KR20120054199A - Geothermal power generation apparatus using compressed air of high temperature and high pressure generated from the compressed air energy storage generation system - Google Patents

Geothermal power generation apparatus using compressed air of high temperature and high pressure generated from the compressed air energy storage generation system Download PDF

Info

Publication number
KR20120054199A
KR20120054199A KR1020100115466A KR20100115466A KR20120054199A KR 20120054199 A KR20120054199 A KR 20120054199A KR 1020100115466 A KR1020100115466 A KR 1020100115466A KR 20100115466 A KR20100115466 A KR 20100115466A KR 20120054199 A KR20120054199 A KR 20120054199A
Authority
KR
South Korea
Prior art keywords
compressed air
power generation
underground
water
compressor
Prior art date
Application number
KR1020100115466A
Other languages
Korean (ko)
Other versions
KR101257844B1 (en
Inventor
이승철
정민영
김세훈
김지연
Original Assignee
에스케이건설 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이건설 주식회사 filed Critical 에스케이건설 주식회사
Priority to KR1020100115466A priority Critical patent/KR101257844B1/en
Publication of KR20120054199A publication Critical patent/KR20120054199A/en
Application granted granted Critical
Publication of KR101257844B1 publication Critical patent/KR101257844B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/20Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/001Central heating systems using heat accumulated in storage masses district heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/11Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE: A geothermal power generator using high-pressure/temperature compressed air of a CAES(Compressed Air Energy Storage) system is provided to be possible not to install a cooler at the back of a compressor by using air as a heat source for geothermal power generations. CONSTITUTION: A geothermal power generator using high-pressure/temperature compressed air of a CAES(Compressed Air Energy Storage) system comprises underground water- bearing stratums(10), a heat-exchange line of injection water(12), an injection water pump(12) and hot water ejection pump(16). A compressed air supply line(8), which connects a compressor to an underground rock storage cavern(6) penetrates the underground water bearing stratums. Subsurface water flows into the underground water bearing stratums through the heat-exchange line of injection water. The heat-exchange line of injection water supplies the water to the ground through heat-exchanging the subsurface water with high-temperature compressed air passing through the compressed air supply line. The injection water pump artificially supplies the subsurface water to the heat-exchange line of injection water. The pick-up pump extracts the heat exchanged water through heat-exchange line of injection water.

Description

압축공기 저장발전시스템의 고온고압 압축공기를 이용한 지열발전장치{Geothermal power generation apparatus using compressed air of high temperature and high pressure generated from the compressed air energy storage generation system}Geothermal power generation apparatus using compressed air of high temperature and high pressure generated from the compressed air energy storage generation system}

본 발명은 압축공기 저장발전시스템에서 생성된 고온/고압의 압축공기를 지열발전에 이용할 수 있는 장치에 관한 것으로, 더욱 상세하게는 냉각기의 설치없이 압축공기 저장발전시스템으로부터 생성된 고온/고압의 공기를 인위적인 지열발전의 열원으로 이용함으로써 압축공기 저장발전 시스템의 열원으로 총 발전량을 증가시켜 전체 발전시스템의 효율을 향상시킬 수 있는 압축공기 저장발전시스템의 고온고압 압축공기를 이용한 지열발전장치에 관한 것이다.
The present invention relates to a device that can use the high temperature / high pressure compressed air generated in the compressed air storage power generation system for geothermal power generation, and more specifically, the high temperature / high pressure air generated from the compressed air storage power generation system without the installation of a cooler The present invention relates to a geothermal power generation apparatus using high temperature and high pressure compressed air of a compressed air storage power generation system that can increase the total power generation amount as a heat source of a compressed air storage power generation system by improving the efficiency of the entire power generation system by using a heat source of artificial geothermal power generation. .

전 세계적인 전력계통 개선방향은 화석연료발전의 비중을 줄여나가고, 더불어 에너지저장시스템 등이 첨두부하의 상당부분을 담당하도록 하는 것이다.The global direction of power system improvement is to reduce the proportion of fossil fuel generation and to make energy storage systems account for most of the peak load.

기존의 발전시스템에는 첨두부하의 보충을 위해서 양수발전과 같은 대규모 전력저장시스템이 존재하고 있으며, 이러한 양수발전은 우리나라를 비롯하여 세계 여러 나라에서 널리 이용되고 있다. 그러나, 상기한 양수발전시스템은 환경문제 및 입지조건 제약에 의하여 그 중요성이 낮아지고 새로운 전력 저장체가 필요하게 되었다. 또한, 상기 양수발전시스템은 자연에너지의 특징상 공급이 불안정하고 불규칙하며 예상불가한 단점이 있기 때문에, 추후 공급안정화를 위하여 대용량 전력저장시스템이 필요한 실정이다.Existing power generation system has a large-scale power storage system such as pumped power generation to supplement the peak load, this pumped power generation is widely used in many countries around the world, including Korea. However, the above-mentioned pumped power generation system has become less important due to environmental problems and location constraints, and new power storage devices are needed. In addition, since the pumping power generation system has unstable, irregular, and unforeseen disadvantages of supply due to the nature of natural energy, a large capacity power storage system is required for stabilizing supply in the future.

