KR20120059257A - Quantification of active androgens in urine and blood by isotope dilution-mass spectrometry - Google Patents

Quantification of active androgens in urine and blood by isotope dilution-mass spectrometry Download PDF

Info

Publication number
KR20120059257A
KR20120059257A KR1020100120928A KR20100120928A KR20120059257A KR 20120059257 A KR20120059257 A KR 20120059257A KR 1020100120928 A KR1020100120928 A KR 1020100120928A KR 20100120928 A KR20100120928 A KR 20100120928A KR 20120059257 A KR20120059257 A KR 20120059257A
Authority
KR
South Korea
Prior art keywords
biological sample
male
urine
blood
internal standard
Prior art date
Application number
KR1020100120928A
Other languages
Korean (ko)
Other versions
KR101159064B1 (en
Inventor
최만호
정봉철
이수현
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR20100120928A priority Critical patent/KR101159064B1/en
Publication of KR20120059257A publication Critical patent/KR20120059257A/en
Application granted granted Critical
Publication of KR101159064B1 publication Critical patent/KR101159064B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/60Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances involving radioactive labelled substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/2813Producing thin layers of samples on a substrate, e.g. smearing, spinning-on
    • G01N2001/2826Collecting by adsorption or absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N2030/009Extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Endocrinology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE: A method for quantitatively analyzing androgen in a biological specimen is provided to obtain data for evaluating alopecia medicine based on the concentration distribution of the androgen. CONSTITUTION: Androgen substituted with isotope as an internal standard material is added into a biological specimen. The androgen is extracted from the biological specimen using a copolymer absorbent with hydrophilic property and lipophilic property. The extracts is re-extracted using an organic solvent under pH 8 to 12. The re-extract is derivatized into flophemesyl-trimethylsilyl. The androgen is selectively detected by a gas chromatography-mass spectrometry. The biological specimen is urine or blood.

Description

동위원소 희석-질량분석법을 이용한 생체 시료 내 활성 남성호르몬의 정량방법{Quantification of active androgens in urine and blood by isotope dilution-mass spectrometry}Quantification of active androgen hormones in biological samples using isotope dilution-mass spectrometry {quantification of active androgens in urine and blood by isotope dilution-mass spectrometry}

본 발명은 생체 시료 내 활성 남성호르몬의 신속하고 정확한 정량 방법에 관한 것이다.
The present invention relates to a method for rapid and accurate quantification of active male hormones in a biological sample.

최근 대사체학 연구로서, 특정 생리 및 병리적 상태에서의 대사체 변화에 대한 대사 프로필 연구를 바탕으로 다양한 질병에서의 대사체 변화와 질병과의 관계 규명에 대한 연구가 광범위하게 진행되고 있다. 소량의 소변 및 혈장을 사용하여 스테로이드 호르몬의 농도를 측정하고자 하는 경우, 선택적인 항원 항체 반응을 이용하여 정량 분석하는 면역측정법이 많이 사용되지만, 낮은 감도와 항원항체 반응에 있어서 교차반응, 부정확함, 직선성 범위에 대한 한계, 낮은 재현성 등에 대한 문제가 나타난다. 따라서 일차분석법으로서 동위원소희석 질량분석법을 적용하여, 분리도가 우수한 기체크로마토그래피와 함께 정량분석을 위한 분석방법이 많이 사용되고 있다. [Clin. Biochem., 2009, 42:484-90]Recently, as a metabolite study, researches on metabolic changes in various diseases and the relationship between diseases have been extensively conducted based on metabolic profile studies on metabolite changes in specific physiological and pathological states. If a small amount of urine and plasma are used to determine the concentration of steroid hormones, immunoassays that quantify using selective antigenic antibody responses are commonly used, but cross-response, inaccuracy, Problems such as limitations on linearity range, low reproducibility, etc. appear. Therefore, isotope dilution mass spectrometry is applied as a primary analysis method, and analytical methods for quantitative analysis along with gas chromatography with excellent separation are widely used. Clin. Biochem., 2009, 42: 484-90].

일반적으로 스테로이드 호르몬의 분석은 한 번의 시료 전처리로 다양한 종류의 스테로이드 호르몬을 동시에 분석하기 보다는 특정 질환과 관련된 스테로이드 호르몬만을 제한적으로 분석해 왔으며, 남성형 탈모 환자의 경우 정상인에 비해 환자의 소변 또는 혈액 내에서 테스토스테론에서 다이하이드록시테스토스테론으로 전환되는 효소인 5α-reductase 활성의 증가는 실험적으로 증명되었다[CNS Drug Rev., 2006, 12:53-76; J. Clin. Endocrinol. Metab., 1994, 79:703??706]. 또한, 테스토스테론의 구조적 이성체인 에피테스토스테론이 항남성 호르몬 역할을 함으로써 탈모를 억제할 수 있음이 예측되기도 하였다[J. Steroid Biochem., 1989, 33:1019-1021; J. Invest. Dermatol., 2001, 116:57-61]. 따라서 소변 및 혈액 내에서의 테스토스테론을 포함하는 활성 남성호르몬을 정확하게 측정하는 것은 매우 중요하며, 보다 신속하고 재현성 있는 선택적인 방법으로서 낮은 검출 한계에서 정량분석 할 수 있는 기술이 요구된다.
In general, the analysis of steroid hormones has limited analysis of steroid hormones related to a specific disease rather than simultaneously analyzing various types of steroid hormones in one sample pretreatment, and testosterone in the urine or blood of a patient with androgenetic alopecia compared to a normal person The increase in 5α-reductase activity, an enzyme that converts to dihydroxytestosterone in rats, has been experimentally demonstrated [CNS Drug Rev., 2006, 12: 53-76; J. Clin. Endocrinol. Metab., 1994, 79: 703 ?? 706. It has also been predicted that epitestosterone, a structural isomer of testosterone, can inhibit hair loss by acting as an anti-male hormone [J. Steroid Biochem., 1989, 33: 1019-1021; J. Invest. Dermatol., 2001, 116: 57-61. Therefore, it is very important to accurately measure the active male hormone including testosterone in urine and blood, and a technique for quantitative analysis at a low detection limit is required as a quick and reproducible selective method.

