KR20120049001A - Method of extracting junks sludge internal high purity silicon carbide generated at wafer cutting process - Google Patents

Method of extracting junks sludge internal high purity silicon carbide generated at wafer cutting process Download PDF

Info

Publication number
KR20120049001A
KR20120049001A KR1020100110538A KR20100110538A KR20120049001A KR 20120049001 A KR20120049001 A KR 20120049001A KR 1020100110538 A KR1020100110538 A KR 1020100110538A KR 20100110538 A KR20100110538 A KR 20100110538A KR 20120049001 A KR20120049001 A KR 20120049001A
Authority
KR
South Korea
Prior art keywords
silicon carbide
water
sludge
silicon
high purity
Prior art date
Application number
KR1020100110538A
Other languages
Korean (ko)
Inventor
이범석
최규석
김용배
Original Assignee
주식회사 제록
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제록 filed Critical 주식회사 제록
Priority to KR1020100110538A priority Critical patent/KR20120049001A/en
Publication of KR20120049001A publication Critical patent/KR20120049001A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02032Preparing bulk and homogeneous wafers by reclaiming or re-processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE: A method for extracting high purity silicon carbide in spent sludge is provided to reuse high purity silicon carbide for a raw material of a semiconductor and a wafer for a solar cell by separating the high purity silicon carbide from an ingot spent sludge in a wafer slicing process. CONSTITUTION: A surfactant is added to an ingot spent sludge(10). Second separation sludge is generated by separating silicon and silicon carbide by dissolving the silicon in first separation sludge(20). The silicon carbide is obtained by removing water from the composition of the second separation sludge(30). An acid material and the water are added to the silicon carbide(40). Neutralized silicon carbide is obtained by eliminating the water from the silicon carbide(50). The neutralized silicon carbide is washed and dried(60).

Description

웨이퍼 절단공정시 발생하는 폐슬러지내 고순도 실리콘카바이드 추출 방법{Method of extracting junks sludge internal high purity silicon carbide generated at wafer cutting process.}Method of extracting junks sludge internal high purity silicon carbide generated at wafer cutting process.

본 발명은 잉곳을 웨이퍼로 절단하는 절단공정에서 발생되는 잉곳 폐슬러지로부터 고순도의 실리콘카바이드를 분리시켜 획득함으로써 반도체 및 태양전지용 웨이퍼 등의 원료로 재사용이 가능하도록 한 고순도 실리콘카바이드 추출 방법에 관한 것이다.The present invention relates to a high-purity silicon carbide extraction method that is obtained by separating the high-purity silicon carbide from the ingot waste sludge generated in the cutting process for cutting the ingot into a wafer to be reused as a raw material for semiconductor and solar cell wafers.

반도체 및 태양전지용으로 사용되는 웨이퍼(wafer)는 실리콘 원료를 단결정 또는 다결정 성장시켜 제조된 실리콘 잉곳(ingot)을 절단(slicing)하는 절단공정을 거쳐 제조되어진다.Wafers used for semiconductors and solar cells are manufactured through a cutting process of slicing silicon ingots made by monocrystalline or polycrystalline growth of silicon raw materials.

상기 절단공정은 와이어소우(wire saw)에 실리콘카바이드(SiC)를 묻혀서 잉곳을 얇은 판 형태로 절단(slicing)하는 공정인데, 절단시에는 온도를 낮게 하여 원활한 절단을 위한 수용성 절단유가 사용되며, 잉곳 절단후에는 절단된 잉곳 가루인 실리콘 및 절단을 위해 와이어소우에 묻혀져 있던 실리콘카바이드가 수용성 절단유, 철분, 이물질 등과 함께 덩어리진 잉곳 폐슬러지가 생성된다.The cutting process is a process of slicing an ingot in a thin plate form by embedding silicon carbide (SiC) on a wire saw. When cutting, a water-soluble cutting oil is used for smooth cutting by lowering the temperature. After cutting, the ingot waste sludge, which is lumped together with water-soluble cutting oil, iron, and foreign substances, is cut into silicon, which is cut ingot powder, and silicon carbide buried in wire saw for cutting.

이러한 잉곳 폐슬러지로부터 고가의 원료인 실리콘카바이드만을 분리 회수하여 재사용하기도 한다.
From such ingot waste sludge, only expensive silicon carbide is recovered and reused.

그러나, 지금까지 알려진 종래의 실리콘카바이드 추출 방법으로는 저순도의 실리콘카바이드를 회수할 수 있을 뿐, 고순도의 실리콘카바이드를 획득할 수 없었던 문제점이 있었다.However, the conventional silicon carbide extraction method known to date has a problem that only silicon carbide of low purity can be recovered and silicon carbide of high purity cannot be obtained.