한편, 환경문제가 심각해짐에 따라 자연에너지를 활용한 신재생 에너지 발전전력의 수요가 증가하고 있다. 그러나 자연에너지는 인위적으로 조절이 불가능하며 기후에 따라 출력의 변동이 매우 심하기 때문에 대규모 보급에 어려움을 겪고 있다. Meanwhile, as environmental problems become serious, demand for renewable energy generation power using natural energy is increasing. However, natural energy is difficult to control artificially, and because of the extreme fluctuations in output according to the climate, it is difficult to supply large scale.

이러한 자연에너지의 대규모 보급을 실현하기 위하여, 자연에너지로 생산된 전력을 이용하여 압축공기 저장하고 실제 사용할 때에는 저장된 압축공기로 발전할 수 있다. 이 경우 약간의 화석연료가 사용되긴 하나 기존 화석연료 화력발전에 비하여 연료를 현저히 줄일 수 있고, 소비자가 만족하는 수준의 우수한 자연에너지 전력을 사용할 수 있게 된다. In order to realize such a large-scale dissemination of natural energy, compressed air can be stored using electric power produced by natural energy, and stored compressed air can be generated in actual use. In this case, although a little fossil fuel is used, the fuel can be significantly reduced compared to the conventional fossil fuel thermal power generation, and it is possible to use a high level of natural energy power satisfying the consumer.

최근 들어 새로운 전력 저장체로 급부상하고 있는 압축공기 에너지저장시스템(CAES: Compressed Air Energy Storage)에 대한 연구 및 실증사업들이 미국, 유럽 등에서 활발히 진행되고 있다. Recently, research and demonstration projects on compressed air energy storage system (CAES), which is emerging as a new power storage device, are being actively conducted in the US and Europe.

상기한 압축공기 저장발전시스템은 크게 압축기, 저장공동, 연소기, 터빈으로 이루어져 있다. 즉, 상기 압축공기 저장발전시스템은 도1에 도시한 바와 같이 심야전기 등과 같은 잉여전력을 이용해 구동하는 압축기(20)에 의해 압축된 공기를 지하저장시설인 저장탱크(30)에 주입한다. 그리고, 전력소비량이 많은 시간대에 압축공기를 회수하여 연소기(50)에서 연료와 혼합연소시키고, 연소된 연소가스의 압력으로 터빈(40)을 구동시켜 전력을 생산함으로써 첨두부하를 해결하는 등 안정적인 전력공급을 이루는 시스템이다. The compressed air storage power generation system is mainly composed of a compressor, a storage cavity, a combustor, and a turbine. That is, the compressed air storage power generation system injects the air compressed by the compressor 20 driven by surplus power such as a late-night electric power to the storage tank 30 which is an underground storage facility as shown in FIG. In addition, the compressed air is recovered at a time when a large amount of power is consumed, mixed combustion with fuel in the combustor 50, and the turbine 40 is driven by the pressure of the combusted gas to produce electric power to solve the peak load. It is a system of supply.

상기한 구성과 작동을 수행하는 압축공기 저장발전 시스템은 압축기 후단에 냉각기(60)를 설치하여 온도 및 압력변화에 대응하고 있다. 이는 짧은 시간에 20~70bar의 고압으로 압축된 공기가 수백℃의 고온 상태가 되기 때문에 안정적으로 지하공동에 저장하기 위해 감온 장치가 필요하다. Compressed air storage power generation system that performs the above configuration and operation is installed in the rear of the compressor cooler 60 to respond to changes in temperature and pressure. This is because the compressed air at high pressure of 20 ~ 70bar in a short time is a high temperature of several hundred ℃, the temperature reduction device is required to store in the underground cavity stably.

상기한 압축공기 저장발전의 원리는 다음과 같다. The principle of the compressed air storage power generation is as follows.

화력발전소에서 생성되는 전력의 60~70%는 압축공기를 생산하는 데에 다시 쓰인다. 화력발전소에서 전력을 생산할 때 터빈의 회전력이 매우 중요하며, 터빈 회전에는 고온 고압의 공기가 필수적이고, 고온은 화석연료 연소, 고압은 압축기를 통해 발생시킨다. 압축기를 운영하는데 드는 전력이 바로 화력발전 자체에서 나오는 전력의 60~70%를 담당하고 있으므로 실제 화력발전소의 전력 효율은 30~40%에 그친다는 단점이 있다. 그리하여 화석연료의 사용을 줄이고 저렴한 잉여전력(또는 심야전력)을 이용하여 저장함은 물론 첨두부하가 사용되는 낮 시간에 비싼 값에 팔아 수익을 높이는 개념이 바로 압축공기 저장발전인 것이다.60 to 70 percent of the power generated by thermal power plants is used to produce compressed air. Turbine rotational power is very important when generating power from thermal power plants. High-temperature, high-pressure air is essential for turbine rotation, and high-temperature is generated by fossil fuel combustion and high-pressure is generated by compressors. Since the power used to operate the compressor is responsible for 60 ~ 70% of the power from the thermal power plant itself, the power efficiency of the thermal power plant is only 30-40%. Thus, compressed air storage is the concept of reducing the use of fossil fuels and storing them using inexpensive surplus power (or midnight power) as well as increasing profits by selling them at high prices during peak hours.