이에, 본 발명자들은 보다 활성 남성호르몬을 신속하고 정확하게 측정하고자 연구, 노력한 결과, 동위원소가 치환된 남성호르몬을 특정 몰비율의 내부표준물질로서 첨가한 생체 시료를 효소 가수분해 시키고, 고체상 추출과정, 액체-액체 추출법을 통해 활성 남성호르몬들을 추출한 후, 이를 플로페메실-트리메틸실릴(flophemesyl-trimethylsilyl) 유도체화하여 기체 크로마토그래피-질량분석기를 이용하면 정량곡선을 작성하지 않으면서도 남성호르몬을 정량 분석할 수 있음을 발견함으로써 본 발명을 완성하게 되었다.  Accordingly, the present inventors have conducted research and efforts to more quickly and accurately measure active male hormones. As a result, enzymatic hydrolysis of a biological sample in which isotopically substituted male hormones are added as an internal standard of a specific molar ratio, solid phase extraction process, After extracting the active male hormones through liquid-liquid extraction, derivatizing it with flophemesyl-trimethylsilyl and using gas chromatography-mass spectrometry, quantitative analysis of male hormones is possible. The present invention has been completed by discovering that it can.

따라서 본 발명은 생체 시료 내에서 활성 남성호르몬과 내부표준물질을 직접적으로 비교하여, 그 농도를 신속하고 정확하게 정량적으로 평가하는 방법을 제공하는데 그 목적이 있다.
Accordingly, an object of the present invention is to provide a method for directly and quantitatively evaluating a concentration of an active male hormone and an internal standard in a biological sample.

본 발명은, The present invention,

생체 시료에 내부표준물질로서 동위원소가 치환된 남성호르몬을 첨가하는 단계;Adding an isotope-substituted male hormone as an internal standard to the biological sample;

친유성과 친수성을 갖는 공중합체 흡착제로 상기 생체 시료로부터 남성호르몬을 추출하는 단계; Extracting androic hormone from the biological sample with a copolymer adsorbent having lipophilic and hydrophilicity;

상기 추출물을 pH 8 ~ 12에서 유기 용매로 재추출하는 단계; 및Re-extracting the extract with an organic solvent at a pH of 8 to 12; And

상기 재추출물을 플로페메실-트리메틸실릴(flophemesyl-trimethylsilyl) 유도체화시키고, 기체 크로마토그래피-질량분석기를 이용하여 남성호르몬을 선택적으로 검출하는 단계Derivatizing the reextract with flophemesyl-trimethylsilyl and selectively detecting male hormone using a gas chromatography-mass spectrometer

를 포함하여 이루어진 생체 시료 내 남성호르몬의 정량 분석 방법을 그 특징으로 한다.
Characterized in that the method for quantitative analysis of male hormones in a biological sample comprising a.

본 발명은 동위원소가 치환된 내부표준물질을 첨가하여 소변, 혈액 등과 같은 생체 시료로부터 테스토스테론을 포함한 활성 남성호르몬들을 효과적으로 추출 및 정량 분석할 수 있으므로, 생체 시료 내 남성호르몬의 농도 및 이의 분포 경향을 파악할 수 있다. 따라서 본 발명은 남성호르몬의 농도 분포를 통해 탈모 환자와 탈모 관련 치료제의 평가를 위한 자료를 제공하는데 적용될 수 있다.
The present invention can effectively extract and quantify testosterone-containing active male hormones from biological samples such as urine, blood, etc. by adding an isotopically substituted internal standard, thereby determining the concentration and distribution of male hormones in biological samples. I can figure it out. Therefore, the present invention can be applied to provide data for the evaluation of hair loss patients and hair loss-related therapeutic agents through the distribution of male hormones.

도 1은 분석 물질의 예로서 테스토스테론과 이의 내부표준물질 정량이온의 몰 비율이 1 이하로 확인된 소변 시료의 크로마토그램이다.
도 2는 분석 물질의 예로서 테스토스테론과 이의 내부표준물질 정량이온의 몰 비율이 1로 확인된 소변 시료의 크로마토그램이다.
도 3은 분석 물질의 예로서 테스토스테론과 이의 내부표준물질 정량이온의 몰 비율이 1 이상으로 확인된 소변 시료의 크로마토그램이다.
도 4는 1달 동안의 탈모 치료 전후, 탈모 환자의 시료 내 5α-환원효소 활성도의 비율을 확인한 그래프이다.
1 is a chromatogram of a urine sample in which the molar ratio of testosterone and its internal standard quantitative ion is 1 or less as an example of an analyte.
2 is a chromatogram of a urine sample in which the molar ratio of testosterone and its internal standard quantitative ion is 1 as an example of an analyte.
3 is a chromatogram of a urine sample in which the molar ratio of testosterone and its internal standard quantitative ion is confirmed as one or more as an example of an analyte.
Figure 4 is a graph confirming the ratio of 5α-reductase activity in the sample of hair loss patients before and after hair loss treatment for one month.

이와 같은 본 발명을 상세히 설명하면 다음과 같다.The present invention will be described in detail as follows.

본 발명은 동위원소가 치환된 남성호르몬을 내부표준물질로서 첨가한 생체 시료로부터 고체상 추출과정, 액체-액체 추출법을 통해 활성 남성호르몬들을 추출한 후, 이를 플로페메실-트리메틸실릴(flophemesyl-trimethylsilyl) 유도체화하여 기체 크로마토그래피-질량분석기를 이용함으로써 남성호르몬을 정량 분석하는 방법에 관한 것이다. The present invention extracts active male hormones from a biological sample to which isotope-substituted male hormones as internal standards are extracted through a solid phase extraction process and a liquid-liquid extraction method, followed by flophemesyl-trimethylsilyl derivatives. The present invention relates to a method for quantitative analysis of male hormones using gas chromatography-mass spectrometry.

