KR20120034521A - Method for transmitting srs in multiple component carrier system and apparatus thereof - Google Patents

Method for transmitting srs in multiple component carrier system and apparatus thereof Download PDF

Info

Publication number
KR20120034521A
KR20120034521A KR1020100096134A KR20100096134A KR20120034521A KR 20120034521 A KR20120034521 A KR 20120034521A KR 1020100096134 A KR1020100096134 A KR 1020100096134A KR 20100096134 A KR20100096134 A KR 20100096134A KR 20120034521 A KR20120034521 A KR 20120034521A
Authority
KR
South Korea
Prior art keywords
srs
transmission
uplink
component carrier
counting
Prior art date
Application number
KR1020100096134A
Other languages
Korean (ko)
Inventor
권기범
안재현
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Priority to KR1020100096134A priority Critical patent/KR20120034521A/en
Priority to PCT/KR2011/007063 priority patent/WO2012044023A1/en
Publication of KR20120034521A publication Critical patent/KR20120034521A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

PURPOSE: A method for transmitting a SRS(Sounding Reference Signal) in a multiple component carrier system and a device thereof are provided to control transmission of a UL reference signal, thereby preventing unnecessary power consumption of a terminal. CONSTITUTION: A terminal receives an SRS setup message for a UL component carrier from a base station(S1510). The terminal starts counting of an SRS stop timer(S1520). When a counting restart condition and a counting stop condition are not generated, the terminal determines that the counting of the SRS stop timer is terminated(S1530~S1550). When the counting of the SRS stop timer is terminated, the terminal adjusts an SRS transmission cycle(S1560).

Description

다중 요소 반송파 시스템에서 사운딩 기준 신호의 전송 방법 및 장치{METHOD FOR TRANSMITTING SRS IN MULTIPLE COMPONENT CARRIER SYSTEM AND APPARATUS THEREOF}METHOD FOR TRANSMITTING SRS IN MULTIPLE COMPONENT CARRIER SYSTEM AND APPARATUS THEREOF}

본 발명은 무선 통신 기술에 관한 것으로서, 더 구체적으로는 다중 요소 반송파 시스템에서 사운딩 기준 신호의 전송 방법 및 이를 이용한 전송 장치에 관한 것이다.The present invention relates to a wireless communication technology, and more particularly, to a method for transmitting a sounding reference signal and a transmission apparatus using the same in a multi-component carrier system.

하향링크와 유사하게, 수신단에서 서로 다른 상향링크 물리 채널들에 대한 동기(coherent) 복조를 하기 위해서 상향링크에도 채널 추정을 위한 기준 신호(reference signal)이 필요하며, 이를 상향링크의 복조 기준 신호(Demodulation Reference Signal: DRS, 이하 ‘DRS’라 함)라고 한다. 이 상향링크 기준 신호는 UL-SCH 가 매핑되는 PUSCH의 동기 복조를 위해서도 필요하며, 여러 가지 형태의 제어 신호를 전달하는 PUCCH의 동기 복조를 위해서도 필요하다.Similar to the downlink, in order to perform coherent demodulation on different uplink physical channels at the receiving end, the uplink also needs a reference signal for channel estimation, and the uplink demodulation reference signal ( Demodulation Reference Signal: DRS, hereinafter referred to as 'DRS'. This uplink reference signal is necessary for synchronous demodulation of a PUSCH to which a UL-SCH is mapped, and also for synchronous demodulation of a PUCCH for transmitting various types of control signals.

이와 함께 또 다른 상향링크 기준 신호로서 사운딩 기준 신호(Sounding Reference Signal: SRS, 이하 ‘SRS’라 함)가 있다. SDR은 기지국(Evolved Node B)가 다른 주파수에서의 상향링크 채널 품질을 추정할 수 있도록 상향링크로 전송되는 신호이다. In addition, there is a sounding reference signal (SRS, hereinafter referred to as SRS) as another uplink reference signal. SDR is a signal transmitted in uplink so that a base station (Evolved Node B) can estimate uplink channel quality at another frequency.