상기한 압축공기 저장발전(CAES, Compressed Air Energy Storage)은 풍력, 조력, 태양광 등 조절불가한 자연에너지의 출력안정성을 향상시키는 데에도 사용 될 수 있다. Compressed Air Energy Storage (CAES) can be used to improve the output stability of unregulated natural energy, such as wind, tidal and solar power.

그러나, 상기한 종래의 압축공기 저장발전시스템은 압축기(20) 뒤에 냉각기(60)를 설치함으로써 고온고압 공기의 온도를 낮추어 이를 저온고압의 공기를 저장하였다가 발전 시에 연료와 혼합시켜 다시 온도를 올려 고온고압의 공기로 만드는 번거로운 작업을 수행하는 문제점이 있었다. 또한, 상기 압축기(20)에서 생성된 고온/고압의 공기를 터빈을 구동시키는 열원으로만 이용하는 구조로 되고 있기 때문에 에너지 소비효율면에서 개선되어야 할 필요성이 있다. However, in the conventional compressed air storage power generation system, the cooler 60 is installed behind the compressor 20 to lower the temperature of the high temperature and high pressure air, store the air of the low temperature and high pressure, and mix the fuel with the fuel during power generation. There was a problem to perform a cumbersome work to make a high temperature and high pressure air. In addition, since the high temperature / high pressure air generated by the compressor 20 is used as a heat source for driving a turbine, there is a need to improve energy consumption.

따라서, 본 발명은 상기한 제반적인 개선점을 해결하기 위해 제안된 것으로서, 압축기의 후단에 감온목적으로 설치되는 냉각기를 제거하고, 상기 압축기에서 생성된 고온/고압 압축공기의 특성을 이용하여 인위적인 지열 발전을 수행함으로써 압축공기 저장발전의 전체효율을 향상시킬 수 있는 압축공기 저장발전시스템의 고온고압 압축공기를 이용한 지열발전장치를 제공함에 그 목적이 있다.
Therefore, the present invention has been proposed to solve the above general improvements, and removes the cooler installed for the purpose of the thermostat at the rear end of the compressor, by using the characteristics of the high temperature / high pressure compressed air generated in the compressor artificial geothermal power generation It is an object of the present invention to provide a geothermal power generation apparatus using a high temperature and high pressure compressed air of a compressed air storage power generation system that can improve the overall efficiency of compressed air storage power generation by performing a.

상기 목적을 달성하기 위하여 본 발명은 잉여전력 및 자연에너지로부터의 전력을 전달하는 전력 계통과, 외부공기를 압축하는 압축기와, 상기 압축된 공기를 저장하는 지하암반저장공동과, 상기 지하암반저장공동에 저장된 압축공기를 회수하여 연료와 혼합시켜 연소하는 연소기와, 상기 연소된 가스에 의해 구동되는 터빈을 포함하는 압축공기 저장발전시스템에 있어서, 지중에 위치되며 상기 압축기와 지하암반저장공동을 연결하는 압축공기 공급라인이 관통되는 지중대수층; 상기 지중대수층에 지하수를 유입하며, 압축공기 공급라인을 통과하는 고온 압축공기를 지하수와 열교환하여 지상으로 공급하는 주입수열교환라인; 상기 주입수 열교환라인에 지하수를 인위적으로 공급하기 위한 주입수 펌프; 및 상기 지중대수층에서 열교환된 고온수를 주입수 열교환라인을 통해 추출하여 지열발전에 사용하기 위한 고온수 취출펌프를 포함하는 압축공기 저장발전시스템의 고온고압 압축공기를 이용한 지열발전장치를 제공한다.In order to achieve the above object, the present invention provides a power system for delivering power from surplus power and natural energy, a compressor for compressing external air, an underground rock storage cavity for storing the compressed air, and the underground rock storage cavity. A compressed air storage power generation system including a combustor for recovering compressed air stored in an air, mixed with fuel, and a turbine, and a turbine driven by the combusted gas, wherein the compressed air is located in the ground and connects the compressor and the underground rock storage cavity. Underground aquifer through which compressed air is supplied; An injection water heat exchange line that introduces ground water into the underground aquifer and supplies heat to the ground by exchanging hot compressed air passing through the compressed air supply line with the ground water; An infusion water pump for artificially supplying groundwater to the infusion water heat exchange line; And it provides a geothermal power generation apparatus using a high temperature and high pressure compressed air of the compressed air storage power generation system including a high temperature water extraction pump for extracting the hot water heat exchanged in the underground aquifer through the injection water heat exchange line for use in geothermal power generation.

