들에게 자원을 제공할 수 있게 한다. 클라우드 기반구조는 추상화 계층을 제공하여, 고객들이 요청된 자원들을 제공하는 클라우드 안에서 특정 기반구조에 대한 지식을 요하지 않는다. 그러한 서비스는 고객들이 피크 사용에 대한 추가 하드웨어에 대한 자본 지출을 피할 수 있게 하는데, 이는 고객들이 매일 사용할 사기업 네트워크에 이미 자리 잡은 기반구조를 이용하면서 큰 부하에 대해 클라우드 안에서 추가 자원들을 사용할 수 있기 때문이다.
예를 들어, IaaS(infrastructure as a service) 같은 시스템들은 고객들이 자신들의 컴퓨터 애플리케이션을 실행시킬 컴퓨터들을 렌트할 수 있게 한다. 그러한 시스템은 자원들의 확장 가능한 배치를 가능하게 하며, 여기서 고객들은 자신들이 선택한 소프트웨어를 구동하기 위해 가상 머신, 즉 서버 인스턴스를 생성한다. 고객들은 필요시, 보통 사용되는 액티브 서버들에 대해 비용을 청구하는 제공자들과 함께 이러한 가상 머신들을 생성, 사용 및 파기할 수 있다.
그러나 기존의 서비스들은 사기업 네트워크 안에 있는 자원들 같은 할당 자원들을 다루지 않는다. 이것은 예컨대, 애플리케이션이 특정 위치로 데이터를 전송할 때나 내부 내트워크 및 클라우드 네트워크가 상이한 어드레스 공간이나 어드레싱 방안을 사용할 때 문제를 초래할 수 있다. 클라우드 자원들을 악의적 공격으로부터 분리시키고 클라우드 네트워크 자원들로의 접속이 내부 네트워크 기반구조를 위태롭게 하지 못하게 하는 것과 관련된 문제들 역시 존재한다. 또한 고객들은 내부 및 클라우드 둘 모두의 위치들로부터의 자원들을 균등한 것으로 취급하는 대신, 내부 및 클라우드 자원들의 별개 집합들을 다룸에 따라 추가되는 복잡함에 직면할 수 있다.
그에 따라, IaaS 너머에서, 클라우드 네트워크 내 어떤 고객에게 할당된 자원들을 고객의 기존 사기업 네트워크 안에 완벽하게 통합시킬 필요가 있다. 그러한 확장은 할당된 모든 클라우드 자원들이 사기업 네트워크 안에 위치하는 자원들과 유사하게 보이고 행동하게 할 것이다. 그러한 구현예는 기업의 업무부담이 전용 사기업 네트워크의 자원들 및 클라우드 토폴로지 내 할당 자원들의 동적인 혼합을 통해 끊어짐 없이 확산될 수 있게 할 것이다.
상기의 관점에서, 클라우드 네트워크 내 자원들을 포함하도록 사기업 네트워크를 끊어짐 없이 확장시키는 것이 바람직할 것이다. 보다 구체적으로 말하면, 고객이 사설 네트워크 상에서의 자원들과 같은 방식으로 클라우드 자원들을 취급할 수 있도록 사기업 네트워크 내 자원들과 클라우드 네트워크 내 할당 자원들 사이에 통신을 가능하게 하는 것이 바람직할 것이다. 본 명세서를 읽고 이해할 때 다른 바람직한 양태들이 당업자들에게 자명하게 될 것이다.
사기업 네트워크의 클라우드 네트워크로의 끊어짐 없는(seamless) 확장이라는 현재의 필요성에 비추어, 전형적인 다양한 실시예들의 간략한 개요가 제공된다. 이하의 개요에서 일부 단순화 및 생략이 이뤄질 수 있으며, 이는 전형적인 다양한 실시예들의 어떤 양태들을 강조 및 소개하고자 함이며 본 발명의 범위를 한정하고자 하는 것은 아니다. 당업자가 본 발명의 개념들을 만들고 이용할 수 있게 하는데 알맞은 바람직한 전형적 실시예에 대한 상세한 설명이 다음 장에서 이어질 것이다.
다양한 전형적 실시예들은 클라우드 네트워크의 자원들을 사기업 네트워크로 통합하는 방법에 관한 것이다. 그것은 클라우드 데이터 센터를 개입시킬 수 있으며, 클라우드 데이터 센터는 클라우드 네트워크 내 클라우드 데이터 센터 안에 논리적 고객 에지 라우터(logical customer edge router)를 생성하는 단계, 사기업 네트워크의 어드레스 공간 안에 있는 IP 서브넷(subnet)을 수신하는 단계, IP 서브넷으로부터 IP 어드레스를 사기업 네트워크에 할당된 자원들을 포함하는 클라우드 네트워크 내 논리적 네트워크 안에 있는 각각의 자원에 할당하는 단계, 클라우드 데이터 센터의 논리적 고객 에지 라우터에 있는 가상 라우팅 및 포워딩 테이블에 상기 IP 서브넷에 대한 라우팅 엔트리를 추가하는 단계, 라우팅 엔트리를 사기업 네트워크 내 모든 고객 에지 라우터들로 전달하는 단계, 및 모든 기업 어드레스들을 클라우드 데이터 센터 내 논리적 고객 에지 라우터의 위치 IP 어드레스 및 클라우드 IP 어드레스에 매핑시키는 디폴트 엔트리를 디렉토리 서버 안에 추가하는 단계를 수행할 수 있다.
다양한 전형적 실시예들은 또한 사기업 네트워크 내 소스로부터 수신된 패킷을 사기업 네트워크에 할당된 클라우드 네트워크 내 목적지로 전송하는 방법에 관한 것이다. 이것은 클라우드 데이터 센터 내 논리적 고객 에지 라우터를 개입시킬 수 있으며, 그 논리적 고객 에지 라우터는, 사기업 네트워크 내 소스로부터 패킷을 수신하는 단계, 디렉토리 서버에서 목적지의 클라우드 IP 어드레스 및 위치 IP 어드레스를 조회(query)하는 단계, 논리적 고객 에지 라우터가 목적지가 논리적 네트워크 안에 있다고 판단할 때, 수신된 패킷을 캡슐화하는 단계, 수신된 패킷을 목적지의 해당 위치 IP 헤더를 가지고 추가 캡슐화하는 단계, 및 수신된 패킷을 목적지로 전달하되, 논리적 고객 에지 라우터는 수신된 패킷을 목적지 위치 IP 어드레스를 통해 목적지 클라우드 IP 어드레스로 전달하는 단계를 수행한다.
다양한 전형적 실시예들은 또한 사기업 네트워크에 할당된 클라우드 네트워크 내 소스로부터 발신된 패킷을 전달하는 방법에 관한 것이다. 이것은 하이퍼바이저(hypervisor)를 개입시키며, 하이퍼바이저는, 사기업 네트워크에 할당된 자원들을 포함하는 클라우드 네트워크 내 논리적 네트워크 안의 가상 머신으로부터 패킷을 수신하는 단계, 패킷의 목적지 어드레스가 가상 머신을 주재하는 서버에 있는 가상 라우팅 및 포워딩 테이블에 없을 때, 논리적 네트워크 내 디렉토리 서버에서 목적지 어드레스를 조회하는 단계, 패킷을 클라우드 IP 헤더로 캡슐화하는 단계, 패킷을 위치 IP 헤더를 가지고 추가 캡슐화하는 단계, 및 패킷을 위치 IP 어드레스로 전달하는 단계를 수행할 수 있다.
다양한 전형적 실시예들은 또한 사기업 네트워크에 할당된 자원들을 포함하는 클라우드 네트워크 내 논리적 네트워크로 사기업 네트워크를 확장하는 시스템을 포함할 수도 있다. 이것은 사기업 네트워크와 동일한 IP 어드레스 공간을 공유하는 논리적 네트워크 내 일련의 서버들을 포함할 수 있다. 각각의 서버는 사기업 네트워크에 할당된 서버 상의 자원들을 포함하는 가상 머신 및 상기 가상 머신을 주재하는 하이퍼바이저를 포함할 수 있다. 시스템은 또한, 논리적 네트워크를 사기업 네트워크에 연결시키는 사기업 네트워크와 동일한 IP 어드레스 공간을 공유하는 논리적 네트워크 내 논리적 고객 에지 라우터, 및 사기업 네트워크 내 적어도 한 고객 에지 라우터를 포함할 수도 있다.
다양한 전형적인 실시예들은 또한 클라우드 네트워크 내 논리적 고객 에지 라우터를 포함할 수도 있다. 논리적 고객 에지 라우터는 사기업 네트워크 내 적어도 한 개의 고객 에지 라우터에 연결하는 논리적 고객 에지 라우터 및 사기업 네트워크에 할당된 가상 머신을 주재하는 서버를 포함할 수 있다. 사설 네트워크 내 고객 에지 라우터와 가상 머신과 클라우드 네트워크 내 논리적 고객 에지 라우터는 사기업 네트워크에 할당된 공통 IP 어드레스 공간을 공유할 수 있다.
상술한 사항에 따라, 다양한 전형적 실시예들은 클라우드 자원들을 기업의 사설 어드레스 공간 안에 배치시킴으로써, 클라우드 자원들을 기업의 기존 토폴로지 안에 끊어짐 없이 통합시킬 수 있다. 다양한 실시예들은 또한 기업 네트워크 밖의 어떤 자원들로부터 분리되는, 기업 네트워크의 보안 바운더리 안쪽에 클라우드 자원들을 배치시킴으로써 보안을 보장한다. 그에 따라 고객은 자신이 기업 네트워크의 내부 자원들을 구성 및 관리하는 것과 같은 방식으로 클라우드 자원들을 구성할 수 있다. 이러한 효과들 외에, 다양한 실시예들은 또한 클라우드 컴퓨팅 패러다임의 이점들, 즉 고도로 동적인 클라우드 자원들의 확장성을 유지시킨다.
이제 실시예들에 따른 장치 및/또는 방법의 일부 실시예들이 단지 예로서 첨부 도면을 참조하여 기술된다.
도 1은 사기업 네트워크를 클라우드 네트워크로 확장시키기 위한 전형적 네트워크의 개략도이다.
도 2는 L3 프로토콜을 이용하는 패킷 전송의 개략도이다.
도 3은 확장된 기업 네트워크에서 보여지는 네트워크 장치들의 전형적인 가상 라우팅 및 포워딩 테이블의 개략도이다.
도 4는 클라우드 네트워크에서 보여지는 네트워크 장치들의 위치 엔트리들에 대한 전형적인 디렉토리 테이블의 개략도이다.
도 5는 확장된 기업 네트워크를 통해 전송된 전형적인 데이터그램의 콘텐츠를 예시한 개략도이다.
도 6은 사기업 네트워크 내 한 위치로부터 클라우드 네트워크 내 한 목적지로 패킷을 전송하는 방법의 전형적 실시예의 흐름도이다.
도 7은 클라우드 네트워크 안에 있는 한 위치로부터 패킷을 전송하는 방법의 전형적 실시예의 흐름도이다.
도 8은 할당된 클라우드 자원들을 사기업 네트워크로 통합시키는 방법의 전형적 실시예의 흐름도이다.
이제 동일한 참조 부호가 동일한 구성요소들이나 단계들을 지칭하는 도면들을 참조하여, 다양한 전형적 실시예들의 광범위한 양태들이 개시된다.
도 1은 사기업 네트워크를 클라우드 토폴로지로 확장시키기 위한 전형적 네트워크(100)의 개략도이다. 다양한 전형적 실시예들에서, 네트워크(100)는 사기업 네트워크(101), 서비스제공자 네트워크(102), 클라우드 네트워크(103), 고객 에지(customer edge(CE)) 장치들(110a-h), 제공자 에지 장치들(111a-h), 클라우드 데이터 센터 CE(112), 데이터 센터 접속부(113), 및 각각 하이퍼비이저(115a-d) 및 가상 머신(116a-d)을 보유하는 서버들(114a-d)을 포함한다.
사기업 네트워크(101), 서비스 제공자 네트워크(102) 및 클라우드 네트워크(103)는 각각 패킷 교환 네트워크들일 수 있다. 그러한 패킷 교환 네트워크들은 패킷 기반 프로토콜에 따라 동작하는 어떤 네트워크일 수 있다. 따라서, 네트워크들(101, 102, 103)은 각각 예컨대 TCP/IP(Transmission Control Protocol/Internet Protocol), MPLS(Multi Protocol Label Switching), ATM(Asynchronous Transfer Mode), 프레임 릴레이, 이더넷, PBT(Provider Backbone Transport), 또는 당업자에게 자명할 수 있는 어떤 다른 알맞은 패킷 기반 프로토콜에 따라 동작할 수 있다. 보다 구체적으로 말하면, 패킷 교환 네트워크들(101, 102, 103)은 MPLS와 같은 계층 3 프로토콜을 이용하는 가상의 사설 네트워크(virtual private network:VPN)로서 통신할 수 있다.
사기업 네트워크(101)는 고객 개체에 전용되는 하드웨어를 포함하는 네트워크일 수 있으며, 기업 내 기기들이 동일한 어드레스 공간을 점유하도록 구성될 수 있다. 전형적인 일 실시예에서, 사기업 네트워크(101)는 일련의 고객 에지(CE) 장치들(110a-e)을 포함한다.
도 1에 예시된 실시예에서, 사기업 네트워크 A(Ent A)는 서비스 제공자 네트워크(102)를 통해 서로 통신하는 두 개의 서로 다른 사이트에 자리하는 고객 에지 장치들(110a-e)을 포함한다. 일부 실시예들에서, 사기업 네트워크(101)는 동일한 사이트에서 서로에 대해 직접 연결되는 장치들을 포함할 수 있다.
사기업 네트워크(101) 내 장치들은 동일한 어드레스 공간을 공유할 수 있다, 예컨대 10.1 IP 프리픽스(prefix)를 공유할 수 있다. 사기업 네트워크(101) 내 모든 장치들은 동일한 보안 바운더리 너머에 위치되어, 네트워크 보안이 보안 바운더리 안쪽 장치들을 바운더리 바깥쪽 장치들로부터 분리시키고 보안 경계선에서 소수 허용된 통신을 제어하도록 한다. 이것은 고객 에지 장치들(110a-f) 같은 장치들이 보안 바운더리를 넘는 것과 관련한 예방책을 구현할 필요 없이 트래픽을 자유롭게 넘길 수 있게 한다.
