KR20120039105A - Method for producing silver nanoparticles - Google Patents

Method for producing silver nanoparticles Download PDF

Info

Publication number
KR20120039105A
KR20120039105A KR1020100100621A KR20100100621A KR20120039105A KR 20120039105 A KR20120039105 A KR 20120039105A KR 1020100100621 A KR1020100100621 A KR 1020100100621A KR 20100100621 A KR20100100621 A KR 20100100621A KR 20120039105 A KR20120039105 A KR 20120039105A
Authority
KR
South Korea
Prior art keywords
silver
ethylhexyl
bis
silver nanoparticles
nitric acid
Prior art date
Application number
KR1020100100621A
Other languages
Korean (ko)
Inventor
강준길
신정식
김민아
Original Assignee
주식회사 신우 엠에스티
강준길
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 신우 엠에스티, 강준길 filed Critical 주식회사 신우 엠에스티
Priority to KR1020100100621A priority Critical patent/KR20120039105A/en
Publication of KR20120039105A publication Critical patent/KR20120039105A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/054Particle size between 1 and 100 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE: A manufacturing method of a silver nano-particle is provided to obtain a silver nano-particle which is physically and chemically stable and has a uniform particle size by using a specific organophosphorous compound as a stabilizer. CONSTITUTION: A manufacturing method of a silver nano-particle comprises next steps: preparing silver nitrate solution by throwing silver nitrate in deionized water; adding 20ml of the organophosphorous with same number of moles in 1ml of the silver nitrate solution as stabilizer and stirring; and adding 20-100 micro liter of hydrazine which includes 80% N2H3 to the silver nitrate solution and obtaining expanded silver after stirring 1 minute. The organophosphorous is one selected from Mono(2-ethylhexyl)-2-ethylhexylphosponate(PC88A), Bis(2-ethylhexyl)phosphate(BEHPa), and Bis(2-ethylhexyl)phosphite(BEHPi).

Description

은나노 입자 제조방법{Method for producing silver nanoparticles}Method for producing silver nanoparticles {Method for producing silver nanoparticles}

본 발명의 목적은 은나노 입자 제조방법에 관한 것으로서, 특히 10nm 이하의 균일한 크기를 갖는 은나노 입자와, 수백 나노 사이즈의 균일한 입자 크기를 갖는 은나노 제조방법과, 제조한 은나노 입자를 장기간 보존할 수 있는 방법에 관한 것이다.An object of the present invention relates to a manufacturing method of silver nanoparticles, in particular silver nanoparticles having a uniform size of less than 10nm, silver nanoparticles having a uniform particle size of several hundred nanosize, and the produced silver nanoparticles can be stored for a long time It is about how.

최근에 산업기술의 발전이 혁신적으로 이루어짐에 따라 나노기술 또한 발달하게 되어 나노 크기를 갖는 수많은 무기입자 또는 금속입자들을 제조하는 것이 용이해졌다. 무기물 또는 금속의 나노입자들은 극대화된 표면적 및 양자효과로 인해 벌크 상에서 나타내는 물리, 화학적 성질들은 상대적으로 적은 양만으로도 더욱 뛰어나게 실현될 수 있을 뿐만 아니라, 벌크 상에서와는 다른 성질들을 나타내기도 하는 것으로 보고되었다. In recent years, as the development of industrial technology has been innovative, nanotechnology has also been developed, making it easy to manufacture a large number of inorganic particles or metal particles having a nano size. Due to the maximal surface area and quantum effects, nanoparticles of inorganic or metals have been reported not only to achieve better physical and chemical properties in bulk, but also to exhibit properties different from those in bulk. .

이와 같이 나노입자들은 극소량 사용하여도 벌크 상으로 사용되는 재료와 거의 동등하거나 더욱 우수한 효과를 나타내고, 또한 나노입자들이 극소량만 사용되기 때문에 인체 및 환경에 대한 독성도 거의 나타내지 않으므로 환경친화적이고 인체 및 자연환경에도 유익한 재료로 인정되어, 나노입자들은 새로운 재료로 각광받으며 이에 대한 수많은 연구가 진행되고 있다. As such, the nanoparticles show almost the same or better effect than the material used in the bulk phase even when the microparticles are used in a small amount. Also, since the nanoparticles are used only in the small amount, they exhibit little toxicity to the human body and the environment. Recognized as a beneficial material for the environment, nanoparticles are spotlighted as a new material and a lot of research is being conducted.

이러한 나노입자들을 합성섬유, 플라스틱 성형품, 필름, 도료, 잉크 등의 중합체 제품에 혼입시켜 복합재료로 사용할 경우에는, 중합체와 무기 또는 금속 나노입자와 낮은 상용성, 응집, 불균일 분포 등으로 인한 복합재료의 물성의 열화 및/또는 불투명화 등의 문제점을 야기하여, 나노입자화에 따른 의도하는 효과를 수득하는 것이 어려운 것으로 알려져 있다. 이러한 불상용성, 응집, 불균일 분포와 같은 문제점을 해결하기 위하여, 예를 들면 나노입자의 관능화, 분산제와 같은 상용화제의 사용, 나노입자 존재하의 중합반응 등의 방법들이 제안되었지만, 아직 만족스러운 해결 방법은 개발되지 않았다. When these nanoparticles are mixed into polymer products such as synthetic fibers, plastic molded products, films, paints, and inks to be used as composite materials, composite materials due to low compatibility, cohesion, and non-uniform distribution with polymers and inorganic or metal nanoparticles It is known that it is difficult to obtain an intended effect of nanoparticle formation by causing problems such as deterioration of physical properties and / or opacity of the compound. In order to solve such problems such as incompatibility, aggregation, non-uniform distribution, for example, functionalization of nanoparticles, use of compatibilizers such as dispersants, polymerization reaction in the presence of nanoparticles, etc. have been proposed, but still satisfactory solutions The method was not developed.