또한, 본 발명의 제2 실시예에서는 외부공기를 압축하는 압축기와, 상기 압축된 공기를 저장하는 지하암반저장공동과, 상기 지하암반저장공동에 저장된 압축공기를 회수하여 연료와 혼합시켜 연소하는 연소기와, 상기 연소된 가스에 의해 구동되는 터빈을 포함하는 압축공기 저장발전시스템에 있어서, 지중에 위치한 지중대수층; 상기 압축기와 지하암반저장공동을 연결하는 제1 압축공기 공급라인; 상기 압축기로부터 인출되며, 단부가 상기 지중대수층에 연결되는 제2 압축공기 공급라인; 상기 지중대수층에 지하수를 유입하며, 제1 압축공기 공급라인을 통과하는 고온의 압축공기를 지하수와 열교환하여 지상으로 공급하는 주입수 열교환라인; 상기 주입수 열교환라인에 지하수를 인위적으로 공급하기 위한 주입수 펌프; 및 상기 지중대수층에서 열교환된 고온수를 주입수 열교환라인을 통해 추출하여 지열발전에 사용하기 위한 고온수 취출펌프를 포함하는 압축공기 저장발전시스템의 고온고압 압축공기를 이용한 지열발전장치를 제공한다.
In the second embodiment of the present invention, a compressor for compressing external air, a underground rock storage cavity storing the compressed air, and compressed air stored in the underground rock storage cavity are recovered and mixed with fuel to combust the combustion. And a turbine driven by the combusted gas, the compressed air storage power generation system comprising: an underground aquifer located in the ground; A first compressed air supply line connecting the compressor and the underground rock storage cavity; A second compressed air supply line withdrawn from the compressor and whose end is connected to the underground aquifer; An injection water heat exchange line that introduces groundwater into the underground aquifer and supplies heat to the ground by exchanging hot compressed air passing through a first compressed air supply line with groundwater; An infusion water pump for artificially supplying groundwater to the infusion water heat exchange line; And it provides a geothermal power generation apparatus using a high temperature and high pressure compressed air of the compressed air storage power generation system including a high temperature water extraction pump for extracting the hot water heat exchanged in the underground aquifer through the injection water heat exchange line for use in geothermal power generation.

전술한 바와 같이 본 발명의 특징에 따르면, 다음과 같은 효과가 있다.As described above, according to the features of the present invention, the following effects are obtained.

첫째, 압축기에서 생성된 고온의 압축공기를 지열 발전의 열원으로 이용하여 지하수를 데우는데 사용하고, 데워진 지하수를 상부의 공동건물에서 활용함으로써 지열발전시스템의 효율성을 향상시킬 수 있다.First, it is possible to improve the efficiency of the geothermal power generation system by using the hot compressed air generated by the compressor as a heat source of geothermal power generation to warm the groundwater and utilizing the heated groundwater in the upper common building.

둘째, 압축기에서 생성된 고온의 공기를 인위적 지열발전의 열원으로 이용하기 때문에 압축공기 발전저장시스템의 구성인 압축기 후면에 감온을 위한 냉각기의 설치가 필요없게 된다. Second, since the high temperature air generated by the compressor is used as a heat source of artificial geothermal power generation, there is no need to install a cooler for temperature reduction at the rear of the compressor, which is a configuration of the compressed air power generation storage system.

셋째, 압축공기 발전저장시스템에서 생성된 압축공기의 열원을 터빈구동과 함께 지열발전에 이용함으로써 전체 발전시스템의 효율을 극대화할 수 있다.
Third, it is possible to maximize the efficiency of the entire power generation system by using the heat source of the compressed air generated in the compressed air power generation storage system in conjunction with the turbine drive for geothermal power generation.

도1은 종래기술에 따른 압축공기 발전저장시스템의 구성을 나타낸 개략도,
도2는 본 발명에 의한 압축공기 저장발전시스템의 고온고압 압축공기를 이용한 지열발전장치의 제1 실시예 구성을 나타낸 개략도,
도3은 본 발명에 의한 압축공기 저장발전시스템의 고온고압 압축공기를 이용한 지열발전장치의 제2 실시예 구성을 나타낸 개략도이다.
1 is a schematic diagram showing the configuration of a compressed air power generation storage system according to the prior art,
2 is a schematic view showing the configuration of a first embodiment of a geothermal power generation apparatus using high temperature and high pressure compressed air of a compressed air storage power generation system according to the present invention;
Figure 3 is a schematic diagram showing the configuration of a second embodiment of a geothermal power generation apparatus using a high temperature and high pressure compressed air of the compressed air storage power generation system according to the present invention.

상술한 목적, 특징들 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해 질 것이다. 이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.The above-mentioned objects, features and advantages will become more apparent from the following detailed description in conjunction with the accompanying drawings. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 의한 압축공기 저장발전시스템의 고온고압 압축공기를 이용한 지열발전장치는 압축기에서 생성된 고온/고압의 압축공기 고온특성을 이용하여 지열발전을 수행함으로써 버려지는 열을 다시 활용하고 냉각기 장비를 없애 전체 발전시스템의 효율을 향상시킬 수 있도록 구현한 것이다. The geothermal power generator using the high temperature and high pressure compressed air of the compressed air storage power generation system according to the present invention utilizes the heat discarded by performing geothermal power generation by using the high temperature / high pressure compressed air high temperature characteristics generated by the compressor and uses the cooler equipment again. It is implemented to improve the efficiency of the entire power generation system.

