KR20120062066A - Manufacture of zio-lite using wasted rfcc(resid fluidized catalytic cracking) catalyst - Google Patents

Manufacture of zio-lite using wasted rfcc(resid fluidized catalytic cracking) catalyst Download PDF

Info

Publication number
KR20120062066A
KR20120062066A KR1020100123156A KR20100123156A KR20120062066A KR 20120062066 A KR20120062066 A KR 20120062066A KR 1020100123156 A KR1020100123156 A KR 1020100123156A KR 20100123156 A KR20100123156 A KR 20100123156A KR 20120062066 A KR20120062066 A KR 20120062066A
Authority
KR
South Korea
Prior art keywords
rfcc
catalyst
waste
oxidation
minutes
Prior art date
Application number
KR1020100123156A
Other languages
Korean (ko)
Inventor
김명순
김세한
Original Assignee
문형모
김명순
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 문형모, 김명순 filed Critical 문형모
Priority to KR1020100123156A priority Critical patent/KR20120062066A/en
Publication of KR20120062066A publication Critical patent/KR20120062066A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: A method for manufacturing zeolite based on waste resid fluidized catalytic cracking(RFCC) catalyst is provided to prevent the occurrence of environmental pollution by recycling the waste RFCC catalyst which is an environmental pollutant. CONSTITUTION: Waste RFCC is directly ion-exchanged or is ion-exchanged after oxidization. The waste RFCC is composed of 60-70% of silicon dioxide, 25-32% of aluminum oxide, 0.1-0.5% of iron, 0.1-0.4% of nickel, and 0.1-0.4% of vanadium. The waste RFCC is generated from the oil petroleum refining process of a petrochemical industry. A hydrothermal synthesizing process, a washing process, a drying process, and a grinding process are implemented after the ion-exchanging process. A vibration mill and a centrifugal-vibration mill are used for the grinding process. Sodium hydroxide is used as a solvent during the hydrothermal synthesizing process.

Description

폐기 유동상촉매성 분해촉매를 이용한 제오라이트 제조{Manufacture of zio-lite using wasted RFCC(Resid Fluidized Catalytic Cracking) catalyst}Manufacture of zio-lite using wasted Resid Fluidized Catalytic Cracking (RFCC) catalyst

본 발명은 정유공정에서 부산물로 발생하는 폐기 유동상 촉매성 분해촉매를 이용하여 제오라이트를 제조하는 것에 관한 것으로, 특히 석유화학공업의 석유정제시에 중질유를 경질화시키는 공정에서 발생하여 폐기되는 폐 유동상촉매성 분해촉매를 이용하여, 종래의 고가의 제오라이트를 제조하기 위한 방법에 관한 것이다.
The present invention relates to the preparation of zeolite using a waste fluidized bed catalytic cracking catalyst generated as a by-product in the oil refining process, in particular a waste fluidized bed generated and discarded in the process of hardening heavy oil during petroleum refining of petrochemical industry The present invention relates to a method for producing a conventional expensive zeolite using a catalytic decomposition catalyst.

정유사의 중질유 분해과정에서 발생하는 폐유동상 촉매성분해(RFCC)촉매는 기존의 석유화학계통의 촉매와는 달리 담체중의 금속성분을 촉매로 하는 것이 아니고 제오라이트를 주성분으로 이용한 중질유 분해용이다. 즉, 중질유 분해공정 중에서 바나듐, 니켈 등이 유동성 촉매 분해성 촉매의 표면에 축적ㆍ확산되어 촉매 기능이 저하되어 폐기되는 폐기물로써 현재 그 이용범위는 시멘트원료, 도자기 및 벽돌제조용으로 사용이 극히 제한되어 있고, 용도 개발 측면에서 여러 가지 연구가 계속되고 있다.The waste-flow catalytic catalytic cracking (RFCC) catalyst, which occurs during the refinery's heavy oil cracking process, is not used as a catalyst for metal oils in the carrier, unlike conventional petrochemical catalysts, but for heavy oil cracking using zeolite as a main component. In other words, vanadium, nickel, etc. in the heavy oil cracking process are accumulated and diffused on the surface of the fluid catalytic cracking catalyst, and thus the waste is discarded due to deterioration of the catalyst function. As a result, various studies are ongoing in terms of use development.

원래, 국내에서 발생되는 폐RFCC 촉매는 중금속 함유량이 약 3,000~8,000ppm 정도로 매우 적으므로, 중금속의 용출은 크게 문제가 되지 않으며, 폐촉매 중 44%는 매립, 36%는 시멘트 원료의 나머지는 다른 RFCC 공장에 촉매로 판매, 나머지는 아스팔트 충전제로 사용된다.Originally, the waste RFCC catalyst produced in Korea has a very low content of about 3,000 ppm to 8,000 ppm of heavy metals, so leaching of heavy metals is not a problem. 44% of waste catalysts are landfilled, and 36% of the rest of cement raw materials are different. Sold as a catalyst to the RFCC plant, the remainder being used as asphalt fillers.

폐RFCC 촉매가 주로 실리카와 알루미나로 구성되어 있으므로 실리카를 회수하여, 다시 촉매로 사용하거나, 알루미나를 회수하여 제오라이트를 제조하는 연구도 진행중이다. 국내에서 폐RFCC 촉매는 전량 시멘트의 원료로 재활용되고 있으나, 부가가치가 매우 낮은 편이다. 따라서 부가가치가 큰 재활용 방안의 연구가 진행되고 있으며, 폐RFCC 촉매의 재생기술과 유가금속회수연구가 있다. 특히, 국외의 경우, 영구자석을 사용하여 재생하는 기술이 상업화되기도 하였다.Since the waste RFCC catalyst mainly consists of silica and alumina, research is being conducted to recover the silica and use it as a catalyst, or to recover the alumina to manufacture zeolite. In Korea, the waste RFCC catalyst is recycled as a raw material of cement, but the added value is very low. Therefore, research on recycling method with high added value is underway, and there are regeneration technology of waste RFCC catalyst and valuable metal recovery research. In particular, the technology of regenerating permanent magnets has been commercialized outside the country.

