KR20120056154A - Ceramic composition for removing phosphorous and manufacturing method of thereof - Google Patents

Ceramic composition for removing phosphorous and manufacturing method of thereof Download PDF

Info

Publication number
KR20120056154A
KR20120056154A KR20100117737A KR20100117737A KR20120056154A KR 20120056154 A KR20120056154 A KR 20120056154A KR 20100117737 A KR20100117737 A KR 20100117737A KR 20100117737 A KR20100117737 A KR 20100117737A KR 20120056154 A KR20120056154 A KR 20120056154A
Authority
KR
South Korea
Prior art keywords
slag
zeolite
weight
phosphorus
olivine
Prior art date
Application number
KR20100117737A
Other languages
Korean (ko)
Other versions
KR101240589B1 (en
Inventor
이용환
조기안
이상균
Original Assignee
코리아엔텍(주)
초당대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코리아엔텍(주), 초당대학교 산학협력단 filed Critical 코리아엔텍(주)
Priority to KR20100117737A priority Critical patent/KR101240589B1/en
Publication of KR20120056154A publication Critical patent/KR20120056154A/en
Application granted granted Critical
Publication of KR101240589B1 publication Critical patent/KR101240589B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3014Kneading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
    • B01J2220/4887Residues, wastes, e.g. garbage, municipal or industrial sludges, compost, animal manure; fly-ashes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PURPOSE: A ceramic for removing phosphorus and a manufacturing method thereof are provided to economically remove dissolved low concentration phosphorus without any drug treatments by using olivine, zeolite, and slag. CONSTITUTION: A ceramic for removing phosphorus comprises 40-45 weight% of forsterite, 10-20 weight% of zeolite, and 40-45 weight% of slag. A manufacturing method of the ceramic material for removing phosphorus comprises the following steps: pulverizing forsterite, zeolite, and slag into powder and assorting thereof; mixing 40-45 weight% of forsterite, 10-20 weight% of zeolite, 40-45 weight% of slag; adding water to the mixture, kneading and molding the mixture; and plasticizing the product after drying thereof. The slag is a steel-manufacturing slag generated in a converter.

Description

인 제거용 세라믹 조성물 및 이의 제조방법{Ceramic composition for removing phosphorous and manufacturing method of thereof}Ceramic composition for phosphorus removal and manufacturing method thereof

본 발명은 인 제거용 세라믹 조성물 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 세라믹을 이용하여 생물학적으로 처리가 어려운 용존 상태의 인을 효과적으로 제거할 수 있는 인 제거용 세라믹 조성물 및 이의 제조방법에 관한 것이다. The present invention relates to a ceramic composition for phosphorus removal and a method for manufacturing the same, and more particularly, to a ceramic composition for phosphorus removal and a method for producing the same, which can effectively remove phosphorus in a dissolved state which is difficult to treat biologically using ceramics. will be.

종래의 하?폐수처리시설은 하?폐수에 포함된 유기물질과 질소, 인 등을 처리하기 위하여 하?폐수처리장 유입부에 스크린을 설치하여 부유성 물질 등을 분리한 후 미생물을 이용하여 유기물과 질소, 인을 제거하고 하천으로 방류하였다.Conventional sewage and wastewater treatment facilities install screens at the inlet of sewage and wastewater treatment plants to treat organic substances, nitrogen, and phosphorus contained in sewage and wastewater, and separate suspended solids, etc. Nitrogen and phosphorus were removed and discharged to the stream.

이와 같은 하천 방류는 법적으로 규제되고 있으며, 이러한 배출기준을 만족시키기 위하여, 종래에는 호기성 처리방법을 변경하여 질소와 인을 제거할 수 있는 고도처리시설(혐기, 호기구성)을 전국적으로 설치하여 운영하여 왔다.Such stream discharge is regulated by law, and in order to satisfy these emission standards, conventionally installed and operated a high-level treatment facility (anaerobic, aerobic) to remove nitrogen and phosphorus by changing aerobic treatment method. Has come.

현재 하?폐수처리에서 일반적으로 이용되는 질소 및 인 처리방법으로는 무산소조와 혐기조를 신설하여 부영양화의 주원인 물질인 질소와 인을 제거하고 있다.Currently, nitrogen and phosphorus treatment methods commonly used in sewage and wastewater treatment have been newly established to eliminate nitrogen and phosphorus, which are the main sources of eutrophication, by establishing an anaerobic and anaerobic tanks.