DRS가 데이터 복조를 위한 채널 추정에 사용되므로, 항상 물리 채널과 같이 전송되며 항상 같은 주파수 대역에서 전송되는 것에 반해, SRS는 물리 채널과 함께 전송될 필요는 없으며, 사용자 스케줄링에 사용된다. 단말은 상향링크 채널로 SRS 신호를 보내고, 기지국은 사운딩 기준 신호로부터 채널 상태를 파악한 후 상향링크 전송을 위한 스케줄링을 수행한다.Since the DRS is used for channel estimation for data demodulation, the SRS does not need to be transmitted together with the physical channel but is used for user scheduling, while always being transmitted with the physical channel and always in the same frequency band. The terminal sends an SRS signal to the uplink channel, and the base station determines the channel state from the sounding reference signal and then performs scheduling for uplink transmission.

한편, 사운딩 기준 신호뿐만 아니라 데이터 또는 다양한 상향링크 제어 정보가 상향링크 제어 채널을 통해 전송된다. 상향링크 제어 신호로는 HARQ(Hybrid Automatic Repeat reQuest)를 수행하기 위한 ACK(ACKnowledgement)/NACK(Not-ACKnowledgement) 신호, 하향링크 채널 품질을 가리키는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등 여러 가지 종류가 있다.Meanwhile, data or various uplink control information as well as a sounding reference signal are transmitted through the uplink control channel. As an uplink control signal, an ACK (ACKnowledgement) / NACK (Not-ACKnowledgement) signal for performing a hybrid automatic repeat request (HARQ), a channel quality indicator (CQI) indicating downlink channel quality, a precoding matrix index (PMI), There are various types such as RI (Rank Indicator).

본 발명은 상향링크 기준 신호의 전송을 제어하는 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for controlling transmission of an uplink reference signal.

본 발명은 상향링크 기준 신호의 전송을 제어하여 전력 소모를 줄이는 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for reducing power consumption by controlling transmission of an uplink reference signal.

본 발명은 상향링크 기준 신호의 전송을 제어하여 다른 사용자와의 간섭에 의한 통신 장애를 줄이는 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method of controlling a transmission of an uplink reference signal to reduce a communication obstacle caused by interference with other users.

본 발명의 일 양태는 다중 요소 반송파 시스템에서 SRS(Sounding Reference Signal)의 전송 방법으로서, 상향링크 요소 반송파에 대한 SRS 설정 메시지를 수신하는 단계, SRS 설정 메시지에 기반해서 상향링크 요소 반송파에 대한 SRS 전송의 정지(stop) 카운팅을 시작하는 단계 및 SRS 전송의 정지 카운팅이 만료되면 SRS 전송의 주기를 재조정하는 단계를 포함한다.An aspect of the present invention is a method of transmitting a sounding reference signal (SRS) in a multi-component carrier system, receiving an SRS configuration message for an uplink component carrier, and transmitting an SRS for an uplink component carrier based on the SRS configuration message. Starting the stop counting of the SRS and rescheduling the period of the SRS transmission when the stop counting of the SRS transmission expires.

상기 SRS 전송 주기의 재조정은 SRS 전송의 정지를 포함한다.The readjustment of the SRS transmission period includes stopping the SRS transmission.

상기 SRS의 전송 방법은, SRS 전송의 정지 카운팅을 시작한 후에, SRS 전송의 정지 카운팅을 재시작하는 요건이 만족되었는지 판단하는 단계를 더 포함하며, 재시작 요건에 해당하는 경우에는 SRS 전송의 정지 카운팅을 재시작할 수 있다.The transmission method of the SRS, after starting the stop counting of the SRS transmission, further comprising the step of determining whether the requirement for restarting the stop counting of the SRS transmission is satisfied, and if the restart requirement corresponds to restart count stop counting of the SRS transmission can do.

상기 SRS의 전송 방법은, SRS 전송의 정지 카운팅을 시작한 후 SRS 전송의 정지 카운팅이 만료되기 전에, SRS 전송의 정지 카운팅이 정지되는 요건이 만족되었는지 판단하는 단계를 더 포함하며, 정지 요건에 해당하는 경우에는 SRS 전송의 정지 카운팅을 정지할 수 있다.The transmission method of the SRS further includes determining whether a requirement for stopping stop counting of the SRS transmission is satisfied after starting stop counting of the SRS transmission and before the stop counting of the SRS transmission is expired. In this case, stop counting of the SRS transmission can be stopped.