한편, 제오라이트 합성은 크게 두 가지로 나눌 수 있는데, 하나는 규산염 점토광물을 이용한 점토법(clay method)이고, 다른 하나는 규산염과 알루민산염을 원료로 하여 수열합성하는 순수 화학적 방법(hydrogel method)이다. 점토법은 규산염 점토광물을 하소 또는 초미분쇄 등에 의하여 무정형으로 한 후, 알카리용액 중에서 합성을 실시한다. 그러나 이 방법은, 점토 광물 중에 존재하는 산화철 및 불순물의 제거가 곤란하며 실제 공정상으로의 전환에도 많은 어려움이 있다. 순수 화학적인 방법은 알루미나의 원료가 되는 보오크사이트의 매장량이 국내에서 전무하여, 경제성으로 볼 때 경쟁력이 떨어진다. 합성 제올라이트는 촉매로서 그리고 기체 또는 액체 흡착제로서 각광을 받고 있는 것은 이미 널리 알려진 일이지만, 알루미노-실리케이트 광물인 천연 제올라이트가 그의 광물적 특성과 화학적인 표면활성으로 인하여 여러 방면에 있어서 공업적인 이용이 높이 평가되게 된 것은 최근의 일이다.On the other hand, zeolite synthesis can be largely divided into two types, one is the clay method using silicate clay mineral, and the other is a pure chemical method of hydrothermal synthesis using silicate and aluminate as raw materials. to be. In the clay method, the silicate clay mineral is amorphous by calcining or ultra fine grinding, and then synthesized in an alkaline solution. However, this method is difficult to remove iron oxides and impurities present in clay minerals, and there are also many difficulties in the conversion to the actual process. Pure chemical method has no reserve of bauxite, which is a raw material of alumina, in Korea, and it is inferior in competitiveness in view of economic feasibility. It is well known that synthetic zeolites are spotlighted as catalysts and as gaseous or liquid adsorbents, but natural zeolites, alumino-silicate minerals, have been used in many ways due to their mineral properties and chemical surface activity. It is a recent thing that has become highly appreciated.

광물학적으로 제올라이트는 Na+, Ca2 +등 양이온을 함유하는 알루미나-실리케이트이며 산소고리의 세공크기가 3~11정도인 3차원 입체구조로 되어 있어 탈착 가능한 수분을 함유하고 있다. 그리고, 광물 중에서 양이온 교환능(CEC)가 100~300으로 가장 높은 양이온 교환능을 가지고 있어 기체에 대한 선택적 흡착력이 큰 광물로 알려져 있다. 또한 천연 제올라이트는 토양개량제나 가축사료용 또는 제지원료로서 유용하며, 경도가 낮다는 특성에서 높이 평가되고 있다. Mineralogically, zeolites are alumina-silicates containing cations such as Na + and Ca 2 + , and have a three-dimensional solid structure with a pore size of about 3 to 11, and contain moisture that can be removed. And, among the minerals, the cation exchange capacity (CEC) is 100-300 has the highest cation exchange capacity is known as a mineral having a high selective adsorption capacity for the gas. In addition, natural zeolites are useful as soil improvers, livestock feed, or feedstocks, and are highly regarded for their low hardness.

또한, 흡착제, 흡습제, 이온교환제, 중량제 그리고 분자체로서의 이용은 괄목할 만 하다. 특히, 양이온 교환능을 이용한 폐수처리제나 방사성 폐수의 처리제, 경수의 연화제로서의 이용도는 날로 증가하고 있다. 특히, 천연 제올라이트를 이용한 분자체의 개발은 여러 방법으로 널리 연구되고 있다.In addition, their use as adsorbents, humectants, ion exchangers, weight agents and molecular sieves is remarkable. In particular, the use of cation exchange capacity as a wastewater treatment agent, a radioactive wastewater treatment agent and a hard water softener is increasing day by day. In particular, the development of molecular sieves using natural zeolites has been widely studied in various ways.

천연제올라이트는 위와 같은 많은 장점을 가지고 있지만, 철이나 다른 금속성분이 불순물로 많이 포함되어 있으며, 결정 결함이나 세공이 막힌 경우가 많아 충분한 표면적과 양이온 교환능을 보이지 못하는 경우가 많다. 또한 산출되는 제올라이트 종류도 다양하지 못하기 때문에 고부가가치 상품으로 개발하는 데에는 제약을 받는다. 따라서 고령토, 석탄재, 화산재 등의 천연에 널리 분포하거나 폐기물로 많이 버려지는 값싼 소재로 제올라이트를 합성하려는 시도도 많이 이루어지고 있다.Natural zeolites have many advantages as described above, but iron or other metal components are included as impurities, and crystal defects and pores are often blocked, and thus, sufficient surface area and cation exchange ability are often not shown. In addition, the type of zeolites produced is not diverse, which limits the development of high value products. Therefore, many attempts have been made to synthesize zeolites from cheap materials that are widely distributed in nature, such as kaolin, coal ash, volcanic ash, and are often discarded as waste.

본 발명자는 이런 석유화학공정의 원유정제과정에서 발생하는 폐기 RFCC입자가 분해 공정을 통해 이미 입도가 적어졌으나, 특히, 고가의 제오라이트가 주성분인것에 착안하여, 이를 다시 재처리하여 제오라이트 제조 원료로 사용하고자 하였다.The present inventors have found that the waste RFCC particles generated in the crude oil refining process of the petrochemical process have already decreased in particle size through the decomposition process. Was intended.

특히, 화학적 성분이나 물리적 특성에 있어서 제오라이트 제조에 적합한 성질을 지니고 있어, 폐촉매를 그대로 혹은 분쇄, 가공하여 사용하고자 한다.
In particular, since the chemical composition and physical properties have properties suitable for the production of zeolite, it is intended to use the waste catalyst as it is, or by grinding and processing.