서비스 제공자 네트워크(102)는 사기업 네트워크(101)에 대한 호스트로서 동작할 수 있다. 서비스 제공자 네트워크(102)는 일련의 제공자 에지(provider edge: PE) 장치들(111a-h)을 포함할 수 있다. 서비스 제공자 네트워크(102)는 사기업 네트워크(101)를 특히 클라우드 네트워크(103), 다른 사기업 네트워크, 또는 인터넷 같은 다른 네트워크들에 연결시킬 수 있다. 일부 실시예들에서, 서비스 제공자 네트워크(102)는 사기업 네트워크(101)의 이종 부분들을 연결시킬 수 있으며, 이러한 이종 부분들을 통해 동일한 어드레스 공간을 공유할 수 있다.
클라우드 네트워크(103)는 클라우드 서비스 제공자에 의해 소유되고 인터넷 전체를 통해 어떤 네트워크 안에서 연결될 수 있는 한 개 이상의 서버들(114a-d)을 포함할 수 있다. 기반 구조 서비스 모델에서, 예컨대 클라우드 서비스 제공자는 클라우드 네트워크(103)에 위치하는 특정 자원들을 그 클라우드 네트워크(103)의 고객에게 할당할 수 있다. 그러한 특정 자원들은 가상 머신들(116a-d)로서 그룹화될 수 있다.
가상 머신(116a)은 사기업 네트워크(101)에 위치하는 고객에 의해 제어되는 클라우드 네트워크(103) 안의 서버(114a) 상의 서버 인스턴스일 수 있다. 고객은 의지에 따라 임의 갯수의 가상 머신들(116a-d)을 생성하고 사용하며 파기하는 능력을 가질 수 있다. 이러한 능력은 예컨대 대역폭, 저장 용량, 및 프로세싱 수요와 같은 사용자 정의 기준에 기반할 수 있다.
고객에게 할당된 가상 머신들(116a-d)은 클라우드 안에서 서로 논리적으로 연결될 수 있다. 다양한 실시예들에서, 고객에게 할당된 모든 가상 머신들(116a-d)은 예컨대 10.1.8/24와 같은 동일한 IP 서브넷 안에 나타난다. 가상 머신들(116a-d)은 동일한 서버(114a) 상이나 상이한 서버들(114a-d) 상에서 물리적으로 위치될 수 있으나, 서로 논리적 연결을 유지할 수 있다. 일부 실시예들에서, 가상 머신(116a)은 클라우드 네트워크 안의 다른 서버(114a)와 같은 다른 물리적 위치들로 옮겨질 수 있다.
가상 스터브(vstub)(104)는 특정 고객에게 할당된 클라우드 네트워크(103) 내 모든 자원들을 포함하는 논리적 네트워크일 수 있다. 그에 따라, 가상 스터브(104)는 고객에게 할당된 클라우드 네트워크(103) 내 모든 액티브 가상 머신들(116a-d), 할당된 그 가상 머신들(116a-d)을 주재 및 제어할 수 있는 일련의 하이퍼바이저들(115a-d), 할당된 가상 머신들(116a-d)을 포함하는 각각의 서버(114a-d)에 물리적으로 연결될 수 있는 데이터 센터 접속부(113), 및 클라우드 네트워크(103) 내 모든 할당된 가상 머신들(116a-d)의 허브(hub)로서 작용할 수 있는 클라우드 데이터 센터 CE(112)를 포함할 수 있다. 도 1에 도시된 바와 같이, 가상 스터브(104)는 그것의 논리적 네트워크가 물리적으로 근접할 필요가 없으며, 데이터 센터 접속부(113) 같이 각종 물리적 서버들(114a-d)을 연결하는 네트워킹을 포함할 수 있다. 가상 스터브는 사기업 네트워크(101)에 할당된 서버들(114a-d)을 클라우드 네트워크(103) 안에 있는 일련의 서버들(119a, 119b)로부터 분리시킬 수 있다. 일련의 서버들(119a, 119b)은 그에 따라 사기업 네트워크에 연결되거나 동일한 어드레스 공간을 공유하지 않을 것이다.
고객 에지(CE) 장치(110)는 사기업 네트워크(101) 안의 한 노드일 수 있다. CE 장치(110a)는 패킷들을 사기업 네트워크(101) 내 다른 고객 에지 라우터들, 서비스 제공자 네트워크(102) 내 제공자 에지 장치들(111a-h), 또는 클라우드 네트워크(103) 내 클라우드 데이터 센터 CE(112)와 같은 다른 노드들로 전송하도록 구성된 라우터나 스위치 같은 네트워크 노드일 수 있다. CE 장치(110a)는 예컨대 MPLS(L3 MPLS)를 이용하는 계층 3 통신 및 이더넷 및 VPLS(Virtual Private LAN Service)를 이용하는 계층 2 통신과 같은 OSI 참조 모델의 여러 계층들을 이용하여 사기업 네트워크(101) 안팎 모두의 다른 장치들과 통신할 수 있다. 일부 실시예들에서, CE 장치(110a)는 물리적 장치에 존재하는 가상 장치일 수 있다.
각각의 제공자 에지(PE) 장치(111a-h)는 서비스 제공자 네트워크(102) 안의 노드일 수 있으며 라우터, 스위치, 또는 그와 유사한 하드웨어 장치들일 수 있다. PE 장치(111a-h)는 CE 장치(110a)로부터 패킷들을 수신하고 서비스 제공자 네트워크(102)를 통해 그러한 패킷들을 전송하도록 구성될 수 있다. 이러한 패킷들은 사기업 네트워크(101) 내 다른 목적지들, 클라우드 네트워크(103) 내 목적지들, 또는 도 1에 도시되지 않은 다른 네트워크들 안의 목적지들로 전송될 수 있다.
클라우드 데이터 센터 CE(112)는 고객 에지 라우터일 수 있으며 클라우드 서비스 제공자의 고객에 의해 운영되는 장치에 의해 구현될 수 있다. "고객" 에지 장치라고 불리지만 클라우드 데이터 센터 CE(112)가 클라우드 서비스 제공자나 어떤 다른 개체에 의해 소유 및/또는 운영될 수 있다는 것은 자명한 일일 것이다. 일부 실시예들에서, 클라우드 데이터 센터 CE(112)는 클라우드 네트워크(103) 내부에 있는 가상 스터브(104)의 허브를 나타낸다. 일부 실시예들에서, 논리적 고객 에지 라우터(112)를 포함하는 물리적 CE 장치는 복수의 기업 네트워크들에 의해 공유될 수 있다.
일부 실시예들에서, 클라우드 네트워크(103)는 또한 디렉토리 서버를 포함할 수도 있다. 디렉토리 서버는 매핑 개체들의 디렉토리를 관리할 수 있다. 이하에서 보다 상세히 논의되는 바와 같이, 이러한 매핑 개체들은 기업 네트워크 안에 있는 어느 목적지의 할당된 IP 어드레스를 클라우드 IP 어드레스(cloudIP) 및 위치 IP 어드레스(locIP)를 이용하는 클라우드 네트워크 안의 목적지의 어드레스와 연관시킬 수 있다. 위치 IP 어드레스(lociP)는 가상 스터브(104) 안에 있는 특정 스위치, 예컨대 스위치(117a)의 위치를 식별한다. 가상 머신(116a)은 자신이 상주하는 IP 스위치(117a)를 나타내는 locIP 어드레스를 가진다. 또한, 클라우드 IP 어드레스(cloudIP)는 가상 스터브(104) 안의 각각의 가상 머신(116a-d)을 구별되게 지시한다.
가상 머신(116a)은 그에 따라 자신의 위치와 논리적으로 분리된 별개의 어드레스를 보유할 수 있으므로, 장치들은 할당된 IP 어드레스 대신 locIP 및 cloudIP 어드레스를 사용해서 가상 머신을 찾기 위해 디렉토리 서버에게 조회할 수 있다. 일 실시예에서, 사기업 네트워크(101) 안의 소스는 패킷 형식의 정보를 클라우드 네트워크(103) 안에 있는 가상 머신(116a)으로 전송하기 위해 기업 네트워크 안에서 할당된 IP 어드레스를 사용할 수 있다. 이 예에서, 클라우드 데이터 센터 CE(112)는 IP 헤더를 사용해 어드레스된 그러한 패킷들을 수신하며, 목적지의 가상 머신(116a)으로 전송되는 수신 패킷들을 클라우드 네트워크(103) 안의 목적지 가상 머신(116a)에 대응되는 cloudIP 어드레스 헤더 및 locIP 어드레스 헤더 둘 모두를 사용해 캡슐화할 수 있다. 클라우드 데이터 센터 CE(112)는 기업 ID(IP 어드레스)를 디렉토리 서버 상에 위치한 디렉토리를 통해 가상 머신의 locIP 및 cloudIP 어드레스들과 연관시킬 수 있다.
이하에서 보다 상세히 논의되는 바와 같이, 디렉토리 서버 내 디렉토리는 사기업 네트워크(101) 및 클라우드 네트워크(103)에 있는 액티브 서버들 및 가상 머신들의 어드레스 엔트리들을 포함할 수 있다. 한 네트워크에서 다른 네트워크로 전송되는 패킷들은 수신된 패킷의 헤더를 다른 네트워크에서 필요한 헤더로 연관시키기 위해 디렉토리를 사용하는 클라우드 데이터 센터 CE(112)를 통해 보내질 수 있다. 예를 들어 클 라우드 데이터 센터 CE(112)는 클라우드 네트워크 안에서 패킷들을 정확히 전송하기 위해 디렉토리를 사용해 cloudIP 및 locIP 어드레스 헤더들을 찾는다. 클라우드 데이터 센터 CE(112)는 또한 디렉토리를 사용하여, 서비스 제공자 네트워크(102) 및 사기업 네트워크(101) 안에서 패킷들을 전송하기 위해 적절한 IP 헤더(L3 헤더 같은)와 함께 패킷을 캡슐화하도록 클라우드 네트워크(103)에서 발생된 cloudIP 및 locIP 어드레스 헤더들을 캡슐해제할 수도 있다.
오직 한 개의 논리적 CE가 예시되어 있지만, 대안적 실시예들은 복수의 논리적 CE들을 포함할 수 있다. 그러한 실시예들에서, 기업 어드레스 공간 내 가상 머신들(116a-d)은 각각의 CE가 독립적인 허브로서 동작하는 여러 논리적 CE들에 할당될 수 있다. 그러한 실시예는 이하에서 논의되는 것과 같은 디렉토리 룩업이 하이퍼바이저들(115a-d) 대신 각각의 논리적 CE에 의해 수행되게 할 수도 있다. 복수의 논리적 CE 장치들은 또한, 데이터 패킷들이 적절한 허브인 논리적 CE로 대신 터널링될 수 있기 때문에, 가상 스터브(104) 내 클라우드 목적지들에 대한 locIP 및 cloudIP 헤더들의 수요를 불필요하게 할 수도 있다.
데이터 센터 접속부(113)는 일련의 서버들(114a-d)에 연결하는 스위치 또는 일련의 스위치들일 수 있다. 데이터 센터 접속부(113)는 클라우드 데이터 센터 CE(112)를 직접, 할당된 일련의 서버들(114a-d)에 연결할 수 있다. 다른 대안으로서, 데이터 센터 접속부(113)는 일련의 중간 스위치들(117a-c)을 통해 일련의 서버들(114a-d)에 연결할 수 있다. 그러한 경우, 각각의 중간 스위치(117a-c)는 동시에 복수의 서버들(114a-d)에 연결될 수 있다. 중간 스위치(117a)는 가상 스터브(104) 안에서 고유한 위치 IP(locIP) 어드레스를 가질 수 있다. 연결된 서버들 중 한 개(114a)의 가상 머신(116a)으로 어드레스된 패킷들을 수신할 때, 중간 스위치(117a)는 패킷으로부터 locIP 헤더를 캡슐 해제하며, 그런 다음 그 패킷을 해당 cloudIP 어드레스와 함께 서버(114a)로 전달할 수 있다.
서버(114a)는 컴퓨팅 서비스들을 클라이언트들에게 제공하는 장치일 수 있다. 보다 구체적으로, 서버는 클라이언트가 예컨대 애플리케이션을 실행하거나 파일을 메모리 안에 저장하는데 사용하는 저장 및 프로세싱 용량과 같은 컴퓨팅 자원들을 주재하는 네트워킹 장치일 수 있다. 따라서 서버(114a-d)는 예컨대, 각각이 물리적 서버 블레이드(blade)를 보유할 수 있는 복수의 슬롯들을 포함하는 섀시 기반(chassis-based) 서버(즉, 블레이드 서버) 등일 수 있다. 각각의 물리적 서버(114a-d)는 하이퍼바이저(115a-d) 및 적어도 한 개의 가상 머신(116a-d)을 포함할 수 있다.
한 개 이상의 하이퍼바이저들(115a-d)은 각각의 물리적 서버(114a-d) 상에 위치될 수 있다. 일 실시예에서, 하이퍼바이저들(115a-d)은 그들이 거주하는 물리적 서버들 상에 물리적으로 위치하는 할당된 각각의 가상 머신(116a-d)을 주재한다. 각각의 하이퍼바이저(115a-d)는 그에 따라 한 개 이상의 가상 머신들(116a-d)을 동시에 제어할 수 있다.
하이퍼바이저(115a-d)는 예컨대 자신이 주재하는 각각의 가상 머신의 cloudIP 어드레스들 및 하이퍼바이저(115a-d)를 주재하는 중간 스위칭(117a-c)의 locIP 어드레스를 포함할 수 있는 기업 정보를 인지할 수 있다. 하이퍼바이저(115a-d)는 그에 따라 자신이 주재하는 가상 머신들(116a-d)의 기업 멤버십(즉, 기업 ID)을 인식한다. 하이퍼바이저(115a-d)는 또한 자신이 주재하는 가상 머신들(116a-d)과 관련된 트래픽을 가로챌 수도 있다. 가상 머신(116a-d)이 가상 스터브(104) 바깥의 목적지로 패킷을 전송하고 있을 때, 하이퍼바이저(115a-d)는 자신이 주재하는 가상 머신(116a-d) 중 하나로부터 전송된 패킷들을 클라우드 데이터 센터 CE(112)와 관련된 cloudIP 헤더 및 locIP 헤더 둘 모두를 사용하여 캡슐화할 수 있다. 하이퍼바이저(115a-d)는 또한 하이퍼바이저(115a-d)에 의해 주재되는 가상 머신(116a-d)으로 전송되는 패킷들의 cloudIP 헤더를 캡슐 해제할 수도 있다.