이러한 방법에 일반적으로 사용되는 생물학적 질소, 인 제거 공정은 A2/O계열, MLE계열, SBR계열 등이 가장 많이 적용되고 있으며, 근래에는 중공사분리막을 이용한 MBR 계열 등이 설치되어 운영되고 있다.Biological nitrogen and phosphorus removal processes commonly used in these methods are most commonly used A2 / O series, MLE series, SBR series, etc. Recently, MBR series using hollow fiber membranes is installed and operated.

이러한 처리공법은 모두 무산소 조건에서 수소공여체로 질산염을 이용하는 탈질반응과 혐기조건에서 세포 내의 POLY-P를 분해하도록 하여 인의 방출을 유도한 후 호기조건에서 인을 과잉 섭취한 미생물을 배출하여 탈수 처리함으로써 영양염류를 제거하는 생물학적 메커니즘에 기초한다.All of these treatments involve denitrification using nitrate as a hydrogen donor under anoxic conditions and decomposing POLY-P in cells under anaerobic conditions to induce the release of phosphorus, followed by dehydration by releasing microorganisms that overdose phosphorus under aerobic conditions. It is based on biological mechanisms to remove nutrients.

상술한 종래의 방법은 인을 제거하기 위한 방법으로 오랫동안 이용되고 유지관리비용이 저렴한 장점이 있으나, 미생물을 제어하는 운전조건이 까다롭고 질소와 인을 제거하는 미생물들은 서로 상반되는 조건을 선호하여 시설을 분리하여 운영하여야 함으로써 시설 설치비가 많이 드는 문제가 있었다. 또한, 인을 제거하기 위한 제어조건으로서 혐기조에서는 온도, 용존산소농도, SRT, BOD/P 밸런스 등 많은 조건을 필요로 하였다.The conventional method described above has the advantage of being used for a long time as a method for removing phosphorus and having low maintenance costs, but the operating conditions for controlling microorganisms are difficult and the microorganisms for removing nitrogen and phosphorus prefer conditions that are opposite to each other. There was a problem in that the installation cost of the facility was to be separated by operating separately. In addition, as a control condition for removing phosphorus, many conditions such as temperature, dissolved oxygen concentration, SRT, and BOD / P balance were required in an anaerobic tank.

이러한 결과로 하?폐수처리장에서 처리되어 배출되는 배출수에는 잔존하는 많은 양의 인이 포함되어 있고, 이와 같은 배출수가 하천으로 흘러들어 하천의 부영양화를 일으키게 된다.As a result, the wastewater treated and discharged from the wastewater treatment plant contains a large amount of residual phosphorus, and such wastewater flows into the stream, causing eutrophication of the stream.

최근에는 이러한 문제를 해결하기 위하여 환경부에서는 4대강 유역의 하?폐수처리시설에서 배출되는 배출수의 인의 농도를 0.5 mg/ℓ이하로 낮출 것을 권고하고 있으며, 점차적으로 전국의 모든 하?페수처리장에 적용하도록 하는 것이 계획되어 있다.Recently, to solve this problem, the Ministry of Environment recommends lowering the concentration of phosphorus in the discharged wastewater treatment facilities in the four major rivers to less than 0.5 mg / l and gradually applying it to all wastewater treatment plants in the country. It is planned to do so.

인은 질소에 비하여 수십 배 높은 부영양화물질로서 인을 제거하는 것은 하천을 보호하는 매우 중요한 방안이다. 종래의 미생물에 의한 인의 제거농도는 0.5 mg/ℓ이하로 제거하기가 어렵기 때문에 이를 해결하기 위한 처리방안이 제시되고 있다.Phosphorus is a eutrophication that is several orders of magnitude higher than nitrogen, and removal of phosphorus is a very important way to protect rivers. Since the removal concentration of phosphorus by the conventional microorganism is difficult to remove less than 0.5 mg / ℓ has been proposed a treatment method for solving this.

상기의 문제를 해결하기 위한 종래의 기술로서는 생물학적 처리에 비하여 처리비용이 높고, 슬러지의 발생 문제를 갖고 있지만 매우 효율이 높은 방법으로서, 인과 반응하는 약품을 투여하는 인 제거방법이 제시되어 왔다.Conventional techniques for solving the above problems have been proposed as a method of removing phosphorus by administering a drug that reacts with phosphorus as a method that is expensive compared to biological treatment and has a problem of generating sludge but has a very high efficiency.