폐 RFCC촉매의 물리화학적 특성Physicochemical Properties of Waste RFCC Catalysts 기공입도분포Pore particle size distribution 300~200
200~100
100~80
80~65
65~50
50~40
40~30
30~20
300-200
200-100
100-80
80-65
65-50
50-40
40-30
30-20
63.8%
17.3%
4.3%
0%
2.8%
1.4%
2.5%
3.5%
63.8%
17.3%
4.3%
0%
2.8%
1.4%
2.5%
3.5%
분말입도분포Powder particle size distribution < 10㎛
10~20㎛
20~40㎛
40~60㎛
60~80㎛
80~95㎛
95~110㎛
110~130㎛
<10 μm
10 ~ 20㎛
20 ~ 40㎛
40 ~ 60㎛
60 ~ 80㎛
80 ~ 95㎛
95 ~ 110㎛
110 ~ 130㎛
0.3%
1.4%
12.6%
31.6%
66.3%
83%
95%
100%
0.3%
1.4%
12.6%
31.6%
66.3%
83%
95%
100%
화학성분Chemical composition 이산화규소
(SiO2)
Silicon dioxide
(SiO 2 )
산화알루미늄
(Al2O3)
Aluminum oxide
(Al 2 O 3 )

(Fe)
iron
(Fe)
니켈
(Ni)
nickel
(Ni)
바나듐
(V)
vanadium
(V)
60~7060-70 25~3225-32 0.1~0.50.1-0.5 0.1~0.40.1-0.4 0.1~0.40.1-0.4

이처럼 본 발명은 종래의 제오라이트가 매우 고가이므로 범용하기 곤란한 것이므로, 이를 대체하기 위한 재료를 찾던 중, 석유화학공업의 석유정제과정에서 발생하는 폐기 유동상촉매성분해촉매가 SiO2와 Al2O3를 함유하고 있고, 또한 Si/Al=2.2인점과 기공도가 비교적 크다는 점에 착안하여 폐촉매를 이용하는 경우, 자원재활용 및 고부가의 기능재로서의 역할을 부여할 수 있으리라 생각되어 이를 제오라이트원료로 사용하고자, 직접 또는 이를 분쇄한 후, 수열합성, 세척, 건조함으로써 얻을 수 있는 것이다.
As described above, the present invention is difficult to use because the conventional zeolite is very expensive, and therefore, while searching for a material for replacing the same, the waste fluidized bed catalytic decomposition catalyst generated during the petroleum refining process of the petrochemical industry is SiO 2 and Al 2 O 3. In addition, it is considered that Si / Al = 2.2 and porosity are relatively large. Therefore, when using waste catalyst, it is thought that it can give a role as resource recycling and high value-added functional material. It can be obtained by direct hydrolysis, washing or drying after being crushed or directly.

이에 따라, 지금까지의 고가의 무기계 제오라이트 원료측면에서 보면, 기존의 원료비용을 절감하고, 폐기물을 직접 새로운 기능의 소재의 주재로써 사용될 수 있으리라 판단된다. 따라서 본 발명의 목적은, 정유회사의 중질유 분해과정에서 사용 후, 폐기되는 폐촉매를 이용하여, 제오라이트 제조에 사용함으로써 경제성, 생산성, 작업성을 향상시키고, 폐촉매의 재활용으로 부가가치를 높이며, 환경오염원 해소와 저렴한 원료의 안정 공급까지 보장하는 폐촉매를 이용한 제오라이트의 조성물과 제조방법을 제공하고자 한다.
Accordingly, in view of the expensive inorganic zeolite raw materials, the cost of the existing raw materials can be reduced, and waste can be directly used as a main material for new functional materials. Therefore, an object of the present invention is to improve the economics, productivity and workability by using the waste catalyst discarded after use in the process of heavy oil decomposition of the oil refining company to improve zeolite production, increase the added value by recycling the waste catalyst, environmental The present invention provides a composition and a method for preparing zeolite using a waste catalyst that eliminates pollution and ensures stable supply of inexpensive raw materials.

이처럼 본 발명은 지금까지 별다른 용도가 없이 폐기 매립되어 왔던 폐기 유동상 촉매성분해촉매로 매우 고가인 종래의 제오라이트를 대체함으로써 저렴한 제오라이트 재료를 제조할 수 있으며, 또한 환경오염물질인 폐기 유동상촉매분해촉매를 재활용하여 고부가가치화 함으로써 국가 경제에 이바지함은 물론 공해방지에 매우 유익한 효과를 갖는 것이다.
As such, the present invention can manufacture an inexpensive zeolite material by replacing a conventionally expensive zeolite with a waste fluidized catalytic catalytic cracking catalyst which has been disposed in the land without any use, and is also an environmental pollutant for waste fluidized bed catalyst decomposition. By recycling the catalyst to make it more valuable, it contributes to the national economy and has a very beneficial effect on pollution prevention.

<도1>은 폐기 유동상촉매성분해촉매를 이용한 제오라이트의 제조공정
<표1>은 폐기 유동상촉매성분해촉매의 물리화학적 특성
<표2>는 폐 RFCC 촉매로부터 NaOH에 의한 V의 침출량
<표3>은 폐 RFCC 촉매로부터 NaOH에 의한 Fe의 침출량
<표4>는 폐 RFCC 촉매로부터 NaOH에 의한 Ni의 침출량
1 is a manufacturing process of zeolite using waste fluidized-bed catalytic decomposition catalyst
<Table 1> shows the physicochemical properties of waste fluidized bed catalyst
Table 2 shows the leaching of V by NaOH from spent RFCC catalyst.
<Table 3> shows leaching amount of Fe by NaOH from spent RFCC catalyst.
Table 4 shows the leaching amount of Ni by NaOH from spent RFCC catalyst.

본 발명의 구성을 상세히 설명하면 다음과 같다.Referring to the configuration of the present invention in detail as follows.

본 발명은 석유화학공업의 석유정제 과정중에 발생하여 폐기되는 폐기 유동상촉매성분해(RFCC)촉매를 이용하여 제오라이트를 제조하기 위한 방법에 관한 것으로, 제품의 균일화를 위해 분쇄하여, 수열합성, 세척, 건조하는 것으로 구성된다.The present invention relates to a method for preparing zeolite using waste fluidized bed catalytic cracking (RFCC) catalyst which is generated and discarded during the petroleum refining process of the petrochemical industry. And drying.

본 발명에 의해 실시예에 의해 상세히 설명하면 다음과 같은바, 실시예에 의해 한정되는 것은 아니다.When described in detail by the embodiment according to the present invention as follows, but is not limited to the embodiment.