일부 실시예들에서, 하이퍼바이저(115a-d)는 자신이 주재하는 각각의 가상 머신(116a-d)에 대한 보안 파라미터들을 인식한다. 그러한 보안 파라미터들은 예컨대 가상 스터브(104)가 크기를 바꿀 때 어떤 고의적이지 않은 정보 누출을 방지하기 위해 내장된 고객 ID를 포함할 수 있다. 하이퍼바이저(115a-d)는 이하에 논의되는 바와 같이 악의적 하이퍼바이저들 같은 개체들에 의한 고의적 공격들 및 다른 텔넷(telnet) 공격들을 방지할 수 있는 보안 토큰(또는 쌍(pair-wise) 보안 토큰)과 같은 다른 보안 특성들을 인식할 수 있다.
도 2는 L3 MPLS 프로토콜을 이용하는 패킷 전송의 개략도이다. 도 2에 도시된 바와 같이, 각각의 종단(endpoint)에 있는 장치는 IP 어드레스를 이용해 목적지를 어드레싱할 수 있고, 여기서 각각의 IP 어드레스는 기업의 IP 어드레스 공간 안에서 존재한다. 이하에서 보다 상세히 논의되는 바와 같이, 클라우드 네트워크(103) 내 가상 스터브(104)는 사기업 네트워크(101)의 IP 어드레스 공간(도 2에서 10.1로 예시됨) 안에서 IP 서브넷(도 2에서 10.1.8로 예시됨)을 할당받는다. 그에 따라, 가상 스터브(104) 안에서 각각의 가상 머신(116a-d) 역시 IP 서브넷 내 해당 어드레스를 할당받는다.
클라우드 네트워크(103)의 특성이 가상 머신(116a-d)의 위치를 판단하기 위해 클라우드 네트워크(103) 안에서 특정한 정적 IP 어드레스들의 사용을 배척할 수 있다는 것은 자명할 것이다. 예를 들어, 가상 머신(116a)은 다른 물리적 서버(114d)로 동적으로 이동하여, 어떤 주어진 시점에 특정 가상 머신(116a)을 어드레싱할 때 사용할 적절한 IP 어드레스를 결정하는 것을 어렵게 할 수 있다. 따라서, 클라우드 네트워크(103) 안에서 가상 머신(116a)은 자신의 기업 ID, 위치 IP 어드레스 및 클라우드 IP 어드레스에 의해 식별된다. 이러한 어드레싱 정보는 디렉토리 서버 내 어느 디렉토리 안에 저장될 수 있다.
그에 따라, 클라우드 네트워크(103) 내 목적지들로의 패킷 전송은 패킷을 이중 캡슐화하는 동작, 각각의 패킷을 안쪽 클라우드 IP 헤더 및 바깥쪽 위치 IP 헤더를 사용하여 캡슐화하는 동작을 수반할 수 있다. 패킷이 예컨대 클라우드 네트워크(103) 내 가상 머신(116a)으로부터 사기업 네트워크(101) 안에 있는 어느 목적지로 보내지는 중이면, 그 패킷을 캡슐화하는 cloudIP 및 locIP 헤더는 별도의 cloudIP 어드레스를 포함하는 가상 스터브(104)의 허브로서 동작하여 패킷을 가령 계층 3 프로토콜을 이용하여 사기업 네트워크(101) 안의 적절한 IP 어드레스로 전달하는 클라우드 데이터 센터 CE(112)의 어드레스에 해당한다.
도 2에 예시된 예에서, 사기업 네트워크(101) 안에서 IP 어드레스 10.1.2.2에 있는 소스(201)(위치 "A")가 패킷을 클라우드 네트워크(103) 안의 IP 어드레스 10.1.8.8에 있는 가상 머신(116a)인 목적지 가상 머신(116a)(위치 "B")으로 보낸다. 소스 "A"(201)는 IGP(Interior Gateway Protocol) 라우팅을 이용하여 패킷(203)을 사기업 네트워크(101) 내 고객 에지 라우터(CEA)(110a)로 보낸다. 예로 든 패킷(203)의 헤더는 페이로드 외에 소스 IP 어드레스 헤더(10.1.2.2) 및 목적지 IP 어드레스 헤더(10.1.8.8)를 포함한다.
MPLS 라벨 스태킹(label stacking)을 이용하여, 패킷은 서비스 제공자 네트워크(102)에 있는 적어도 한 개의 제공자 에지 장치(111a)를 통해 클라우드 네트워크(103) 안의 클라우드 데이터 센터 CE(112)로 보내질 수 있다. 당업자라면 잘 알 수 있다시피, 패킷은 계층 3 터널링 같은 다른 프로토콜에 따라 사기업 네트워크(101) 및 서비스 기업 네트워크(103)를 통해 클라우드 데이터 센터 CE(112)로 보내질 수 있다. 도 2는 한 개의 제공자 에지 장치(111a)를 포함하지만, 다른 실시예들은 패킷이 클라우드 데이터 센터 CE(112)로 터널링될 때 일련의 연결된 제공자 에지 장치들(111a-f)을 포함할 수 있다.
클라우드 데이터 센터 CE(112)는 패킷(202) 수신시, 디렉토리 서버에 클라우드 네트워크(103) 안의 목적지 "B"와 관련된 위치 IP 어드레스(locIP) 및 클라우드 IP 어드레스(cloudIP)를 조회할 수 있다. 클라우드 데이터 센터 CE(112)가 해당하는 개체를 찾으면, 클라우드 데이터 센터 CE(112)는 이제 이중 캡슐화된 패킷(206)에 의해 보여진 바와 같이, 목적지 "B"와 관련된 cloudIP 헤더 및 locIP 헤더 둘 모두와 함께 패킷(203)을 이중 캡슐화할 수 있다. 그러한 이중 캡슐화는 cloudIP 헤더와 함께 패킷(203)을 일차로 캡슐화하며, 그런 다음 그 수정된 패킷을 바깥의 locIP 헤더를 사용하여 캡슐화하는 일을 수반한다. 그런 다음, 클라우드 데이터 센터 CE(112)는 이중 캡슐화된 패킷(206)을 데이터 센터 접속부(113) 및 클라우드 네트워크(103)를 통해 해당 목적지 locIP 어드레스를 가진 계층 3 중간 스위치(117a)로 보낸다.
그러면 중간 스위치(117)는 패킷(206)으로부터 locIP 헤더를 캡슐해제하고, 수정된 패킷(209)을 해당하는 목적지 cloudIP 어드레스로 전송한다. 목적지 cloudIP 어드레스에 대응하는 서버(114a)에서, 서버(114a) 상의 하이퍼바이저(115a)는 수정된 패킷(209)으로부터 cloudIP 헤더를 캡슐 해제하며 그 패킷(210)을 서버(114a) 상의 목적지 가상 머신"B"(116a)으로 전송한다. 일부 실시예들에서, 하이퍼바이저(115a)는 또한 패킷이 동일한 기업 네트워크로부터 나온 것임을 확인하기 위해 패킷(210) 안의 보안 토큰을 확인할 수 있다.
도 3은 클라우드 데이터 센터 CE(112)에 포함된 논리적 CE 라우터의 전형적인 가상 라우팅 및 포워딩(VRF) 테이블(300)이다. 사기업 네트워크(101) 내 고객 에지 장치들(110a-e) 및 서비스 제공자 네트워크(102) 내 제공자 에지 장치들(111a-h)과 같은 다른 장치들 역시 유사한 VRF 테이블들(300)을 관리할 수도 있다.
entIP 필드(301)는 기업 위치 ID에 해당한다. 전형적인 실시예에서, 가상 스터브(104) 안의 자원들은 할당된 IP 서브넷 안의 IP 어드레스들을 할당받으며, 그에 따라 클라우드 네트워크(103) 및 사기업 네트워크(101) 둘 모두에 있는 자원들이 동일한 어드레스 공간을 공유할 수 있다. 도시된 실시예에서, 클라우드 안의 자원들은 10.1.8/24를 IP 서브넷으로서 사용하고(/24는 그 서브넷 내 24 비트를 나타냄), 클라우드 바깥의 장치들은 10.1/16 할당 IP 서브넷 내 IP 어드레스를 사용해 사기업 네트워크(101) 내 고객 에지 장치 엔트리(313) 같이, 동일한 IP 어드레스 공간 안의 다른 어드레스들을 사용할 수 있다.
locIP 필드(302)는 클라우드 네트워크 내 장치들의 위치 IP 어드레스에 해당한다. locIP는 엔트리의 가상 머신(116a)을 주재하는 클라우드 네트워크(103) 안의 중간 스위치(117a)의 어드레스에 해당한다. 도 3에 도시된 실시예에서, 가상 머신 엔트리(311)는 해당하는 가상 머신(116a)을 주재하는 중간 스위치(117a)에 해당하는 20.2.2.8이라는 위치 IP 어드레스를 가진다.
cloudIP 필드(303)는 클라우드 네트워크(103) 안의 가상 머신(116a)의 cloudIP 어드레스에 해당할 수 있다. locIP 어드레스(302)에 있는 중간 스위치(117a)는 자신이 주재하는 각각의 가상 머신(116a)에 대한 별개의 비중복 cloudIP 어드레스들(303)을 가진다. 클라우드 데이터 센터는 클라우드 네트워크(103) 내 가상 머신들(116a-d) 사이에 cloudiP 어드레스들을 할당할 수 있다. 예시된 실시예에서, 가상 머신 엔트리는 20.2.2.1의 cloudIP를 가지므로, 중간 스위치(117a)가 가상 머신(116a)을 위한 패킷을 수신할 때, 그 스위치는 하이퍼바이저(115a)를 통해 특정 가상 머신 20.2.2.1로 패킷을 전달할 수 있다.
nextHop 필드(304)는 장치가 패킷을 전송해야 하는 기업 네트워크 내 다음 위치를 가리킨다. 예시된 실시예에서, 엔트리(313)는 사기업 네트워크(101) 내 어떤 위치에 해당하는 IP 서브넷 10.1/16 안의 entIP 어드레스를 가진다. 그에 따라, 그 위치는 적용가능한 locIP나 cloudIP 어드레스들을 가지지 않으며, 그들은 다만 클라우드 네트워크(103) 안의 어드레스들에 의해 사용될 수 있다. 클라우드 데이터 센터 CE(112)로부터 해당하는 nextHop 엔트리는 그에 따라 연결된 제공자 에지 장치(111a)에 대한 것으로, 그 제공자 에지 장치(111a)는 10.1/16 서브넷 안의 목적지를 위한 패킷들을 수신할 때 그 자신의 VRF 테이블에게 조회하고 그것을 엔트리의 해당 nextHop 어드레스로 전달할 것이다. 이 프로세스는 패킷이 궁극적으로 사기업 네트워크(101) 내 10.1/16 서브넷 안의 목적지 IP 어드레스에 도달할 때까지 각각의 장치 상에서 차례로 계속될 것이다.
도 4는 디렉토리 서버 내 전형적인 디렉토리 테이블이다. 디렉토리 테이블(400)은 디렉토리 테이블(400)이 nextHop 필드(304)를 관리하지 않는다는 것을 제외하면 클라우드 데이터 센터 VRF 테이블(300)과 유사하게 entIP 필드, locIP 필드, 및 cloudIP 필드를 관리한다. 이것은 디렉토리 테이블(400)이 포워딩 정보를 관리하지 않기 때문이다; 그 보다 디렉토리 테이블(400)은 단순히 사기업 네트워크(101) 및 클라우드 네트워크(103) 둘 모두의 내부에 있는 위치들의 locIP(303) 및 cloudIP(303) 어드레스들에 대한 포괄적 리스트를 관리한다.
예시된 실시예에서, "Default(디폴트)" 엔트리(411)는 그것의 locIP(302) 어드레스로서 IPCA만을 가지며 적용 가능한 cloudIP(303) 어드레스는 가지지 않는다. 디폴트 엔트리(411)는 명시적 locIP(302)나 cloudIP(303) 어드레스들을 가지지 않는 사기업 네트워크(101) 내 장치들을 가리킨다. IPCA 엔트리는 디렉토리(400) 내에서 유효한 locIP(302) 및 cloudIP(303) 어드레스들을 가진 엔트리(412)로서 특정하게 나열되지 않은 목적지들을 가진 패킷들이 클라우드 데이터 센터 CE(112)를 향할 것이라는 것을 의미하며, 클라우드 데이터 센터 CE(112)는 그런 다음 그 VRF 테이블(300)을 사용하여 패킷을 사기업 네트워크(101) 안의 적절한 목적지로 전달할 것이다.
전형적인 실시예에서, 가상 머신(116)은 셧 다운될 것이다. 가상 머신이 셧 다운될 때, 디렉토리 서버에서의 디렉토리(400) 안의 VM의 엔트리는 삭제될 수 있다. 다른 전형적인 실시예에서, VM은 다른 서버로, 예컨대 114a에서 114c로 옮겨질 것이다. VM이 다른 서버(114c)로 이동할 때, VM(116a)이 현재 위치하는 새로운 서버(114c)를 반영하도록 그것의 locIP 어드레스가 디렉토리(400) 안에서 업데이트될 것이다. 가상 머신(116a)은 또한 새로운 클라우드 데이터 센터 CE(112)로 옮겨질 수도 있다. 실효된 엔트리의 경우(쓸모 없어진 VRF 테이블을 가진 장치), 이전 locIP 어드레스의 스위치(117a)는 잘못 어드레스된 패킷을 현재의 클라우드 데이터 센터 CE에 있는 디렉토리 서버로 전달할 것이다. 디렉토리 서버는 그런 다음 유니캐스트를 통해 실효된 스위치의 VRF 테이블을 정정할 것이다.
도 5는 시스템에 사용되는 데이터그램의 전형적인 도면이다. 데이터그램(500)은 패킷을 나타낼 수 있다. 도 5는 페이로드 외에 내부 cloudIP 헤더 및 외부 locIP 헤더 둘 모두, 목적지 cloudIP 어드레스(503)를 포함하는 이중 캡슐화된 패킷의 전형적인 데이터그램을 예시한다.