한편, 은(silver)은 금 다음으로 뛰어난 전도성을 갖는 금속으로서 항균, 살균, 항곰팡이, 탈취, 원적외선 방출, 대전 방지 등의 복합적인 성능을 가지는 것은 예로부터 알려져 왔다.On the other hand, silver is a metal having the highest conductivity after gold, and it has been known for some time to have complex performances such as antibacterial, antiseptic, antifungal, deodorant, far infrared emission, and antistatic.

은은 다른 귀금속에 비해 저렴하지만 다른 재료에 대해서는 여전히 값비싼 귀금속이기 때문에, 은의 전도성, 항균성, 탈취성 등을 경제적으로 이용하기 위해, 은을 미립자화시키거나, 실리카, 제올라이트 등의 다공성 물질에의 담지시키거나, 또는 코팅 또는 도금하여 이용해 왔다. Silver is inexpensive compared to other precious metals, but is still an expensive precious metal for other materials. Therefore, silver is fine-grained or supported on porous materials such as silica and zeolite in order to economically use silver's conductivity, antibacterial and deodorizing properties. Or coated or plated.

나노 크기로 미립자화된 은나노입자들은 벌크 상의 은에 비해 더욱 탁월한 성질들을 나타낼 것으로 기대되어, 은나노입자를 분말 또는 용액 상으로 제조하는 나노기술에 대해 수많은 연구가 있었다. 한편, 이렇게 제조된 은나노입자를 사용한 연구에서, 은나노입자들은, 어떠한 종류의 세균들에 대해서는 수초 이내에 99% 이상의 살균력을 보여주는 등, 벌크 상의 은에 비해 극도로 향상된 항균, 살균, 항곰팡이 등의 효과를 보여주는 것으로 보고되었다. Silver nanoparticles that have been micronized to nano size are expected to exhibit more excellent properties than silver in bulk, and there is a great deal of research on nanotechnology for preparing silver nanoparticles in powder or solution phase. On the other hand, in the study using the silver nanoparticles prepared in this way, silver nanoparticles show an antibacterial, bactericidal, antifungal effect, etc., which is extremely improved compared to the silver in the bulk, such as showing a germicidal power of 99% or more within a few seconds for any kind of bacteria. It was reported to show.

이와 같은 은나노입자들을 제조하기 위한 제조방법으로는, "Microwave를 조사하면서 Polyvinylalchol 용액에서 AgNO3를 환원하여 수 nm 크기의 Ag NP 합성 [R. Abargues, R. Gradess, J. Canet-Ferrer, K. Abderrafi, J. L. Valdes, J. Mart, New J. Chem. 33 (2009) 913"와, "NaH 및 2t-BuONa를 사용하여 AgNO3를 환원하여 수 nm 크기의 Ag NP 합성 [L. Balan, J.-P. Malval, R, Schneider, D, Burget, Mater. Chem. Phys. 104 (2007) 417"와, "Lipopeptide 생계면활성제, NaHB4를 사용하여 AgNO3를 환원하여 수 nm 크기의 Ag NP 합성 [A. S. Reddy, C.-Y. Chen, S. C. Baker, C.-C. Chen, J.-S. Jean. C.-W. Fan, H.-R. Chen, J.-C. Wang, Mater. Lett. 63 (2009) 1227"와, "Polymer인 poly(allylamine)를 환원제로 사용하여 AgNO3를 환원하여 수 nm 크기의 Ag NP 합성 [R. Sardar, J.-W. Park, J. S. Shumaker-Parry, Langumuir 23 (2007) 11883"와 같은 여러 논문 등을 통해 알려졌다. 또한, 여러 특허문헌을 통해서도 은나노입자들은 제조하기 위한 제조방법이 공지되어 있다.As a manufacturing method for preparing such silver nanoparticles, "Synthesis of Ag NP 3 in a polyvinylalchol solution while irradiating microwaves, Ag NP synthesis of several nm size [R. Abargues, R. Gradess, J. Canet-Ferrer, K. Abderrafi, JL Valdes, J. Mart, New J. Chem. 33 (2009) 913 "and" Reduce AgNO 3 using NaH and 2t-BuONa to synthesize Ag NPs of several nm size [L. Balan , J. -Synthesis of several nm size Ag NP 3 by reducing AgNO 3 using P. Malval, R, Schneider, D, Burget, Mater. Chem. Phys. 104 (2007) 417 "and" Lipopeptide biosurfactant, NaHB4 [ AS Reddy, C.-Y. Chen, SC Baker, C.-C. Chen, J.-S. Jean.C.-W.Fan, H.-R. Chen, J.-C. Wang, Mater. Lett. 63 (2009) 1227 "and Ag NP 3 reduction using" poly (allylamine) as a reducing agent to reduce AgNO 3 [R. Sardar, J.-W. Park, JS Shumaker-Parry , Langumuir 23 (2007) 11883 ". In addition, a manufacturing method for producing silver nanoparticles is also known through various patent documents.

그러나, 상기에서 설명한 논문과 다른 특허문헌에서 제시하는 은나노입자들을 제조하기 위한 방법은 균일한 입자크기를 가지는 은나노입자를 만들기 어렵다는 단점이 있다.However, the method for preparing silver nanoparticles presented in the above-described paper and other patent documents has a disadvantage in that it is difficult to make silver nanoparticles having a uniform particle size.

또한, 선행기술로 제조한 은나노입자들은 화학 및 물리학적으로 안정적이지 못해 장기간의 보관이 어렵다는 단점이 있다.In addition, the silver nanoparticles prepared by the prior art have a disadvantage in that it is difficult to store for a long time because it is not chemically and physically stable.

따라서, 선행기술의 은나노입자 제조방법을 사용하여서는, 안정된 은나노입자의 양산화가 어려워 경제적으로 제조하기 어렵다는 문제점이 발생하게 된다.Therefore, using the silver nanoparticle manufacturing method of the prior art, it is difficult to mass-produce stable silver nanoparticles, which makes it difficult to economically produce.