<실시예1>Example 1

본 실시예에서 사용한 RFCC폐촉매는, 촉매반응 후의 RFCC폐촉매(비산화)와, RFCC폐촉매를 산화시킨 RFCC(산화)를 실험에 사용하였으며, 주로 RFCC(산화)와 RFCC(비산화)를 대상으로 실험을 하였다. 산화의 경우, RFCC폐촉매를 로에 넣은 다음, 800℃에서 4시간 산화 유지 후 사용하였다. 침출법이란 촉매내의 중금속을 산을 이용하여 침출시켜 촉매의 기공외부로 배출시켜 분리하는 방법으로 많이 이용되는 방법은 황산 등 강산을 사용하지만, 본 실시예의 목적은 촉매의 활성을 보존하면서, 중금속 등 불순금속을 제거하는 것이 목적이므로 수산화나트륨(NaOH)을 사용하였다.The RFCC waste catalyst used in this example was used in experiments using the RFCC waste catalyst (non-oxidation) and the RFCC (oxidation) oxidizing the RFCC waste catalyst, mainly RFCC (oxidation) and RFCC (non-oxidation) The experiment was conducted. In the case of oxidation, RFCC waste catalyst was placed in a furnace, and then used after maintaining the oxidation at 800 ° C for 4 hours. The leaching method is a method of leaching heavy metals in a catalyst using an acid to discharge them out of the pores of the catalyst and separating them, using a strong acid such as sulfuric acid, but the purpose of this embodiment is to preserve the activity of the catalyst, Sodium hydroxide (NaOH) was used for the purpose of removing impure metals.

먼저 800℃에서 산화시킨 RFCC(산화)와 비산화 시료를 준비하였다. 이를 분석기기 I.C.P에 의하여 1:10의 비율로 시료 20g과 용액 200㎖로 섞고, NaOH를 첨가하여 각각 0.1N, 0.3N, 0,5N의 농도와 50℃, 70℃, 90℃의 온도로 실험하였으며, 10분, 30분, 60분 동안에 걸쳐 침출된 V, Fe, Ni를 조사하였으며, 침출이 끝나면 증류수로 3회 세척한 다음, 80℃의 오븐에서 건조하였다.First, RFCC (oxidation) and non-oxidation samples which were oxidized at 800 ° C were prepared. This was mixed with 20 g of sample and 200 ml of solution at a ratio of 1:10 by an analyzer ICP, and experimented at concentrations of 0.1N, 0.3N, 0,5N and 50 ° C, 70 ° C, and 90 ° C by adding NaOH, respectively. The leaching was carried out for 10 minutes, 30 minutes, and 60 minutes, and V, Fe and Ni were examined. After leaching, the mixture was washed three times with distilled water and dried in an oven at 80 ° C.

침출된 성분들을 X-선회절고 전자현미경을 이용하여 크기 및 모양을 조사하였으며, 또한, CEC측정을 통하여 생성물의 양이온교환량을 알아보았다.The leached components were examined for size and shape by X-ray diffraction and electron microscopy, and the amount of cation exchange of the product was also determined by CEC measurement.

V의 용출이 시간과 농도의 증가에 따라 점차 증가하고 있으며, 산화일 때 보다 비산화일 때 V의 양이 많이 나타났다.Elution of V gradually increased with increasing time and concentration, and the amount of V was higher in non-oxidation than in oxidation.

폐 RFCC촉매로부터 NaOH에 의한 V의 침출량 (단위 : ppm)Amount of V leaching by NaOH from spent RFCC catalyst (unit: ppm) VV 10분10 minutes 30분30 minutes 60분60 minutes 50℃ 0.1N50 ℃ 0.1N 44.06744.067 40.1940.19 41.95941.959 50℃ 0.1N (산화)50 ℃ 0.1N (oxidation) 39.35139.351 38.738.7 38.61938.619 50℃ 0.3N50 ℃ 0.3N 36.76936.769 39.32539.325 68.85468.854 50℃ 0.3N (산화)50 ℃ 0.3N (oxidation) 36.36336.363 40.50240.502 46.19246.192 50℃ 0.5N50 ℃ 0.5N 46.64546.645 53.35653.356 58.97358.973 50℃ 0.5N (산화)50 ℃ 0.5N (oxidation) 42.51542.515 51.17951.179 54.36754.367 VV 10분10 minutes 30분30 minutes 60분60 minutes 70℃ 0.1N70 ℃ 0.1N 41.70741.707 40.91540.915 41.33141.331 70℃ 0.1N (산화)70 ℃ 0.1N (oxidation) 39.33539.335 40.39340.393 41.641.6 70℃ 0.3N70 ℃ 0.3N 43.13643.136 48.98148.981 55.29255.292 70℃ 0.3N (산화)70 ℃ 0.3N (oxidation) 44.23544.235 49.3849.38 56.94456.944 70℃ 0.5N70 ℃ 0.5N 19.3919.39 55.49855.498 64.37764.377 70℃ 0.5N (산화)70 ℃ 0.5N (oxidation) 44.18944.189 49.39449.394 59.77759.777 VV 10분10 minutes 30분30 minutes 60분60 minutes 90℃ 0.1N90 ℃ 0.1N 42.80342.803 43.63243.632 43.943.9 90℃ 0.1N (산화)90 ℃ 0.1N (oxidation) 37.66837.668 93.21193.211 37.38337.383 90℃ 0.3N90 ℃ 0.3N 48.79548.795 52.3552.35 57.89757.897 90℃ 0.3N (산화)90 ℃ 0.3N (oxidation) 49.86749.867 41.84641.846 55.21155.211 90℃ 0.5N90 ℃ 0.5N 58.93658.936 63.50263.502 65.74165.741 90℃ 0.5N (산화)90 ℃ 0.5N (oxidation) 55.68355.683 0.7180.718 63.9863.98

일정한 온도(70℃)일 때의 Fe의 용출량의 경우로, 농도가 높아질수록 양이 줄어드는 경향을 띠는 것을 알 수 있다. 또한, 시간의 증가에도 영향을 거의 미치지 않는다는 것을 알 수 있다. 또한 0.1N의 낮은 농도에서 많은 양의 용출이 일어났으며, 산화 유무 (a)의 비산화와 비교했을 때의 (b)산화의 용출량은 농도가 낮을 때, 많은 Fe가 나옴을 알 수 있다.In the case of the amount of Fe eluted at a constant temperature (70 ° C.), it can be seen that the amount tends to decrease as the concentration increases. It can also be seen that the increase in time has little effect. In addition, a large amount of elution occurred at a low concentration of 0.1 N, and the amount of leaching of (b) oxidation as compared with the non-oxidation of the presence or absence of oxidation (a) showed that a large amount of Fe appeared when the concentration was low.