본 발명에서 정량 분석의 대상이 되는 남성호르몬은 테스토스테론, 디하이드로테스토스테론, 에피테스토스테론 중에서 선택될 수 있으나, 이에 한정되지는 아니한다. The male hormone that is the subject of quantitative analysis in the present invention may be selected from testosterone, dihydrotestosterone, and epitestosterone, but is not limited thereto.

상기 생체 시료로는 소변 또는 혈액 등이 사용될 수 있으며, 먼저 상기 생체 시료에 동위원소가 치환된 남성호르몬을 내부표준물질로서 특정 몰농도로 첨가한다.As the biological sample, urine or blood may be used. First, an isotope-substituted male hormone is added to the biological sample in a specific molarity as an internal standard.

이때, 소변 시료의 경우에는 내부표준물질로서 동위원소가 치환된 남성호르몬을 첨가한 후, pH 5 ~ 8 및 40 ~ 70 ℃에서 효소를 첨가하여 가수분해물을 얻는다. 이때 사용되는 효소는 특정형태(3β-hydroxy-5-ene)를 갖는 스테로이드 호르몬들을 정확하게 평가하게 위해 β-글루쿠로니다제를 사용하는 것이 바람직하다. 또한, 사용되는 소변의 양은 0.1 ~ 5 mL이 바람직하고, 더욱 바람직하게는 0.2 ~ 2 mL를 사용한다. 소변의 양이 0.2 mL 보다 적으면 분석을 위한 검출 한계에 문제가 있고, 5 mL 보다 클 경우에는 시료채취량이 많아야 하는 문제가 있다.In this case, in the case of the urine sample, after the addition of an isotope-substituted male hormone as an internal standard, a hydrolyzate is obtained by adding an enzyme at pH 5-8 and 40-70 ° C. In this case, it is preferable to use β-glucuronidase in order to accurately evaluate steroid hormones having a specific form (3β-hydroxy-5-ene). Also, the amount of urine used is preferably 0.1 to 5 mL, more preferably 0.2 to 2 mL. If the amount of urine is less than 0.2 mL, there is a problem in the detection limit for analysis, and if it is larger than 5 mL, there is a problem in that a large amount of sampling is required.

또한 혈액 시료의 경우에는 pH 4 ~ 7의 약산성 조건에서, 40 ~ 70 ℃로 가열 배양시켜 분해물을 얻을 수 있는데, 이때 사용되는 혈액의 양은 0.4 ~ 2 mL가 바람직하다. 혈액의 양이 0.4 mL보다 적으면, 스테로이드 호르몬들의 분석을 위한 검출한계에 문제가 있고, 2 mL 보다 클 경우에는 시료 내에 존재하는 지방성 화합물들에 의한 방해정도가 높고, 혈액을 다량으로 채취해야 하는 문제가 있다.In addition, in the case of blood samples, under a slightly acidic condition of pH 4-7, heat cultured to 40 ~ 70 ℃ to obtain a decomposition product, the amount of blood used is preferably 0.4 ~ 2 mL. If the amount of blood is less than 0.4 mL, there is a problem in the detection limit for the analysis of steroid hormones, and if it is larger than 2 mL, the level of interference by fatty compounds in the sample is high, and a large amount of blood must be collected. there is a problem.

이후 상기 시료를 각각 공중합체를 흡착제로 사용한 고체상 추출법을 이용하여 활성 남성호르몬들을 추출한다. 이후 유기 용매로 pH 8 ~ 12 조건에서 액체-액체 추출법을 이앙하여 활성 남성호르몬을 선택적으로 재추출하며, 이때, 메틸-터셔리-부틸 에테르(methyl-tert-butyl ether, MTBE), 에틸아세테이트(ethylacetate) 및 헥산(n-hexane) 중에서 선택된 1종 또는 2종 이상의 혼합 용매를 사용하는 것이 추출 효율 면에서 바람직하며, 더욱 바람직하게는 pH 9 ~ 11에서 메틸-터셔리-부틸 에테르를 사용하는 것이 좋다. Thereafter, the active male hormones are extracted using the solid phase extraction method using the copolymer as an adsorbent, respectively. Since liquid at pH 8 ~ 12 conditions with an organic solvent - by transplanting the liquid extraction, and selective re-extract the active androgen, at this time, the methyl-tertiary-butyl ether (methyl- tert -butyl ether, MTBE), ethyl acetate ( It is preferable to use one or two or more mixed solvents selected from ethylacetate) and hexane (n-hexane) in terms of extraction efficiency, and more preferably to use methyl tert-butyl ether at pH 9-11. good.

상기 재추출물을 기체 크로마토그래피-질량분석기를 통한 검출을 용이하게 하고 표적 이외의 스테로이드 화합물과 효과적인 분리를 위하여, 엔올-에테르(enol-ether)와 입체적으로 장애가 있는 하이드록시기에 반응하지 아니하는 플로페메실 클로라이드(flophemesyl chloride)를 사용하여 유도체화 시킨다. 이후, 증발 건조시키고 트리메틸실릴(trimethylsilyl) 유도체화 반응을 진행시켜 플로페메실-트리메틸실릴(flophemesyl-trimethylsilyl) 유도체를 형성시킨다. 일반적인 트리메틸실릴, 알킬할라이드 또는 알킬안하이드라이드 등의 유도체에 비하여 상기 플로페메실-트리메틸실릴 유도체화를 진행하는 경우에 비하여 크로마토그램 상의 선택성이 우수하다. Flows that do not react with enol-ethers and sterically hindered hydroxyl groups to facilitate detection via the gas chromatography-mass spectrometer and for effective separation from steroid compounds other than targets Derivatization with flophemesyl chloride. Thereafter, the mixture is evaporated to dryness and trimethylsilyl derivatization is performed to form a flophemesyl-trimethylsilyl derivative. The selectivity on the chromatogram is excellent compared to the case where the flopemethyl-trimethylsilyl derivatization is carried out as compared with a derivative such as trimethylsilyl, alkyl halide or alkyl anhydride.