데이터그램은 또한 보안 토큰(502)을 포함할 수도 있다. 보안 토큰은 예를 들어 기업 고유 키, 기업 ID, 및 목적지 IP 어드레스의 조합을 포함할 수 있다. 하이퍼바이저(115a)는 보안 토큰(502)을 확인하고자 시도할 수 있고, 패킷이 틀린 보안 토큰(502)을 포함하면 그 패킷을 버릴 수 있다. 일 실시예에서, 패킷은 쌍(pair-wise) 보안 토큰(502)에 의해 인코딩될 수 있다. 쌍 보안 토큰은 오직 한 사용자를 위해 사용되는 개별 키인 쌍(pair-wise) 키로부터 파생될 수 있다. 이것은 악의적 하이퍼바이저(115a)와 보안 관계를 가진 가상 머신들(116a-d)로의 공격을 국지화(localizing)함으로써 악의적 하이퍼바이저들(115a)로부터의 공격을 막도록 도울 수 있다.
또한, 데이터그램(500)은 보안을 이유로 고객 ID(504)를 포함할 수 있는데, 고객 ID(504)는 가상 스터브(104) 안에 없는 가상 머신들(116a-d)로 패킷을 보내는 것을 방지한다. 이런 상황은 예컨대 가상 머신(116a-d)이 옮겨지거나 셧 다운되고 장치들이 연속해서 그 가상 머신(116)으로 트래픽을 전송할 경우에 일어날 수 있다. 일 실시예에서, 페이로드(501)는 공유된 그룹 키를 사용해 암호화될 수 있다. 공유된 그룹 키는 주어진 고객 그룹의 멤버들 사이에서 공유될 수 있다.
도 6은 이중 캡술화를 이용하여 사기업 네트워크(101) 내 한 소스로부터 클라우드 네트워크(103) 내 한 목적지로 패킷(203)을 전송하는 방법(600)의 전형적 실시예의 흐름도이다. 단계 601에서, 사기업 네트워크(101) 내 소스 "A"로부터 패킷이 사기업 네트워크(101) 내 논리적 CE 장치(110a)로 전송될 수 있으며, 논리적 CE 장치(110a)는 그 패킷을 서비스 제공자 네트워크(102) 내 적어도 한 개의 PE 장치(111a)를 통해 클라우드 네트워크(103) 안의 클라우드 데이터 센터 CE(112)로 전달할 수 있다.
단계 602에서, 클라우드 데이터 센터 CE(112)는 디렉토리 서버에게 조회할 수 있다. 조회는 목적지 "B"의 위치 IP(locIP) 및 클라우드 IP(cloudIP)에 대한 디렉토리(400) 룩업을 그 위치가 클라우드 네트워크(103) 안에 있는 경우 수반할 수 있다. 단계 603에서 목적지 "B"가 클라우드 네트워크(103) 안에 있으면, 클라우드 데이터 센터 CE(112)는 해당 목적지 cloudIP 어드레스 및 위치 IP 어드레스들을 검색할 수 있다.
단계 604에서, 클라우드 데이터 센터 CE(112)는 검색된 cloudIP 어드레스에 해당하는 헤더를 가진 패킷을 캡슐화할 수 있다. 단계 605에서, 클라우드 데이터 센터 CE(112)는 검색된 locIP 어드레스에 해당하는 헤더를 가진 수정된 패킷을 캡슐화할 수 있다. 단계 606에서, 클라우드 데이터 센터 CE(112)는 이중 캡슐화된 패킷(206)을 클라우드 네트워크(103)를 통해 해당하는 locIP 어드레스로 전송할 수 있다.
단계 607에서, locIP 어드레스에 있는 중간 스위치(117a)가 이중 캡슐화된 패킷(206)으로부터 locIP를 캡슐화 해제 할 수 있으며, 수정된 패킷(209)을 해당 cloudIP 어드레스로 전송할 수 있다. 단계 608에서, 서버(114a)의 해당 cloudIP 어드레스에 있는 하이퍼바이저(115a)는 수정된 패킷(209)을 캡슐 해제할 수 있고, 그 패킷(210)을 목적지 "B"에 있는 해당 가상 머신(116a)으로 전송할 수 있다. 다른 대안적 실시예에서, 하이퍼바이저(115a)는 먼저, 패킷(210)을 가상 머신(116a)으로 전송하기 전에 포함된 보안 토큰(502)을 검사함으로써 수신된 패킷(210)을 인가할 수 있다.
도 7은 클라우드 네트워크9103) 내 소스로부터 패킷을 전송하는 전형적인 방법(700)을 예시한다. 단계 701에서, 소스 "B"의 서버(114a) 상의 하이퍼바이저(115a)는 소스 "B" 가상 머신(116a)으로부터 패킷(210)을 수신한다. 단계 702에서, 하이퍼바이저(115a)는 목적지 어드레스가 자신의 VRF 테이블 안에 있는지 여부를 체크한다. 목적지 "A"(201)에 대한 포워딩 개체가 존재하면 단계 704가 이어지는 반면, 목적지 "A"(201)가 리스트에 없으면 단계 703이 뒤따른다.
단계 704에서, 하이퍼바이저(115a)는 패킷(210)을 해당 cloudIP 헤더를 사용하여 캡슐화한다. 단계 705에서, 하이퍼바이저(115a)는 그 다음, 수정된 패킷(209)을 해당 locIP 헤더를 사용하여 캡슐화한다. 단계 706에서, 하이퍼바이저(115a)는 그 이중 캡슐화된 패킷(206)을 해당 locIP 어드레스로 전송한다.
단계 707에서, 목적지 "A"가 클라우드 네트워크(103) 안에 있으면, 해당 locIP 어드레스에 있는 중간 스위치(117b)는 이중 캡슐화된 패킷(206)으로부터 locIP 헤더를 캡슐 해제하고, 수정된 패킷(209)을 해당 cloudIP 어드레스로 보낸다. 단계 708에서, 해당 cloudIP 어드레스에 있는 하이퍼바이저(115c)는 수정된 패킷(209)을 캡슐 해제한다. 단계 709에서, 하이퍼바이저(115c)는 패킷(210)을 목적지 "A" VM(116c)으로 전송한다. 일부 실시예들에서, 하이퍼바이저(115c)는 패킷(203)을 목적지 "A" VM으로 보내기 전에 먼저 검증을 위해 수정된 패킷의 보안 토큰(502)을 체크한다.
단계 702에서 목적지가 사기업 네트워크(101) 안에 있을 때, 방법(700)은 단계 703으로 진행한다. 단계 703에서, 하이퍼바이저(115a)는 디렉토리 서버에서 목적지 "A" cloudIP 어드레스 및 locIP 어드레스를 조회한다. 목적지가 사기업 네트워크(101) 안에 있을 때, 해당 목적지 locIP는 클라우드 데이터 센터 CE(112)에 연결된 중간 스위치 IP(117a)의 IP 어드레스이고 해당 cloudIP 어드레스는 클라우드 데이터 센터 CE(112)의 IP이다. 방법(700)은 위에서 상세히 기술된 단계 704에 상응하는 710으로 진행한다. 이제 방법(700)은 위에서 상세히 기술된 단계들 705 및 706에 상응하는 단계들 711 및 712로 진행한다. 이것은 클라우드 데이터 센터 CE(112)에 해당하는 이중 캡슐화된 패킷(209)의 cloudIP 어드레스를 파생한다.
그에 따라, 단계 712a에서, 클라우드 데이터 센터 CE(112)는 lockIP 어드레스가 자신의 IP 어드레스 공간에 있는지를 판단한다. 그렇지 않은 경우라면, 방법(700)은 단계 707로 진행하고, 패킷이 클라우드 네트워크(103) 내 다른 VM으로 전달된다. locIP가 논리적 CE(112)의 IP 어드레스 공간 안에 있으면, 방법(700)은 클라우드 데이터 센터 CE(112)가 자신의 두 locIP 및 cloudIP 헤더들 모두의 이중 캡슐화된 패킷(206)을 캡슐 해제하는 단계 713으로 진행한다. 단계 714에서, 클라우드 데이터 센터 CE(112)는 자신의 VRF 테이블(300)을 이용해 사기업 네트워크(101) 내 목적지 어드레스 "A"에 대한 해당 엔트리를 찾도록 한다.
단계 715에서, 클라우드 데이터 센터 CE(112)는 사기업 네트워크(101) 내 목적지 "A" 어드레스에 해당하는 MPLS 헤더와 같은 계층 3 헤더와 함께 패킷(203)을 캡슐화한다. 단계 716에서, 클라우드 데이터 센터 CE(112)는 MPLS 패킷(206)을 사기업 네트워크(101)를 통해 목적지 "A"(201)로 전송한다. 단계 717에서, 사기업 네트워크(101) 내 목적지 "A" 어드레스에 있는 고객 에지 장치(111a)가 MPLS 패킷의 MPLS 헤더를 캡슐 해제하고, 단계 718에서 고객 에지 장치(111a)는 패킷(203)을 해당 목적지 어드레스 "A"(201)로 전송한다.
도 8은 할당된 클라우드 자원들을 사기업 네트워크로 통합시키는 전형적인 방법을 예시한다. 단계 801에서, 클라우드 데이터 센터는 논리적 고객 에지(CE) 라우터인 클라우드 데이터 센터 CE(112)를 생성한다. 논리적 CE 라우터는 사기업 네트워크(101) 내 고객 에지 라우터들과 비슷하게 동작하는 가상 라우터이다. 한 개의 논리적 CE는 한 개의 가상 스터브(104)를 주재하기 때문에 클라우드 데이터 센터는 한 논리적 CE를 생성하며, 클라우드 데이터 센터는 다수의 가상 스터브들을 주재할 수 있다. 단계 802에서, 클라우드 데이터 센터는 논리적 CE 라우터로 IP 서브넷을 제공한다. 논리적 CE 라우터(112)는 가상 스터브(104)의 허브로서 작용한다. 가상 스터브(104)는 클라우드 서비스 제공자에 의해 사기업 네트워크(101)로 할당된 자원들을 포함하는 클라우드 네트워크(103) 내 논리적 네트워크이다. 가상 스터브(104) 안의 자원들은 가상 스터브(104) 밖의 다른 클라우드 자원들로부터 분리될 수 있다.
단계 803에서, 할당된 IP 서브넷이 10.1.8/16일 때 가상 머신(116)에 IP 어드레스 10.1.8.8을 할당하는 것과 같이, 가상 스터브(104) 안에 있는 각각의 자원에는 제공된 IP 서브넷 내 어드레스가 할당된다. 단계 804에서, 서비스 제공자 네트워크(102) 내 제공자 에지 라우터(111b)는 사기업 네트워크(101) 내 고객 에지 장치(110a) 및 클라우드 데이터 센터 CE(112)에 연결함으로써 가상 스터브(104)와 인터페이스하도록 프로비저닝된다.
단계 805에서, 클라우드 데이터 센터는 제공된 서브넷에 대한 라우팅 엔트리(412)를 클라우드 데이터 센터 CE(112) 내 디렉토리 서버 상의 디렉토리(400)에 추가할 수 있다. 가상 스터브(104) 내 자원들은 제공된 IP 서브넷 내 어드레스들이기 때문에, 단순히 서브넷을 추가하는 것은 그러한 자원들이 다른 소스들로부터 패킷들을 수신할 수 있게 하며, 서브넷에 대한 패킷들은 이제 클라우드 데이터 센터 CE(112)로 전송될 수 있고 그 다음 가상 스터브(104) 안의 알맞은 어드레스로 전달될 수 있다.
단계 806에서, 클라우드 데이터 센터 CE(112)는 업데이트된 라우팅 정보를 사기업 네트워크(101) 안에 자리한 고객 에지 자치들(110a-d)로 전달한다. 단계 807에서, 클라우드 데이터 센터 CE(112)는 사기업 네트워크(101) 장치들(110a-d)의 어드레스들을 클라우드 데이터 센터 CE(112)에 매핑하는 디렉토리(400)에 디폴트 엔트리를 추가하며, 여기서 사기업 네트워크 안의 어드레스들은 논리적 CE(11)의 locIP 및 cloudIP 어드레스에 대응하는 locIP 및 cloudIP 어드레스를 가진다. 이것은 클라우드 네트워크(103) 안으로부터 사기업 네트워크(101) 안의 목적지로 전송된 패킷들이 먼저 클라우드 데이터 센터 CE(112)로 보내지고, 그런 다음 사기업 네트워크(101) 안의 적절한 목적지로 전달될 수 있게 한다. 클라우드 데이터 센터 CE(112)는 그에 따라 사기업 네트워크(101) 및 클라우드 네트워크(103) 내 장치들 사이의 통신을 위한 메인 허브로서 작용하며, 이러한 두 네트워크들 안의 장소들 사이에서의 통신은 먼저 클라우드 데이터 센터 CE(112)로 전달되며, 그러면 클라우드 데이터 센터 CE(112)는 디렉토리 서버를 이용하여 적절한 IP 헤더들과 함께 패킷들을 캡슐화한 후 이들을 다른 네트워크를 통해 궁극적인 목적지로 전달한다.
상기 내용으로부터 본 발명의 다양한 전형적 실시예들이 하드웨어 및/또는 펌웨어에서 구현될 수 있다는 것은 자명할 것이다. 또한, 다양한 전형적 실시예들은 여기에 상세히 기술된 동작들을 수행하기 위해 적어도 한 개의 프로세서에 의해 읽혀지고 실행될 수 있는 장치 판독가능 저장 매체 상에 저장된 명령어들로서 구현될 수 있다. 장치 판독가능 저장 매체는 네트워크 노드(가령, 라우터나 스위치)와 같은 장치에 의해 판독 가능한 형식의 정보를 저장하기 위한 어떤 메커니즘을 포함할 수 있다. 따라서, 장치 판독가능 저장 매체는 ROM(read-only memory), RAM(random- access memory), 마그네틱 디스크 저장 매체, 광 저장 매체, 플래시 메모리 소자, 및 그와 유사한 저장 매체를 포함할 수 있다.
다양한 전형적 실시예들이 그들의 어떤 전형적 양태들에 특히 관련하여 상세히 기술되었으나, 본 발명은 다른 실시예들을 가능하게 할 수 있으며 그 세부내용은 다양하고 명백한 측면에서 변경들을 가능하게 할 수 있다. 당업자라면 용이하게 알 수 있듯이, 본 발명의 개념과 범위 내에 유지되면서 변경 및 변형이 구현될 수 있다. 따라서, 상기 개시, 상세한 설명, 및 도면들은 단지 예시적인 목적을 위한 것이며, 청구범위에 의해서만 규정되는 본 발명을 어떤 식으로든 제한하지 않는다.