약품을 투여하는 방법의 경우, 통상적으로 가격이 저렴하고 공급이 용이한 알루미늄염이나 철염 등을 투여하여 인을 응결한 후 분리하는 방법으로 매우 효율이 높고 운전이 쉬우며 부하변동에 쉽게 대응할 수 있으며, 더욱이 미생물 상태의 악화에 의해 배출되는 배출수에 다량의 부유물질이 함유되어 있어도 제거효율이 매우 안정적이며, 방류수의 부유물질도 동시에 제거할 수 있다는 장점을 가지고 있다. In the case of the method of administering a drug, it is a method of condensing and separating phosphorus by administering aluminum salt or iron salt, which is usually inexpensive and easy to supply, and is very efficient, easy to operate, and easily responds to load fluctuations. Moreover, the removal efficiency is very stable even if the discharged water discharged by the deterioration of microbial state contains a large amount of suspended solids.

하지만 응결된 미세 콜로이드성 입자를 거대화하기 위해서 무기성 응집제와 유기성 응집제를 다량 투여하여야 할 필요성이 있어, 운영비가 높으며 응결된 입자를 침전분리하기 위한 넓은 침전 면적과 함께 수반되는 장치 등을 필요로 하여 유량이 많고 부지면적이 협소한 기존의 하?폐수처리장에 순차적으로 적용이 어려운 단점이 있다.However, in order to enlarge the coagulated fine colloidal particles, a large amount of inorganic coagulant and an organic coagulant need to be administered. It is difficult to apply sequentially to existing sewage and wastewater treatment plants with a large flow rate and narrow land area.

본 발명은 상기의 문제점을 개선하고자 창출된 것으로서, 생물학적으로 처리가 어려운 용존 상태의 저농도 인을 세라믹을 이용하여 별도의 약품 처리 없이 간편하고 경제적인 방법으로 제거할 수 있는 세라믹 조성물 및 이의 제조방법을 제공하는 데 그 목적이 있다. The present invention has been made to improve the above problems, and a ceramic composition and a method for preparing the same, which can be removed in a simple and economical way without using a separate chemical treatment of low concentration phosphorus in the biologically difficult dissolved state using a ceramic The purpose is to provide.

상기 목적을 달성하기 위한 본 발명의 인 제거용 세라믹 조성물은 감람석, 제올라이트, 슬래그를 함유하는 것을 특징으로 한다. Phosphorus removal ceramic composition of the present invention for achieving the above object is characterized in that it contains olivine, zeolite, slag.

상기 감람석 40 내지 45중량%, 상기 제올라이트 10 내지 20중량%, 상기 슬래그 40 내지 45중량%를 혼합하여 조성된 것을 특징으로 한다. 40 to 45% by weight of the olivine, 10 to 20% by weight of the zeolite, 40 to 45% by weight of the slag is characterized in that the composition is mixed.

그리고 상기 목적을 달성하기 위한 본 발명의 인 제거용 세라믹 조성물의 제조방법은 감람석, 제올라이트, 슬래그를 분말로 파쇄하여 선별하는 파쇄단계와; 상기 감람석 40 내지 45중량%, 상기 제올라이트 10 내지 20중량%, 상기 슬래그 40 내지 45중량%를 혼합하는 혼합단계와; 상기 혼합단계에서 수득된 혼합물에 물을 가하여 반죽한 후 성형체로 성형하는 성형단계와; 상기 성형체를 건조한 후 소성하는 소성단계;를 포함하는 것을 특징으로 한다. And the method for producing a ceramic composition for phosphorus removal of the present invention for achieving the above object comprises a crushing step of crushing the olivine, zeolite, slag by powder; A mixing step of mixing 40 to 45 wt% of the olivine, 10 to 20 wt% of the zeolite, and 40 to 45 wt% of the slag; A molding step of kneading by adding water to the mixture obtained in the mixing step and then molding into a molded body; It characterized by comprising a; firing step of drying the molded body after firing.

상기 슬래그는 전로에서 발생한 제강슬래그인 것을 특징으로 한다. The slag is characterized in that the steel slag generated in the converter.

상술한 바와 같이 본 발명에 의하면 생물학적으로 처리가 어려운 용존 상태의 저농도 인을 별도의 약품 처리 없이 간편하고 경제적인 방법으로 제거할 수 있다. As described above, according to the present invention, a low concentration of phosphorus in a biologically difficult dissolved state can be removed in a simple and economical manner without a separate chemical treatment.

또한, 인의 제거에 있어서 폐수 특성에 관계없이 높은 처리 효율을 얻을 수 있다. In addition, high treatment efficiency can be obtained regardless of wastewater characteristics in the removal of phosphorus.

도 1은 인 제거 실험 결과 인의 농도를 나타내는 그래프이고,
도 2는 인 제거 실험 결과 인의 제거 효율을 나타내는 그래프이다.
1 is a graph showing the concentration of phosphorus as a result of phosphorus removal experiments,
2 is a graph showing phosphorus removal efficiency as a result of phosphorus removal experiment.