이후 상기 유도체를 분석 물질로 하여 기체 크로마토그래피-질량분석기로 분석을 진행하며, 크로마토그램에서 분석 물질과 내부표준물질의 면적비율을 비교함으로써 간단하게 분석 물질의 농도를 정량화할 수 있다. Thereafter, the derivative is analyzed using a gas chromatography-mass spectrometer as an analyte, and the concentration of the analyte can be simply quantified by comparing the area ratio of the analyte and the internal standard in the chromatogram.

특히 본 발명은 여러 가지 농도의 시료를 필요로 하는 정량곡선을 사용하지 않고, 내부표준물질로서 해당화합물의 동위원소가 치환된 물질을 특정 몰농도로 첨가한 뒤, 분석 물질과 내부표준물질로부터 얻은 크로마토그램의 면적비율을 비교하여 상기 두 물질의 몰비율을 확인함으로써, 분석 물질인 남성 호르몬의 농도를 신속하고 정확하게 측정할 수 있다. In particular, the present invention does not use a quantitative curve that requires samples of various concentrations, and adds an isotopically-substituted substance of the compound to a specific molarity as an internal standard, and then obtains an analyte and an internal standard. By comparing the area ratio of the chromatograms and confirming the molar ratio of the two substances, it is possible to quickly and accurately measure the concentration of testosterone, an analyte.

이하, 본 발명을 다음 실시예에 의거하여 더욱 상세하게 설명하겠는바, 본 발명이 다음 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail based on the following examples, but the present invention is not limited to the following examples.

실시예 : 생체 시료 내 남성호르몬 분석 Example: Analysis of male hormones in a biological sample

1) 동위원소 표준물질의 첨가1) Addition of Isotope Standards

소변 시료 내 남성호르몬의 정량을 위하여, 시험관에 테스토스테론을 포함한 3종의 활성 남성호르몬에 동위원소가 치환된 3종의 남성호르몬의 내부표준물질(d3-testosterone, 1 ㎍/mL; d3-epitestosterone, 1 ㎍/mL; d3-dihydrotestosterone, 0.5 ㎍/mL)의 혼합용액을 40 ㎕ 넣었다(시험관 1). In order to quantify male hormones in urine samples, the internal standard of three male hormones isotopically substituted with three active male hormones including testosterone (d 3 -testosterone, 1 μg / mL; d 3- 40 μl of a mixed solution of epitestosterone, 1 μg / mL; d 3 -dihydrotestosterone, 0.5 μg / mL) was added (Test Tube 1).

한편, 혈액 시료 내 남성호르몬의 정량을 위하여, 시험관에 테스토스테론을 포함한 3종의 활성 남성호르몬에 동위원소가 치환된 3종 남성호르몬의 내부표준물질(d3-testosterone, 100 ng/mL; d3-epitestosterone, 20 ng/mL; d3-dihydrotestosterone, 50 ng/mL)의 혼합용액을 40 ㎕ 넣었다(시험관 2).
On the other hand, for the quantification of male hormones in blood samples, the internal standard of three male hormones in which three active male hormones including isosterone are substituted in vitro (d 3 -testosterone, 100 ng / mL; d 3 40 μl of a mixed solution of -epitestosterone, 20 ng / mL; d 3 -dihydrotestosterone, 50 ng / mL) was added (Test Tube 2).

2) 소변시료의 가수분해2) Hydrolysis of Urine Samples

상기 시험관 1에 소변 시료 2 mL를 넣은 후, 1 mL의 0.2 M 인산염 완충용액(phosphate buffer, pH 7.2)을 넣어 pH를 6.4 ~ 6.6으로 조절하고, 50 ㎕의 글루쿠로니다제(β-glucuronidase)를 추가로 첨가하여, 55 ℃에서 1시간 동안 가수분해시켰다.
2 mL of the urine sample was added to the test tube 1, 1 mL of 0.2 M phosphate buffer (pH 7.2) was added to adjust the pH to 6.4 to 6.6, and 50 μl of glucuronidase (β-glucuronidase). ) Was further added and hydrolyzed at 55 ° C. for 1 hour.

3) 혈액시료의 가수분해3) Hydrolysis of Blood Samples

상기 시험관 2에 혈액 시료 0.4 mL를 넣은 후, 2.6 mL의 0.2 M 소디움 아세테이트 완충용액(sodium acetate buffer, pH 5.2)을 넣어 pH를 5.7 ~ 6.0으로 조절하고, 50 ℃에서 15분 동안 가수분해시켰다.
After putting 0.4 mL of the blood sample in Test Tube 2, 2.6 mL of 0.2 M sodium acetate buffer (pH 5.2) was added to adjust the pH to 5.7 to 6.0, and hydrolyzed at 50 ° C. for 15 minutes.

4) 고체상 추출법4) Solid phase extraction

고체상 추출방법에는 Oasis HLB 카트리지를 사용한다[Oasis HLBTM, 60 mg, Waters, Co., Milford, MA, USA]. 카트리지에 메탄올과 증류수 2 mL을 각각 흘려주고 상기 2), 3)의 분해물을 각각의 카트리지에 흘려주었다. 불순물의 제거를 위하여 증류수를 2 mL 흘려주고, 이 후 메탄올 4 mL를 흘려주어 카트리지에 흡착되어있는 상기 2), 3)의 분해물을 각각 용출(elution)시켰고, 용출액은 깨끗한 시험관에 받았다. 시험관에 받은 용출액은 40 ℃에서 감압증류기(rotary evaporator)를 통하여 증발시켰다.
The solid phase extraction method uses an Oasis HLB cartridge [Oasis HLB , 60 mg, Waters, Co., Milford, MA, USA]. Methanol and 2 mL of distilled water were flowed into the cartridge, respectively, and the decomposition products of 2) and 3) were flowed into each cartridge. To remove impurities, 2 mL of distilled water was poured, followed by 4 mL of methanol to elute the decomposition products of 2) and 3) adsorbed to the cartridge, and the eluate was received in a clean test tube. The eluate received in the test tube was evaporated through a rotary evaporator at 40 ℃.