Claims (8)

  1. 클라우드 토폴로지의 자원을 사기업 네트워크로 통합하는 방법으로서,
    상기 클라우드 토폴로지 내의 클라우드 데이터 센터 내에서 논리적 고객 에지 라우터(logical customer edge router)를 생성하는 단계와,
    상기 사기업 네트워크 내에 있는 IP 서브넷을 가상 스터브(virtual stub)로 제공하는 단계 - 상기 가상 스터브는 상기 사기업 네트워크에 할당됨과 아울러 상기 가상 스터브 밖에 있는 클라우드 자원과 분리되는 자원을 포함하는 상기 클라우드 토폴로지 내의 논리적 네트워크를 포함함 - 와,
    상기 IP 서브넷으로부터의 IP 어드레스를 상기 가상 스터브 내의 각각의 자원에 할당하는 단계와,
    사기업 네트워크의 논리적 고객 에지 라우터에 인터페이스하기 위해 서비스 제공자 인터페이스 내의 제공자 에지 라우터에 있는 가상 라우터를 프로비저닝(provisioning)하는 단계와,
    상기 클라우드 데이터 센터에 있는 가상 라우팅 및 포워딩 테이블에 상기 IP 서브넷을 위한 라우팅 엔트리를 추가하는 단계와,
    상기 라우팅 엔트리를 상기 사기업 네트워크 내의 모든 고객 에지 라우터로 배포하는 단계와,
    디폴트 엔트리를 클라우드 데이터 센터에 있는 디렉토리 서버 내에 추가하는 단계 - 상기 디폴트 엔트리는 모든 기업 어드레스를 상기 클라우드 데이터 센터 내의 상기 논리적 고객 에지 라우터의 위치 IP 어드레스 및 클라우드 IP 어드레스에 매핑시킴 - 를 포함하는
    방법.
  2. 사기업 네트워크 내의 소스로부터 상기 사기업 네트워크에 할당된 클라우드 토폴로지 내의 목적지로 패킷을 전송하는 방법으로서,
    상기 사기업 네트워크 내의 소스로부터 상기 클라우드 토폴로지 내의 가상 스터브에 위치한 클라우드 데이터 센터 내의 논리적 고객 에지 라우트로 패킷을 송신하는 단계와,
    상기 목적지의 클라우드 IP 어드레스 및 위치 IP 어드레스를 결정하기 위해 상기 클라우드 데이터 센터에 의해 상기 클라우드 데이터 센터 내의 디렉토리 서비스에게 조회하는 단계와,
    상기 목적지가 상기 가상 스터브 내에 위치할 때, 상기 클라우드 데이터 센터에 의해 상기 패킷을 캡슐화하는 단계 - 상기 패킷은 먼저 해당 목적지의 클라우드 IP 헤더를 사용하여 캡슐화되며, 상기 패킷은 상기 해당 목적지의 위치 IP 헤더에 의해 추가로 캡술화됨 - 와,
    상기 목적지의 위치 IP 어드레스에 있는 하이퍼바이저(hypervisor)에 의해 상기 패킷의 위치 IP 헤더를 캡슐 해제(decapsulating)하는 단계와,
    상기 목적지의 클라우드 IP 어드레스에 있는 서버에 의해 상기 패킷의 클라우드 IP 헤더를 캡슐 해제하는 단계를 포함하는
    방법.
  3. 사기업 네트워크로 할당된 클라우드 토폴로지 내의 소스로부터 상기 사기업 네트워크 내의 목적지로 패킷을 전송하는 방법으로서,
    상기 클라우드 토폴로지 내의 가상 스터브 안에 있는 하이퍼바이저에 의해 상기 하이퍼바이저에 의해 주재되는 가상 머신으로부터 패킷을 수신하는 단계와,
    상기 하이퍼바이저에 의해 상기 하이퍼바이저를 주재하는 서버에 있는 포워딩 테이블에서 상기 목적지 IP 어드레스를 포함하는 엔트리를 조회하는 단계와,
    상기 포워딩 테이블에 아무 엔트리도 없을 때, 상기 하이퍼바이저에 의해 상기 가상 스터브 내의 클라우드 데이터 센터에 있는 디렉토리 서버에서 위치 IP 어드레스 및 클라우드 IP 어드레스를 조회하는 단계와,
    상기 패킷을 캡슐화하는 단계 - 상기 패킷은 먼저 상기 클라우드 데이터 센터에 있는 논리적 고객 라우터의 클라우드 IP 어드레스에 해당하는 클라우드 IP 헤더를 사용하여 캡슐화되며, 상기 패킷은 상기 클라우드 데이터 센터 내의 상기 고객 라우터에 해당하는 위치 IP 헤더에 의해 추가 캡슐화됨 - 와,
    상기 클라우드 데이터 센터 내의 상기 고객 라우터에 의해 상기 패킷의 상기 위치 IP 헤더를 캡슐 해제하는 단계와,
    상기 클라우드 데이터 센터 내의 상기 고객 라우터에 의해 상기 패킷의 상기 클라우드 IP 헤더를 캡슐 해제하는 단계와,
    상기 클라우드 데이터 센터 내 상기 고객 라우터에 의해 상기 사기업 네트워크 내의 상기 목적지의 IP 어드레스에 해당하는 MPLS 헤더를 캡슐화하는 단계와,
    상기 사기업 네트워크 내의 상기 목적지로 상기 패킷을 전송하는 단계와,
    상기 사기업 네트워크 내의 상기 목적지에 있는 고객 라우터에 의해 상기 MPLS 헤더를 캡슐 해제하는 단계를 포함하는
    방법.
  4. 제3항에 있어서,
    상기 하이퍼바이저에 의해 기업 고유 키, 기업 ID, 및 목적지 IP 어드레스의 조합을 포함하는 보안 토큰을 산출하는 단계를 더 포함하는
    방법.
  5. 클라우드 토폴로지 내의 자원을 사기업 네트워크로 통합하는 시스템으로서,
    상기 사기업 네트워크에 할당됨과 아울러 가상 스터브 외부에 있는 클라우드 자원과 분리된 자원들을 포함하는 상기 클라우드 토폴로지 내의 논리적 네트워크를 포함하는 가상 스터브 - 상기 가상 스터브는 상기 사기업 네트워크에 할당된 상기 서버 상의 자원들을 포함하는 가상 머신 및 상기 가상 머신을 주재하는 하이퍼바이저를 포함하는 일련의 서버들과, 적어도 상기 일련의 서버들에 동작 가능하게 결합된 데이터 센터 접속 스위치와, 상기 데이터 센터 접속 스위치에 연결되며, 상기 가상 스터브를 상기 사기업 네트워크에 연결시키는 클라우드 데이터 센터를 포함함 - 와,
    상기 가상 스터브를 상기 사기업 네트워크에 연결하는 서비스 제공자를 포함하는
    시스템.
  6. 사기업 네트워크에 할당된 클라우드 토폴로지의 자원을 관리하는 시스템으로서,
    상기 사기업 네트워크 내에서 이용 가능한 자원들을 포함하는 일련의 서버와,
    서버 리스트를 포함하며, 사용자 정의 기준에 기반하여 상기 사기업 네트워크 내의 자원 및 상기 클라우드 토폴로지 내의 자원의 사용을 관리하는 상기 사기업 네트워크 내의 부하 균형기와,
    상기 사기업 네트워크 및 상기 클라우드 토폴로지 내의 자원의 성능 데이터를 수집하는 모니터를 포함한 제어기와,
    일련의 서버를 포함하되, 상기 일련의 서버는 상기 사기업 네트워크에 할당된 상기 클라우드 토폴로지 내의 가상 머신을 포함하는 클라우드 토폴로지를 포함하는
    시스템.
  7. 제6항에 있어서,
    상기 제어기는
    상기 클라우드 토폴로지 내에서 상기 가상 머신들을 관리하는 관리자를 더 포함하되, 상기 관리는 사용자에 의해 정의된 확장(scaling) 알고리즘에 기반하는
    시스템.
  8. 제6항에 있어서,
    상기 클라우드 토폴로지 내에서 상기 가상 머신을 관리하는 상기 클라우드 토폴로지 내의 제2부하 균형기를 더 포함하며, 상기 부하 균형기는 상기 제2부하 균형기를 단지 상기 클라우드 토폴로지 내에 위치한 단일 서버로서 관리하는
    시스템.
KR1020127008396A 2009-09-30 2010-09-21 클라우드 토폴로지 내 기업 확장을 위한 확장 가능 구조 KR101355721B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/571,257 US8619779B2 (en) 2009-09-30 2009-09-30 Scalable architecture for enterprise extension in a cloud topology
US12/571,257 2009-09-30
PCT/US2010/049562 WO2011041159A1 (en) 2009-09-30 2010-09-21 Scalable architecture for enterprise extension in a cloud topology