따라서, 종래의 실리콘카바이드 추출 방법을 통해서 얻어진 저순도의 실리콘카바이드는 고순도의 신재 실리콘카바이드에 일부 섞어서 사용하는 방법으로 미미한 원재료비 절감만을 기대할 수밖에 없었다.Therefore, low-purity silicon carbide obtained through the conventional silicon carbide extraction method can only be expected to reduce the raw material costs only by using a small amount of high-purity new silicon carbide.

이에, 본 발명을 통하여 실리콘, 실리콘카바이드, 수용성 절단유, 철분, 이물질로 이루어진 잉곳 폐슬러지로부터 고순도의 실리콘카바이드만을 효율적으로 분리 회수할 수 있는 방법을 제안하고자 한다.
Accordingly, the present invention is to propose a method for efficiently separating and recovering only high purity silicon carbide from ingot waste sludge composed of silicon, silicon carbide, water soluble cutting oil, iron, and foreign substances.

한편, 본 발명은 한국 산업 단지 공단이 주관하는 생태산업단지구축사업에서 진행하는 과제인 폐슬러지내의 실리콘카바이드 추출 양산시스템개발사업과 연관되어 진행되는 것이다. On the other hand, the present invention is to proceed in connection with the development of silicon carbide extraction mass production system in the waste sludge, which is a task carried out in the eco-industrial complex construction project hosted by the Korea Industrial Complex Corporation.

본 발명은 전술한 바와 같은 종래의 실리콘카바이드 추출 방법에서 제반되었던 문제점을 일소하기 위해 창출된 것으로, 계면활성제, 염기성물질, 산성물질 등을 이용하여 잉곳 폐슬러지로부터 고순도의 실리콘카바이드를 효율적으로 분리 추출할 수 있는 방법을 제공함에 그 기술적 과제의 주안점을 두고 완성한 것이다.The present invention was created to eliminate the problems associated with the conventional silicon carbide extraction method as described above, and is effectively separated and extracted high-purity silicon carbide from ingot waste sludge using a surfactant, a basic material, an acidic material, etc. The technical task was completed by providing a way to do it.

상기한 기술적 과제를 실현하기 위한 본 발명은,The present invention for realizing the above technical problem,

상기 잉곳 폐슬러지를 구성하는 물질 중 수용성 절단유가 화학적으로 분리된 1차분리슬러지를 생성하기 위하여, 상기 잉곳 폐슬러지에 비이온계 계면활성제를 잉곳 폐슬러지 중량의 5 내지 20% 중량만큼 첨가하고, 물을 잉곳 폐슬러지 중량의 50 내지 200% 중량만큼 첨가한 다음, 5 내지 30분 동안 교반시키는 계면활성제 첨가 단계와;In order to produce a primary separation sludge in which water-soluble cutting oil is chemically separated among the materials constituting the ingot waste sludge, a nonionic surfactant is added to the ingot waste sludge by 5 to 20% by weight of the ingot waste sludge, Adding a surfactant by 50 to 200% by weight of the ingot waste sludge, followed by stirring for 5 to 30 minutes;

상기 1차분리슬러지에서 실리콘을 물에 녹여 실리콘과 실리콘카바이드를 분리시킨 2차분리슬러지를 생성하기 위하여, 상기 1차분리슬러지에 염기성 물질을 잉곳 폐슬러지 중량의 5 내지 20%만큼 첨가하고, 물을 잉곳 폐슬러지 중량의 50 내지 200% 중량만큼 첨가한 다음, 60분 내지 180분 동안 교반시키는 염기화 단계와;In order to produce a secondary separation sludge in which silicon is dissolved in water in the primary separation sludge to separate silicon and silicon carbide, 5 to 20% of the weight of the ingot waste sludge is added to the primary separation sludge, and water Adding 50 wt% to 200% by weight of the ingot waste sludge, followed by stirring for 60 minutes to 180 minutes;

상기 2차분리슬러지의 구성물 가운데, 수용성 절단유 및 실리콘이 녹아있는 물을 신속하게 제거시켜 실리콘카바이드를 획득하는 1차 탈수단계와;A primary dehydration step of rapidly removing water soluble cutting oil and water in which silicon is dissolved among the components of the secondary separation sludge to obtain silicon carbide;

상기 1차 탈수단계를 거쳐 획득한 실리콘카바이드를 중성화 및 실리콘카바이드에 포함된 철분을 제거시키기 위하여, 상기 1차 탈수단계를 거쳐 획득한 실리콘카바이드에 산성물질을 잉곳 폐슬러지 중량의 5 내지 20%만큼 첨가하고, 물을 잉곳 폐슬러지 중량의 50 내지 200% 중량만큼 첨가하여 교반하는 중성화 단계와;In order to neutralize the silicon carbide obtained through the first dehydration step and to remove iron contained in the silicon carbide, acidic materials were added to the silicon carbide obtained through the first dehydration step by 5 to 20% of the weight of the ingot waste sludge. A neutralization step of adding and stirring water by 50 to 200% by weight of the ingot waste sludge weight;