본 발명의 또 다른 양태는 다중 요소 반송파 시스템에서 SRS(Sounding Reference Signal)를 전송하는 무선 단말 장치로서, 하향링크 채널을 통해 신호를 수신하고, 상향링크 채널을 통해 신호를 송신하는 RF부, RF부를 통해 수신한 신호와 송신할 신호를 처리하는 프로세서 및 시스템 동작을 위해 필요한 시스템 정보 및/또는 제어 정보를 포함하는 운용 정보를 저장하는 메모리를 포함하며, 프로세서는 SRS의 전송을 제어하기 위한 타이머를 포함할 수 있다.Another aspect of the present invention is a wireless terminal apparatus for transmitting a Sounding Reference Signal (SRS) in a multi-component carrier system, comprising: an RF unit for receiving a signal through a downlink channel and transmitting a signal through an uplink channel; And a memory for storing operation information including system information and / or control information necessary for a system operation and a processor for processing a signal received and a signal to be transmitted, and the processor including a timer for controlling transmission of the SRS. can do.

상기 프로세서는 타이머의 카운팅이 만료되면, SRS의 전송 주기를 재조정할 수 있다.The processor may readjust the transmission period of the SRS when the counting of the timer expires.

상기 프로세서는 타이머의 카운팅 시작 후에, 카운팅을 재시작하는 요건이 만족되었는지를 판단하며, 재시작 요건이 만족된 경우에는 타이머를 재시작할 수 있다.After the timer starts counting, the processor determines whether a requirement for restarting the counting is satisfied, and when the restarting requirement is satisfied, the processor may restart the timer.

상기 프로세서는 타이머의 카운팅 시작 후에, 카운팅이 정지되는 요건이 만족되었는지를 판단하며, 정지 요건이 만족된 경우에는 타이머를 정지시킬 수 있다.After starting the counting of the timer, the processor determines whether the requirement to stop counting is satisfied, and if the stop requirement is satisfied, the processor may stop the timer.

본 발명의 또 다른 양태는, 다중 요소 반송파 시스템에서 SRS(Sounding Reference Signal)의 수신 방법으로서, 상향링크 요소 반송파에 대한 SRS 설정 메시지를 송신하는 단계, 상향링크 요소 반송파에 대하여 SRS 설정 메시지에 기반한 SRS를 수신하는 단계 및 설정 메시지의 설정 내용에 대한 변경 메시지를 송신하는 단계를 포함하며, SRS 설정 메시지는 SRS 전송의 정지 카운팅에 관한 설정값을 포함하고, 변경 메시지는 SRS 전송의 정지 카운팅에 대한 재시작 또는 정지를 위한 묵시적 또는 명시적 메시지를 포함한다.Another aspect of the present invention is a method of receiving a sounding reference signal (SRS) in a multi-component carrier system, transmitting an SRS configuration message for an uplink component carrier, and an SRS configuration message based on the SRS configuration message for an uplink component carrier And receiving a change message for setting contents of the setting message, wherein the SRS setting message includes a setting value for stop counting of the SRS transmission, and the change message restarts for stop counting of the SRS transmission. Or an implicit or explicit message for suspension.

상기 SRS 설정 메시지는, SRS 설정 메시지를 송신하고 소정의 시간이 경과한 후에 SRS 전송 주기를 소정 시간만큼 변화시킬 것을 포함할 수 있다.The SRS configuration message may include changing the SRS transmission period by a predetermined time after transmitting a SRS configuration message and a predetermined time elapses.

상기 SRS의 수신 방법은, SRS 설정 메시지를 송신하고 소정의 시간이 경과한 후에 송신되는 변경 메시지는 상기 SRS의 전송 주기를 소정의 시간만큼 변화시키는 것을 포함할 수 있다.The method of receiving the SRS may include changing a transmission period of the SRS by a predetermined time after the predetermined time has passed after the SRS setting message is transmitted.