5) 액체-액체 추출법5) Liquid-Liquid Extraction

증발된 4)의 시험관에 0.2 M 인산염 완충용액(phosphate buffer) 1mL과 5% 탄산칼륨(K2CO3) 용액 0.5 mL을 넣어 pH를 10.0 으로 조절하고 MTBE(methyl-tert-butyl ether)를 이용하여 추출하였다. 위의 용출액은 40 ℃에서 Turbo Vap LV 질소 증발기를 사용하여 증발 시킨 후, 이를 다시 P2O5/KOH를 이용하여 진공건조기(vacuum desiccator)에서 30분 이상 충분히 건조시켰다.
Add 1 mL of 0.2 M phosphate buffer and 0.5 mL of 5% potassium carbonate (K 2 CO 3 ) solution to the evaporated test tube of 4) to adjust the pH to 10.0, and use MTBE (methyl-tert-butyl ether). Extracted by. The eluate was evaporated using a Turbo Vap LV nitrogen evaporator at 40 ° C. and then dried again in a vacuum desiccator for 30 minutes or more using P 2 O 5 / KOH.

6) 기체 크로마토그래피-질량분석법6) Gas Chromatography-Mass Spectrometry

기체 크로마토그래피-질량분석기를 통한 용이한 검출을 위하여 시료의 휘발성을 증대시키고, 다른 스테로이드 화합물과의 분리를 위해 특정 치환기에만 선택적으로 유도체화 할 수 있으며, 다른 유도체화 방법에 비하여 노이즈를 감소시킬 수 있는 플로페메실-트리메틸실릴(flophemesyl-trimethylsilyl) 유도체화를 진행하고자 하기와 같은 유도체화를 수행하였다. Increase the volatility of the sample for easy detection through gas chromatography-mass spectrometry, selectively derivatize only certain substituents for separation from other steroid compounds, and reduce noise compared to other derivatization methods In order to proceed with flophemesyl-trimethylsilyl derivatization, derivatization was performed as follows.

먼저 플로페메실 클로라이드(Flophemesy chloride) 용액 50 ㎕를 상기 5)의 건조물에 넣고 상온에서 15분간 반응시킨 후, 용액의 휘발성을 증가시키고자 n-헥산 1mL을 첨가하여 70 ℃에서 증발시키고, P2O5/KOH를 이용하여 진공건조기(vacuum desiccator)에서 30분 이상 충분히 건조시켰다. 건조된 시험관에 MSTFA (N-methyl-N-trifluorotrimethylsilyl acetamide)/NH4I(ammonium iodide)/ dithioerythritol(500:4:2, v/w/w) 혼합용액 40 ㎕를 넣고 60 ℃에서 20분간 반응시켜 분석 물질을 플로페메실-트리메틸실릴(flophemesyl-trimethylsilyl) 유도체화하였다.First, 50 μl of flofemesyl chloride solution was added to the dried product of 5) and reacted at room temperature for 15 minutes. Then, to increase the volatility of the solution, 1 mL of n -hexane was added to evaporate at 70 ° C., and P 2 It was sufficiently dried in a vacuum desiccator for 30 minutes using O 5 / KOH. 40 μl of a mixed solution of MSTFA (N-methyl-N-trifluorotrimethylsilyl acetamide) / NH 4 I (ammonium iodide) / dithioerythritol (500: 4: 2, v / w / w) was added to the dried test tube. The analytes were derivatized with flophemesyl-trimethylsilyl.

남성호르몬들의 분석을 위해 질량분석기(Agilent사의 5975 Mass Selective Detector)를 연결한 기체 크로마토그래프(Agilent 6890 series Gas Chromatograph)를 이용하였고, 특성 이온만을 선택하여 검출하는 선택 이온 탐지법(selected ion monitoring, SIM)과 스캔모드를 이용하여 분석하였다.For the analysis of male hormones, Agilent 6890 series Gas Chromatograph connected to a mass spectrometer (Agilent's 5975 Mass Selective Detector) was used. ) And scan mode.

남성호르몬들의 분리는 용융실리카 모세관 컬럼(fused-silica capillary column)으로 Agilent 사의 Ultra-1을 사용하였다. 컬럼의 길이는 25 m, 내경은 0.2 mm, 그리고 필름두께가 0.33 ㎛이었으며, 운반기체인 헬륨의 유속은 1.0 mL/min이었다. 시료 주입은 8:1의 분할 주입 방식(split mode)을 사용하였으며, 분석 시 온도 조건은 다음과 같다. 주입부의 온도는 280 ℃이었고, 8 ℃/min의 속도로 320℃ 까지 올리고 6분 동안 유지시켰다. 검출기의 온도는 280 ℃였고, 이온 source의 온도는 230 ℃이었다. 이온화 방식은 전자 충격 방법(electron impact ionization, EI)을 적용하였으며, 이때 사용된 전자 에너지는 70 eV이었다.
The male hormones were separated using Agilent Ultra-1 as a fused-silica capillary column. The length of the column was 25 m, the inner diameter was 0.2 mm, and the film thickness was 0.33 μm. The flow rate of the carrier gas helium was 1.0 mL / min. Sample injection was performed using a split mode of 8: 1, and the temperature conditions for analysis were as follows. The temperature of the inlet was 280 ° C. and the temperature was raised to 320 ° C. at a rate of 8 ° C./min and maintained for 6 minutes. The temperature of the detector was 280 ° C and the temperature of the ion source was 230 ° C. The ionization method was applied to the electron impact method (electron impact ionization, EI), the electron energy used was 70 eV.

7) 활성 남성호르몬의 정량방법7) Determination of active male hormone

3종의 활성 남성호르몬의 정량분석을 위하여 사용된 선택 이온 탐지법에서 정량이온 및 컬럼 내에서의 머무름 시간을 하기 표 1에 나타내었으며, 분석 물질과 동위원소가 치환된 내부표준물질의 면적비율을 비교하여 시료 내 남성호르몬을 정량하였다. The retention time in the quantitative ion and column in the selective ion detection method used for the quantitative analysis of three active male hormones is shown in Table 1 below, and the area ratio of the analyte and the isotopically substituted internal standard is shown. In comparison, the male hormone in the sample was quantified.