따라서, 본 발명의 목적은 균일한 입자크기를 가지고, 화학 및 물리학적으로 안정적이라서 장기간 보관할 수 있게 되어, 안정된 은나노입자의 양산화 및 경제적인 생산이 이루어질 수 있도록 해주는 은나노입자 제조방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for producing silver nanoparticles, which has a uniform particle size and is chemically and physically stable and can be stored for a long time, thereby allowing mass production and economic production of stable silver nanoparticles.

본 발명의 목적을 달성하기 위하여, 본 발명에 따른 은나노입자 제조방법은 출발물질로서 질산은(Silver Nitride, AgNO3)를 사용하고, 환원제로서 히드라진(Hydrazine)을 사용하고, 안정제로서 유기인산계 화합물을 사용하는 것을 특징으로한다.In order to achieve the object of the present invention, the method for producing silver nanoparticles according to the present invention uses silver nitrate (Silver Nitride, AgNO 3 ) as a starting material, hydrazine (Hydrazine) as a reducing agent, and an organic phosphate compound as a stabilizer It is characterized by using.

본 발명에 따른 은나노입자 제조방법은 질산은 용액에 안정제는 투입한 후 5분간 교반한 후 히드라진을 투입하여 1분간 교반함으로써 얻어지게 되는 것을 특징으로 한다.The method for producing silver nanoparticles according to the present invention is characterized in that it is obtained by adding a stabilizer to a silver nitrate solution, stirring for 5 minutes, and then adding hydrazine to stir for 1 minute.

본 발명에 따른 은나노입자 제조방법에서, 상기 안정제로서의 유기인산계 화합물은 모노(2-에틸헥실)-2-에틸헥실포스포네이트(Mono(2-ethylhexyl)-2-ethylhexylphosponate, PC88A), 비스(2-에틸헥실)포스페이트(Bis(2-ethylhexyl)phosphate, BEHPa), 그리고 비스(2-에틸헥실)포스파이트(Bis(2-ethylhexyl)phosphite, BEHPi) 중 선택된 하나인 것을 특징으로 한다.In the method for preparing silver nanoparticles according to the present invention, the organophosphate compound as the stabilizer is mono (2-ethylhexyl) -2-ethylhexylphosphonate (Mono (2-ethylhexyl) -2-ethylhexylphosponate, PC88A), bis ( 2-ethylhexyl) phosphate (Bis (2-ethylhexyl) phosphate, BEHPa), and bis (2-ethylhexyl) phosphite (Bis (2-ethylhexyl) phosphite, BEHPi) is characterized in that one selected.

본 발명에 따른 은나노입자 제조방법에 따라 은나노입자를 제조하면, 입자크기가 잘 제어된 은나노입자를 얻을 수 있을 뿐만 아니라 장기간 보존이 용이한 은나노입자를 얻게 되어 은나노입자의 양산성과 경제성을 증가시키는 효과가 있게 된다.When the silver nanoparticles are manufactured according to the silver nanoparticle manufacturing method according to the present invention, not only the silver nanoparticles of well-controlled particle size can be obtained, but also the silver nanoparticles which can be easily stored for a long period of time have the effect of increasing the mass productivity and economic efficiency of the silver nanoparticles. Will be.

도 1은 본 발명에 따른 은나노입자 제조방법에서 안정제로서 비스(2-에틸헥실)포스페이트(Bis(2-ethylhexyl)phosphate, BEHPa)를 사용하였을 때 AgNO3의 농도 변화에 따라 수득한 은나노입자의 TEM 사진과 입자분포도를 보여주는 도면.
도 2는 본 발명에 따른 은나노입자 제조방법에서 안정제로서 모노(2-에틸헥실)-2-에틸헥실포스포네이트(Mono(2-ethylhexyl)-2-ethylhexylphosponate, PC88A)를 사용하였을 때 AgNO3의 농도 변화에 따라 수득한 은나노입자의 TEM 사진과 입자분포도를 보여주는 도면.
도 3은 본 발명에 따른 은나노입자 제조방법에서 안정제로서 비스(2-에틸헥실)포스파이트(Bis(2-ethylhexyl)phosphite, BEHPi)를 사용하였을 때 0.50 M의 AgNO3의 농도로부터 수득한 은나노입자의 TEM사진도면.
1 is a TEM of silver nanoparticles obtained according to the change in the concentration of AgNO 3 when using bis (2-ethylhexyl) phosphate (Bis (2-ethylhexyl) phosphate, BEHPa) as a stabilizer in the silver nanoparticles manufacturing method according to the present invention Drawings showing photos and particle distribution.
Figure 2 shows the AgNO 3 when using mono (2-ethylhexyl) -2-ethylhexyl phosphonate (Mono (2-ethylhexyl) -2-ethylhexylphosponate, PC88A) as a stabilizer in the silver nanoparticles manufacturing method according to the present invention TEM picture and particle distribution diagram of the silver nanoparticles obtained according to the concentration change.
3 shows silver nanoparticles obtained from a concentration of AgNO 3 of 0.50 M when bis (2-ethylhexyl) phosphite (Bis (2-ethylhexyl) phosphite, BEHPi) is used as a stabilizer in the silver nanoparticle manufacturing method according to the present invention. TEM photo drawing.

이하 첨부도면을 참조하여 본 발명을 설명하면 다음과 같다.Hereinafter, the present invention will be described with reference to the accompanying drawings.

본 발명에 따른 은나노입자 제조방법은, 먼저 출발물질로서 질산은(AgNO3)를 사용하고, 안정제로서 모노(2-에틸헥실)-2-에틸헥실포스포네이트(Mono(2-ethylhexyl)-2-ethylhexylphosponate, PC88A), 비스(2-에틸헥실)포스페이트(Bis(2-ethylhexyl)phosphate, BEHPa), 그리고 비스(2-에틸헥실)포스파이트(Bis(2-ethylhexyl)phosphite, BEHPi) 중 선택된 하나의 유기 인산계 화합물을 사용한다. 그리고, 환원제로서 히드라진(N2H3, 80%)을 사용한다.In the method for preparing silver nanoparticles according to the present invention, first, silver nitrate (AgNO 3 ) is used as a starting material, and mono (2-ethylhexyl) -2-ethylhexylphosphonate (Mono (2-ethylhexyl) -2- is used as a stabilizer. one selected from ethylhexylphosponate (PC88A), bis (2-ethylhexyl) phosphate (Bis (2-ethylhexyl) phosphate, BEHPa), and bis (2-ethylhexyl) phosphite (Bis (2-ethylhexyl) phosphite, BEHPi) Organophosphate compounds are used. And hydrazine (N 2 H 3 , 80%) is used as the reducing agent.