상기 중성화 단계에서 실리콘카바이드에 산성물질 및 물을 첨가한 혼합물 가운데 산성물질 및 물을 제거시켜 중성화된 실리콘카바이드를 획득하는 2차 탈수단계와;A second dehydration step of removing the acidic substance and water from the mixture in which the acidic substance and the water are added to the silicon carbide in the neutralization step to obtain neutralized silicon carbide;

상기 2차 탈수 단계를 거쳐 획득한 중성화된 실리콘카바이드를 물로 세척한 다음 열로 건조시키는 수세/건조단계;를 순차적으로 거쳐 이루어지는 것이 특징이다.
The neutralized silicon carbide obtained through the second dehydration step is washed with water and then washed with water and dried with heat;

하기와 같이 이루어지는 본 발명은 잉곳 폐슬러지로부터 99% 이상의 고순도 실리콘카바이드만를 저비용으로 분리 회수할 수 있으며, 반도체 및 태양전지용 웨이퍼 제작 원료로 재사용할 수 있는 효과가 있는 실로 유익한 발명이다.The present invention made as described below is an advantageous invention that can effectively separate and recover only 99% or more of high purity silicon carbide from ingot waste sludge at low cost and can be reused as a raw material for manufacturing wafers for semiconductors and solar cells.

도 1은 본 발명에서 제시하는 고순도 실리콘카바이드 추출 방법을 나타낸 흐름도.
도 2는 본 발명에 따라 얻어진 실리콘카바이드 및 새제품의 실리콘카바이드에 대한 실리콘 및 실리콘카바이드 포함 정도를 비교하여 나타낸 참고도.
도 3은 본 발명에 따라 얻어진 실리콘카바이드 및 새제품의 실리콘카바이드에 대한 성분을 측정 비교하여 나타낸 참고도.
1 is a flow chart showing a high purity silicon carbide extraction method proposed in the present invention.
Figure 2 is a reference diagram showing a comparison of the degree of silicon carbide and silicon carbide included in the silicon carbide and the new product silicon carbide obtained according to the present invention.
Figure 3 is a reference diagram showing the measured and measured components for the silicon carbide of the new carbide and the new product obtained in accordance with the present invention.

잉곳을 반도체 및 태양전지용 웨이퍼로 절단(slicing)시에 생성되는 잉곳 폐슬러지는 절단된 잉곳 가루인 실리콘, 절단을 위해 와이어소우에 묻혀져 있던 실리콘카바이드, 절단시에 온도상승 방지 및 원활한 절단을 위하여 사용되는 수용성 절단유(통상 DPG(Dipropylene Glycol)가 주로 사용됨), 와이어소우에서 떨어져 나온 철분, 이물질이 슬러지화되어 있는 것이며, Ingot waste sludge produced when cutting ingots into wafers for semiconductor and solar cells is used to cut silicon, which is cut ingot powder, silicon carbide buried in wire saw for cutting, and to prevent temperature rise and smooth cutting during cutting. Water-soluble cutting oil (usually DPG (Dipropylene Glycol) is mainly used), iron from the wire saw, foreign matter is sludged,

이러한 잉곳 폐슬러지로부터 99% 이상의 고순도 실리콘카바이드만을 분리시키기 위한 본 발명을 이하 첨부되는 도면 및 실시예를 통해 구체적으로 살펴보기로 한다.
The present invention for separating only 99% or more high purity silicon carbide from such ingot waste sludge will be described in detail with reference to the accompanying drawings and examples.

도 1에 본 발명에서 제시하는 잉곳 폐슬러지로부터 고순도의 실리콘카바이드 분리 회수 방법을 나타낸 흐름도가 도시되는데, 도시된 바와 같이 본 발명은 계면활성제 첨가 단계, 염기화 단계, 1차탈수단계, 중성화단계, 2차탈수단계, 수세/건조단계를 거쳐 잉곳 폐슬러지로부터 고순도의 실리콘카바이드를 분리시키는 것이 특징임을 알 수 있다.
Figure 1 is a flow chart showing a high-purity silicon carbide separation and recovery method from the ingot waste sludge presented in the present invention, as shown in the present invention is a surfactant addition step, basicization step, primary dehydration step, neutralization step, It can be seen that the high-purity silicon carbide is separated from the ingot waste sludge through the second dehydration step and the washing / drying step.

상기 계면활성제 첨가 단계는 잉곳 폐슬러지(sludge)에서 실리콘/실리콘카바이드를 화학적으로 분리시켜내기 위한 단계로써, 비이온계 계면활성제를 물과 함께 잉곳 폐슬러지에 첨가하여 수용성 절단유와 실리콘/실리콘카바이드 슬러지(sludge)를 화학적으로 분리시키는 단계이다.The surfactant addition step is a step for chemically separating silicon / silicon carbide from the ingot waste sludge, and a non-ionic surfactant is added to the ingot waste sludge together with water to soluble cutting oil and silicon / silicon carbide. This is the step of chemically separating the sludge.