이하, 본 발명의 바람직한 실시 예에 따른 인 제거용 세라믹 조성물 및 이의 제조방법에 대해서 구체적으로 설명한다. Hereinafter, a ceramic composition for phosphorus removal according to a preferred embodiment of the present invention and a manufacturing method thereof will be described in detail.

본 발명의 인 제거용 세라믹 조성물은 감람석, 제올라이트, 슬래그를 함유한다. The ceramic composition for phosphorus removal of this invention contains olivine, zeolite, and slag.

감람석(Olivine)은 사방정계에 속하는 규산염 광물로서, pH 9.1?9.3 정도의 강알카리성을 나타내며, 주요 구성성분으로 흡착유발 산화광물인 SiO2 , Al2O3 , Fe2O3 가 주종을 이룬다. 미분쇄된 감람석은 표면적이 넓어서 인을 제거하는 능력이 우수하다. 바람직하게 감람석은 물과 접촉되는 표면적을 증대시키기 위해 200 내지 300메쉬(mesh)입도크기로 미분화시킨다. Olivine is a silicate mineral belonging to the tetragonal system, and has a strong alkalinity of pH 9.1-9.3. The main component is SiO 2 , Al 2 O 3 , and Fe 2 O 3 , which are adsorption-induced oxidation minerals. Finely ground olivine has a large surface area and is excellent in the ability to remove phosphorus. Preferably the olivine is micronized to 200 to 300 mesh particle size to increase the surface area in contact with water.

또한 감람석은 CaO, MgO, K2O, Na2O를 포함하고 있어 이들의 가수분해 작용에 의해 생성된 OH- 에 의해 강알카리성 상태를 나타내므로 중금속이온을 흡착제거할 수 있다. 본 발명에 적용된 감람석의 주요 구성성분을 하기 표 1과 같다. In addition, olivine contains CaO, MgO, K 2 O, Na 2 O, and exhibits a strong alkaline state due to OH generated by their hydrolysis, so that heavy metal ions can be adsorbed and removed. The main components of the olivine applied to the present invention are shown in Table 1 below.

성분ingredient SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaOCaO MgO MgO 함량(wt%)Content (wt%) 3939 1.51.5 11.211.2 3.33.3 35.035.0

그리고 제올라이트는 주성분이 Si와 Al이며, 이외에 양이온으로 Na, K, Ca, Mg, Sr 및 Ba를 소량 함유하는 함수 규산염 광물(hydrous aluminosilicate)이다. 결정 구조상으로는 규산염 광물의 기본단위의 하나인 (Si, Al)O4 사면체의 모든 산소들이 또 다른 사면체에 의해서 공유되면서 3차원적으로 연결되는 망상규산염 광물 (tectosilicate)에 속한다. 결정구조적으로 각 원자의 결합이 느슨하여, 그 사이를 채우고 있는 수분을 고열로 방출시켜도 골격은 그대로 있으므로 다른 미립물질을 흡착할 수가 있다. 바람직하게 제올라이트는 물과 접촉되는 표면적을 증대시키기 위해 200 내지 300메쉬(mesh)입도 크기로 미분화시킨다. The zeolite is a hydrous aluminosilicate containing Si and Al as main components and a small amount of Na, K, Ca, Mg, Sr and Ba as cations. In terms of crystal structure, all of the oxygen in the (Si, Al) O 4 tetrahedron, one of the basic units of silicate minerals, is shared by another tetrahedron and belongs to a three-dimensionally linked reticilicate mineral (tectosilicate). The bonds of the atoms are loose in crystal structure, and even though the moisture filling the spaces is released at high heat, the skeleton remains the same, so that other fine particles can be adsorbed. Preferably the zeolite is micronized to a size of 200 to 300 mesh particle size to increase the surface area in contact with water.

본 발명에 적용된 제올라이트는 천연에서 채취된 것으로, 일 예로 제올라이트의 주요 구성성분을 하기 표 2와 같다.Zeolite applied to the present invention is taken from nature, for example, the main components of the zeolite are shown in Table 2 below.