상기 모노(2-에틸헥실)-2-에틸헥실포스포네이트(Mono(2-ethylhexyl)-2-ethylhexylphosponate, PC88A), 비스(2-에틸헥실)포스페이트(Bis(2-ethylhexyl)phosphate, BEHPa), 그리고 비스(2-에틸헥실)포스파이트(Bis(2-ethylhexyl)phosphite, BEHPi)의 분자구조는 다음과 같다.Mono (2-ethylhexyl) -2-ethylhexylphosphonate (Mono (2-ethylhexyl) -2-ethylhexylphosponate, PC88A), bis (2-ethylhexyl) phosphate (Bis (2-ethylhexyl) phosphate, BEHPa) The molecular structure of bis (2-ethylhexyl) phosphite (BEHPi) is as follows.

(1) 모노(2-에틸헥실)-2-에틸헥실포스포네이트(Mono(2-ethylhexyl)-2-ethylhexylphosponate, PC88A)(1) Mono (2-ethylhexyl) -2-ethylhexyl phosphonate (Mono (2-ethylhexyl) -2-ethylhexylphosponate, PC88A)

Figure pat00001
Figure pat00001

(2) 비스(2-에틸헥실)포스페이트(Bis(2-ethylhexyl)phosphate, BEHPa)(2) bis (2-ethylhexyl) phosphate (Bis (2-ethylhexyl) phosphate, BEHPa)

Figure pat00002
Figure pat00002

(3) 비스(2-에틸헥실)포스파이트(Bis(2-ethylhexyl)phosphite, BEHPi)(3) bis (2-ethylhexyl) phosphite (Bis (2-ethylhexyl) phosphite, BEHPi)

Figure pat00003
Figure pat00003

상기에서 R은 2-에틸헥실(2-ethylhexyl)을 나타낸다.In the above, R represents 2-ethylhexyl.

상기와 같은 출발물질과 안정제와 환원제를 이용하여 은나노입자를 제조하는 방법은 다음과 같다.The method for preparing silver nanoparticles using the starting materials, stabilizers, and reducing agents as described above is as follows.

먼저 순수(純水)에 질산은을 투입하여 0.5M, 0.25M, 0.1M의 은질산 용액을 준비한다.First, silver nitrate is added to pure water to prepare a silver nitric acid solution of 0.5M, 0.25M, and 0.1M.

그런 다음, 각각의 은질산 용액을 1 mL 취한 다음 이 은질산 용액 각각에 같은 몰수의 유기인산 20mL를 투입한다. 상기 유기인산은 시클로헥산(Cyclohexane)에 혼합된 유기인산이다.Then, 1 mL of each silver nitric acid solution is taken, and 20 mL of the same mole of organophosphoric acid is added to each of these silver nitric acid solutions. The organophosphoric acid is organophosphoric acid mixed in cyclohexane.

그런 다음, 5분간 교반한 후에 20㎕ 내지 100㎕를 한 방울씩 떨어뜨리면서 1분간 다시 교반한다. 그러면 암황색(dark yellow) 색을 가지는, 확산된 Ag(0)를 얻게 된다.Then, after stirring for 5 minutes, the mixture was stirred again for 1 minute while dropping 20 μl to 100 μl dropwise. This results in diffused Ag (0) with a dark yellow color.

본 발명에서 수행한 실시예는 다음과 같다.Examples performed in the present invention are as follows.

[실시예 1]Example 1

표 1에 나타낸 바와 같이, 0.5M, 0.25M, 0.1M의 은질산 용액 각각에 동일 몰수의 비스(2-에틸헥실)포스페이트(Bis(2-ethylhexyl)phosphate, BEHPa) 용액을 투입하고, 각각의 은질산 용액에 환원제로서 히드라진 19.0㎕, 47.0㎕ 및 95.0㎕ 각각을 투입하여 확산된 은을 얻었다.As shown in Table 1, the same mole of bis (2-ethylhexyl) phosphate (Bis (2-ethylhexyl) phosphate, BEHPa) solution was added to each of 0.5M, 0.25M, and 0.1M silver nitric acid solutions. 19.0 µl, 47.0 µl and 95.0 µl of hydrazine were respectively added to the silver nitric acid solution to obtain diffused silver.

실험Experiment AgNO3(M/mL)AgNO 3 (M / mL) BEHPa(M/mL)BEHPa (M / mL) 히드라진(㎕Hydrazine (μl 실험 1-1Experiment 1-1 0.10/1.00.10 / 1.0 0.0050/200.0050 / 20 19.019.0 실험 1-2Experiment 1-2 0.25/1.00.25 / 1.0 0.0125/200.0125 / 20 47.047.0 실험 1-3Experiment 1-3 0.50/1.00.50 / 1.0 0.0250/200.0250 / 20 95.095.0

상기와 같은 방법으로 얻은 은나노입자들의 TEM 사진과 입자크기 분포도를 도 1에 도시하였다.The TEM image and particle size distribution of the silver nanoparticles obtained by the above method are shown in FIG. 1.

도 1의 (a)는 은질산의 농도가 0.10M 일 때의 은나노입자들의 TEM 사진과 입자크기 분포도를 도시한 것이고, 도 1의 (b)는 은질산 농도가 0.25M 일 때의 은나노입자들의 TEM 사진과 입자크기 분포도를 도시한 것이고, 도 1의 (c)는 은질산 농도가 0.50M 일 때의 은나노입자들의 TEM 사진과 입자크기 분포도를 도시한 것이다.FIG. 1 (a) shows TEM photographs and particle size distribution diagrams of silver nanoparticles when the concentration of silver nitric acid is 0.10M, and FIG. 1 (b) shows silver nanoparticles when the concentration of silver nitric acid is 0.25M. Figure 1 shows the TEM image and the particle size distribution, Figure 1 (c) shows the TEM image and particle size distribution of the silver nanoparticles when the silver nitric acid concentration is 0.50M.