Publications (2)

Publication Number Publication Date
KR20120063501A true KR20120063501A (ko) 2012-06-15
KR101355721B1 KR101355721B1 (ko) 2014-01-24

Family

ID=43242623

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127008396A KR101355721B1 (ko) 2009-09-30 2010-09-21 클라우드 토폴로지 내 기업 확장을 위한 확장 가능 구조

Country Status (6)

Country Link
US (1) US8619779B2 (ko)
EP (1) EP2484061B1 (ko)
JP (1) JP5485403B2 (ko)
KR (1) KR101355721B1 (ko)
CN (1) CN102577270B (ko)
WO (1) WO2011041159A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101457455B1 (ko) * 2013-05-30 2014-11-05 한국전자통신연구원 클라우드 네트워크 환경에서의 데이터 보안 장치 및 방법
KR101529163B1 (ko) * 2013-02-15 2015-06-16 주식회사 케이티 복수의 사용자 계정들을 갖는 클라이언트에 대한 가상 데스크톱 서비스의 청약 시스템 및 청약 처리 방법

Families Citing this family (227)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2587736A3 (en) * 2007-09-26 2013-08-28 Nicira, Inc. Network operating system for managing and securing networks
US8560634B2 (en) * 2007-10-17 2013-10-15 Dispersive Networks, Inc. Apparatus, systems and methods utilizing dispersive networking
EP2415221B1 (en) 2009-04-01 2014-05-07 Nicira, Inc. Method and apparatus for implementing and managing virtual switches
US8705513B2 (en) * 2009-12-15 2014-04-22 At&T Intellectual Property I, L.P. Methods and apparatus to communicatively couple virtual private networks to virtual machines within distributive computing networks
US8429651B2 (en) * 2010-01-20 2013-04-23 International Business Machines Corporation Enablement and acceleration of live and near-live migration of virtual machines and their associated storage across networks
US9710294B2 (en) 2010-03-17 2017-07-18 Zerto Ltd. Methods and apparatus for providing hypervisor level data services for server virtualization
US11256529B2 (en) 2010-03-17 2022-02-22 Zerto Ltd. Methods and apparatus for providing hypervisor level data services for server virtualization
US9442748B2 (en) 2010-03-17 2016-09-13 Zerto, Ltd. Multi-RPO data protection
US9389892B2 (en) * 2010-03-17 2016-07-12 Zerto Ltd. Multiple points in time disk images for disaster recovery
US10649799B2 (en) 2010-03-17 2020-05-12 Zerto Ltd. Hypervisor virtual server system, and method for providing data services within a hypervisor virtual server system
US20110239039A1 (en) * 2010-03-26 2011-09-29 Dieffenbach Devon C Cloud computing enabled robust initialization and recovery of it services
US9137213B2 (en) * 2010-03-26 2015-09-15 Avaya Inc. On-demand feature server activation in the cloud
US8407366B2 (en) * 2010-05-14 2013-03-26 Microsoft Corporation Interconnecting members of a virtual network
US9680750B2 (en) 2010-07-06 2017-06-13 Nicira, Inc. Use of tunnels to hide network addresses
US8750119B2 (en) 2010-07-06 2014-06-10 Nicira, Inc. Network control apparatus and method with table mapping engine
US8964528B2 (en) 2010-07-06 2015-02-24 Nicira, Inc. Method and apparatus for robust packet distribution among hierarchical managed switching elements
US9525647B2 (en) 2010-07-06 2016-12-20 Nicira, Inc. Network control apparatus and method for creating and modifying logical switching elements
US10103939B2 (en) 2010-07-06 2018-10-16 Nicira, Inc. Network control apparatus and method for populating logical datapath sets
WO2012023050A2 (en) 2010-08-20 2012-02-23 Overtis Group Limited Secure cloud computing system and method
US8473557B2 (en) 2010-08-24 2013-06-25 At&T Intellectual Property I, L.P. Methods and apparatus to migrate virtual machines between distributive computing networks across a wide area network
US8677004B2 (en) 2010-09-10 2014-03-18 International Business Machines Corporation Migration of logical partitions between two devices
US8495356B2 (en) * 2010-12-31 2013-07-23 International Business Machines Corporation System for securing virtual machine disks on a remote shared storage subsystem
US20120173757A1 (en) * 2011-01-05 2012-07-05 International Business Machines Corporation Routing optimization for virtual machine migration between geographically remote data centers
US9619662B1 (en) * 2011-01-13 2017-04-11 Google Inc. Virtual network pairs
US9135037B1 (en) * 2011-01-13 2015-09-15 Google Inc. Virtual network protocol
US8825900B1 (en) 2011-04-05 2014-09-02 Nicira, Inc. Method and apparatus for stateless transport layer tunneling
US9043452B2 (en) 2011-05-04 2015-05-26 Nicira, Inc. Network control apparatus and method for port isolation
CN103650426B (zh) * 2011-05-06 2016-10-05 思杰系统有限公司 用于在公共云与私有云之间进行云桥接的系统和方法
US9253252B2 (en) * 2011-05-06 2016-02-02 Citrix Systems, Inc. Systems and methods for cloud bridging between intranet resources and cloud resources
US9154327B1 (en) 2011-05-27 2015-10-06 Cisco Technology, Inc. User-configured on-demand virtual layer-2 network for infrastructure-as-a-service (IaaS) on a hybrid cloud network
WO2012170016A1 (en) 2011-06-07 2012-12-13 Hewlett-Packard Development Company, L.P. A scalable multi-tenant network architecture for virtualized datacenters
US8804745B1 (en) * 2011-06-27 2014-08-12 Amazon Technologies, Inc. Virtualization mapping
CN102882758B (zh) * 2011-07-12 2018-12-07 华为技术有限公司 虚拟私云接入网络的方法、网络侧设备和数据中心设备
US20130036213A1 (en) * 2011-08-02 2013-02-07 Masum Hasan Virtual private clouds
US9009106B1 (en) 2011-08-10 2015-04-14 Nutanix, Inc. Method and system for implementing writable snapshots in a virtualized storage environment
US8601473B1 (en) 2011-08-10 2013-12-03 Nutanix, Inc. Architecture for managing I/O and storage for a virtualization environment
EP2745208B1 (en) 2011-08-17 2018-11-28 Nicira, Inc. Distributed logical l3 routing
US8964767B2 (en) 2011-08-17 2015-02-24 Nicira, Inc. Packet processing in federated network
US8819284B2 (en) 2011-08-30 2014-08-26 At&T Intellectual Property I, L.P. Methods, systems and apparatus to route cloud-based service communications
US8856518B2 (en) * 2011-09-07 2014-10-07 Microsoft Corporation Secure and efficient offloading of network policies to network interface cards
JP5836042B2 (ja) * 2011-10-04 2015-12-24 株式会社日立製作所 管理サーバプログラム
US20140250232A1 (en) * 2011-10-14 2014-09-04 National Ict Australia Limited Disaster recovery failover in cloud computing
US9288104B2 (en) 2011-10-25 2016-03-15 Nicira, Inc. Chassis controllers for converting universal flows
US9137107B2 (en) 2011-10-25 2015-09-15 Nicira, Inc. Physical controllers for converting universal flows
US9178833B2 (en) 2011-10-25 2015-11-03 Nicira, Inc. Chassis controller
US9203701B2 (en) 2011-10-25 2015-12-01 Nicira, Inc. Network virtualization apparatus and method with scheduling capabilities
EP2748714B1 (en) 2011-11-15 2021-01-13 Nicira, Inc. Connection identifier assignment and source network address translation
US20130142201A1 (en) * 2011-12-02 2013-06-06 Microsoft Corporation Connecting on-premise networks with public clouds
US8959228B2 (en) * 2011-12-23 2015-02-17 Empire Technology Development Llc Optimization of resource utilization in a collection of devices
CN104081713B (zh) * 2012-01-30 2018-08-17 英特尔公司 云计算环境中的服务器和客户机的远程信任认证和地理位置
US9256742B2 (en) 2012-01-30 2016-02-09 Intel Corporation Remote trust attestation and geo-location of servers and clients in cloud computing environments
US8990371B2 (en) * 2012-01-31 2015-03-24 International Business Machines Corporation Interconnecting data centers for migration of virtual machines
US8660129B1 (en) * 2012-02-02 2014-02-25 Cisco Technology, Inc. Fully distributed routing over a user-configured on-demand virtual network for infrastructure-as-a-service (IaaS) on hybrid cloud networks
US8881136B2 (en) * 2012-03-13 2014-11-04 International Business Machines Corporation Identifying optimal upgrade scenarios in a networked computing environment
US8595262B1 (en) 2012-03-29 2013-11-26 Amazon Technologies, Inc. Resource resolution in computing environments using directed graphs
EP2955886B1 (en) 2012-04-18 2020-05-06 Nicira Inc. Using transactions to compute and propagate network forwarding state
US9052963B2 (en) * 2012-05-21 2015-06-09 International Business Machines Corporation Cloud computing data center machine monitor and control
US9106578B2 (en) * 2012-05-31 2015-08-11 Hewlett-Packard Development Company, L.P. Core network architecture
US9772866B1 (en) 2012-07-17 2017-09-26 Nutanix, Inc. Architecture for implementing a virtualization environment and appliance
US9612853B2 (en) 2012-09-07 2017-04-04 International Business Machines Corporation Virtual machine monitoring in cloud infrastructures
CN103825815B (zh) * 2012-11-16 2018-07-27 中兴通讯股份有限公司 网络虚拟边界设备间进行冗余备份的方法、设备及系统
US9882713B1 (en) 2013-01-30 2018-01-30 vIPtela Inc. Method and system for key generation, distribution and management
US9392050B2 (en) * 2013-03-15 2016-07-12 Cisco Technology, Inc. Automatic configuration of external services based upon network activity
US20140310039A1 (en) * 2013-04-16 2014-10-16 Centurylink Intellectual Property Llc Automated Cloud Expansion and Ordering System and Method
EP3007391B1 (en) * 2013-05-27 2019-06-26 Nec Corporation Network control device, network control method, program, and communication system
US10454714B2 (en) 2013-07-10 2019-10-22 Nicira, Inc. Method and system of overlay flow control
US10749711B2 (en) 2013-07-10 2020-08-18 Nicira, Inc. Network-link method useful for a last-mile connectivity in an edge-gateway multipath system
US9952885B2 (en) 2013-08-14 2018-04-24 Nicira, Inc. Generation of configuration files for a DHCP module executing within a virtualized container
US9887960B2 (en) 2013-08-14 2018-02-06 Nicira, Inc. Providing services for logical networks
US10439988B2 (en) * 2013-08-21 2019-10-08 Vmware, Inc. On premises, remotely managed, host computers for virtual desktops
US9654390B2 (en) 2013-09-03 2017-05-16 Cisco Technology, Inc. Method and apparatus for improving cloud routing service performance
US9577845B2 (en) 2013-09-04 2017-02-21 Nicira, Inc. Multiple active L3 gateways for logical networks
US9503371B2 (en) 2013-09-04 2016-11-22 Nicira, Inc. High availability L3 gateways for logical networks
US9455901B2 (en) 2013-10-04 2016-09-27 Nicira, Inc. Managing software and hardware forwarding elements to define virtual networks
US9910686B2 (en) 2013-10-13 2018-03-06 Nicira, Inc. Bridging between network segments with a logical router
US10063458B2 (en) 2013-10-13 2018-08-28 Nicira, Inc. Asymmetric connection with external networks
WO2015065368A1 (en) 2013-10-30 2015-05-07 Hewlett-Packard Development Company, L.P. Realized topology system management database
WO2015065353A1 (en) 2013-10-30 2015-05-07 Hewlett-Packard Development Company, L.P. Managing the lifecycle of a cloud service modeled as topology decorated by a number of policies
EP3063661B1 (en) 2013-10-30 2020-05-06 Hewlett-Packard Enterprise Development LP Topology remediation
US10447538B2 (en) 2013-10-30 2019-10-15 Micro Focus Llc Facilitating autonomous computing within a cloud service
US10230568B2 (en) 2013-10-30 2019-03-12 Hewlett Packard Enterprise Development Lp Monitoring a cloud service modeled as a topology
WO2015065355A1 (en) 2013-10-30 2015-05-07 Hewlett-Packard Development Company, L. P. Stitching an application model to an infrastructure template
EP3063654A4 (en) 2013-10-30 2017-06-21 Hewlett-Packard Enterprise Development LP Modifying realized topologies
US10230580B2 (en) 2013-10-30 2019-03-12 Hewlett Packard Enterprise Development Lp Management of the lifecycle of a cloud service modeled as a topology
WO2015065389A1 (en) 2013-10-30 2015-05-07 Hewlett-Packard Development Company, L.P. Execution of a topology
DE102013018596A1 (de) 2013-11-07 2015-05-07 Phoenix Contact Gmbh & Co. Kg Netzwerksystem, Koppeleinheit und Verfahren zum Betreiben eines Netzwerksystems
CN103607449A (zh) * 2013-11-18 2014-02-26 中国联合网络通信集团有限公司 企业内网物理机访问云存储虚拟机的方法、设备和系统
US9438506B2 (en) 2013-12-11 2016-09-06 Amazon Technologies, Inc. Identity and access management-based access control in virtual networks
US9294524B2 (en) 2013-12-16 2016-03-22 Nicira, Inc. Mapping virtual machines from a private network to a multi-tenant public datacenter
US9467478B1 (en) 2013-12-18 2016-10-11 vIPtela Inc. Overlay management protocol for secure routing based on an overlay network
US9565072B2 (en) 2013-12-19 2017-02-07 Sap Se Moving median usage frequency based maintenance of server instances
US9225597B2 (en) 2014-03-14 2015-12-29 Nicira, Inc. Managed gateways peering with external router to attract ingress packets
US9590901B2 (en) 2014-03-14 2017-03-07 Nicira, Inc. Route advertisement by managed gateways
US9419855B2 (en) 2014-03-14 2016-08-16 Nicira, Inc. Static routes for logical routers
US9313129B2 (en) 2014-03-14 2016-04-12 Nicira, Inc. Logical router processing by network controller
US9647883B2 (en) 2014-03-21 2017-05-09 Nicria, Inc. Multiple levels of logical routers
US9503321B2 (en) 2014-03-21 2016-11-22 Nicira, Inc. Dynamic routing for logical routers
US9424062B1 (en) * 2014-03-24 2016-08-23 Amazon Technologies, Inc. Virtualization infrastructure support
US9413644B2 (en) 2014-03-27 2016-08-09 Nicira, Inc. Ingress ECMP in virtual distributed routing environment
US9893988B2 (en) 2014-03-27 2018-02-13 Nicira, Inc. Address resolution using multiple designated instances of a logical router
US9811365B2 (en) * 2014-05-09 2017-11-07 Amazon Technologies, Inc. Migration of applications between an enterprise-based network and a multi-tenant network
US9716628B2 (en) * 2014-05-23 2017-07-25 Cisco Technology, Inc. Touchless orchestration for layer 3 data center interconnect in communications networks
US10019278B2 (en) 2014-06-22 2018-07-10 Cisco Technology, Inc. Framework for network technology agnostic multi-cloud elastic extension and isolation
US10305726B2 (en) 2014-06-22 2019-05-28 Cisco Technology, Inc. Cloud framework for multi-cloud extension
US9912609B2 (en) 2014-08-08 2018-03-06 Oracle International Corporation Placement policy-based allocation of computing resources
US9961017B2 (en) 2014-08-08 2018-05-01 Oracle International Corporation Demand policy-based resource management and allocation system
US9781055B2 (en) * 2014-08-18 2017-10-03 Cisco Technology, Inc. Dynamic cascaded clustering for dynamic VNF