전체적으로 일정한 온도에서의 Fe의 용출량은 50℃의 낮은 온도 일때는 산화, 비산화에 거의 관계없이 Fe의 양이 나오고 있으며, 농도는 0.1N, 0.3N, 0.5N 순서로 Fe의 용출량이 증가하는 경향을 알 수 있었다.In general, the amount of Fe eluted at a constant temperature is low regardless of oxidation and non-oxidation at low temperature of 50 ℃, and the concentration of Fe is increased in the order of 0.1N, 0.3N, and 0.5N. And it was found.

폐 RFCC촉매로부터 NaOH에 의한 Fe의 침출량 (단위 : ppm)Leaching amount of Fe by NaOH from waste RFCC catalyst (unit: ppm) FeFe 10분10 minutes 30분30 minutes 60분60 minutes 50℃ 0.1N50 ℃ 0.1N 0.7720.772 0.5010.501 0.5510.551 50℃ 0.1N (산화)50 ℃ 0.1N (oxidation) 0.5930.593 0.5170.517 0.570.57 50℃ 0.3N50 ℃ 0.3N 0.2950.295 0.3240.324 0.5850.585 50℃ 0.3N (산화)50 ℃ 0.3N (oxidation) 0.4180.418 0.4430.443 0.4350.435 50℃ 0.5N50 ℃ 0.5N 0.1570.157 0.2320.232 0.3050.305 50℃ 0.5N (산화)50 ℃ 0.5N (oxidation) 0.2680.268 0.2250.225 0.1710.171 FeFe 10분10 minutes 30분30 minutes 60분60 minutes 70℃ 0.1N70 ℃ 0.1N 0.4630.463 0.4470.447 0.450.45 70℃ 0.1N (산화)70 ℃ 0.1N (oxidation) 0.5860.586 0.5920.592 0.6460.646 70℃ 0.3N70 ℃ 0.3N 0.3810.381 0.3910.391 0.3920.392 70℃ 0.3N (산화)70 ℃ 0.3N (oxidation) 0.4220.422 0.4390.439 0.4120.412 70℃ 0.5N70 ℃ 0.5N 0.2930.293 0.4020.402 0.2660.266 70℃ 0.5N (산화)70 ℃ 0.5N (oxidation) 0.210.21 0.2280.228 0.2660.266 FeFe 10분10 minutes 30분30 minutes 60분60 minutes 90℃ 0.1N90 ℃ 0.1N 0.4090.409 0.4520.452 0.6050.605 90℃ 0.1N (산화)90 ℃ 0.1N (oxidation) 0.3330.333 0.3770.377 0.4240.424 90℃ 0.3N90 ℃ 0.3N 0.2990.299 0.3230.323 0.4040.404 90℃ 0.3N (산화)90 ℃ 0.3N (oxidation) 0.2720.272 0.3140.314 0.3420.342 90℃ 0.5N90 ℃ 0.5N 0.3950.395 0.3230.323 0.3970.397 90℃ 0.5N (산화)90 ℃ 0.5N (oxidation) 0.1990.199 00 0.2520.252

일정한 온도(50℃)로 놓고, 농도와 시간을 증가했을 경우의 Ni의 용출량은 높은 농도의 경우, 많은 용출량을 보이고 있으며, 시간이 증가함에 따라 점차적으로 양이 증가하는 경향을 보이고 있다. 또한 비산화와 산화를 비교했을 경우, 산화한 시료가 용출이 늘어남을 알 수 있었다.When the concentration and time were increased at a constant temperature (50 ° C.), the amount of Ni eluted showed a large amount of elution at high concentrations, and the amount gradually increased with time. In addition, it was found that when the non-oxidation and the oxidation were compared, elution increased in the oxidized sample.

전체적으로, 0.1N의 낮은 농도의 시료가 처음 시작했을 때(10분)가 0.3N, 0.5N의 순차적으로 용출량이 나타냈으며, 또한 시간이 증가(10~60)함에 따라 천천히 증가함을 알 수 있었다. 일정한 온도에 따른 0.1N, 0.3N, 0.5N의 각 시료의 Ni 용출량은 시간이 증가함에 따라 천천히 증가하며, 산화의 유무와 관련한 용출량은 산화가 0.3~1ppm 정도의 양이 우위를 점하였다.
Overall, when the low concentration of 0.1N sample was first started (10 minutes), the elution amount was 0.3N and 0.5N sequentially, and also increased slowly as time increased (10 ~ 60). . Ni elution of each sample of 0.1N, 0.3N, and 0.5N at constant temperature increased slowly with time, and the amount of oxidation related to the presence or absence of oxidation was about 0.3 ~ 1ppm.

Ni의 용출은 농도가 증가할수록 용출량이 증가하며, 또한 시간이 지날수록 용출량이 증가함을 알 수 있다. 또한 전체적인 온도의 흐름으로 볼 때도 온도가 증가하면 그 용출량이 증가하는 경향을 나타낸다. 산화유무에 따른 산화와 비산화의 경우는 비산화보다는 산화에서 더 많은 Ni 용출이 일어남을 알 수 있다.
It is understood that the elution amount of Ni increases with increasing concentration, and the elution amount increases with time. In addition, when the temperature increases, the amount of elution tends to increase. In the case of oxidation and non-oxidation according to the presence or absence of oxidation, more Ni elution occurs in oxidation than non-oxidation.

폐 RFCC 촉매로부터 NaOH에 의한 Ni의 침출량 (단위 : ppm)Leaching amount of Ni by NaOH from spent RFCC catalyst (unit: ppm) NiNi 10분10 minutes 30분30 minutes 60분60 minutes 50℃ 0.1N50 ℃ 0.1N 0.3590.359 0.6740.674 0.7210.721 50℃ 0.1N (산화)50 ℃ 0.1N (oxidation) 0.8020.802 0.9510.951 0.9850.985 50℃ 0.3N50 ℃ 0.3N 1.21.2 1.661.66 3.2863.286 50℃ 0.3N (산화)50 ℃ 0.3N (oxidation) 2.1332.133 2.442.44 2.5572.557 50℃ 0.5N50 ℃ 0.5N 2.1492.149 2.3732.373 2.3172.317 50℃ 0.5N (산화)50 ℃ 0.5N (oxidation) 2.7062.706 2.912.91 2.8272.827 NiNi 10분10 minutes 30분30 minutes 60분60 minutes 70℃ 0.1N70 ℃ 0.1N 0.6490.649 0.7260.726 0.730.73 70℃ 0.1N (산화)70 ℃ 0.1N (oxidation) 1.0221.022 1.0121.012 1.0611.061 70℃ 0.3N70 ℃ 0.3N 1.7421.742 1.9851.985 2.2292.229 70℃ 0.3N (산화)70 ℃ 0.3N (oxidation) 2.5732.573 2.6882.688 2.8052.805 70℃ 0.5N70 ℃ 0.5N 2.2482.248 2.3582.358 2.5352.535 70℃ 0.5N (산화)70 ℃ 0.5N (oxidation) 2.8012.801 2.7092.709 2.9942.994 NiNi 10분10 minutes 30분30 minutes 60분60 minutes 90℃ 0.1N90 ℃ 0.1N 0.710.71 0.7140.714 0.7570.757 90℃ 0.1N (산화)90 ℃ 0.1N (oxidation) 0.8250.825 0.8480.848 0.880.88 90℃ 0.3N90 ℃ 0.3N 1.9861.986 2.1022.102 2.2592.259 90℃ 0.3N (산화)90 ℃ 0.3N (oxidation) 2.6362.636 2.7842.784 2.7022.702 90℃ 0.5N90 ℃ 0.5N 2.3772.377 2.4442.444 2.3272.327 90℃ 0.5N (산화)90 ℃ 0.5N (oxidation) 3.0133.013 00 2.7382.738