도면으로부터 알 수 있듯이, 은질산의 농도가 0.10M 일 때 은나노입자들은 3 내지 11㎚ 범위의 입자크기를 가지고, 그 분포도는 4 내지 10㎚에 걸쳐 집중되어 있음을 알 수 있다.As can be seen from the figure, when the concentration of silver nitric acid is 0.10M silver nanoparticles have a particle size in the range of 3 to 11nm, it can be seen that the distribution is concentrated over 4 to 10nm.

또한, 은질산 농도가 0.25M 일 때 은나노입자들은 2 내지 10㎚ 범위의 입자크기를 가지고, 그 분포도는 4 내지 9㎚에 걸쳐 집중되어 있음을 알 수 있다.In addition, when the silver nitric acid concentration is 0.25M it can be seen that the silver nanoparticles have a particle size in the range of 2 to 10nm, the distribution is concentrated over 4 to 9nm.

또한, 은질산 농도가 0.50M 일 때 은나노입자들은 3 내지 9㎚ 범위의 입자크기를 가지고, 그 분포도는 5 내지 8㎚ 범위에 걸쳐 집중되어 있음을 알 수 있다.In addition, when the silver nitric acid concentration is 0.50M silver nanoparticles have a particle size in the range of 3 to 9nm, it can be seen that the distribution is concentrated over the range of 5 to 8nm.

이상에서 알 수 있는 바와 같이, 안정제로서 비스(2-에틸헥실)포스페이트(Bis(2-ethylhexyl)phosphate, BEHPa)를 사용하는 경우에, 은질산의 농도가 증가할수록 입자 분포영역이 좁아짐을 알 수 있다. 즉, 10㎚ 미만의 비교적 균일한 입자크기의 은나노입자를 얻을 수 있음을 알 수 있다.As can be seen above, when bis (2-ethylhexyl) phosphate (BEHPa) is used as a stabilizer, it can be seen that the particle distribution area becomes narrower as the concentration of silver nitric acid increases. have. That is, it can be seen that silver nanoparticles having a relatively uniform particle size of less than 10 nm can be obtained.

[실시예 2][Example 2]

표 2에 나타낸 바와 같이, 0.5M, 0.25M, 0.1M의 은질산 용액 각각에 동일 몰수의 모노(2-에틸헥실)-2-에틸헥실포스포네이트(Mono(2-ethylhexyl)-2-ethylhexylphosponate, PC88A) 용액을 투입하고, 각각의 은질산 용액에 환원제로서 히드라진 19.0㎕, 47.0㎕ 및 95.0㎕ 각각을 투입하여 확산된 은을 얻었다.As shown in Table 2, the same moles of mono (2-ethylhexyl) -2-ethylhexylphosphonate (Mono (2-ethylhexyl) -2-ethylhexylphosponate) in 0.5M, 0.25M, and 0.1M silver nitric acid solutions, respectively , PC88A) solution was added, and 19.0 μl, 47.0 μl, and 95.0 μl of hydrazine were added to each of the silver nitric acid solutions as reducing agents to obtain diffused silver.

실험Experiment AgNO3(M/mL)AgNO 3 (M / mL) PC88A(M/mL)PC88A (M / mL) 히드라진(㎕Hydrazine (μl 실험 2-1Experiment 2-1 0.10/1.00.10 / 1.0 0.0050/200.0050 / 20 19.019.0 실험 2-2Experiment 2-2 0.25/1.00.25 / 1.0 0.0125/200.0125 / 20 47.047.0 실험 2-3Experiment 2-3 0.50/1.00.50 / 1.0 0.0250/200.0250 / 20 95.095.0

상기와 같은 방법에서 얻은 은나노입자들의 TEM 사진과 입자크기 분포도를 도 2에 도시하였다.TEM image and particle size distribution of the silver nanoparticles obtained by the above method are shown in FIG. 2.

도 2의 (a)는 은질산의 농도가 0.10M 일 때의 은나노입자들의 TEM 사진과 입자크기 분포도를 도시한 것이고, 도 1의 (b)는 은질산 농도가 0.25M 일 때의 은나노입자들의 TEM 사진과 입자크기 분포도를 도시한 것이고, 도 1의 (c)는 은질산 농도가 0.50M 일 때의 은나노입자들의 TEM 사진과 입자크기 분포도를 도시한 것이다.FIG. 2 (a) shows TEM photographs and particle size distribution diagrams of silver nanoparticles when the concentration of silver nitric acid is 0.10M, and FIG. 1 (b) shows silver nanoparticles when the concentration of silver nitric acid is 0.25M. Figure 1 shows the TEM image and the particle size distribution, Figure 1 (c) shows the TEM image and particle size distribution of the silver nanoparticles when the silver nitric acid concentration is 0.50M.

도면으로부터 알 수 있듯이, 은질산의 농도가 0.10M 일 때 은나노입자들은 2 내지 7㎚ 범위의 입자크기를 가지고, 분포도를 살펴보면 약 45%의 입자들은 5㎚의 입자 크기를 가지고 약 35%의 입자들은 4㎚의 입자를 가짐을 알 수 있다.As can be seen from the figure, silver nanoparticles have a particle size in the range of 2 to 7 nm when the concentration of silver nitric acid is 0.10M, and the distribution map shows that about 45% of the particles have a particle size of 5 nm and about 35% of the particles. It can be seen that they have particles of 4 nm.

또한, 은질산 농도가 0.25M 일 때 은나노입자들은 3 내지 11㎚ 범위의 입자크기를 가지고, 그 분포도는 4 내지 7㎚에 걸쳐 집중되어 있음을 알 수 있다.In addition, when the silver nitric acid concentration is 0.25M it can be seen that the silver nanoparticles have a particle size in the range of 3 to 11nm, the distribution is concentrated over 4 to 7nm.