본 발명의 또 다른 양태는, 다중 요소 반송파 시스템의 SRS를 수신하는 수신 장치로서, 상향링크 채널을 통해 신호를 수신하고, 하향링크 채널을 통해 신호를 송신하는 RF부, RF부를 통해 수신한 신호와 송신할 신호를 처리하는 프로세서 및 시스템 동작을 위해 필요한 시스템 정보 및/또는 제어 정보를 포함하는 운용 정보를 저장하는 메모리를 포함하며, 프로세서는 SRS의 전송을 제어하기 위한 SRS 설정 정보를 상기 RF부를 통해 송신한다.Another aspect of the present invention is a receiving apparatus for receiving an SRS of a multi-component carrier system, comprising: an RF unit for receiving a signal through an uplink channel and transmitting a signal through a downlink channel; And a memory for storing operation information including system information and / or control information necessary for a system operation and a processor for processing a signal to be transmitted, wherein the processor transmits SRS configuration information for controlling transmission of an SRS through the RF unit. Send.

본 발명에 의하면 상향링크 기준 신호의 전송을 제어할 수 있다.According to the present invention, transmission of an uplink reference signal can be controlled.

본 발명에 의하면 상향링크 기준 신호의 전송을 제어하여 단말에서 불필요한 전력이 소모되는 것을 방지할 수 있다.According to the present invention, it is possible to control the transmission of the uplink reference signal to prevent unnecessary power consumption from the terminal.

본 발명에 의하면 상향링크 기준 신호의 전송을 제어하여 다른 단말과의 사이에서 불필요한 간섭이 일어나는 것을 줄일 수 있다.According to the present invention, by controlling the transmission of the uplink reference signal, it is possible to reduce unnecessary interference between the other terminal.

도 1은 SRS를 전송하는 LTE 상향링크 서브 프레임 구조의 일 예를 개략적으로 도시한 도면이다.
도 2는 무선 통신 시스템을 개략적으로 도시한 도면이다.
도 3은 3GPP LTE에서 무선 프레임의 구조를 개략적으로 도시한 도면이다.
도 4는 하향링크 서브프레임의 구조를 개략적으로 도시한 도면이다.
도 5는 반송파 집성의 일 예를 설명하는 도면이다.
도 6은 반송파 집성의 다른 일 예를 설명하는 도면이다.
도 7은 반송파 집성의 또 다른 일 예를 설명하는 도면이다.
도 8은 도 8은 다중 반송파를 지원하기 위한 프로토콜 구조의 일 예를 개략적으로 도시한 도면이다.
도 9는 다중 반송파 동작을 위한 프레임 구조의 일 예를 개략적으로 도시한 도면이다.
도 10은 다중 반송파 시스템에서 하향링크 요소 반송파와 상향링크 요소 반송파 간의 연결 설정(linkage)을 개략적으로 나타낸 도면이다.
도 11은 서빙 셀(Serving Cell)과 인접 셀(Neighbour Cell)의 개념을 설명하는 설명도이다.
도 12는 주서빙 셀(Primary Serving Cell)과 부서빙 셀(Secondary Serving Cell)의 개념을 설명하는 설명도이다.
도 13은 기지국과 단말 사이에서 일어나는 시그널링의 일 예를 개략적으로 도시한 것이다.
도 14는 단말과 기지국 사이의 신호 흐름을 RRC 재구성에 관련하여 개략적으로 도시한 도면이다.
도 15는 단말에서 SRS 정지 타이머가 작동하는 방식을 개략적으로 설명하는 순서도이다.
도 16은 DRX의 인액티비티 타이머와 SRS 타이머의 만료 조건을 개략적으로 도시한 개념도이다.
도 17은 온 듀레이션 시간(Ton)과 SRS 타이머 동작 사이의 관계를 개략적으로 설명하는 도면이다.
도 18은 본 발명과 관련하여 기지국에서의 동작을 개략적으로 설명하는 순서도이다.
도 19는 본 발명에 따른 기지국과 단말 장치의 개념을 개략적으로 도시한 블럭도이다.
1 is a diagram schematically illustrating an example of an LTE uplink subframe structure for transmitting SRS.
2 is a diagram schematically illustrating a wireless communication system.
3 is a diagram schematically illustrating a structure of a radio frame in 3GPP LTE.
4 schematically illustrates a structure of a downlink subframe.
5 is a diagram illustrating an example of carrier aggregation.
6 is a view for explaining another example of carrier aggregation.
7 is a view for explaining another example of carrier aggregation.
FIG. 8 is a diagram schematically illustrating an example of a protocol structure for supporting multiple carriers.
9 is a diagram schematically showing an example of a frame structure for a multi-carrier operation.
FIG. 10 is a diagram schematically illustrating linkage between a downlink component carrier and an uplink component carrier in a multi-carrier system.
11 is an explanatory diagram for explaining the concept of a serving cell and a neighbor cell.
12 is an explanatory diagram illustrating the concept of a primary serving cell and a secondary serving cell.
13 schematically illustrates an example of signaling occurring between a base station and a terminal.
14 is a diagram schematically illustrating a signal flow between a terminal and a base station in relation to RRC reconfiguration.
15 is a flowchart schematically illustrating a method of operating an SRS stop timer in a terminal.
16 is a conceptual diagram schematically illustrating expiration conditions of an inactivity timer and an SRS timer of a DRX.
FIG. 17 is a diagram schematically illustrating a relationship between an on duration time T on and an SRS timer operation.
18 is a flowchart schematically illustrating operation at a base station in relation to the present invention.
19 is a block diagram schematically illustrating the concept of a base station and a terminal device according to the present invention.