<실시예2>Example 2

본 실시예에서는 RFCC 폐촉매를 원료로 수열합성법을 사용하였다. 그 방법은 하기와 같다. 1g의 산화 RFCC 폐촉매를 높이 6.5㎠, 내부 반지름 2.6㎝인 스테인레스 스틸용기안에 지름 2.5㎝인 테프론 라이너 속에 가성소다와 함께 넣는다. 이때, 가성소다는 원하는 농도의 수용액으로 만들며 용기는 완전히 밀봉시켜, 강제순환 오븐에서 반응 온도와 시간을 변화시켜 가며 수열반응 시킨다. 합성이 끝나면 증류수로 5회 이상 세척하고 80℃ 오븐에서 24시간 건조시킨다.In this example, hydrothermal synthesis was used as a raw material of the RFCC waste catalyst. The method is as follows. 1 g of oxidized RFCC spent catalyst is placed together with caustic soda in a 2.5 cm diameter Teflon liner in a stainless steel container with a height of 6.5 cm2 and an inner radius of 2.6 cm. At this time, the caustic soda is made into an aqueous solution of the desired concentration and the container is completely sealed and subjected to hydrothermal reaction while changing the reaction temperature and time in a forced circulation oven. After the synthesis, the mixture is washed 5 times or more with distilled water and dried in an oven at 80 ° C for 24 hours.

산화, 비산화 RFCC 폐촉매의 XRD 패턴을 보면 전형적인 파우져사이트의 특성 피크를 나타냈으며, 2θ값이 20~30사이에서 볼록하게 올라온 것을 보아, 유리질의 주로 실리카-알루미나 성분이 존재한다는 것을 알 수 있다. 산화, 비산화 시료의 XRD 패턴은 거의 비슷한 모양을 나타냈으며, 비산화는 중금속의 다량 함유로 인한 비정질의 패턴을 보였다.The XRD patterns of the oxidized and non-oxidized RFCC spent catalysts showed characteristic peaks of typical phagesites, and the 2θ values were convexly raised between 20 and 30, indicating that the glassy silica-alumina component was present. have. The XRD patterns of the oxidized and non-oxidized samples showed almost similar shapes, and the non-oxidation showed an amorphous pattern due to the large content of heavy metals.

먼저 산화시킨 RFCC폐촉매를 원료로 가성소다와 함께 수열 합성시켜 생성된 분말 성분을 XRD와 SEM으로 조사하였다.First, the oxidized RFCC waste catalyst was hydrothermally synthesized with caustic soda as a raw material, and the powder components were examined by XRD and SEM.

90℃에서 48시간동안 NaOH 수용액의 농도를 변화시켜가며 반응시킨 생성물의 XRD을 보면, 1M의 NaOH에서는 오히려 원래 가지고 있던 결정 성분마저도 사라지는 것을 확인하였고, 2M과 3M 농도의 NaOH에서는 비교적 순도가 높은 파우져사이트가 생성됨을 알 수 있었다. 반면 같은 온도 같은 시간을 합성하였지만 NaOH의 농도가 진한 4M에서는 소달라이트가 함께 생성되며, 5M이상이 되면 소달라이트 만이 나타나는 것을 관찰할 수 있다.XRD of the product reacted by changing the concentration of NaOH aqueous solution for 48 hours at 90 ℃, it was confirmed that even in the 1M NaOH, even the original crystalline components disappeared, and in 2M and 3M NaOH relatively high purity We can see that Jersey site is created. On the other hand, the same temperature and time were synthesized, but sodalite was formed together at 4M NaOH concentration, and when only 5M or more, only sodalite appeared.

100℃에서 48시간동안 반응시킨 결과는, 비록 온도의 차이는 크지 않지만, 결과는 많이 달라짐을 볼 수 있다. 앞서 90℃, 2M에서는 파우져사이트가 깨끗하게 얻어지지만 10℃ 높은 100℃, 2M에서는 GIS가 파우져사이트와 함께 섞여 나오는 것을 볼 수 있으며, 마찬가지로 앞서 90℃, 5M에서는 소달라이트가 순수하게 얻어졌지만 100℃, 5M에서는 칸크리나이트가 함께 나온다. 이는 적은 온도차이에도 생성되는 제올라이트의 종류가 달라지는 반응온도의 민감성을 볼 수 있다.The result of reacting for 48 hours at 100 ° C., although the temperature difference is not large, it can be seen that the results are very different. At 90 ° C and 2M, the phagesite is cleanly obtained, but at 10 ° C and 100 ° C, 2M, GIS is mixed with the phagesite. Likewise, at 90 ° C and 5M, sodalite is purely obtained. Kancleanite comes out at 5 degreeC by 5 degreeC. It can be seen that the sensitivity of the reaction temperature changes the type of zeolite produced even at a small temperature difference.

모두 같은 조건(48시간 합성, 5가지 NaOH 농도)에서 온도차를 온도와 농도를 달리 할 경우, 모두 4종류의 제올라이트를 얻을 수 있었다.All four types of zeolites were obtained when the temperature and concentration were different from each other under the same conditions (48-hour synthesis, 5 NaOH concentrations).