또한, 은질산 농도가 0.50M 일 때 은나노입자들은 2 내지 11㎚ 범위의 입자크기를 가지고, 그 분포도는 3 내지 8㎚에 걸쳐 집중되어 있음을 알 수 있다.In addition, when the silver nitric acid concentration is 0.50M it can be seen that the silver nanoparticles have a particle size in the range of 2 to 11nm, the distribution is concentrated over 3 to 8nm.

이상에서 알 수 있는 바와 같이, 안정제로서 모노(2-에틸헥실)-2-에틸헥실포스포네이트(Mono(2-ethylhexyl)-2-ethylhexylphosponate, PC88A)를 사용하는 경우에, 은질산의 농도가 높아질수록 입자 분포영역이 넓어짐을 알 수 있다. 즉, 은질산의 농도가 낮을수록 10㎚ 미만의 비교적 균일한 입자크기의 은나노입자를 얻을 수 있음을 알 수 있다.As can be seen from the above, in the case of using mono (2-ethylhexyl) -2-ethylhexyl phosphonate (PC88A) as a stabilizer, the concentration of silver nitric acid is It can be seen that the higher the particle distribution area becomes. That is, as the concentration of silver nitric acid is lower, it can be seen that silver nanoparticles having a relatively uniform particle size of less than 10 nm can be obtained.

[실시예 3]Example 3

표 3에 나타낸 바와 같이, 0.5M의 은질산 용액 각각에 동일 몰수의 비스(2-에틸헥실)포스파이트(Bis(2-ethylhexyl)phosphite, BEHPi) 용액을 투입하고, 은질산 용액에 히드라진 95.0㎕를 투입하여 확산된 은을 얻었다.As shown in Table 3, the same mole of bis (2-ethylhexyl) phosphite (Bis (2-ethylhexyl) phosphite, BEHPi) solution was added to each 0.5 M silver nitric acid solution, and 95.0 μl of hydrazine was added to the silver nitric acid solution. Was added to obtain diffused silver.

실험Experiment AgNO3(M/mL)AgNO 3 (M / mL) BEHPi(M/mL)BEHPi (M / mL) 히드라진(㎕Hydrazine (μl 실험 1Experiment 1 0.50/1.00.50 / 1.0 0.0250/200.0250 / 20 95.095.0

상기와 같은 방법에서 얻은 은나노입자들의 TEM 사진과 입자크기 분포도를 도 3에 도시하였다.The TEM image and particle size distribution of the silver nanoparticles obtained in the above method are shown in FIG. 3.

실시예 1 및 실시예 2와는 달리 Ag 입자의 크기는 약 40 내지 100㎚로서 입자크기가 매우 커졌고, 분포도 역시 폭이 매우 넓음을 알 수 있다.
Unlike Examples 1 and 2, the size of the Ag particles is about 40 to 100 nm, which is very large, and the distribution is also very wide.

이상의 실시예들을 통해 알 수 있듯이, OH기가 없는 비스(2-에틸헥실)포스파이트(Bis(2-ethylhexyl)phosphite, BEHPi)는 나노입자의 크기가 매우 크고, 그 분포도가 넓다. 즉, OH기의 존재 여부에 따라 나노입자의 크기가 달라짐을 알 수 있다. As can be seen from the above embodiments, bis (2-ethylhexyl) phosphite (Bis (2-ethylhexyl) phosphite, BEHPi) without OH group has a very large nanoparticle size and a wide distribution. That is, it can be seen that the size of the nanoparticles varies depending on the presence of OH groups.

또한, 실시예 1과 실시예 2에서 수 ㎚의 Ag 입자가 만들어지지만, 비스(2-에틸헥실)포스페이트(Bis(2-ethylhexyl)phosphate, BEHPa)는 2개의 에테르(ether) 기를 가지는 반면, 모노(2-에틸헥실)-2-에틸헥실포스포네이트(Mono(2-ethylhexyl)-2-ethylhexylphosponate, PC88A)는 한 개의 에테르(ether)기를 가지고 있기 때문에, 치환된 에테르기의 차이로 인해 실시예 1과 실시예 2에서 나노입자크기와 분포도에서 차이가 난다. 즉, 질산은의 농도가 증가할수록 비스(2-에틸헥실)포스페이트(Bis(2-ethylhexyl)phosphate, BEHPa)의 경우 분포도의 폭이 좁아지는 반면, 모노(2-에틸헥실)-2-에틸헥실포스포네이트(Mono(2-ethylhexyl)-2-ethylhexylphosponate, PC88A)의 경우에는 분포도의 폭은 넓어진다. In addition, although Ag particles of several nm are made in Examples 1 and 2, bis (2-ethylhexyl) phosphate (Bis (2-ethylhexyl) phosphate, BEHPa) has two ether groups, whereas mono Since (2-ethylhexyl) -2-ethylhexyl phosphonate (Mono (2-ethylhexyl) -2-ethylhexylphosponate, PC88A) has one ether group, due to the difference of substituted ether groups, In Example 1 and Example 2 there is a difference in the nanoparticle size and distribution. In other words, as the concentration of silver nitrate increases, the width of the bis (2-ethylhexyl) phosphate (BEHPa) becomes narrower, whereas mono (2-ethylhexyl) -2-ethylhexylphosphate In the case of fonate (Mono (2-ethylhexyl) -2-ethylhexylphosponate, PC88A), the distribution becomes wider.

입자크기의 측면에서도 비스(2-에틸헥실)포스페이트(Bis(2-ethylhexyl)phosphate, BEHPa)는 질산은의 농도에 큰 영향을 받지 않지만, 모노(2-에틸헥실)-2-에틸헥실포스포네이트(Mono(2-ethylhexyl)-2-ethylhexylphosponate, PC88A)는 농도가 증가할수록 입자의 크기가 증가한다.In terms of particle size, bis (2-ethylhexyl) phosphate (BEHPa) is not significantly affected by the concentration of silver nitrate, but mono (2-ethylhexyl) -2-ethylhexylphosphonate (Mono (2-ethylhexyl) -2-ethylhexylphosponate, PC88A) increases the particle size with increasing concentration.