또한, 수용성 절단유와 실리콘/실리콘카바이드 슬러지의 원활한 화학적 분리를 위하여, 잉곳 폐슬러지에 물과 함께 비이온계 계면활성제를 섞은 다음 5 내지 30분 동안 충분히 교반시켜줌이 바람직하다.In addition, for smooth chemical separation of the water-soluble cutting oil and silicon / silicon carbide sludge, it is preferable to mix the non-ionic surfactant with water in the ingot waste sludge and then stir sufficiently for 5 to 30 minutes.

상기 교반후에는 수용성 절단유와 실리콘/실리콘카바이드 슬러지가 화학적으로 분리된 1차분리슬러지가 되며, 이 1차분리슬러지는 육안상으로는 물과 함께 절단유, 실리콘/실리콘카바이드 슬러지, 철분, 이물질이 섞여진 혼탁한 액체형태로 나타난다.After the agitation, the water-soluble cutting oil and the silicon / silicon carbide sludge become primary separation sludge chemically separated, and the primary separation sludge is visually mixed with cutting oil, silicon / silicon carbide sludge, iron, and foreign substances. Appears as a turbid turbid liquid.

상기 비이온계 계면활성제는 잉곳 폐슬러지 중량의 5 내지 20% 중량을 섞고, 물은 잉곳 폐슬러지 중량의 50 내지 200% 중량을 첨가함이 이상적이다.
Ideally, the nonionic surfactant mixes 5 to 20% by weight of the ingot waste sludge and adds 50 to 200% by weight of the ingot waste sludge.

상기 염기화 단계는, 상기 계면활성제 첨가 단계를 거친 1차분리슬러지에 포함된 실리콘/실리콘카바이드 슬러지에서 실리콘만 물에 녹여 실리콘카바이드를 분리시켜 내기 위한 단계로써, 상기 계면활성제를 이용한 실리콘 및 실리콘카바이드 분리단계를 거친 1차분리슬러지에 염기성 물질 및 물을 첨가하여 30분에서 180분간 잘 저어주는 단계이다.The basicizing step is a step for dissolving silicon carbide by dissolving only silicon in water in silicon / silicon carbide sludge included in the primary separation sludge that has been subjected to the surfactant addition step, and the silicon and silicon carbide using the surfactant Stir well for 30 to 180 minutes by adding basic substances and water to the primary separation sludge after the separation step.

상기 염기성 물질은 잉곳 폐슬러지 중량의 5 내지 20%를 첨가하고, 물은 잉곳 폐슬러지 중량의 50 내지 200% 중량비를 섞어줌이 이상적이며, 또한 상기 염기성 물질은 NaOH 또는 KOH를 사용함이 바람직하다.The basic material is added 5 to 20% of the weight of the ingot waste sludge, the water is ideally mixed 50 to 200% by weight of the weight of the ingot waste sludge, and the basic material is preferably NaOH or KOH.

상기 염기화 단계를 거친 후에는, 수용성 절단유와 실리콘이 녹아있는 물, 및 실리콘카바이드가 층을 이루면서 분리된 2차분리슬러지상태가 되는데, 상대적으로 비중이 큰 실리콘카바이드는 바닥에 가라앉고 상대적으로 비중이 낮은 물은 상부에 위치하는 상태가 되며,After the basicization step, water-soluble cutting oil, water in which silicon is dissolved, and silicon carbide are separated into secondary separated sludge in a layer, and a relatively large silicon carbide sinks to the bottom and relatively Low specific gravity water is in the upper position,

이와 같은 상태에서, 상기 잉곳 폐슬러지에 포함되어 있던 철분 및 이물질은, 그 일부는 수용성 절단유와 실리콘이 녹아있는 물에 포함되고, 나머지는 실리콘카바이드에 포함되어 있게 된다.In such a state, iron and foreign matter contained in the ingot waste sludge are partially contained in water in which water-soluble cutting oil and silicon are dissolved, and others are contained in silicon carbide.

상기 실리콘은 하기의 화학 반응식에 따라 물에 녹게 되는 것이며, 결국에는 잉곳 폐슬러지로부터 실리콘카바이드만을 분리할 수 있게 되는 것이다.The silicon will be dissolved in water according to the following chemical reaction formula, and eventually only silicon carbide can be separated from the ingot waste sludge.