낮은 온도이면서 NaOH의 농도가 묽으면 파우져사이트만을 깨끗하게 얻을 수 있었으며, 비교적 낮은 온도인 90℃, 농도가 5M일때, 소달라이트가 합성되었다. 파우져사이트 생성의 최적 조건은 90℃, 3M NaOH를 사용한 경우이며, 100℃일때는 파우져사이트와 함께 나타난다.At low temperature and low concentration of NaOH, only pausite could be obtained cleanly. Sodalite was synthesized at a relatively low temperature of 90 ° C. and concentration of 5M. Optimum conditions for the production of the fuzzer site are 90 ° C and 3M NaOH, and at 100 ° C, it is shown together with the fusersite.

XRD를 통하여 알아본 결과, 3M, 90℃에서 파우져사이트가 가장 잘 합성되는 것으로 보이며, 5M, 90℃에서는 소달라이트가 잘 만들어진다. 따라서 각 제올라이트가 가장 잘 합성되는 조건에서 두 가지의 제올라이트를 합성한 후 전자현미경을 통해 결정 모양을 확인해 보았다.As a result of XRD, it is shown that the powderysite is best synthesized at 3M and 90 ° C, and sodalite is well formed at 5M and 90 ° C. Therefore, after two zeolites were synthesized under the conditions in which each zeolite was best synthesized, the crystal shape was confirmed through an electron microscope.

GIS의 전자현미경 사진과 소달라이트 사진을 보면, 제올라이트로 모두 전환되었음을 보여주며 그 크기는 둥근 형태로 분산되어 있다. 칸크리나이트의 전자현미경사진을 보면, 그 표면은 전형적인 칸크리나이트의 막대 형태로 되어있음을 알 수 있다.GIS electron micrographs and sodalite photographs show that both have been converted to zeolites, and their size is distributed in a round shape. Scanning electron micrographs of kancleanite shows that its surface is in the form of a typical kancleanite rod.

실험은 3번에 걸쳐 실시하였으며, GIS는 430Mmeq/100g의 가장 높은 이온교환율을 보였으며, 파우져사이트도 300이상의 높은 CEC 값을 보여주었다. 이에 비해 칸크리나이트와 소달라이트는 비교적 적은 값을 보였다.The experiment was performed three times, GIS showed the highest ion exchange rate of 430 Mmeq / 100g, and the fuser site also showed high CEC value of 300 or more. In comparison, kancleanite and sodalite showed relatively low values.

<실시예3>&Lt; Example 3 >

양이온 교환능(CEC)을 측정하였는데, 측정 방법은 다음과 같다. 교반기에 여과지를 깔고, 칼럼의 하단에 약1㎝ 두께가 되도록 여지로 여과면을 만든다. 1N농도의 초산 암모늄 침출액을 약간 넣고, 시료를 0.2g 정도 넣고, 칼럼을 침출병에 연결하고 코크를 열어 100㎖로 같은 방법으로 세척한다. 이때, 침출 시간은 2~24시간 내에 완료시켜야 하며 침출 후, 80%에탄올 100㎖로 같은 방법으로 세척한다.Cation exchange capacity (CEC) was measured, and the measuring method is as follows. Place the filter paper in the stirrer and make the filter surface freely so that it is about 1 cm thick at the bottom of the column. Slightly add 1 N ammonium acetate leachate, add about 0.2 g of sample, connect the column to the leach bottle, open the coke and wash it in the same way with 100 ml. At this time, the leaching time should be completed within 2 ~ 24 hours, and after leaching, it is washed in the same way with 100ml of 80% ethanol.

세척이 끝나면 시료를 여과지와 함께 Kjeldahl 플라스크에 옮기고, 산화마그네슘 분말 0.5g을 넣고 같이 증류수 300㎖ 넣은 다음, 삼각플라스크에 4% 붕산용액 50㎖를 취하고 증류한다. 이 때, 증류액 200㎖ 정도가 되면, 증류를 마치고 삼각 플라스크를 뺀다. 삼각 플라스크에 혼합지시약과 Bromocre-sol green을 약간 가하고, 1N 황산 표준용액으로 적정한 후 녹색에서 자색으로 변하는 점이 당량점이다.After washing, transfer the sample to the Kjeldahl flask with filter paper, add 0.5 g of magnesium oxide powder, add 300 ml of distilled water together, and take 50 ml of 4% boric acid solution into the Erlenmeyer flask and distill. At this time, when the distillate is about 200 ml, the distillation is completed and the Erlenmeyer flask is removed. The point of equivalence is the addition of a mixed indicator and Bromocre-sol green to the Erlenmeyer flask, titration with 1N sulfuric acid standard solution and a change from green to purple.

양이온 치환용량은 시료 내에 존재하는 Na+나 기타 양이온 암모늄 이온으로 교환시키는 것으로 음전하를 띄는 알루미늄 이온의 수를 측정하는 것이다. 이 분석 실험에서는 이온교환용액으로는 초산암모늄을 사용하였으며, 이온교환 후, 표면에 묻어있는 암모늄이온이나 초산이온을 제거하기 위하여 에틸 알코올로 세척해 적정했다.The cation substitution capacity is a measure of the number of negatively charged aluminum ions by exchange with Na + or other cationic ammonium ions present in the sample. In this analysis experiment, ammonium acetate was used as the ion exchange solution. After ion exchange, the solution was titrated by washing with ethyl alcohol to remove ammonium ions or acetate ions on the surface.

양이온 교환능 시험결과Cation exchange capacity test result 시료sample 양이온 교환능(cmol/kg)Cation exchange capacity (cmol / kg) 산화Oxidation 1One 0.1N, 50℃0.1N, 50 ℃ 22.522.5 22 0.1N, 70℃0.1N, 70 ℃ 27.427.4 33 0.1N, 90℃0.1N, 90 ℃ 33.833.8 44 0.3N, 50℃0.3N, 50 ℃ 57.057.0 55 0.3N, 70℃0.3N, 70 ℃ 46.846.8 66 0.3N, 90℃0.3N, 90 ℃ 46.246.2 77 0.5N, 50℃0.5N, 50 ℃ 82.482.4 88 0.5N, 70℃0.5N, 70 ℃ 82.982.9 99 0.5N, 90℃0.5N, 90 ℃ 95.695.6 비산화Deoxidation 1010 0.1N, 50℃0.1N, 50 ℃ 13.713.7 1111 0.1N, 70℃0.1N, 70 ℃ 18.418.4 1212 0.1N, 90℃0.1N, 90 ℃ 16.616.6 1313 0.3N, 50℃0.3N, 50 ℃ 31.231.2 1414 0.3N, 70℃0.3N, 70 ℃ 39.639.6 1515 0.3N, 90℃0.3N, 90 ℃ 34.734.7 1616 0.5N, 50℃0.5N, 50 ℃ 51.551.5 1717 0.5N, 70℃0.5N, 70 ℃ 68.968.9 1818 0.5N, 90℃0.5N, 90 ℃ 82.382.3