스테로이드 호르몬Steroid hormones 기호sign 정량이온Fixed ion 머무름시간
(분)
Retention time
(minute)
남성호르몬Male Hormone TestosteroneTestosterone TT 584584 5.495.49 DihydrotestosteroneDihydrotestosterone DHTDHT 586586 5.345.34 EpitestosteroneEpitestosterone ETET 584584 4.934.93 표준물질Standard material d3-testosteroned 3 -testosterone d3-Td 3 -T 587587 5.485.48 d3-dihydrotestosteroned 3 -dihydrotestosterone d3-DHTd 3 -DHT 589589 5.335.33 d3-epitestosteroned 3 -epitestosterone d3-ETd 3 -ET 587587 4.924.92

소변 시료에서 테스토스테론과 이의 내부표준물질의 정량이온의 몰 비율이 1 이하로 확인된 시료의 크로마토그램을 도 1에, 몰 비율이 1로 확인된 시료의 크로마토그램을 도 2에, 몰 비율이 1 이상으로 확인된 시료의 크로마토그램을 도 3에 나타내었다. The chromatogram of a sample whose molar ratio of testosterone and its internal standard in the urine sample was found to be 1 or less is shown in FIG. 1, and the chromatogram of the sample whose molar ratio is 1 is shown in FIG. The chromatogram of the sample confirmed above is shown in FIG.

상기 과정을 통하여 테스토스테론, 디하이드로테스토스테론 및 에피테스토스테론 3종의 활성 남성호르몬의 농도를 내부표준물질을 사용하여, 별도의 정량 보정곡선을 사용하지 않고 분석 물질의 해당 봉우리에 대한 정량이온의 몰 비율을 통해 신속하게 농도를 측정할 수 있었다.
Through the above procedure, the concentrations of the active male hormones of testosterone, dihydrotestosterone and epitestosterone were measured using an internal standard, and the molar ratio of quantitative ions to the corresponding peaks of the analyte was measured without using a separate quantitative correction curve. The concentration could be measured quickly.

시험예 1Test Example 1

상기 실시예의 분석방법을 통하여 남성형 탈모(male-pattern baldness; MPB) 환자 130명, 여성형 탈모(female-patten baldness; FPB) 환자 14명으로부터 소변과 혈액 내 3종 남성호르몬의 농도를 측정하였으며, 그 결과를 하기 표 2 및 3 에 나타내었다.The concentrations of three male hormones in urine and blood were measured from 130 patients with male-pattern baldness (MPB) and 14 patients with female-patten baldness (FPB) through the analysis method of the above example. The results are shown in Tables 2 and 3 below.

분석물질Analyte 남성혈액
(ng/mL, mean±SD)
Male blood
(ng / mL, mean ± SD)
남성소변
(ng/mL, mean±SD)
Male urine
(ng / mL, mean ± SD)
테스토스테론Testosterone 4.94 ± 1.474.94 ± 1.47 15.89 ± 21.9215.89 ± 21.92 에피테스토스테론Epitestosterone 0.37 ± 0.390.37 ± 0.39 29.57 ± 21.7329.57 ± 21.73 다이하이드로테스토스테론Dihydrotestosterone 0.48 ± 0.390.48 ± 0.39 5.03 ± 5.555.03 ± 5.55 5α-환원효소 활성도a 5α-reductase activity a 0.10 ± 0.110.10 ± 0.11 1.01 ± 2.121.01 ± 2.12 a: 대사체/전구체 (testosterone/dihydrotestosterone, mean±SD) a: metabolite / precursor (testosterone / dihydrotestosterone, mean ± SD)

분석물질Analyte 여성혈액
(ng/mL, mean±SD)
Female blood
(ng / mL, mean ± SD)
여성소변
(ng/mL, mean±SD)
Women's urine
(ng / mL, mean ± SD)
테스토스테론Testosterone 0.64 ± 0.330.64 ± 0.33 1.31 ± 1.931.31 ± 1.93 에피테스토스테론Epitestosterone 0.45 ± 0.600.45 ± 0.60 9.77 ± 10.549.77 ± 10.54 다이하이드로테스토스테론Dihydrotestosterone 0.26 ± 0.160.26 ± 0.16 1.27 ± 0.871.27 ± 0.87 5α-환원효소 활성도a 5α-reductase activity a 0.41 ± 0.170.41 ± 0.17 1.73 ± 1.971.73 ± 1.97 a: 대사체/전구체 (testosterone/dihydrotestosterone, mean±SD) a: metabolite / precursor (testosterone / dihydrotestosterone, mean ± SD)

남성형 탈모 환자의 시료에서 검출된 농도는 혈액 시료의 경우 테스토스테론 4.94 ± 1.47 ng/mL, 에피테스토스테론 0.37 ± 0.39 ng/mL 및 다이하이드로테스토스테론 0.48 ± 0.39 ng/mL로 나타났으며, 소변 시료의 경우 테스토스테론 15.89 ± 21.92 ng/mL, 에피테스토스테론 29.57 ± 21.73 ng/mL, 다이하이드로테스토스테론 5.03 ± 5.55 ng/mL로 나타났다. 또한, 전구체(테스토스테론)에서 생성체(다이하이드로테스토스테론)로 변화시키는 5α-환원효소의 활성도는(5α-reductase activity)는 혈액과 소변 시료에서 각각 0.10 ± 0.11, 1.01 ± 2.12로 나타났다.The concentrations detected in the samples of male baldness patients were testosterone 4.94 ± 1.47 ng / mL, epitestosterone 0.37 ± 0.39 ng / mL and dihydrotestosterone 0.48 ± 0.39 ng / mL for blood samples, and testosterone for urine samples. 15.89 ± 21.92 ng / mL, epitestosterone 29.57 ± 21.73 ng / mL, dihydrotestosterone 5.03 ± 5.55 ng / mL. In addition, the 5α-reductase activity of the precursor (testosterone) to the product (dihydrotestosterone) (5α-reductase activity) was 0.10 ± 0.11, 1.01 ± 2.12 in blood and urine samples, respectively.