Si + 2OH- + H2O → SiO3 2 - + 2H2
Si + 2OH - + H 2 O → SiO 3 2 - + 2H 2

상기 1차 탈수단계는 상기 염기화 단계를 거쳐 생성된 2차분리슬러지에서 수용성 절단유 및 실리콘이 녹아있는 물을 제거하여 실리콘카바이드만 획득하는 단계로써,The first dehydration step is a step of obtaining only silicon carbide by removing the water in which the water-soluble cutting oil and silicon dissolved in the secondary separation sludge produced through the basicization step,

상기 2차분리슬러지를 원심분리기에 넣은 다음, 원심분리기를 작동시켜 수용성 절단유와 실리콘이 녹아있는 물을 제거시킴이 처리속도 및 생산성을 감안할 때 바람직한 것이나, 필요에 따라 침전방식을 이용하여 수용성 절단유 및 실리콘이 녹아있는 물과 실리콘카바이드를 분리한 다음 수용성 절단유 및 실리콘이 녹아있는 물을 제거하고 실리콘카바이드만을 취할 수도 있다.The secondary separation sludge is placed in a centrifuge, and then a centrifuge is operated to remove water in which water-soluble cutting oil and silicon are dissolved. It is preferable in view of the processing speed and productivity, but water-soluble cutting using a precipitation method if necessary. Oil and silicon-dissolved water and silicon carbide may be separated, followed by removing the water-soluble cutting oil and water in which the silicon is dissolved, and taking only silicon carbide.

상기 침전방식은 실리콘카바이드가 비중차에 의해 자연적으로 가라앉을 때까지 놓아두는 것으로 가능하며, 상기 2차분리슬러지 가운데 실리콘카바이드가 잘 가라앉을 수 있도록 충분한 시간 동안 침전시킴이 바람직하다.
The precipitation method can be left until the silicon carbide naturally sinks due to the specific gravity difference, it is preferable to precipitate for a sufficient time so that the silicon carbide in the secondary separation sludge.

상기 염기화 단계 및 1차 탈수단계를 거쳐서 획득된 실리콘카바이드는 염기성을 띄고 있어 이를 중성화시켜야할 필요가 있는데, 이는 잉곳을 절단하여 웨이퍼를 제조하였을 때 제조된 웨이퍼가 염기성 또는 산성을 띄고 있는 경우 불량률이 급격하게 상승되기 때문이다.
Silicon carbide obtained through the basicization step and the first dehydration step is basic and needs to be neutralized. This is a defect rate when the manufactured wafer is basic or acidic when the wafer is manufactured by cutting an ingot. This is because it rises sharply.

상기 중성화 단계는, 상기 염기화 단계 및 1차 탈수단계를 거쳐 얻어진 염기성의 실리콘카바이드를 중성화시키기 위하여 물과 함께 산성물질을 첨가하는 단계로써, 산성물질은 잉곳 폐슬러지 중량의 5 내지 20%를 첨가하고 물은 슬러지 중량의 50 내지 200% 중량비를 섞어준 다음 30 내지 120분 동안 교반시켜 줌이 이상적이며, 또한 상기 산성물질은 약산성의 HCL을 이용함이 바람직하다.
The neutralization step is a step of adding an acidic material with water to neutralize the basic silicon carbide obtained through the basicization step and the first dehydration step, the acidic material is added 5 to 20% of the weight of the ingot waste sludge Ideally, the water is mixed with 50 to 200% by weight of the sludge weight and then stirred for 30 to 120 minutes, and the acidic material is preferably used with weakly acidic HCL.

한편, 고순도의 실리콘카바이드를 획득하기 위해서는 상기 염기화 단계 및 1차 탈수단계를 거쳐서 획득된 실리콘카바이드에 포함된 철분을 제거할 필요가 있는데, 상기 중성화 단계에서 염기성의 실리콘카바이드를 중성화시키기 위하여 산성물질을 첨가하게 되면 철분이 산성물질에 산화되면서 물에 녹게 되므로, 상기 중성화 단계를 통하여 염기성의 실리콘카바이드를 중성화시킴과 동시에 철분까지도 제거할 수 있게 되는 것이다.
Meanwhile, in order to obtain high purity silicon carbide, it is necessary to remove iron contained in the silicon carbide obtained through the basicization step and the first dehydration step, and in order to neutralize the basic silicon carbide in the neutralization step, When the iron is dissolved in water as it is oxidized to an acidic substance, it is possible to neutralize basic silicon carbide through the neutralization step and at the same time remove iron.

또 한편, 상기 중성화 단계를 실시할 때에 강자석을 이용한 철분제거 단계를 병행하는 것도 가능한데, 상기 강자석을 이용한 철분제거 단계는, 상기 중성화 단계에서 물과 함께 산성물질을 첨가한 다음 강자석을 통과시키거나 또는 강자석을 투입한 후 일정시간 교반하여 이루어지는 것으로 철분을 보다 효과적으로 제거할 수 있다.
In addition, when the neutralization step is performed, it is also possible to perform the iron removal step using a ferromagnetic, and the iron removal step using the ferromagnetic, after adding the acidic material with water in the neutralization step and then pass through the ferromagnetic Or it is made by stirring for a certain period of time after the addition of a ferromagnetic to remove iron more effectively.