이하, 본 명세서에서는 본 발명과 관련된 내용을 본 발명의 내용과 함께 예시적인 도면과 실시예를 통해 상세하게 설명한다. 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면 상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, the present disclosure will be described in detail with reference to the accompanying drawings and examples in connection with the present disclosure. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible, even if displayed on different drawings. In addition, in describing the embodiments of the present specification, when it is determined that the detailed description of the related well-known configuration or function may obscure the subject matter of the present specification, the detailed description thereof will be omitted.

또한, 본 명세서의 구성 요소를 설명하는데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성 요소에 “연결”, “결합” 또는 “접속”된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 “연결”, “결합”, “접속”될 수도 있다고 이해되어야 할 것이다.In addition, in describing the components of the present specification, terms such as first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is listed as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but there is another component between each component. It is to be understood that can be "connected", "coupled" or "connected".

또한 본 명세서는 무선 통신 네트워크를 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 작업은 해당 무선 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 작업이 이루어질 수 있다. In addition, the present invention will be described with respect to a wireless communication network. The work performed in the wireless communication network may be performed in a process of controlling a network and transmitting data by a system (e.g., a base station) Work can be done at a terminal connected to the network.

도 1은 SRS를 전송하는 LTE(Long Term Evolutiion) 상향링크 서브 프레임 구조의 일 예를 개략적으로 도시한 것이다.1 schematically illustrates an example of a Long Term Evolutiion (LTE) uplink subframe structure for transmitting SRS.

도 1을 참조하면, 상향링크 서브 프레임은 시간축 상에서 2개의 슬롯을 포함하며, 각 슬롯은 7개의 SC-FDMA(Single Carrier-Frequency Division Multiple Access) 심볼(symbol)을 포함한다. 상향링크 서브 프레임은 주파수축 상에서 PUCCH(Phisycal Uplink Control Channel)와 PUSCH(Phisycal Uplink Shared Channel)를 포함한다. Referring to FIG. 1, an uplink subframe includes two slots on a time axis, and each slot includes seven Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbols. The uplink subframe includes a PUCCH (Phisycal Uplink Control Channel) and a PUSCH (Phisycal Uplink Shared Channel) on the frequency axis.