여성형 탈모 환자의 시료에서는 혈액 시료의 경우 테스토스테론 0.64 ± 0.33ng/mL, 에피테스토스테론 0.37 ± 0.39 ng/mL, 다이하이드로테스토스테론 0.48± 0.39 ng/mL로 나타났으며, 소변 시료의 경우 테스토스테론 1.31 ± 1.93 ng/mL, 에피테스토스테론 9.77 ± 10.54 ng/mL, 다이하이드로테스토스테론 1.27 ± 0.87 ng/mL으로 나타났다. 또한 5α-환원효소 활성도는 혈액과 소변 시료에서 각각 0.41 ± 0.17과 1.73 ± 1.97로 나타나는 것을 확인하였다.
Blood samples showed testosterone 0.64 ± 0.33 ng / mL, epitestosterone 0.37 ± 0.39 ng / mL, and dihydrotestosterone 0.48 ± 0.39 ng / mL in the sample of female alopecia, and testosterone 1.31 ± 1.93 ng in the urine sample. / mL, epitestosterone 9.77 ± 10.54 ng / mL, dihydrotestosterone 1.27 ± 0.87 ng / mL. In addition, 5α-reductase activity was found to be 0.41 ± 0.17 and 1.73 ± 1.97 in blood and urine samples, respectively.

시험예Test Example 2 2

상기 실시예의 분석방법을 사용하여 탈모환자 23명에 대하여 그들이 한의원에 처음 방문했을 때 수집한 혈액과 소변 시료와, 1달 동안 발모치료를 받은 후 채취한 혈액과 소변시료를 통해 5α-환원효소 활성도를 비교하여 발모 치료의 효과를 평가할 수 있었으며, 그 결과를 도 4에 나타내었다.Blood and urine samples collected on the first visit to a clinic for 23 hair loss patients using the analytical method of the above example, and 5α-reductase activity through blood and urine samples collected after 1 month of hair growth treatment It was possible to evaluate the effect of hair growth treatment by comparing the results are shown in FIG.

Claims (7)

생체 시료에 내부표준물질로서 동위원소가 치환된 남성호르몬을 첨가하는 단계;
친유성과 친수성을 갖는 공중합체 흡착제로 상기 생체 시료로부터 남성호르몬을 추출하는 단계;
상기 추출물을 pH 8 ~ 12에서 유기 용매로 재추출하는 단계; 및
상기 재추출물을 플로페메실-트리메틸실릴(flophemesyl-trimethylsilyl) 유도체화시키고, 기체 크로마토그래피-질량분석기를 이용하여 남성호르몬을 선택적으로 검출하는 단계
를 포함하여 이루어진 것을 특징으로 하는 생체 시료 내 남성호르몬의 정량 분석 방법.
Adding an isotope-substituted male hormone as an internal standard to the biological sample;
Extracting androic hormone from the biological sample with a copolymer adsorbent having lipophilic and hydrophilicity;
Re-extracting the extract with an organic solvent at a pH of 8 to 12; And
Derivatizing the reextract with flophemesyl-trimethylsilyl and selectively detecting male hormone using a gas chromatography-mass spectrometer
Method for quantitative analysis of male hormones in a biological sample, characterized in that consisting of.
제 1 항에 있어서, 상기 생체 시료는 소변 또는 혈액인 것을 특징으로 하는 생체 시료 내 남성호르몬의 정량 분석 방법.
The method of claim 1, wherein the biological sample is urine or blood.
제 2 항에 있어서, 상기 소변 시료에 내부표준물질로서 동위원소가 치환된 남성호르몬을 첨가한 후, pH 5 ~ 8 및 40 ~ 70 ℃에서 가수분해하는 것을 특징으로 하는 생체 시료 내 남성호르몬의 정량 분석 방법.
The method of claim 2, wherein after the addition of the isotope-substituted male hormone as an internal standard to the urine sample, the quantification of the male hormone in the biological sample, characterized in that the hydrolysis at pH 5 ~ 8 and 40 ~ 70 ℃ Analytical Method.
제 2 항에 있어서, 상기 혈액 시료에 내부표준물질로서 동위원소가 치환된 남성호르몬을 첨가한 후, pH 4 ~ 7 및 40 ~ 70℃에서 배양시키는 것을 특징으로 하는 생체 시료 내 남성호르몬의 정량 분석 방법.
[Claim 3] The quantitative analysis of male hormone in a biological sample according to claim 2, wherein the blood sample is added with an isotopically substituted male hormone as an internal standard, and then cultured at pH 4-7 and 40-70 ° C. Way.
제 1 항에 있어서, 상기 유기 용매는 메틸-터셔리-부틸 에테르(methyl-tert-butyl ether, MTBE), 에틸아세테이트(ethylacetate) 및 헥산(n-hexane) 중에서 선택된 것을 특징으로 하는 생체 시료 내 남성호르몬의 정량 분석 방법.
According to claim 1, wherein the organic solvent is a male in a biological sample, characterized in that selected from methyl tert -butyl ether (MTBE), ethyl acetate (ethylacetate) and hexane (n-hexane) Method of quantitative analysis of hormones.
제 1 항에 있어서, 상기 남성호르몬은 테스토스테론, 디하이드로테스토스테론 또는 에피테스토스테론인 것을 특징으로 하는 생체 시료 내 남성호르몬의 정량 분석 방법.
The method of claim 1, wherein the male hormone is testosterone, dihydrotestosterone or epitestosterone, characterized in that the quantitative analysis of male hormone in a biological sample.
제 1 항 내지 제 6 항 중 선택된 어느 한 항에 있어서, 기체 크로마토그래피-질량분석기를 이용하여 얻은 크로마토그램에서 분석 물질과 내부표준물질의 면적비율을 비교하는 것을 특징으로 하는 생체 시료 내 남성호르몬의 정량 분석 방법.The method according to any one of claims 1 to 6, characterized in that to compare the area ratio of the analyte and the internal standard in the chromatogram obtained using a gas chromatography-mass spectrometer. Quantitative Analysis Method.
KR20100120928A 2010-11-30 2010-11-30 Quantification of active androgens in urine and blood by isotope dilution-mass spectrometry KR101159064B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20100120928A KR101159064B1 (en) 2010-11-30 2010-11-30 Quantification of active androgens in urine and blood by isotope dilution-mass spectrometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20100120928A KR101159064B1 (en) 2010-11-30 2010-11-30 Quantification of active androgens in urine and blood by isotope dilution-mass spectrometry