상기 2차 탈수단계는, 상기 중성화단계에서 염기성의 실리콘카바이드를 중성화시키기 위하여 첨가된 산성물질 및 물을 제거하여 중성의 실리콘카바이드만 획득하는 단계로써,The secondary dehydration step is a step of obtaining only neutral silicon carbide by removing the acid and water added to neutralize the basic silicon carbide in the neutralization step,

상기 중성화단계를 통해 산성물질 및 물이 첨가된 실리콘카바이드를 원심분리기에 넣은 다음, 원심분리기를 작동시켜 철분 및 산성물질이 포함된 물을 제거시키는 단계이다.The acid carbide and the added silicon carbide to the centrifuge through the neutralization step, and then operating the centrifuge to remove the iron and acid-containing water.

또한, 상기 2차 탈수단계는 1차 탈수단계와 마찬가지로, 원심분리기를 이용함이 처리속도 및 생산성을 감안할 때 바람직한 것이나, 필요에 따라 침전방식을 이용하여 철분 및 산성물질이 포함된 물과 실리콘카바이드를 분리한 다음 철분 및 산성물질이 포함된 물을 제거하고 중성의 실리콘카바이드만을 취하는 것도 가능하다.
In addition, the secondary dehydration step is preferable in view of the processing speed and productivity, as in the first dehydration step, but using a precipitation method, water and silicon carbide containing iron and acidic materials using a precipitation method, if necessary After separation, it is also possible to remove water containing iron and acid and take only neutral silicon carbide.

상기 수세/건조단계는 상기 2차 탈수 단계를 거쳐 획득한 중성의 실리콘카바이드를 물로 세척한 다음 열로 건조시키는 단계로써, 소망하는 목적물인 99% 이상의 고순도 실리콘카바이드를 최종적으로 얻을 수 있는 단계이다.
The washing / drying step is a step of washing the neutral silicon carbide obtained through the second dehydration step with water and then drying it with heat to finally obtain high purity silicon carbide of 99% or more as a desired target.

한편, 상기 잉곳 폐슬러지에 소량 포함된 이물질은 계면활성제 첨가 단계, 염기화 단계, 중성화단계를 거치면서 수용성 절단유, 염기성 물질, 산성물질과 함께 물에 포함된 후, 상기 1, 2차 탈수단계 및 수세/건조단계를 거치면서 물과 함께 제거되게 된다.
On the other hand, the foreign matter contained in a small amount in the ingot waste sludge is included in water together with a water-soluble cutting oil, a basic material, an acidic material through a surfactant addition step, basicization step, neutralization step, the first and second dehydration step And it is removed with water during the washing / drying step.

도 2 내지 도 4에 본 발명에 따라 얻어진 실리콘카바이드와 새제품의 실리콘카바이드를 측정하여 비교한 결과를 나타내 참고도가 도시되는데, 도시된 바와 같이 본 발명에 따라 얻어진 실리콘카바이드(SiC)는 새제품의 실리콘카바이드에 가까운 99% 이상의 고순도 실리콘카바이드임을 알 수 있다. Figures 2 to 4 show the results of comparing and measuring the silicon carbide obtained according to the present invention and the silicon carbide of the new product is shown in the reference diagram, the silicon carbide (SiC) obtained according to the present invention as shown is a new product It can be seen that the high purity silicon carbide of 99% or more close to the silicon carbide.

10 : 계면활성제 첨가 단계 20 : 염기화 단계
30 : 1차탈수단계 40 : 중성화단계
50 : 2차탈수단계 60 : 수세/건조단계
10: surfactant addition step 20: basicization step
30: primary dehydration stage 40: neutralization stage
50: 2nd dehydration stage 60: washing / drying stage

Claims (5)