1) RFCC(Resid Fluidized Catalytic Cracking) : 유동상 촉매성 분해촉매
2) SEM(Scanning Electron Microscopy) : 투사전자현미경
3) XRD(X-ray Diffraction) : X선회절
1) Resid Fluidized Catalytic Cracking (RFCC): Catalytic decomposition catalyst for fluidized bed
2) SEM (Scanning Electron Microscopy): Projection Electron Microscope
3) X-ray diffraction (XRD): X-ray diffraction

Claims (3)

석유화학공업의 석유정제과정에서 발생하는 화학적 조성이 이산화규소(SiO2) 60~70%, 산화알루미늄(Al2O3) 25~32%, 철(Fe)0.1~0.5%, 니켈(Ni)0.1~0.4%, 바나듐(Fe)0.1~0.4%로 이루어진 폐기 유동상촉매성분해촉매를 직접 또는 산화후 분쇄하는 공정을 제1공정으로 하고, 수열합성을 제2공정, 세척공정을 제3공정, 건조공정을 제4공정과 환원공정을 제5공정으로 함을 특징으로 하는 폐기 유동상촉매성분해촉매를 이용한 제오라이트 제조방법.
The chemical composition of petroleum refining process is 60 ~ 70% of silicon dioxide (SiO 2 ), 25 ~ 32% of aluminum oxide (Al 2 O 3 ), 0.1 ~ 0.5% of iron (Fe), nickel (Ni) The first step is to grind the waste fluidized-phase catalytic decomposition catalyst composed of 0.1 to 0.4% and 0.1 to 0.4% of vanadium (Fe) directly or after oxidation, and the second step and the washing step are the third step and hydrothermal synthesis. And a drying process as a fourth step and a reducing step as a fifth step.
상기 1항의 폐기 유동상촉매성분해촉매를 분쇄시 기계적 화학능이 있는 진동밀과 원심진동밀을 사용하는 방법.
Method for using a vibration mill and centrifugal vibration mill having mechanical chemistry when grinding the waste fluidized bed catalyst decomposition catalyst of claim 1.
상기 수열합성시 용매를 수산화나트륨(NaOH)으로 이용하는 방법.

When the hydrothermal synthesis using a solvent as sodium hydroxide (NaOH).

KR1020100123156A 2010-12-06 2010-12-06 Manufacture of zio-lite using wasted rfcc(resid fluidized catalytic cracking) catalyst KR20120062066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100123156A KR20120062066A (en) 2010-12-06 2010-12-06 Manufacture of zio-lite using wasted rfcc(resid fluidized catalytic cracking) catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100123156A KR20120062066A (en) 2010-12-06 2010-12-06 Manufacture of zio-lite using wasted rfcc(resid fluidized catalytic cracking) catalyst

Publications (1)

Publication Number Publication Date
KR20120062066A true KR20120062066A (en) 2012-06-14

Family

ID=46683112

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100123156A KR20120062066A (en) 2010-12-06 2010-12-06 Manufacture of zio-lite using wasted rfcc(resid fluidized catalytic cracking) catalyst

Country Status (1)

Country Link
KR (1) KR20120062066A (en)

Similar Documents

Publication Publication Date Title
Hu et al. Synthesis of zeolites Na-A and Na-X from tablet compressed and calcinated coal fly ash
Zhou et al. Simultaneous removal of cationic and anionic heavy metal contaminants from electroplating effluent by hydrotalcite adsorbent with disulfide (S2-) intercalation
CN108927207B (en) Porous catalytic material with aluminum-rich surface and preparation method thereof
Fotovat et al. Synthesis of Na-A and faujasitic zeolites from high silicon fly ash
Wang et al. The dissolution behavior and mechanism of kaolinite in alkali-acid leaching process
JP5587297B2 (en) Acid-containing inferior crude oil reforming catalyst, production method thereof, and application thereof
Zhu et al. Intercalation of both CTMAB and Al13 into montmorillonite
Sayehi et al. Synthesis and characterization of ecofriendly materials zeolite from waste glass and aluminum scraps using the hydrothermal technique
US5858081A (en) Kaolin derivatives
El Refaey Effect of calcination and Ca-modified on bentonite and zeolite, with respect to phosphorus removal from aqueous solution
Elmes et al. Basic metallosilicate catalysts from waste green container glass
El-Kordy et al. Manufacturing of novel zeolite-clay composite membrane from natural clay and diatomite, an electrochemical study of the surface and application towards heavy metals removal
CN104588071A (en) Mesoporous catalytic material containing phosphorus, magnesium and rare earth
Barama et al. Dephosphatation under UV light of water by Ti-PILC with activation by secondary species (La, Se, and Rb)
KR20120062066A (en) Manufacture of zio-lite using wasted rfcc(resid fluidized catalytic cracking) catalyst
Mamudu et al. The production of zeolite Y catalyst from palm kernel shell for fluid catalytic cracking unit
Khamroev et al. Texture characteristics of modified and activated bentonite
CN85109300A (en) Y zeolite of crossing from stabilizing treatment and lamellar potter&#39;s clay are the base, are used for producing the catalytic hydrogenation catalyst for cracking of middle distillate technology
Mnasri-Ghnimi et al. Effect of Al and Ce on Zr-pillared bentonite and their performance in catalytic oxidation of phenol
CN112930323B (en) Pentasil type zeolite and process for producing the same
CN108927123A (en) A kind of porous catalyst material and preparation method thereof
CN108927127B (en) Preparation method of active silicon-aluminum catalytic material
Mahar et al. COMPARATIVE CHARACTERIZATION OF PAKISTAN KAOLIN AS A BASELINE FOR ITS APPLICATION IN ZEOLITE SYNTHESIS
Babalola et al. Analysis of zeolitey from Nigerian clay vis-avis standard grade
Gonzalez et al. Conversion of nonconventional aluminosiliceous sources into microporous adsorbents for water remediation

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application