Publications (2)

Publication Number Publication Date
KR20120059257A true KR20120059257A (en) 2012-06-08
KR101159064B1 KR101159064B1 (en) 2012-07-11

Family

ID=46610571

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20100120928A KR101159064B1 (en) 2010-11-30 2010-11-30 Quantification of active androgens in urine and blood by isotope dilution-mass spectrometry

Country Status (1)

Country Link
KR (1) KR101159064B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101421224B1 (en) * 2012-09-18 2014-07-22 한국과학기술연구원 Method for analyzing acidic herbicides using isotope dilution and gas chromatography/tandem mass spectrometry
CN107543891A (en) * 2017-03-29 2018-01-05 中国检验检疫科学研究院 The screening method of androgen chemical risk material in a kind of washing product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101775082B1 (en) * 2015-04-28 2017-09-05 한국과학기술연구원 Method and kit for quantitative analysis of alkanolamines

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001129395A (en) 1999-11-10 2001-05-15 Showa Denko Kk Adsorbent, molded body of adsorbent and tool for separating compound using them
JP2002187904A (en) 2000-12-21 2002-07-05 Hitachi Chem Co Ltd Crosslinked copolymer particle and process for its preparation
JP2004108838A (en) 2002-09-17 2004-04-08 Showa Denko Kk Cartridge column for extracting solid phase

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101421224B1 (en) * 2012-09-18 2014-07-22 한국과학기술연구원 Method for analyzing acidic herbicides using isotope dilution and gas chromatography/tandem mass spectrometry
CN107543891A (en) * 2017-03-29 2018-01-05 中国检验检疫科学研究院 The screening method of androgen chemical risk material in a kind of washing product
CN107543891B (en) * 2017-03-29 2020-01-03 中国检验检疫科学研究院 Screening method for androgen chemical risk substances in washing and caring products

Also Published As

Publication number Publication date
KR101159064B1 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
Ye et al. High-performance liquid chromatography–tandem mass spectrometry for the analysis of bile acid profiles in serum of women with intrahepatic cholestasis of pregnancy
Li et al. Simultaneous determination of clenbuterol, salbutamol and ractopamine in milk by reversed-phase liquid chromatography tandem mass spectrometry with isotope dilution
Ismaiel et al. Monitoring phospholipids for assessment of matrix effects in a liquid chromatography–tandem mass spectrometry method for hydrocodone and pseudoephedrine in human plasma
Li et al. Simultaneous determination of esculin and its metabolite esculetin in rat plasma by LC–ESI-MS/MS and its application in pharmacokinetic study
Wiesen et al. Liquid chromatography–tandem mass spectrometry method for the quantification of mycophenolic acid and its phenolic glucuronide in saliva and plasma using a standardized saliva collection device
Zhang et al. Simultaneous quantitation of aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine and benzoylhypaconine in human plasma by liquid chromatography–tandem mass spectrometry and pharmacokinetics evaluation of “SHEN-FU” injectable powder
Di Corcia et al. Simultaneous determination of β2‐agonists in human urine by fast‐gas chromatography/mass spectrometry: method validation and clinical application
Liu et al. Quantification of the major metabolites of bromhexine in human plasma using RRLC–MS/MS and its application to pharmacokinetics
Xia et al. Simultaneous determination of ginsenoside Rg1, Re, Rd, Rb1 and ophiopogonin D in rat plasma by liquid chromatography/electrospray ionization mass spectrometric method and its application to pharmacokinetic study of ‘SHENMAI’injection
Li et al. LC-ESI-MS method for the determination of dexamethasone acetate in skin of nude mouse
Mohamed et al. Development and validation of an LC–MS/MS method for determination of p-phenylenediamine and its metabolites in blood samples
KR101159064B1 (en) Quantification of active androgens in urine and blood by isotope dilution-mass spectrometry
CN102980968A (en) Liquid chromatogram tandem mass spectrum measuring method for creatinine in urine
Yao et al. Development, validation, and application of a liquid chromatography–tandem mass spectrometry method for the determination of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in human hair
Qiu et al. HPLC-ESI-MS/MS validation and pharmacokinetics of kalopanaxsaponin A in rats
Li et al. Determination of dexmedetomidine in human plasma using high performance liquid chromatography coupled with tandem mass spectrometric detection: application to a pharmacokinetic study
Dong et al. Quantitative analysis of glycerol levels in human urine by liquid chromatography–tandem mass spectrometry
KR20140132203A (en) Discrimination of sitosterolemia in a dried blood spot
Liu et al. An LC–MS/MS method for determination of jujuboside A in rat plasma and its application to pharmacokinetic studies
CN109633014B (en) Method for measuring contents of 21 terpenoids in tobacco leaves and application thereof
Yang et al. Determination of palonosetron in human plasma by ultra performance liquid chromatography–tandem mass spectrometry and its application to a pharmacokinetic study
Kong et al. Simultaneous determination of m-nisoldipine and its three metabolites in rat plasma by liquid chromatography–mass spectrometry
Sala et al. Development and validation of a liquid chromatography–tandem mass spectrometry method for the determination of ST1926, a novel oral antitumor agent, adamantyl retinoid derivative, in plasma of patients in a Phase I study
Xu et al. A rapid and validated HPLC method to quantify racecadotril metabolite, thiorphan, in human plasma using solid-phase extraction
KR101200423B1 (en) High sensitive analytical method of estrogen metabolites in urine and blood obtained from postmenopausal women

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150529

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160601

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170601

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 7