실리콘, 실리콘카바이드, 수용성 절단유, 철분, 이물질이 슬러지화된 잉곳 폐슬러지로부터 고순도의 실리콘카바이드만을 추출하는 방법에 있어,
상기 잉곳 폐슬러지를 구성하는 물질 중 수용성 절단유가 화학적으로 분리된 1차분리슬러지를 생성하기 위하여, 상기 잉곳 폐슬러지에 비이온계 계면활성제를 잉곳 폐슬러지 중량의 5 내지 20% 중량만큼 첨가하고, 물을 잉곳 폐슬러지 중량의 50 내지 200% 중량만큼 첨가한 다음, 5 내지 30분 동안 교반시키는 계면활성제 첨가 단계(10)와;
상기 1차분리슬러지에서 실리콘을 물에 녹여 실리콘과 실리콘카바이드를 분리시킨 2차분리슬러지를 생성하기 위하여, 상기 1차분리슬러지에 염기성 물질을 잉곳 폐슬러지 중량의 5 내지 20%만큼 첨가하고, 물을 잉곳 폐슬러지 중량의 50 내지 200% 중량만큼 첨가한 다음, 30 내지 180분 동안 교반시키는 염기화 단계(20)와;
상기 2차분리슬러지의 구성물 가운데, 수용성 절단유 및 실리콘이 녹아있는 물을 제거시켜 실리콘카바이드를 획득하는 1차 탈수단계(30)와;
상기 1차 탈수단계를 거쳐 획득한 실리콘카바이드를 중성화 및 실리콘카바이드에 포함된 철분을 제거시키기 위하여, 상기 1차 탈수단계를 거쳐 획득한 실리콘카바이드에 산성물질을 잉곳 폐슬러지 중량의 5 내지 20%만큼 첨가하고, 물을 잉곳 폐슬러지 중량의 50 내지 200% 중량만큼 첨가하여 교반하는 중성화 단계(40)와;
상기 중성화 단계에서 실리콘카바이드에 산성물질 및 물을 첨가한 혼합물 가운데 산성물질 및 물을 제거시켜 중성화된 실리콘카바이드를 획득하는 2차 탈수단계(50)와;
상기 2차 탈수 단계를 거쳐 획득한 중성화된 실리콘카바이드를 물로 세척한 다음 열로 건조시키는 수세/건조단계(60);를 순차적으로 거쳐 이루어지는 것을 특징으로 하는 고순도 실리콘카바이드 추출 방법.
In the method of extracting only high purity silicon carbide from ingot waste sludge in which silicon, silicon carbide, water-soluble cutting oil, iron, and foreign substances are sludged,
In order to produce a primary separation sludge in which water-soluble cutting oil is chemically separated among the materials constituting the ingot waste sludge, a nonionic surfactant is added to the ingot waste sludge by 5 to 20% by weight of the ingot waste sludge, A surfactant addition step (10) of adding water by 50 to 200% by weight of the ingot waste sludge and then stirring for 5 to 30 minutes;
In order to produce a secondary separation sludge in which silicon is dissolved in water in the primary separation sludge to separate silicon and silicon carbide, 5 to 20% of the weight of the ingot waste sludge is added to the primary separation sludge, and water Adding 50 to 200% by weight of the weight of the ingot waste sludge, followed by stirring for 30 to 180 minutes;
Among the components of the secondary separation sludge, the primary dehydration step (30) of obtaining water-soluble cutting oil and silicon dissolved water to obtain silicon carbide;
In order to neutralize the silicon carbide obtained through the first dehydration step and to remove iron contained in the silicon carbide, acidic materials were added to the silicon carbide obtained through the first dehydration step by 5 to 20% of the weight of the ingot waste sludge. A neutralization step 40 of adding and stirring water by adding 50 to 200% by weight of the weight of the ingot waste sludge;
A second dehydration step (50) of removing the acidic material and water from the mixture in which the acidic material and the water are added to the silicon carbide in the neutralization step to obtain neutralized silicon carbide;
Washing / drying step (60) of washing the neutralized silicon carbide obtained through the second dehydration step with water and then drying with heat; High purity silicon carbide extraction method characterized in that it is carried out sequentially.
제 1항에 있어서,
상기 1차 탈수 단계(30)는,
상기 2차분리슬러지를 원심분리기에 넣고 고속회전시키는 방식으로 수용성 절단유 및 실리콘이 녹아있는 물을 신속하게 제거시켜 실리콘카바이드를 획득하는 것, 또는 상기 2차분리슬러지를 침전용기에 넣은 다음 실리콘카바이드를 침전시키는 방식으로 수용성 절단유와 실리콘이 녹아있는 물을 제거시켜 실리콘카바이드를 획득하는 것 중 어느 하나인 것임을 특징으로 하는 고순도 실리콘카바이드 추출 방법.
The method of claim 1,
The first dehydration step 30,
Inserting the secondary separation sludge into a centrifuge to rapidly remove water-soluble cutting oil and water in which silicon is dissolved in such a manner as to rotate at a high speed to obtain silicon carbide, or to put the secondary separation sludge in a precipitation vessel and then silicon carbide Method of extracting high purity silicon carbide, characterized in that it is any one of obtaining the silicon carbide by removing water in which the water-soluble cutting oil and silicon is dissolved in a manner to precipitate.
제 1항에 있어서,
상기 2차 탈수단계(50)는,
상기 중성화 단계에서 실리콘카바이드에 산성물질 및 물을 첨가한 혼합물을 원심분리기에 넣고 고속회전시키는 방식으로 산성물질 및 물을 신속하게 제거시켜 중성화된 실리콘카바이드를 획득하는 것, 또는 상기 중성화 단계에서 실리콘카바이드에 산성물질 및 물이 첨가된 혼합물을 침전용기에 넣은 다음 실리콘카바이드를 침전시키는 방식으로 산성물질 및 물을 제거시켜 중성화된 실리콘카바이드를 획득하는 것 중 어느 하나인 것임을 특징으로 하는 고순도 실리콘카바이드 추출 방법.
The method of claim 1,
The second dehydration step 50,
In the neutralization step, a mixture of acidic material and water added to silicon carbide is placed in a centrifuge to rapidly remove acidic material and water to obtain neutralized silicon carbide, or silicon carbide in the neutralization step. The method of extracting high purity silicon carbide, characterized in that it is one of obtaining a neutralized silicon carbide by removing the acidic substance and water by putting a mixture of the acid and water added to the precipitation vessel and then precipitate the silicon carbide. .
제 1항에 있어서,
상기 염기성 물질은 수산화 나트륨(NaOH) 또는 수산화 칼륨(KOH) 중 어느 하나인 것을 특징으로 하는 고순도 실리콘카바이드 추출 방법.
The method of claim 1,
The basic material is sodium hydroxide (NaOH) or potassium hydroxide (KOH), characterized in that the high purity silicon carbide extraction method.
제 1항에 있어서,
상기 산성 물질은 염화수소(HCL)인 것을 특징으로 하는 고순도 실리콘카바이드 추출 방법.
The method of claim 1,
The acidic material is hydrogen chloride (HCL) characterized in that the high purity silicon carbide extraction method.
KR1020100110538A 2010-11-08 2010-11-08 Method of extracting junks sludge internal high purity silicon carbide generated at wafer cutting process KR20120049001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100110538A KR20120049001A (en) 2010-11-08 2010-11-08 Method of extracting junks sludge internal high purity silicon carbide generated at wafer cutting process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100110538A KR20120049001A (en) 2010-11-08 2010-11-08 Method of extracting junks sludge internal high purity silicon carbide generated at wafer cutting process