도2는 본 발명에 의한 압축공기 저장발전시스템의 고온/고압 압축공기를 이용한 지열발전장치의 제1 실시예 구성을 나타낸 개략도이다.Figure 2 is a schematic diagram showing the configuration of the first embodiment of the geothermal power generation apparatus using the high temperature / high pressure compressed air of the compressed air storage power generation system according to the present invention.

도면에 도시한 바와 같이 본 발명의 제1 실시예는 잉여전력 또는 자연에너지 전력을 수신하는 전력계통(2)과; 상기 전력 계통(2)의 전력을 이용하여 외부공기를 압축하는 압축기(4)와; 지중에 형성되며 압축기(4)에서 송출된 압축공기를 저장하는 지하암반저장공동(6)과; 상기 압축기(4) 및 연소기와 지하암반저장공동(6) 사이를 각각 연결하여 압축공기를 이송하는 제1 압축공기 공급라인(8)과; 상기 압축기(4)와 지하암반저장공동(6) 사이의 지중에 형성되며, 제1 압축공기 공급라인(8)이 관통되는 지중대수층(10)와; 상기 지중대수층(10)에 지하수를 유입하며, 제1 압축공기 공급라인(8)을 통과하는 고온 압축공기를 지하수와 열교환하여 지상으로 공급하는 주입수 열교환라인(12)과; 상기 주입수 열교환라인(12)에 지하수를 인위적으로 공급하기 위한 주입수 펌프(14)와; 상기 지중대수층(10)에서 열교환된 고온수를 주입수 열교환라인(12)을 통해 추출하여 지열발전에 사용하기 위한 고온수 취출 펌프(16)와; 상기 지하암반저장공동(6)에 저장된 압축공기를 공급받아 연료와 혼합하여 연소시키는 연소기(18); 및 상기 연소된 가스에 의해 구동되는 터빈(20)을 포함한다. As shown in the figure, a first embodiment of the present invention includes: a power system 2 for receiving surplus power or natural energy power; A compressor (4) for compressing external air by using electric power of the power system (2); An underground rock storage cavity (6) formed in the ground and storing compressed air sent out from the compressor (4); A first compressed air supply line (8) for connecting the compressor (4) and the combustor and the underground rock storage cavity (6) to transfer compressed air; An underground aquifer layer 10 formed in the ground between the compressor 4 and the underground rock storage cavity 6 and through which the first compressed air supply line 8 passes; An injection water heat exchange line 12 which introduces groundwater into the underground aquifer layer 10 and heat-exchanges the hot compressed air passing through the first compressed air supply line 8 with the groundwater to the ground; An injection water pump 14 for artificially supplying ground water to the injection water heat exchange line 12; A hot water extraction pump 16 for extracting the hot water heat exchanged in the underground aquifer layer 10 through the injection water heat exchange line 12 and using it for geothermal power generation; A combustor (18) receiving compressed air stored in the underground rock storage cavity (6) and mixing the fuel with the fuel to combust it; And a turbine 20 driven by the combusted gas.

상기와 같이 구성된 본 발명의 제1 실시예에 대한 작용상태를 설명한다.An operation state of the first embodiment of the present invention configured as described above will be described.

먼저, 전력 계통(2)의 전력을 이용하여 압축기(4)가 가동하여 고압의 공기가 생성되면 제1 압축공기 공급라인(8)을 매개로 지하암반저장공동(6)에 고온/고압의 공기를 저장한다. 상기 제1 압축공기 공급라인(8)을 통해 고압/고온의 공기가 이송되는 과정에서, 고압의 공기가 가진 고온이 제1 압축공기 공급라인(8)을 통해 지반에 전달된다. First, when the compressor 4 is operated by using the power of the power system 2 to generate high pressure air, the high temperature / high pressure air is supplied to the underground rock storage cavity 6 through the first compressed air supply line 8. Save it. In the process of conveying the high pressure / high temperature air through the first compressed air supply line 8, the high temperature of the high pressure air is transmitted to the ground through the first compressed air supply line 8.

상기 제1 압축공기 공급라인(8)이 통과되는 지중에는 지중대수층(10)가 형성되어 있으며, 주입수펌프(14)의 가동에 의해 주입수 열교환라인(12)을 매개로 지하수가 상기 지중대수층(10)에 인위적으로 공급된다. 상기 지중대수층(10)에서는 제1 압축공기 공급라인(8)의 압축공기와 지하수가 열교환되어 고온수가 생성되고, 이 고온수는 고온수 취출펌프(16)의 가동에 의해 주입수 열교환라인(12)을 매개로 취출되어 지상의 지열발전 시스템을 가동하기 위한 열원으로 사용된다.The ground aquifer 10 is formed in the ground through which the first compressed air supply line 8 passes, and the groundwater is pumped through the injection water heat exchange line 12 by the operation of the injection water pump 14. It is artificially supplied to (10). In the underground aquifer layer 10, the compressed air of the first compressed air supply line 8 exchanges ground water with hot water to generate high temperature water, and the high temperature water is injected into the injection water heat exchange line 12 by operation of the hot water extraction pump 16. It is taken out through) and used as a heat source to operate the ground geothermal power system.