입자의 크기(4-7nm)와 분포도를 고려할 때 입자크기의 측면에서도 비스(2-에틸헥실)포스페이트(Bis(2-ethylhexyl)phosphate, BEHPa) 및 모노(2-에틸헥실)-2-에틸헥실포스포네이트(Mono(2-ethylhexyl)-2-ethylhexylphosponate, PC88A)가 안정제로서 매우 효과적이다.Bis (2-ethylhexyl) phosphate (Bis (2-ethylhexyl) phosphate, BEHPa) and mono (2-ethylhexyl) -2-ethylhexyl in terms of particle size in consideration of particle size (4-7 nm) and distribution Phosphonate (Mono (2-ethylhexyl) -2-ethylhexylphosponate, PC88A) is very effective as a stabilizer.

비스(2-에틸헥실)포스파이트(Bis(2-ethylhexyl)phosphite, BEHPi)는 수십 내지 수백nm 입자크기의 은나노입자를 제조할 때 안정제로서 효과적이다.Bis (2-ethylhexyl) phosphite (BEHPi) is effective as a stabilizer when preparing silver nanoparticles having a particle size of several tens to several hundred nm.

따라서, 상기에서 설명한 3가지 실시예를 통해 사용하는 안정제들은 종래 기술에 비해 뛰어난 은나노입자 생성력을 가짐을 알 수 있다.Therefore, it can be seen that the stabilizers used through the three embodiments described above have excellent silver nanoparticle generation ability compared with the prior art.

Claims (7)

순수에 질산은을 투입하여 은질산 용액을 준비하는 단계와,
상기 은질산 용액 1mL에 동일 몰수의 유기인산계 화합물을 안정제로서 20ml 투입하여 5분간 교반하는 단계와 단계와,
상기 안정제가 투입된 질산은 용액에 80% N2H3 를 포함하는 히드라진을 20 내지 100㎕ 투입하여 1분간 교반하여 확산된 은을 얻는 단계로 이루어지는 것을 특징으로 하는 은나노입자 제조방법.
Preparing silver nitrate solution by adding silver nitrate to pure water;
20 ml of the same molar number of organophosphoric acid compound as a stabilizer was added to 1 mL of the silver nitric acid solution, followed by stirring for 5 minutes,
Method of producing a silver nano-particles, characterized in that the stabilizer is added to the silver nitrate solution is added to 20 to 100μl hydrazine containing 80% N 2 H 3 and stirred for 1 minute to obtain a diffused silver.
상기 유기인산계 화합물은 모노(2-에틸헥실)-2-에틸헥실포스포네이트(Mono(2-ethylhexyl)-2-ethylhexylphosponate, PC88A), 비스(2-에틸헥실)포스페이트(Bis(2-ethylhexyl)phosphate, BEHPa), 그리고 비스(2-에틸헥실)포스파이트(Bis(2-ethylhexyl)phosphite, BEHPi) 구성된 그룹에서 선택된 하나인 것을 특징으로 하는 은나노입자 제조방법.The organophosphate compound is mono (2-ethylhexyl) -2-ethylhexylphosphonate (Mono (2-ethylhexyl) -2-ethylhexylphosponate, PC88A), bis (2-ethylhexyl) phosphate (Bis (2-ethylhexyl) A method for producing silver nanoparticles, characterized in that one selected from the group consisting of phosphate, BEHPa, and bis (2-ethylhexyl) phosphite (Bis (2-ethylhexyl) phosphite, BEHPi). 제2항에 있어서, 상기 은질산 용액의 농도가 각각 0.10, 0.25 및 0.50M 이고, 상기 선택된 유기인산계 화합물은 비스(2-에틸헥실)포스페이트(Bis(2-ethylhexyl)phosphate, BEHPa)이고, 투입되는 히드라진은 각각 19.0, 47.0 및 95㎕일 때, 수득된 은나노입자의 크기는 2 내지 11nm 범위에 있고, 은질산 용액의 농도가 증가할수록 수득된 은나노입자의 크기 분포영역이 좁아지는 것을 특징으로 하는 은나노입자 제조방법.The method of claim 2, wherein the concentration of the silver nitric acid solution is 0.10, 0.25 and 0.50M, respectively, wherein the selected organophosphate compound is bis (2-ethylhexyl) phosphate (BEHPa), When the injected hydrazine is 19.0, 47.0 and 95 µl, respectively, the size of the obtained silver nanoparticles is in the range of 2 to 11 nm, and the size distribution region of the obtained silver nanoparticles becomes narrower as the concentration of the silver nitric acid solution increases. Silver nanoparticles manufacturing method. 제2항에 있어서,
제2항에 있어서, 상기 은질산 용액의 농도가 각각 0.10, 0.25 및 0.50M 이고, 상기 선택된 유기인산계 화합물은 모노(2-에틸헥실)-2-에틸헥실포스포네이트(Mono(2-ethylhexyl)-2-ethylhexylphosponate, PC88A)이고, 투입되는 히드라진은 각각 19.0, 47.0 및 95㎕일 때, 수득된 은나노입자의 크기는 2 내지 11nm 범위에 있고, 은질산 용액의 농도가 증가할수록 수득된 은나노입자의 크기 분포영역이 넓어지는 것을 특징으로 하는 은나노입자 제조방법.
The method of claim 2,
The method of claim 2, wherein the concentration of the silver nitric acid solution is 0.10, 0.25 and 0.50M, respectively, and the selected organophosphate compound is mono (2-ethylhexyl) -2-ethylhexylphosphonate (Mono (2-ethylhexyl). ) -2-ethylhexylphosponate (PC88A), and the injected hydrazine is 19.0, 47.0, and 95 µl, respectively, and the obtained silver nanoparticles range in size from 2 to 11 nm, and the silver nanoparticles obtained as the concentration of the silver nitric acid solution increases. Silver nanoparticles manufacturing method characterized in that the size distribution area of the wider.
제2항에 있어서, 은질산 용액의 농도는 0.5M이고, 투입되는 유기인산계 화합물은 비스(2-에틸헥실)포스파이트(Bis(2-ethylhexyl)phosphite, BEHPi)이고, 투입되는 히드라진 95.0㎕일 때, 은나노입자의 크기는 40 내지 100㎚인 것을 특징으로 하는 은나노입자 제조방법.The concentration of the silver nitric acid solution is 0.5M, the organophosphorus compound is bis (2-ethylhexyl) phosphite (Bis (2-ethylhexyl) phosphite, BEHPi), 95.0 μl of hydrazine added When, the nano-particle size of the nano-particles manufacturing method, characterized in that 40 to 100nm. 제2항 내지 제5항 중 어느 한 항에 있어서, 상기 유기인산계 화합물에 OH기가 존재하면 은나노입자의 크기가 작아지는 것을 특징으로 하는 은나노입자 제조방법.The method of manufacturing silver nanoparticles according to any one of claims 2 to 5, wherein an OH group is present in the organophosphate compound to reduce the size of the silver nanoparticles. 제2항 내지 제5항 중 어느 한 항에 있어서, 상기 유기인산계 화합물에 에테르기가 많을수록 은나노입자의 크기 분포도의 폭이 좁아지고, 에테르기가 적을수록 은나노입자의 크기가 증가하는 것을 특징으로 하는 은나노입자 제조방법.
The silver nanoparticle according to any one of claims 2 to 5, wherein the larger the number of ether groups in the organophosphate compound is, the narrower the size distribution of the silver nanoparticles is, and the smaller the number of ether groups increases the size of the silver nanoparticles. Particle preparation method.
KR1020100100621A 2010-10-15 2010-10-15 Method for producing silver nanoparticles KR20120039105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100100621A KR20120039105A (en) 2010-10-15 2010-10-15 Method for producing silver nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100100621A KR20120039105A (en) 2010-10-15 2010-10-15 Method for producing silver nanoparticles