SRS가 전송되는 SC-FDMA 심볼 구간에서의 PUCCH는 천공(puncturing)된다. 이때, 단말은 13개의 SC-FDMA 심볼을 이용하여 데이터를 전송하고, 나머지 마지막 1개의 SC-FDMA 심볼에 대해 비율 정합(rate matching)과 같은 전처리 과정을 취하여 SRS를 전송한다. 14번째 SC-FDMA 심볼이 SRS를 전송하는 것으로 정해져 있으나, 이는 예시일 뿐 SF-FDMA 심볼의 위치와 개수는 얼마든지 달리 정해질 수 있다. SRS는 PUSCH의 전체에서 전송될 수도 있고, PUSCH의 일부에서만 전송될 수도 있다.PUCCH in the SC-FDMA symbol period in which the SRS is transmitted is punctured. In this case, the UE transmits data using 13 SC-FDMA symbols and performs preprocessing such as rate matching for the last one SC-FDMA symbol and transmits SRS. The 14th SC-FDMA symbol is determined to transmit the SRS, but this is only an example, and the position and number of SF-FDMA symbols may be determined differently. The SRS may be transmitted in the whole of the PUSCH or may be transmitted in only part of the PUSCH.

일반적으로 단말은 일정한 주기를 가지고 SRS를 전송하도록 설정될 수 있으나, LTE-A(Advanced)에서 고려되는 새로운 방식 중의 하나로 비주기 SRS(Aperiodic Sounding Reference Signal, 이하 ‘A-SRS’라 함)가 있다. A-SRS의 경우, 단말은 비주기적으로 SRS를 전송할 수 있으므로, 주기적으로 SRS를 전송하는 경우에 비해 자원이 효율적으로 사용될 수 있다. A-SRS의 전송은 비주기적이므로, 기지국이 단말로 A-SRS의 전송을 지시하는 경우에 한하여 단말이 A-SRS를 전송할 수 있다. 또한, 기지국은 단말이 A-SRS를 전송할 시간/주파수 자원에 대한 정보를 단말에게 알려주어야 한다. A-SRS를 전송할 시간/주파수 자원에 대한 정보는 A-SRS의 전송을 지시하는 메시지와 동시에 단말에게 전송하거나, 그 이전에 단말에게 전송할 수 있다.In general, the terminal may be configured to transmit the SRS with a certain period, but one of the new schemes considered in LTE-A (Advanced) is an aperiodic ARS (Aperiodic Sounding Reference Signal, hereinafter referred to as 'A-SRS'). . In the case of A-SRS, since the UE can transmit the SRS aperiodically, resources can be used more efficiently than when the SRS is periodically transmitted. Since the transmission of the A-SRS is aperiodic, the terminal may transmit the A-SRS only when the base station instructs the transmission of the A-SRS to the terminal. In addition, the base station should inform the terminal of the information on the time / frequency resources for the terminal to transmit the A-SRS. Information on the time / frequency resource for transmitting the A-SRS may be transmitted to the terminal at the same time as the message indicating the transmission of the A-SRS, or may be transmitted to the terminal before.

도 2는 무선 통신 시스템을 나타낸다. 2 illustrates a wireless communication system.

도 2를 참조하면, 무선 통신 시스템(10)은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선 통신 시스템(10)는 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 특정한 지리적 영역(일반적으로 셀(cell)이라고 함)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다. 2, the wireless communication system 10 is widely deployed to provide various communication services such as voice, packet data, and the like. The wireless communication system 10 includes at least one base station (BS) 11. Each base station 11 provides a communication service for a specific geographic area (generally called a cell) 15a, 15b, 15c. The cell may again be divided into multiple regions (referred to as sectors).

단말(12, Mobile Station: MS)은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MT(Mobile Terminal), UT(User Terminal), SS(Subscriber Station), 무선 기기(Wireless Device), PDA(Personal Digital Assistant), 무선 모뎀(Wireless Modem), 휴대 기기(handheld device) 등 다른 용어로 불릴 수도 있다. 기지국(11)은 일반적으로 단말(12)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다. 셀은 기지국(11)이 커버하는 일부 영역을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 릴레이 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.The terminal 12 (mobile station (MS)) may be fixed or mobile, and may include a user equipment (UE), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, a PDA, and the like. (Personal Digital Assistant), wireless modem (Wireless Modem), handheld device (handheld device) may be called in other terms. The base station 11 generally refers to a fixed station communicating with the terminal 12, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like. have. The cell should be interpreted in a comprehensive sense of a part of the area covered by the base station 11 and encompasses various coverage areas such as megacells, macrocells, microcells, picocells, femtocells, and relays.