성분ingredient SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaO CaO MgOMgO K2OK 2 O Na2ONa 2 O 함량(wt%)Content (wt%) 66.666.6 13.113.1 0.70.7 1.71.7 0.40.4 4.784.78 1.441.44

그리고 슬래그(slag)는 제철소의 제철공정 또는 제강공정에서 발생되는 슬래그를 이용한다. 슬래그는 사용하는 노의 종류에 따라 고로 슬래그, 제강슬래그로 구분된다. 고로슬래그는 고온에서 철광석으로부터 선철을 제조하는 과정 중에 발생하며, 제강슬래그는 선철을 전로에서 정련하여 불순 물인 탄소,인,유황을 제거하는 과정중에 발생된다. 이외에도 제강의 예비처리 공정에서 발생되는 예비처리 슬래그, 스테인레스 제강공정의 정련로 슬래그 등을 이용할 수 있다. 슬래그는 비중의 차이를 이용하여 쇳물과 분리하게 되는 데 냉각방법에 따라 공기 중에서 서서히 냉각시킨 괴재슬래그(palletized slag-air cooled)와 물을 분사하여 냉각시킨 수재슬래그(granulated slag-water cooled)로 구별될 수 있다. 바람직하게 슬래그로 전로에서 발생한 제강슬래그를 이용한다.And slag (slag) using the slag generated in the steelmaking process or steelmaking process of the steel mill. Slag is divided into blast furnace slag and steelmaking slag according to the type of furnace used. Blast furnace slag is produced in the process of manufacturing pig iron from iron ore at high temperature, and steelmaking slag is produced in the process of refining pig iron in the converter to remove impurities such as carbon, phosphorus and sulfur. In addition, pretreatment slag generated in the pretreatment process of steelmaking, refining furnace slag of a stainless steelmaking process, etc. can be used. The slag is separated from the waste water by using the difference in specific gravity, and it is classified into palletized slag-air cooled in the air and granulated slag-water cooled by spraying water according to the cooling method. Can be. Preferably, steelmaking slag generated in the converter is used as slag.

슬래그는 물과 접촉되는 표면적을 증대시키기 위해 200 내지 300메쉬(mesh)입도크기로 미분화시킨다. 본 발명에서 적용된 제강 슬래그의 조성은 하기 표 3과 같다.Slag is micronized to 200 to 300 mesh particle size to increase the surface area in contact with water. The composition of the steelmaking slag applied in the present invention is shown in Table 3 below.

성분ingredient SiO2 SiO 2 CaOCaO Fe2O3 Fe 2 O 3 Al2O3 Al 2 O 3 MgOMgO MnOMnO TiO2 TiO 2 SS 함량(wt%)Content (wt%) 13.3 13.3 44.344.3 17.517.5 1.51.5 6.46.4 5.35.3 1.51.5 0.070.07

이하, 인 제거용 세라믹 조성물의 제조방법에 대해서 설명한다. Hereinafter, the manufacturing method of the ceramic composition for phosphorus removal is demonstrated.

먼저, 감람석, 제올라이트, 슬래그를 분말로 파쇄하여 선별하는 파쇄단계를 수행한다. 감람석, 제올라이트, 슬래그는 물과의 접촉면적을 증대시키기 위해 미분화시킨다. 바람직하게 200 내지 300메쉬(mesh) 입도 크기로 미분화시킨다. 파쇄단계는 채취된 원광을 햄머밀, 볼밀, 로쉬밀 등을 사용하여 분쇄한 후 200 내지 300메쉬의 체를 이용하여 선별한다. First, a crushing step of crushing olivine, zeolite and slag into powder is performed. Olivine, zeolite and slag are micronized to increase the contact area with water. Preferably micronized to 200 to 300 mesh particle size. In the crushing step, the collected ore is pulverized using a hammer mill, a ball mill, a roche mill, and the like, and then screened using a sieve of 200 to 300 mesh.

다음으로 혼합단계에서 분쇄된 상기 재료들은 일정 비율로 혼합한다. 바람직하게 감람석 40 내지 45중량%, 제올라이트 10 내지 20중량%, 슬래그 40 내지 45중량% 비율로 혼합한다. Next, the materials ground in the mixing step are mixed at a predetermined ratio. Preferably 40 to 45% by weight of olivine, 10 to 20% by weight of zeolite and 40 to 45% by weight of slag are mixed.

그리고 상기 혼합단계에서 수득된 혼합물에 물을 가하여 반죽한 후 원하는 형태와 크기를 갖는 성형체로 성형하는 성형단계를 수행한다. 성형체는 구형 또는 사각, 펠렛 형태로 성형될 수 있다. 성형단계에서 성형강도를 위해 물 외에 바인더가 추가될 수 있다. 바인더는 미세한 분말들을 견고하게 결합시키며, 소성 및 침수시에도 접착력이 유지될 수 있도록 한다. 바인더는 감람석, 제올라이트, 슬래그의 총 중량에 대하여 20 내지 30%의 중량비로 혼합될 수 있다. 바인더로 메틸 셀룰로오즈가 이용될 수 있다. In addition, water is kneaded by adding water to the mixture obtained in the mixing step, and then a molding step of molding into a molded body having a desired shape and size is performed. The shaped body may be shaped into a spherical or square, pellet form. In the forming step, a binder may be added in addition to water for forming strength. The binder firmly binds the fine powders and allows the adhesion to be maintained even upon firing and immersion. The binder may be mixed in a weight ratio of 20 to 30% relative to the total weight of the olivine, zeolite and slag. Methyl cellulose may be used as the binder.