US9979602B1 (en) * 2014-08-25 2018-05-22 Cisco Technology, Inc. Network function virtualization infrastructure pod in a network environment
US20160080255A1 (en) * 2014-09-17 2016-03-17 Netapp, Inc. Method and system for setting up routing in a clustered storage system
US10511458B2 (en) 2014-09-30 2019-12-17 Nicira, Inc. Virtual distributed bridging
US10020960B2 (en) 2014-09-30 2018-07-10 Nicira, Inc. Virtual distributed bridging
US10250443B2 (en) 2014-09-30 2019-04-02 Nicira, Inc. Using physical location to modify behavior of a distributed virtual network element
US9768980B2 (en) 2014-09-30 2017-09-19 Nicira, Inc. Virtual distributed bridging
US10447676B2 (en) * 2014-10-10 2019-10-15 Adp, Llc Securing application programming interfaces (APIS) through infrastructure virtualization
US9787605B2 (en) 2015-01-30 2017-10-10 Nicira, Inc. Logical router with multiple routing components
US10491546B2 (en) 2015-02-25 2019-11-26 At&T Intellectual Property I, L.P. Provider edge router system and provider edge router system controller for hybrid virtualization of provider edge router functions
US10038628B2 (en) 2015-04-04 2018-07-31 Nicira, Inc. Route server mode for dynamic routing between logical and physical networks
US9923760B2 (en) 2015-04-06 2018-03-20 Nicira, Inc. Reduction of churn in a network control system
US10498652B2 (en) 2015-04-13 2019-12-03 Nicira, Inc. Method and system of application-aware routing with crowdsourcing
US10135789B2 (en) 2015-04-13 2018-11-20 Nicira, Inc. Method and system of establishing a virtual private network in a cloud service for branch networking
US10425382B2 (en) * 2015-04-13 2019-09-24 Nicira, Inc. Method and system of a cloud-based multipath routing protocol
US9942058B2 (en) 2015-04-17 2018-04-10 Nicira, Inc. Managing tunnel endpoints for facilitating creation of logical networks
US10645064B2 (en) 2015-04-23 2020-05-05 Alcatel Lucent Virtualized application performance through disabling of unnecessary functions
WO2016172501A1 (en) * 2015-04-24 2016-10-27 Shoretel, Inc. Provisioning hybrid services
CN106302071B (zh) * 2015-05-29 2020-02-14 华为技术有限公司 一种适配器、网络设备以及端口配置的方法
KR101575200B1 (ko) 2015-06-11 2015-12-21 정재기 자가 진단 및 알고리즘 진단이 가능한 부분방전 진단장치
US10554484B2 (en) 2015-06-26 2020-02-04 Nicira, Inc. Control plane integration with hardware switches
US10361952B2 (en) 2015-06-30 2019-07-23 Nicira, Inc. Intermediate logical interfaces in a virtual distributed router environment
CH711351A1 (de) * 2015-07-23 2017-01-31 Legic Identsystems Ag Elektronische Zugangskontrollvorrichtung und Zugangskontrollverfahren.
US9819581B2 (en) 2015-07-31 2017-11-14 Nicira, Inc. Configuring a hardware switch as an edge node for a logical router
US9847938B2 (en) 2015-07-31 2017-12-19 Nicira, Inc. Configuring logical routers on hardware switches
US9967182B2 (en) 2015-07-31 2018-05-08 Nicira, Inc. Enabling hardware switches to perform logical routing functionalities
US10129142B2 (en) 2015-08-11 2018-11-13 Nicira, Inc. Route configuration for logical router
US10313186B2 (en) * 2015-08-31 2019-06-04 Nicira, Inc. Scalable controller for hardware VTEPS
US10075363B2 (en) 2015-08-31 2018-09-11 Nicira, Inc. Authorization for advertised routes among logical routers
US10263828B2 (en) 2015-09-30 2019-04-16 Nicira, Inc. Preventing concurrent distribution of network data to a hardware switch by multiple controllers
US9998324B2 (en) 2015-09-30 2018-06-12 Nicira, Inc. Logical L3 processing for L2 hardware switches
US10204122B2 (en) 2015-09-30 2019-02-12 Nicira, Inc. Implementing an interface between tuple and message-driven control entities
US9948577B2 (en) 2015-09-30 2018-04-17 Nicira, Inc. IP aliases in logical networks with hardware switches
US10230576B2 (en) 2015-09-30 2019-03-12 Nicira, Inc. Managing administrative statuses of hardware VTEPs
US10075304B2 (en) 2015-10-30 2018-09-11 Microsoft Technology Licensing, Llc Multiple gateway operation on single operating system
US10095535B2 (en) 2015-10-31 2018-10-09 Nicira, Inc. Static route types for logical routers
US10250553B2 (en) 2015-11-03 2019-04-02 Nicira, Inc. ARP offloading for managed hardware forwarding elements
US9917799B2 (en) 2015-12-15 2018-03-13 Nicira, Inc. Transactional controls for supplying control plane data to managed hardware forwarding elements
US9998375B2 (en) 2015-12-15 2018-06-12 Nicira, Inc. Transactional controls for supplying control plane data to managed hardware forwarding elements
US9992112B2 (en) 2015-12-15 2018-06-05 Nicira, Inc. Transactional controls for supplying control plane data to managed hardware forwarding elements
US9980303B2 (en) 2015-12-18 2018-05-22 Cisco Technology, Inc. Establishing a private network using multi-uplink capable network devices
US10313271B2 (en) * 2016-03-16 2019-06-04 At&T Intellectual Property I, L.P. Providing and using a distributed forwarding service
US10333849B2 (en) 2016-04-28 2019-06-25 Nicira, Inc. Automatic configuration of logical routers on edge nodes
US11019167B2 (en) 2016-04-29 2021-05-25 Nicira, Inc. Management of update queues for network controller
US10484515B2 (en) 2016-04-29 2019-11-19 Nicira, Inc. Implementing logical metadata proxy servers in logical networks
US10841273B2 (en) 2016-04-29 2020-11-17 Nicira, Inc. Implementing logical DHCP servers in logical networks
US10091161B2 (en) 2016-04-30 2018-10-02 Nicira, Inc. Assignment of router ID for logical routers
US10560320B2 (en) 2016-06-29 2020-02-11 Nicira, Inc. Ranking of gateways in cluster
US10200343B2 (en) 2016-06-29 2019-02-05 Nicira, Inc. Implementing logical network security on a hardware switch
US10153973B2 (en) 2016-06-29 2018-12-11 Nicira, Inc. Installation of routing tables for logical router in route server mode
CN107566150B (zh) 2016-07-01 2020-04-28 华为技术有限公司 处理云资源的方法和物理节点
US10367757B2 (en) 2016-08-27 2019-07-30 Nicira, Inc. Extension of network control system into public cloud
EP3731463B1 (en) * 2016-08-27 2022-03-30 Nicira Inc. Extension of network control system into public cloud
US10402675B2 (en) * 2016-08-30 2019-09-03 The Boeing Company 2D vehicle localizing using geoarcs
US10454758B2 (en) 2016-08-31 2019-10-22 Nicira, Inc. Edge node cluster network redundancy and fast convergence using an underlay anycast VTEP IP
US10341236B2 (en) 2016-09-30 2019-07-02 Nicira, Inc. Anycast edge service gateways
US10237123B2 (en) 2016-12-21 2019-03-19 Nicira, Inc. Dynamic recovery from a split-brain failure in edge nodes
US10212071B2 (en) 2016-12-21 2019-02-19 Nicira, Inc. Bypassing a load balancer in a return path of network traffic
US10742746B2 (en) 2016-12-21 2020-08-11 Nicira, Inc. Bypassing a load balancer in a return path of network traffic
US10616045B2 (en) 2016-12-22 2020-04-07 Nicira, Inc. Migration of centralized routing components of logical router
CN106506549A (zh) * 2016-12-27 2017-03-15 上海斐讯数据通信技术有限公司 网络设备代理的云共享私有权限管理方法及系统
US11252079B2 (en) 2017-01-31 2022-02-15 Vmware, Inc. High performance software-defined core network
US20180219765A1 (en) 2017-01-31 2018-08-02 Waltz Networks Method and Apparatus for Network Traffic Control Optimization
US11706127B2 (en) 2017-01-31 2023-07-18 Vmware, Inc. High performance software-defined core network
US11121962B2 (en) 2017-01-31 2021-09-14 Vmware, Inc. High performance software-defined core network
US10992558B1 (en) 2017-11-06 2021-04-27 Vmware, Inc. Method and apparatus for distributed data network traffic optimization
US10992568B2 (en) 2017-01-31 2021-04-27 Vmware, Inc. High performance software-defined core network
US20200036624A1 (en) 2017-01-31 2020-01-30 The Mode Group High performance software-defined core network
US10778528B2 (en) 2017-02-11 2020-09-15 Nicira, Inc. Method and system of connecting to a multipath hub in a cluster
US10574528B2 (en) 2017-02-11 2020-02-25 Nicira, Inc. Network multi-source inbound quality of service methods and systems
US10419539B2 (en) 2017-05-19 2019-09-17 Bank Of America Corporation Data transfer path selection
US10523539B2 (en) 2017-06-22 2019-12-31 Nicira, Inc. Method and system of resiliency in cloud-delivered SD-WAN
US10892940B2 (en) * 2017-07-21 2021-01-12 Cisco Technology, Inc. Scalable statistics and analytics mechanisms in cloud networking
US10778579B2 (en) * 2017-08-27 2020-09-15 Nicira, Inc. Performing in-line service in public cloud
US11102032B2 (en) 2017-10-02 2021-08-24 Vmware, Inc. Routing data message flow through multiple public clouds
US11089111B2 (en) 2017-10-02 2021-08-10 Vmware, Inc. Layer four optimization for a virtual network defined over public cloud
US10959098B2 (en) 2017-10-02 2021-03-23 Vmware, Inc. Dynamically specifying multiple public cloud edge nodes to connect to an external multi-computer node
US11115480B2 (en) 2017-10-02 2021-09-07 Vmware, Inc. Layer four optimization for a virtual network defined over public cloud
US10999100B2 (en) 2017-10-02 2021-05-04 Vmware, Inc. Identifying multiple nodes in a virtual network defined over a set of public clouds to connect to an external SAAS provider
US10999165B2 (en) 2017-10-02 2021-05-04 Vmware, Inc. Three tiers of SaaS providers for deploying compute and network infrastructure in the public cloud
US11223514B2 (en) 2017-11-09 2022-01-11 Nicira, Inc. Method and system of a dynamic high-availability mode based on current wide area network connectivity
US10511459B2 (en) 2017-11-14 2019-12-17 Nicira, Inc. Selection of managed forwarding element for bridge spanning multiple datacenters
US10374827B2 (en) 2017-11-14 2019-08-06 Nicira, Inc. Identifier that maps to different networks at different datacenters
CN110417658B (zh) * 2018-04-28 2022-08-12 北京京东尚科信息技术有限公司 用于边缘路由器的网络接入方法和装置
US11263305B2 (en) 2018-05-09 2022-03-01 Netflix, Inc. Multilayered approach to protecting cloud credentials
CN116032836A (zh) * 2018-08-24 2023-04-28 Vm维尔股份有限公司 在公共云中智能地使用对等
US11374794B2 (en) 2018-08-24 2022-06-28 Vmware, Inc. Transitive routing in public cloud
US20200133697A1 (en) * 2018-10-26 2020-04-30 Netography, Inc. Collaborative command line interface
US10834017B2 (en) * 2018-11-11 2020-11-10 International Business Machines Corporation Cloud-driven hybrid data flow and collection
US10931560B2 (en) 2018-11-23 2021-02-23 Vmware, Inc. Using route type to determine routing protocol behavior
CN109327394B (zh) * 2018-11-28 2019-09-06 北京华三通信技术有限公司 一种报文转发方法及装置
US10797998B2 (en) 2018-12-05 2020-10-06 Vmware, Inc. Route server for distributed routers using hierarchical routing protocol
US10938788B2 (en) 2018-12-12 2021-03-02 Vmware, Inc. Static routes for policy-based VPN
US11102114B2 (en) * 2018-12-28 2021-08-24 Alibaba Group Holding Limited Method, apparatus, and computer-readable storage medium for network optimization for accessing cloud service from on-premises network
US11108735B2 (en) * 2019-06-07 2021-08-31 Microsoft Technology Licensing, Llc Mapping subnets in different virtual networks using private address space
US11252105B2 (en) 2019-08-27 2022-02-15 Vmware, Inc. Identifying different SaaS optimal egress nodes for virtual networks of different entities
US11159343B2 (en) 2019-08-30 2021-10-26 Vmware, Inc. Configuring traffic optimization using distributed edge services
US11095557B2 (en) * 2019-09-19 2021-08-17 Vmware, Inc. L3 underlay routing in a cloud environment using hybrid distributed logical router
US11611507B2 (en) 2019-10-28 2023-03-21 Vmware, Inc. Managing forwarding elements at edge nodes connected to a virtual network
US11171843B2 (en) 2019-11-29 2021-11-09 Amazon Technologies, Inc. Multi-carrier access to provider substrate extensions
CN110830594B (zh) * 2019-12-06 2022-04-01 广州微算互联信息技术有限公司 一种扩展云手机ip地址的方法、系统、装置及存储介质
US11489783B2 (en) 2019-12-12 2022-11-01 Vmware, Inc. Performing deep packet inspection in a software defined wide area network
US11394640B2 (en) 2019-12-12 2022-07-19 Vmware, Inc. Collecting and analyzing data regarding flows associated with DPI parameters
US11722925B2 (en) 2020-01-24 2023-08-08 Vmware, Inc. Performing service class aware load balancing to distribute packets of a flow among multiple network links
US11477127B2 (en) 2020-07-02 2022-10-18 Vmware, Inc. Methods and apparatus for application aware hub clustering techniques for a hyper scale SD-WAN
US11616755B2 (en) 2020-07-16 2023-03-28 Vmware, Inc. Facilitating distributed SNAT service
US11606294B2 (en) 2020-07-16 2023-03-14 Vmware, Inc. Host computer configured to facilitate distributed SNAT service
US11611613B2 (en) 2020-07-24 2023-03-21 Vmware, Inc. Policy-based forwarding to a load balancer of a load balancing cluster
US11902050B2 (en) 2020-07-28 2024-02-13 VMware LLC Method for providing distributed gateway service at host computer
US11451413B2 (en) 2020-07-28 2022-09-20 Vmware, Inc. Method for advertising availability of distributed gateway service and machines at host computer
US11709710B2 (en) 2020-07-30 2023-07-25 Vmware, Inc. Memory allocator for I/O operations
US11444865B2 (en) 2020-11-17 2022-09-13 Vmware, Inc. Autonomous distributed forwarding plane traceability based anomaly detection in application traffic for hyper-scale SD-WAN
US11575600B2 (en) 2020-11-24 2023-02-07 Vmware, Inc. Tunnel-less SD-WAN
US11929903B2 (en) 2020-12-29 2024-03-12 VMware LLC Emulating packet flows to assess network links for SD-WAN
US11792127B2 (en) 2021-01-18 2023-10-17 Vmware, Inc. Network-aware load balancing
US11388086B1 (en) 2021-05-03 2022-07-12 Vmware, Inc. On demand routing mesh for dynamically adjusting SD-WAN edge forwarding node roles to facilitate routing through an SD-WAN
US11729065B2 (en) 2021-05-06 2023-08-15 Vmware, Inc. Methods for application defined virtual network service among multiple transport in SD-WAN
US11489720B1 (en) 2021-06-18 2022-11-01 Vmware, Inc. Method and apparatus to evaluate resource elements and public clouds for deploying tenant deployable elements based on harvested performance metrics
US11375005B1 (en) 2021-07-24 2022-06-28 Vmware, Inc. High availability solutions for a secure access service edge application
US11943146B2 (en) 2021-10-01 2024-03-26 VMware LLC Traffic prioritization in SD-WAN
US11909815B2 (en) 2022-06-06 2024-02-20 VMware LLC Routing based on geolocation costs