이하에서 하향링크(downlink)는 기지국(11)에서 단말(12)로의 통신을 의미하며, 상향링크(uplink)는 단말(12)에서 기지국(11)으로의 통신을 의미한다. 이 경우, 하향링크에서 송신기는 기지국(11)의 일부분일 수 있고, 수신기는 단말(12)의 일부분일 수 있다. 그리고, 상향링크에서 송신기는 단말(12)의 일부분일 수 있고, 수신기는 기지국(11)의 일부분일 수 있다. 또는 경우에 따라 하향링크는 단말(12)에서 기지국(11)으로의 통신을 의미하며, 상향링크는 기지국(11)에서 단말(12)로의 통신을 의미할 수도 있다. 이 경우, 하향링크에서 송신기는 단말(12)의 일부분일 수 있고, 수신기는 기지국(11)의 일부분일 수 있다. 그리고, 상향링크에서 송신기는 기지국(11)의 일부분일 수 있고, 수신기는 단말(12)의 일부분일 수 있다. In the following, downlink means communication from the base station 11 to the terminal 12, and uplink means communication from the terminal 12 to the base station 11. In this case, in downlink, the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12. In the uplink, the transmitter may be part of the terminal 12, and the receiver may be part of the base station 11. Alternatively, in some cases, downlink means communication from the terminal 12 to the base station 11, and uplink may mean communication from the base station 11 to the terminal 12. In this case, in downlink, the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11. In the uplink, the transmitter may be part of the base station 11, and the receiver may be part of the terminal 12.

무선 통신 시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier-FDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수도 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수도 있다.There is no limitation on the multiple access scheme applied to the wireless communication system. (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-FDMA , OFDM-CDMA, and the like. The uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.

도 3은 3GPP LTE(Long Term Evolution)에서 무선 프레임의 구조를 나타낸다. 3 shows a structure of a radio frame in 3GPP Long Term Evolution (LTE).

도 3을 참조하면, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. Referring to FIG. 3, a radio frame consists of 10 subframes and one subframe consists of two slots. The time it takes for one subframe to be transmitted is called a transmission time interval (TTI). For example, one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.

하나의 슬롯은 시간 영역(time domain)에서 복수의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 RB(Resource Block)를 포함한다. OFDM 심볼은 3GPP LTE가 하향링크에서 OFDMA를 사용하므로 하나의 심볼 구간(symbol period)을 표현하기 위한 것으로, 다중 접속 방식에 따라 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. RB는 자원 할당 단위로 하나의 슬롯에서 복수의 연속하는 부반송파를 포함한다.One slot includes a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols in the time domain and includes a plurality of RBs in the frequency domain. The OFDM symbol is used to represent one symbol period since 3GPP LTE uses OFDMA in downlink, and may be referred to as an SC-FDMA symbol or a symbol period according to a multiple access scheme. The RB includes a plurality of consecutive subcarriers in one slot in resource allocation units.

본 명세서에서 소개한 무선 프레임의 구조는 예시에 불과하며, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다. The structure of the radio frame introduced herein is merely an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of OFDM symbols included in the slot may be variously changed.

도 4는 하향링크 서브프레임의 구조를 나타낸다. 4 shows a structure of a downlink subframe.

도 4를 참조하면, 서브프레임은 2개의 슬롯을 포함한다. 서브프레임 내의 첫 번째 슬롯의 앞선 최대 3 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역이 된다. Referring to FIG. 4, a subframe includes two slots. Up to three OFDM symbols in the first slot in the subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which a Physical Downlink Shared Channel (PDSCH) is allocated.

3GPP LTE에서 사용되는 하향링크 제어 채널들은 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다. 서브프레임의 첫 번째 OFDM 심볼에서 전송되는 PCFICH는 서브프레임 내에서 제어 채널들의 전송에 사용되는 OFDM 심볼의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향링크 HARQ에 대한 ACK/NACK 신호를 나른다. 즉, 단말이 전송한 상향링크 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다. Downlink control channels used in 3GPP LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), and a Physical Hybrid-ARQ Indicator Channel (PHICH). The PCFICH transmitted in the first OFDM symbol of the subframe carries information about the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe. The PHICH carries an ACK / NACK signal for uplink HARQ. That is, the ACK / NACK signal for the uplink data transmitted by the UE is transmitted on the PHICH.