성형체는 건조실 등에서 건조시킨 후 800 내지 1000℃에서 30 내지 90분 동안 소성하여 고결시킨다. The molded body is dried in a drying chamber or the like and then calcined at 800 to 1000 ° C. for 30 to 90 minutes to solidify.

이하, 실시 예를 통하여 본 발명의 제조방법에 대해 설명하고자 한다. 다만, 하기의 실시 예는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명의 범위를 하기의 실시 예로 한정하는 것은 아니다.Hereinafter, the manufacturing method of the present invention will be described through examples. However, the following examples are intended to illustrate the present invention in detail, and the scope of the present invention is not limited to the following examples.

(실시 예1)(Example 1)

감람석, 제올라이트, 슬래그를 분쇄한 후 250메쉬 체를 이용하여 선별하였다. 그리고 얻어진 미분말은 감람석 40중량%, 제올라이트 20중량%, 슬래그 40중량% 비율로 혼합한 후 물을 가하여 반죽하고 건조시켰다. 건조 후 전기로에 넣고 900℃에서 60분 동안 소성하여 약 2 내지 4mm 크기의 볼 형상의 세라믹 조성물을 제조하였다. Olivine, zeolite and slag were ground and screened using a 250 mesh sieve. The fine powder thus obtained was mixed at a ratio of 40% by weight of olivine, 20% by weight of zeolite, and 40% by weight of slag, and then kneaded with water, and dried. After drying, the mixture was put in an electric furnace and fired at 900 ° C. for 60 minutes to prepare a ball-shaped ceramic composition having a size of about 2 to 4 mm.

(실시 예2)(Example 2)

상기 실시 예 1과 동일한 방법으로 세라믹 조성물을 제조하되, 감람석 45중량%, 제올라이트 10중량%, 슬래그 45중량% 비율로 혼합하였다. To prepare a ceramic composition in the same manner as in Example 1, 45% by weight of olivine, 10% by weight of zeolite, 45% by weight of slag was mixed.

(비교예1)(Comparative Example 1)

상기 실시 예 1과 동일한 방법으로 세라믹 조성물을 제조하되, 감람석과 제올라이트를 이용하였고, 이때 조성은 감람석 70중량%, 제올라이트 30중량% 비율로 혼합하였다. A ceramic composition was prepared in the same manner as in Example 1, but olivine and zeolite were used, and the composition was mixed in a ratio of 70% by weight of olivine and 30% by weight of zeolite.

(비교예2)(Comparative Example 2)

상기 실시 예 1과 동일한 방법으로 세라믹 조성물을 제조하되, 감람석과 슬래그를 이용하였고, 이때 조성은 감람석 70중량%, 슬래그 30중량% 비율로 혼합하였다. To prepare a ceramic composition in the same manner as in Example 1, using olivine and slag, the composition was mixed in a ratio of 70% by weight of olivine, 30% by weight of slag.

(비교예3)(Comparative Example 3)

상기 실시 예 1과 동일한 방법으로 세라믹 조성물을 제조하되, 슬래그와 제올라이트를 이용하였고, 이때 조성은 슬래그 70중량%, 제올라이트30중량% 비율로 혼합하였다. A ceramic composition was prepared in the same manner as in Example 1, but slag and zeolite were used, and the composition was mixed at a ratio of 70 wt% slag and 30 wt% zeolite.

<실험예: 인 제거 실험>Experimental Example: Phosphorus Removal Experiment

3차 증류수에 KH2PO4 시약을 용해하여 인의 함량이 19.352mg/l가 되도록 농도를 조절하여 인공하수를 조제하였다. Artificial sewage was prepared by dissolving KH 2 PO 4 reagent in tertiary distilled water to adjust the concentration so that the phosphorus content was 19.352 mg / l.

조제된 인공하수를 2.4ℓ의 반응조에 1ℓ넣은 후 세라믹 조성물을 10%(W/V) 비율로 첨가하였다. 그 외의 실험조건으로 수온 25℃, 반응조 회전속도 140RPM, 반응시간 24시간으로 반응시켰다. 1 L of the prepared artificial sewage was added to a 2.4 L reactor, and the ceramic composition was added at a rate of 10% (W / V). In other experimental conditions, the reaction was performed at a water temperature of 25 ° C., a reactor rotation speed of 140 RPM, and a reaction time of 24 hours.