그리고, 상기 지하암반저장공동(6)에 채워진 고압의 압축공기는 상부의 압축공기 저장발전시스템의 가동에 의해 회수되어 연소기(18)에 공급된다. 상기 연소기(18)에서는 천연가스를 연소시키며 저장되어 있던 고압의 공기와 혼합되어 터빈(20)을 가동시킴으로서 전력을 생산하게 된다.Then, the high pressure compressed air filled in the underground rock storage cavity 6 is recovered by the operation of the upper compressed air storage power generation system and supplied to the combustor 18. The combustor 18 is mixed with the high pressure air stored by burning the natural gas to operate the turbine 20 to produce power.

도3은 본 발명에 의한 압축공기 저장발전시스템의 고온/고압 압축공기를 이용한 지열발전장치의 제2 실시예 구성을 나타낸 개략도이다. 본 실시예에서는 제1 실시예와 동일구성에 대해서는 동일부호를 병기한다.Figure 3 is a schematic diagram showing the configuration of a second embodiment of a geothermal power generation apparatus using a high temperature / high pressure compressed air of the compressed air storage power generation system according to the present invention. In this embodiment, the same reference numerals are given to the same configuration as the first embodiment.

본 발명의 제2 실시예에서는 전력 계통(2)의 전력을 이용하여 압축기(4)의 가동에 의해 압축공기를 지하암반저장공동(6)에 공급하는 압축공기라인(8)과는 별도로 압축기(4)로부터 인출되어 지중대수층(10)에 연결되는 제2 압축공기공급라인(22)을 설치한 구조를 제시하고 있다. In the second embodiment of the present invention, a compressor (in addition to the compressed air line 8 for supplying the compressed air to the underground rock storage cavity 6 by the operation of the compressor 4 using the power of the electric power system 2) 4 shows a structure in which a second compressed air supply line 22, which is drawn out from and connected to the underground aquifer 10, is installed.

상기 제2 실시예의 구조에 따르면, 일반 압축공기 저장발전시스템의 압축기(4)에서 생성된 고압의 공기가 제1 압축공기 공급라인(8)를 통해 지하암반저장공동(6)으로 저장될때, 압축기 자체의 고온 공기가 제2 압축공기공급라인(22)을 통하여 지중대수층(10)으로 전달하여 국부적 지반을 고온으로 향상시키게 된다. 이 지중대수층(10)에는 주입수펌프(14)와 주입수 열교환라인(12)을 통해 지하수가 유입되어 고온수로 열교환되고, 주입수 열교환라인(12)을 통해 고온수를 추출하여 상부의 지열발전으로 사용하게 된다. According to the structure of the second embodiment, when the high pressure air generated in the compressor 4 of the general compressed air storage power generation system is stored in the underground rock storage cavity 6 through the first compressed air supply line 8, the compressor Its hot air is transferred to the underground aquifer 10 through the second compressed air supply line 22 to improve the local ground to a high temperature. Into the underground aquifer layer 10, groundwater flows through the injection water pump 14 and the injection water heat exchange line 12, and is heat-exchanged with high temperature water. It will be used for power generation.

본 발명의 제1 및 제2 실시예에서 압축기(4)는 잉여전력, 심야전력 또는 신재생에너지 전력을 이용하여 전기로 공기를 고온 고압으로 압축시키는 것으로서 하나 또는 병렬로 설치하여 공기압력을 크게 높이는 것이 가능하다. 따라서, 상기 압축기(4)에서 고온 고압의 공기가 생산되며 이는 파이프를 통하여 압축공기 저장공동으로 이동되어 저장된다.In the first and second embodiments of the present invention, the compressor 4 compresses air into an electric furnace at high temperature and high pressure using surplus power, late night power, or renewable energy power. It is possible. Therefore, the air of high temperature and high pressure is produced in the compressor 4, which is moved and stored through the pipe into the compressed air storage cavity.

압축공기 저장을 위한 지하암반저장공동(6)은 지하에 자연 또는 인위적으로 생성되는 암반공동을 이용한 것으로 변압식 또는 정압식으로 고압 공기를 저장할 수 있다. 고압의 공기를 저장하기 위하여 공기를 빼냄에 따라 압력이 일정하게 유지되는 방식이 정압식이고, 공기를 빼냄에 따라 압력이 감소하는 방식이 변압식이다. Underground rock storage cavity (6) for compressed air storage is to use a rock cavity that is naturally or artificially generated underground, it can store the high-pressure air in a transformed or constant pressure. In order to store the high-pressure air, the pressure is kept constant as the air is drawn out, and the pressure is reduced.

이상에서 설명한 본 발명은 전술한 실시 예 및 첨부된 도면에 의해 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 여러가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.
The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and various substitutions, modifications, and changes are possible within the scope without departing from the technical spirit of the present invention. It will be apparent to those who have knowledge.