Publications (1)

Publication Number Publication Date
KR20120039105A true KR20120039105A (en) 2012-04-25

Family

ID=46139531

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100100621A KR20120039105A (en) 2010-10-15 2010-10-15 Method for producing silver nanoparticles

Country Status (1)

Country Link
KR (1) KR20120039105A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180009052A (en) 2016-04-14 2018-01-25 주식회사 풍산홀딩스 Method for manufacturing uniform oxygen passivation layer on silver nano metal powder using thermal plasma and apparatus for manufacturing the same
WO2018070818A1 (en) * 2016-10-13 2018-04-19 엘에스니꼬동제련 주식회사 Silver powder for solar cell electrode and conductive paste including same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180009052A (en) 2016-04-14 2018-01-25 주식회사 풍산홀딩스 Method for manufacturing uniform oxygen passivation layer on silver nano metal powder using thermal plasma and apparatus for manufacturing the same
WO2018070818A1 (en) * 2016-10-13 2018-04-19 엘에스니꼬동제련 주식회사 Silver powder for solar cell electrode and conductive paste including same

Similar Documents

Publication Publication Date Title
Xu et al. Stability and reactivity: positive and negative aspects for nanoparticle processing
Wyszogrodzka et al. Metal-organic frameworks: mechanisms of antibacterial action and potential applications
Wang et al. Synthesis and applications of ZnO/polymer nanohybrids
Kalaycı et al. Synthesis, characterization, and antibacterial activity of metal nanoparticles embedded into amphiphilic comb-type graft copolymers
Balogh et al. Formation of silver and gold dendrimer nanocomposites
Janardhanan et al. Synthesis and surface chemistry of nano silver particles
Zhai et al. Superparamagnetic plasmonic nanohybrids: shape-controlled synthesis, TEM-induced structure evolution, and efficient sunlight-driven inactivation of bacteria
Wattanodorn et al. Antibacterial anionic waterborne polyurethanes/Ag nanocomposites with enhanced mechanical properties
Luo et al. Assembly, characterization and swelling kinetics of Ag nanoparticles in PDMAA-g-PVA hydrogel networks
Kumar et al. Synthesis and functionalization of nanomaterials
C. Carvalho et al. Development of Co3 [Co (CN) 6] 2/Fe3O4 bifunctional nanocomposite for clinical sensor applications
Marchetti et al. Preparation of polyethylene composites containing silver (I) acylpyrazolonato additives and SAR investigation of their antibacterial activity
Botsi et al. Facile and cost-efficient development of PMMA-based nanocomposites with custom-made hydrothermally-synthesized ZnO nanofillers
Lin et al. Facile in situ preparation and in vitro antibacterial activity of PDMAEMA-based silver-bearing copolymer micelles
Rahmah et al. Preparation and antibacterial activity of superhydrophobic modified ZnO/PVC nanocomposite
Zadehnazari Metal oxide/polymer nanocomposites: A review on recent advances in fabrication and applications
Mourdikoudis et al. Colloidal chemical bottom-up synthesis routes of pnictogen (As, Sb, Bi) nanostructures with tailored properties and applications: a summary of the state of the art and main insights
Żebrowska et al. Facile and controllable growth of β-FeOOH nanostructures on polydopamine spheres
KR101368404B1 (en) Metal nanoparticles and method for preparing the same
KR20120039105A (en) Method for producing silver nanoparticles
Bashiri et al. Nanopowders of 3D AgI coordination polymer: A new precursor for preparation of silver nanoparticles
Leung et al. Reversible switching between hydrophilic and hydrophobic superparamagnetic iron oxide microspheres via one-step supramolecular dynamic dendronization: Exploration of dynamic wettability
Sahoo et al. From single molecules to nanoscopically structured materials: Self-Assembly of metal chalcogenide/metal oxide nanostructures based on the degree of pearson hardness
Seo et al. Metal-Organic Framework Reinforced Acrylic Polymer Marine Coatings
KR102089178B1 (en) Antimicrobial agent containing Ag-zinc oxide nanocomposites as active component

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application