상기 실시 예 및 비교예의 세라믹 조성을 이용한 각각 실험을 통해 인공하수 중의 총 인의 농도를 측정하여 하기 표 4 및 도 1의 그래프에 나타내었다. The total phosphorus concentration in the artificial sewage was measured through the experiments using the ceramic compositions of Examples and Comparative Examples, respectively, and is shown in the graphs of Table 4 and FIG. 1.

구분division 실험전Before experiment 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 실시예1Example 1 실시예2Example 2 T-P(mg/l)T-P (mg / l) 19.35219.352 0.8410.841 0.6550.655 0.2890.289 0.1000.100 0.0560.056

그리고 도 2의 그래프에서 실험 전 초기 인의 농도에 대한 실험 후 인의 농도를 제거효율로 나타냈다. 참고로 도 1 및 도 2에서 case1은 비교예1을, case2는 비교예 2를, case3은 비교예 3을, case4는 실시 예1을, case5는 실시 예 2를 의미한다. In the graph of FIG. 2, the concentration of phosphorus after the experiment with respect to the initial concentration of phosphorus before the experiment was represented as removal efficiency. For reference, in FIG. 1 and FIG. 2, case1 refers to Comparative Example 1, case2 refers to Comparative Example 2, case3 refers to Comparative Example 3, case4 refers to Example 1, and case5 refers to Example 2.

표 4 및 도 1, 2를 참조하면, 본 발명의 실시 예 1 및 2에 따른 세라믹 조성물을 이용하는 경우 인 제거 효율이 매우 우수함을 알 수 있다. 실시예들의 경우 인 제거 효율이 99%이상 임을 알 수 있다. 그리고 실시 예 2가 실시 예 1에 비해 효과가 다소 높게 나타났다. Referring to Table 4 and FIGS. 1 and 2, it can be seen that phosphorus removal efficiency is very excellent when using the ceramic compositions according to Examples 1 and 2 of the present invention. In the case of the embodiment it can be seen that the phosphorus removal efficiency is more than 99%. And Example 2 showed a somewhat higher effect than Example 1.

한편, 비교 예들의 경우 실시 예들에 비해 인 제거 효율이 낮은 것으로 나타났다. 이러한 실험 결과들로부터 감람석, 제올라이트, 슬래그 중 어느 두 가지의 재료만을 이용하는 경우보다 감람석, 제올라이트, 슬래그 세 가지를 모두 혼합하여 세라믹 조성물을 제조하는 경우 인 제거 효율면에서 상승된 효과를 가짐을 알 수 있다. On the other hand, the comparative examples were found to have a lower phosphorus removal efficiency than the embodiments. From these results, it can be seen that when the ceramic composition is prepared by mixing all three types of olivine, zeolite, and slag, the phosphorus removal efficiency is increased compared to using only two materials of olivine, zeolite, and slag. have.

이상, 본 발명은 일 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시 예가 가능하다는 점을 이해할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation.

따라서 본 발명의 진정한 보호 범위는 첨부된 등록청구범위에 의해서만 정해져야 할 것이다.
Therefore, the true scope of protection of the present invention should be defined only by the appended claims.

Claims (4)

감람석, 제올라이트, 슬래그를 함유하는 것을 특징으로 하는 인 제거용 세라믹 조성물.A phosphate ceramic composition for phospholipids containing zeolite, zeolite and slag. 제 1항에 있어서, 상기 감람석 40 내지 45중량%, 상기 제올라이트 10 내지 20중량%, 상기 슬래그 40 내지 45중량%를 혼합하여 조성된 것을 특징으로 하는 인 제거용 세라믹 조성물.The ceramic composition for phosphorus removal according to claim 1, wherein 40 to 45% by weight of the olivine, 10 to 20% by weight of the zeolite, and 40 to 45% by weight of the slag are mixed. 감람석, 제올라이트, 슬래그를 분말로 파쇄하여 선별하는 파쇄단계와;
상기 감람석 40 내지 45중량%, 상기 제올라이트 10 내지 20중량%, 상기 슬래그 40 내지 45중량%를 혼합하는 혼합단계와;
상기 혼합단계에서 수득된 혼합물에 물을 가하여 반죽한 후 성형체로 성형하는 성형단계와;
상기 성형체를 건조한 후 소성하는 소성단계;를 포함하는 것을 특징으로 하는 인 제거 세라믹 조성물의 제조방법.
A crushing step of crushing olivine, zeolite and slag by powder;
A mixing step of mixing 40 to 45 wt% of the olivine, 10 to 20 wt% of the zeolite, and 40 to 45 wt% of the slag;
A molding step of kneading by adding water to the mixture obtained in the mixing step and then molding into a molded body;
And a firing step of firing the molded body after drying the molded body.
상기 제 3항에 있어서, 상기 슬래그는 전로에서 발생한 제강슬래그인 것을 특징으로 하는 인 제거 세라믹 조성물의 제조방법.
The method of claim 3, wherein the slag is steelmaking slag generated in the converter.
KR20100117737A 2010-11-24 2010-11-24 Ceramic composition for removing phosphorous and manufacturing method of thereof KR101240589B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20100117737A KR101240589B1 (en) 2010-11-24 2010-11-24 Ceramic composition for removing phosphorous and manufacturing method of thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20100117737A KR101240589B1 (en) 2010-11-24 2010-11-24 Ceramic composition for removing phosphorous and manufacturing method of thereof