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804776B1 (en) * 1999-09-21 2004-10-12 Cisco Technology, Inc. Method for universal transport encapsulation for Internet Protocol network communications
US7082140B1 (en) * 2000-03-17 2006-07-25 Nortel Networks Ltd System, device and method for supporting a label switched path across a non-MPLS compliant segment
US7272643B1 (en) * 2000-09-13 2007-09-18 Fortinet, Inc. System and method for managing and provisioning virtual routers
US20020075844A1 (en) 2000-12-15 2002-06-20 Hagen W. Alexander Integrating public and private network resources for optimized broadband wireless access and method
JP3616570B2 (ja) * 2001-01-04 2005-02-02 日本電気株式会社 インターネット中継接続方式
US20030041238A1 (en) * 2001-08-15 2003-02-27 International Business Machines Corporation Method and system for managing resources using geographic location information within a network management framework
US7093289B2 (en) 2001-08-22 2006-08-15 Adtran, Inc. Mechanism for automatically configuring integrated access device for use in voice over digital subscriber line circuit
US7415535B1 (en) * 2002-04-22 2008-08-19 Cisco Technology, Inc. Virtual MAC address system and method
US7529933B2 (en) * 2002-05-30 2009-05-05 Microsoft Corporation TLS tunneling
US6741595B2 (en) * 2002-06-11 2004-05-25 Netrake Corporation Device for enabling trap and trace of internet protocol communications
US7693073B2 (en) * 2006-10-13 2010-04-06 At&T Intellectual Property I, L.P. System and method for routing packet traffic
US8381209B2 (en) * 2007-01-03 2013-02-19 International Business Machines Corporation Moveable access control list (ACL) mechanisms for hypervisors and virtual machines and virtual port firewalls
US8259720B2 (en) * 2007-02-02 2012-09-04 Cisco Technology, Inc. Triple-tier anycast addressing
US7840701B2 (en) 2007-02-21 2010-11-23 Array Networks, Inc. Dynamic system and method for virtual private network (VPN) packet level routing using dual-NAT method
US8055789B2 (en) * 2007-03-27 2011-11-08 Amazon Technologies, Inc. Configuring intercommunications between computing nodes
US7792124B2 (en) * 2007-04-01 2010-09-07 Cisco Technology, Inc. Data forwarding in a layer three satellite network
JP5281644B2 (ja) * 2007-09-07 2013-09-04 テレフオンアクチーボラゲット エル エム エリクソン(パブル) ノマディック型端末に、レイヤ2レベル上でホーム・ネットワークにアクセスすることを可能にする方法および装置
US8996683B2 (en) * 2008-06-09 2015-03-31 Microsoft Technology Licensing, Llc Data center without structural bottlenecks
US8160063B2 (en) * 2008-06-09 2012-04-17 Microsoft Corporation Data center interconnect and traffic engineering
AU2009259876A1 (en) * 2008-06-19 2009-12-23 Servicemesh, Inc. Cloud computing gateway, cloud computing hypervisor, and methods for implementing same
US7987289B2 (en) * 2008-06-24 2011-07-26 Microsoft Corporation Participating in cloud as totally stubby edge
US7720009B2 (en) * 2008-07-09 2010-05-18 Cisco Technology, Inc. Virtual private network (VPN) topology identifier
US9122533B2 (en) * 2009-03-13 2015-09-01 Novell, Inc. System and method for reducing cloud IP address utilization using a distributor registry
US8656018B1 (en) * 2008-09-23 2014-02-18 Gogrid, LLC System and method for automated allocation of hosting resources controlled by different hypervisors
US8213336B2 (en) * 2009-02-23 2012-07-03 Cisco Technology, Inc. Distributed data center access switch
US20100318609A1 (en) * 2009-06-15 2010-12-16 Microsoft Corporation Bridging enterprise networks into cloud
US8532108B2 (en) * 2009-09-30 2013-09-10 Alcatel Lucent Layer 2 seamless site extension of enterprises in cloud computing
US8369333B2 (en) * 2009-10-21 2013-02-05 Alcatel Lucent Method and apparatus for transparent cloud computing with a virtualized network infrastructure
CN103270736B (zh) * 2010-06-29 2016-08-10 华为技术有限公司 一种网络设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101529163B1 (ko) * 2013-02-15 2015-06-16 주식회사 케이티 복수의 사용자 계정들을 갖는 클라이언트에 대한 가상 데스크톱 서비스의 청약 시스템 및 청약 처리 방법
KR101457455B1 (ko) * 2013-05-30 2014-11-05 한국전자통신연구원 클라우드 네트워크 환경에서의 데이터 보안 장치 및 방법

Also Published As

Publication number Publication date
EP2484061A1 (en) 2012-08-08
KR101355721B1 (ko) 2014-01-24
CN102577270A (zh) 2012-07-11
JP5485403B2 (ja) 2014-05-07
CN102577270B (zh) 2014-12-24
WO2011041159A1 (en) 2011-04-07
EP2484061B1 (en) 2013-07-17
US8619779B2 (en) 2013-12-31
US20110075674A1 (en) 2011-03-31
JP2013507044A (ja) 2013-02-28

Similar Documents

Publication Publication Date Title
KR101355721B1 (ko) 클라우드 토폴로지 내 기업 확장을 위한 확장 가능 구조
US8532108B2 (en) Layer 2 seamless site extension of enterprises in cloud computing
US11805056B2 (en) Method and system for service switching using service tags
EP3664383B1 (en) Scalable handling of bgp route information in vxlan with evpn control plane
EP3984181B1 (en) L3 underlay routing in a cloud environment using hybrid distributed logical router
US9509600B1 (en) Methods for providing per-connection routing in a virtual environment and devices thereof
Yang et al. LiteVisor: A network hypervisor to support flow aggregation and seamless network reconfiguration for VM migration in virtualized software-defined networks
US20230254183A1 (en) Generating route target values for virtual private network routes
US11818035B2 (en) Augmented routing of data

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170113

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180112

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191217

Year of fee payment: 7