2: 전력계통 4: 압축기
6: 지하암반저장공동 8: 제1 압축공기 공급라인
10: 지중대수층 12: 주입수 열교환라인
14: 주입수 펌프 16: 고온수 취출 펌프
18: 연소기 20: 터빈
22: 제2 압축공기 공급라인
2: power system 4: compressor
6: underground rock storage cavity 8: first compressed air supply line
10: underground aquifer 12: injection water heat exchange line
14: infusion water pump 16: hot water extraction pump
18: combustor 20: turbine
22: second compressed air supply line

Claims (2)

외부공기를 압축하는 압축기와, 상기 압축된 공기를 저장하는 지하암반저장공동과, 상기 지하암반저장공동에 저장된 압축공기를 회수하여 연료와 혼합시켜 연소하는 연소기와, 상기 연소된 가스에 의해 구동되는 터빈을 포함하는 압축공기 저장발전시스템에 있어서,
지중에 형성되며, 상기 압축기와 지하암반저장공동을 연결하는 압축공기 공급라인이 관통되는 지중대수층;
상기 지중대수층에 지하수를 유입하며, 압축공기 공급라인을 통과하는 고온 압축공기를 지하수와 열교환하여 지상으로 공급하는 주입수열교환라인;
상기 주입수 열교환라인에 지하수를 인위적으로 공급하기 위한 주입수 펌프; 및
상기 지중대수층에서 열교환된 고온수를 주입수 열교환라인을 통해 추출하여 지열발전에 사용하기 위한 고온수 취출펌프;
를 포함하는 압축공기 저장발전시스템의 고온고압 압축공기를 이용한 지열발전장치.
A compressor for compressing external air, an underground rock storage cavity for storing the compressed air, a combustor for recovering compressed air stored in the underground rock storage cavity and mixing the fuel with the fuel, and driven by the combusted gas. In the compressed air storage power generation system including a turbine,
An underground aquifer formed in the ground and through which a compressed air supply line connecting the compressor and the underground rock storage cavity passes;
An injection water heat exchange line that introduces ground water into the underground aquifer and supplies heat to the ground by exchanging hot compressed air passing through the compressed air supply line with the ground water;
An infusion water pump for artificially supplying groundwater to the infusion water heat exchange line; And
A hot water extraction pump for extracting hot water heat-exchanged in the underground aquifer through an injection water heat exchange line for use in geothermal power generation;
Geothermal power plant using a high temperature and high pressure compressed air of the compressed air storage power generation system comprising a.
외부공기를 압축하는 압축기와, 상기 압축된 공기를 저장하는 지하암반저장공동과, 상기 지하암반저장공동에 저장된 압축공기를 회수하여 연료와 혼합시켜 연소하는 연소기와, 상기 연소된 가스에 의해 구동되는 터빈을 포함하는 압축공기 저장발전시스템에 있어서,
지중에 형성된 지중대수층;
상기 압축기와 지하암반저장공동을 연결하는 제1 압축공기 공급라인;
상기 압축기로부터 인출되며, 단부가 상기 지중대수층에 연결되는 제2 압축공기 공급라인;
상기 지중대수층에 지하수를 유입하며, 제1 압축공기 공급라인을 통과하는 고온의 압축공기를 지하수와 열교환하여 지상으로 공급하는 주입수 열교환라인;
상기 주입수 열교환라인에 지하수를 인위적으로 공급하기 위한 주입수 펌프; 및
상기 지중대수층에서 열교환된 고온수를 주입수 열교환라인을 통해 추출하여 지열발전에 사용하기 위한 고온수 취출펌프
를 포함하는 압축공기 저장발전시스템의 고온고압 압축공기를 이용한 지열발전장치.
A compressor for compressing external air, an underground rock storage cavity for storing the compressed air, a combustor for recovering compressed air stored in the underground rock storage cavity and mixing the fuel with the fuel, and driven by the combusted gas. In the compressed air storage power generation system including a turbine,
Underground aquifer formed in the ground;
A first compressed air supply line connecting the compressor and the underground rock storage cavity;
A second compressed air supply line withdrawn from the compressor and whose end is connected to the underground aquifer;
An injection water heat exchange line that introduces groundwater into the underground aquifer and supplies heat to the ground by exchanging hot compressed air passing through a first compressed air supply line with groundwater;
An infusion water pump for artificially supplying groundwater to the infusion water heat exchange line; And
Hot water extraction pump for use in geothermal power generation by extracting the hot water heat exchanged in the underground aquifer through the injection water heat exchange line
Geothermal power plant using a high temperature and high pressure compressed air of the compressed air storage power generation system comprising a.
KR1020100115466A 2010-11-19 2010-11-19 Geothermal power generation apparatus using compressed air of high temperature and high pressure generated from the compressed air energy storage generation system KR101257844B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100115466A KR101257844B1 (en) 2010-11-19 2010-11-19 Geothermal power generation apparatus using compressed air of high temperature and high pressure generated from the compressed air energy storage generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100115466A KR101257844B1 (en) 2010-11-19 2010-11-19 Geothermal power generation apparatus using compressed air of high temperature and high pressure generated from the compressed air energy storage generation system

Publications (2)

Publication Number Publication Date
KR20120054199A true KR20120054199A (en) 2012-05-30
KR101257844B1 KR101257844B1 (en) 2013-04-24