Publications (2)

Publication Number Publication Date
KR20120056154A true KR20120056154A (en) 2012-06-01
KR101240589B1 KR101240589B1 (en) 2013-03-11

Family

ID=46608388

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20100117737A KR101240589B1 (en) 2010-11-24 2010-11-24 Ceramic composition for removing phosphorous and manufacturing method of thereof

Country Status (1)

Country Link
KR (1) KR101240589B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112191224A (en) * 2020-10-10 2021-01-08 湛源(山东)生态环境科技有限公司 Ecological phosphorus fixation material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100519485B1 (en) * 2002-09-07 2005-10-06 조은경 Preperation method of sugar free candy with extracts of Oriental herb medicine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358888B1 (en) * 1999-11-29 2002-11-01 최식영 The multi-pore ceramic using the slag of the by-products from iron-steel-industry and waste casting sand dust and method of making the same
KR20050092937A (en) * 2004-03-17 2005-09-23 이용환 Ceramic obtained from combustion after mixing olivine with natural zeolite and its production techniques.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112191224A (en) * 2020-10-10 2021-01-08 湛源(山东)生态环境科技有限公司 Ecological phosphorus fixation material and preparation method thereof

Also Published As

Publication number Publication date
KR101240589B1 (en) 2013-03-11

Similar Documents

Publication Publication Date Title
Wu et al. Preparation of ceramic filler from reusing sewage sludge and application in biological aerated filter for soy protein secondary wastewater treatment
CN1150975C (en) Spherical porous light haydite for treating waste water and its production method
CN104418560A (en) Curing agent for treating heavy metal pollution and heavy metal curing method
CN1319640C (en) Method for preparing active fly ash phosphorus adsorbent
CN112441804B (en) Preparation method of dephosphorization and denitrification type biological filter material and application of dephosphorization and denitrification type biological filter material in integrated rural domestic sewage treatment equipment
JP7174967B2 (en) phosphorus adsorbent
KR100839589B1 (en) Producting method of liquefied water treatment material for removal of suspend solid, nitrate, phosphate and stench
CN101716441A (en) Burn-free porous steel slag filter material and preparation method thereof
CN108996691A (en) A kind of aluminium sludge compounded mix and preparation method thereof for artificial swamp
KR101240589B1 (en) Ceramic composition for removing phosphorous and manufacturing method of thereof
JP6021181B2 (en) Phosphate fertilizer manufacturing apparatus and manufacturing method
KR100393267B1 (en) Staircase type waste water disposal system and adsorbent for purification of livestock waste water
CN101560008B (en) Method for treating low-concentration phosphorus-containing wastewater
CN101318737B (en) Baking-free stephanoporate water slag filtering material and preparation method thereof
CN107473763B (en) Phosphogypsum ceramsite for sewage filtration and preparation method thereof
CN112441805B (en) Method for preparing enhanced phosphorus removal and COD filter material by using ferrate
KR101068008B1 (en) The construction material utilizing sludge and its manufacturing method
CN104045163A (en) Method for improving artificial wetland sewage treatment performance by using titanium-containing blast furnace slags
CN102078795B (en) Fly ash forming material for controlling growth of algae in landscape water and applications of fly ash forming material
CN112430053A (en) Fiber-enhanced nitrogen and phosphorus removal biological filter material and preparation method thereof
CN112830541A (en) Method for continuously removing phosphorus for long time by using multifunctional long-acting composite filler
KR100506329B1 (en) Material for water-treating and water-treating apparatus
KR101044921B1 (en) The manufacturing process of landfill cover soil from wastewater sludge utilizing carbonized rice husks
Wang A research on ceramsite obtained from blast furnace slag and sewage sludge
CN110655130A (en) Nitrogen and phosphorus removal nanocomposite and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
FPAY Annual fee payment
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181211

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191209

Year of fee payment: 8