Publications (1)

Publication Number Publication Date
KR20120049001A true KR20120049001A (en) 2012-05-16

Family

ID=46267062

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100110538A KR20120049001A (en) 2010-11-08 2010-11-08 Method of extracting junks sludge internal high purity silicon carbide generated at wafer cutting process

Country Status (1)

Country Link
KR (1) KR20120049001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043458A1 (en) * 2022-08-26 2024-02-29 주식회사 이녹스에코엠 Silicon powder manufacturing method and manufacturing apparatus using waste silicon sludge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043458A1 (en) * 2022-08-26 2024-02-29 주식회사 이녹스에코엠 Silicon powder manufacturing method and manufacturing apparatus using waste silicon sludge

Similar Documents

Publication Publication Date Title
US10056656B2 (en) Manufacturing method of high purity lithium phosphate from the waste liquid of the exhausted lithium-ion battery
JP5539390B2 (en) Method for recovering and purifying silicon particles from a soakerf
Drouiche et al. Recovery of solar grade silicon from kerf loss slurry waste
JP5903474B2 (en) Method of purifying silicon using cascade process
TWI472485B (en) Use of acid washing to provide purified silicon crystals
TWI443237B (en) Method for processing silicon powder to obtain silicon crystals
EP2303776B1 (en) Method for purification and compaction of feedstock for photovoltaic applications
Drouiche et al. Hidden values in kerf slurry waste recovery of high purity silicon
Hachichi et al. Silicon recovery from kerf slurry waste: a review of current status and perspective
Li et al. Recovery of high purity silicon from SoG crystalline silicon cutting slurry waste
JP5246702B2 (en) Silicon purification method
KR20120049001A (en) Method of extracting junks sludge internal high purity silicon carbide generated at wafer cutting process
US20110300047A1 (en) Method for recycling silicon
RU2514546C2 (en) Extraction of bismuth and germanium from wastes of bismuth orthogermanate crystals production
AU2012330712B2 (en) Processes for metal ions removal of from aqueous solutions
JP5286095B2 (en) Silicon sludge recovery method and silicon processing apparatus
US20110300048A1 (en) Method for recycling silicon carbide
WO2010080777A1 (en) Impurity reducing process for silicon and purified silicon material
Syvertsen et al. Remelting and purification of Si-kerf for PV-wafers
Syvertsen et al. Recycling of broken Si based structures and solar cells
JP2010173911A (en) Method for purifying silicon
Fedorov et al. Preparation of high-purity gallium from semiconductor fabrication waste
KR101202009B1 (en) Recovery Method of High-purified Silicon
Yang et al. Silicon and Quartz Recovery and Purification from Waste Quartz Crucible Ash with a Combined Process of Electric Separation and Hydrometallurgy
KR101170232B1 (en) Silicon recovering method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
NORF Unpaid initial registration fee