Family

ID=46270108

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100115466A KR101257844B1 (en) 2010-11-19 2010-11-19 Geothermal power generation apparatus using compressed air of high temperature and high pressure generated from the compressed air energy storage generation system

Country Status (1)

Country Link
KR (1) KR101257844B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9121392B2 (en) 2012-10-17 2015-09-01 Korea Institute Of Geoscience And Mineral Resources Geothermal power generation system and method using heat exchange between working fluid and molten salt
USD778515S1 (en) 2015-04-23 2017-02-07 Samsung Electronics Co., Ltd. Robot cleaner
US9624912B2 (en) 2012-10-17 2017-04-18 Korea Institute Of Geoscience And Mineral Resources Geothermal power generation system and method using heat exchange between working gas and molten salt
USD785261S1 (en) 2015-04-23 2017-04-25 Samsung Electronics Co., Ltd. Robot cleaner
CN114370382A (en) * 2022-02-23 2022-04-19 四川纳川致远新能源科技有限公司 Single-well circulation heat-taking abandoned well power generation system based on microwave-assisted heating
CN115164449A (en) * 2022-07-19 2022-10-11 西安热工研究院有限公司 Compressed air coupling shallow geothermal energy storage system and control method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104005802B (en) * 2013-02-27 2016-01-20 中国科学院工程热物理研究所 Compressed-air energy-storage system
CN104675464B (en) * 2013-12-03 2016-06-29 中国科学院工程热物理研究所 Compressed-air energy-storage system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100082735A (en) * 2009-01-09 2010-07-19 넥스탑 주식회사 System for storing and transforming energy by using fluid compression type
KR20100088106A (en) * 2010-07-07 2010-08-06 이시우 System and method of operating egs power plant utilizing compressed air

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9121392B2 (en) 2012-10-17 2015-09-01 Korea Institute Of Geoscience And Mineral Resources Geothermal power generation system and method using heat exchange between working fluid and molten salt
US9624912B2 (en) 2012-10-17 2017-04-18 Korea Institute Of Geoscience And Mineral Resources Geothermal power generation system and method using heat exchange between working gas and molten salt
USD778515S1 (en) 2015-04-23 2017-02-07 Samsung Electronics Co., Ltd. Robot cleaner
USD785261S1 (en) 2015-04-23 2017-04-25 Samsung Electronics Co., Ltd. Robot cleaner
CN114370382A (en) * 2022-02-23 2022-04-19 四川纳川致远新能源科技有限公司 Single-well circulation heat-taking abandoned well power generation system based on microwave-assisted heating
CN115164449A (en) * 2022-07-19 2022-10-11 西安热工研究院有限公司 Compressed air coupling shallow geothermal energy storage system and control method thereof

Also Published As

Publication number Publication date
KR101257844B1 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
KR101257844B1 (en) Geothermal power generation apparatus using compressed air of high temperature and high pressure generated from the compressed air energy storage generation system
US11137169B2 (en) Multi-fluid, earth battery energy systems and methods
Forsberg et al. Coupling heat storage to nuclear reactors for variable electricity output with baseload reactor operation
CN104791204B (en) A kind of underground heat, combustion gas and supercritical carbon dioxide combined generating system
CN102839995B (en) Isothermal-isobaric compressed air energy storage system
US20110016864A1 (en) Energy storage system
CN103644081A (en) Wind power generation, thermal power generation and compressed air energy storage integrated power generation system
JP2016502635A (en) Thermal energy storage system with combined heating and cooling machine and method of using the thermal energy storage system
Nakhamkin et al. Second generation of CAES technology–performance, operations, economics, renewable load management, green energy
CN202047927U (en) Water pumping compressed air energy-storage system
Succar et al. Compressed air energy storage
Forsberg et al. Nuclear hydrogen using high temperature electrolysis and light water reactors for peak electricity production
KR20100088106A (en) System and method of operating egs power plant utilizing compressed air
Lee et al. Compressed air energy storage units for power generation and DSM in Korea
van der Linden Wind Power: Integrating Wind Turbine Generators (WTG’s) with Energy Storage
CN115280080A (en) Method for generating electricity on demand by using geological heat recovery
Nakhamkin et al. New compressed air energy storage concept improves the profitability of existing simple cycle, combined cycle, wind energy, and landfill gas power plants
JP6318831B2 (en) Hybrid renewable energy system
US20230163622A1 (en) Hybrid energy storage systems
Tokar et al. Hybrid System that Integrates the Lost Energy Recovery on the Water-Water Heat Pump Exhaust Circuit
US11174785B2 (en) Method for storing energy and for dispensing energy into an energy supply grid, pressurized gas storage power plant and computer program
Forsberg Thermal Energy Storage Systems for Peak Electricity from Nuclear Energy
CN220382776U (en) Pumped storage system for goaf of mine
Welch et al. Flexible Natural Gas/Intermittent Renewable Hybrid Power Plants
CN203925900U (en) Supplementary heat-energy utilizes the cooling electricity generating device of physical environment temperature

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160328

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180314

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190325

Year of fee payment: 7