이제 하향링크 물리 채널인 PDCCH에 대해 설명한다. Now, a downlink physical channel, PDCCH, will be described.

PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷, UL-SCH(Uplink Shared Channel)의 자원 할당 정보, PCH 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 UE 그룹 내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및 VoIP(Voice over Internet Protocol)의 활성화 등을 전달할 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(Control Channel Elements)의 집합(aggregation) 상으로 전송된다. CCE는 무선 채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다. PDCCH is a resource allocation and transmission format of downlink shared channel (DL-SCH), resource allocation information of uplink shared channel (UL-SCH), paging information on PCH, system information on DL-SCH, random access response transmitted on PDSCH Resource allocation of a higher layer control message, a set of transmit power control commands for individual UEs in a certain UE group, activation of a Voice over Internet Protocol (VoIP), and the like. A plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs. The PDCCH is transmitted on an aggregation of one or several consecutive CCEs. CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to the state of a radio channel. The CCE corresponds to a plurality of resource element groups. The format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.

PDCCH를 통해 전송되는 제어 정보를 하향링크 제어 정보(Downlink Control Information: DCI, 이하 ‘DCI’라 함)라고 한다. DCI는 그 포맷(format)에 따라 사용 용도가 다르고, DCI 내에서 정의되는 필드(field)도 다르다. 표 1은 DCI 포맷에 따른 DCI를 나타낸다.Control information transmitted through the PDCCH is called downlink control information (DCI). DCI has a different purpose of use according to its format, and a field defined in DCI is also different. Table 1 shows DCI according to DCI format.

DCI FormatDCI Format DescriptionDescription 00 used for the scheduling of PUSCH(Uplink grant)used for the scheduling of PUSCH (Uplink grant) 1One used for the scheduling of one PDSCH codewordused for the scheduling of one PDSCH codeword 1A1A used for the compact scheduling of one PDSCH codeword and random access procedure initiated by a PDCCH orderused for the compact scheduling of one PDSCH codeword and random access procedure initiated by a PDCCH order 1B1B used for the compact scheduling of one PDSCH codeword with precoding informationused for the compact scheduling of one PDSCH codeword with precoding information 1C1C used for very compact scheduling of one PDSCH codeword and notifying MCCH changeused for very compact scheduling of one PDSCH codeword and notifying MCCH change 1D1D used for the compact scheduling of one PDSCH codeword with precoding and power offset informationused for the compact scheduling of one PDSCH codeword with precoding and power offset information 22 used for scheduling PDSCH to UEs configured in spatial multiplexing modeused for scheduling PDSCH to UEs configured in spatial multiplexing mode 2A2A used for scheduling PDSCH to UEs configured in large delay CDD modeused for scheduling PDSCH to UEs configured in large delay CDD mode 33 used for the transmission of TPC commands for PUCCH and PUSCH with 2-bit power adjustmentsused for the transmission of TPC commands for PUCCH and PUSCH with 2-bit power adjustments 3A3A used for the transmission of TPC commands for PUCCH and PUSCH with single bit power adjustmentsused for the transmission of TPC commands for PUCCH and PUSCH with single bit power adjustments

DCI 포맷 0은 상향링크 자원 할당 정보를 가리키고, DCI 포맷 1~2는 하향링크 자원 할당 정보를 가리키고, DCI 포맷 3, 3A는 임의의 UE 그룹들에 대한 상향링크 TPC(Transmit Power Control) 명령을 가리킨다. DCI의 각 필드는 정보 비트(information bit)에 순차적으로 매핑된다. 예를 들어, DCI가 총 44비트 길이의 정보 비트에 매핑된다고 하면, 자원 할당 필드는 정보 비트의 10 번째 비트 내지 23 번째 비트에 매핑될 수 있다. DCI format 0 indicates uplink resource allocation information, DCI formats 1 to 2 indicate downlink resource allocation information, and DCI formats 3 and 3A indicate an uplink TPC command for arbitrary UE groups. . Each field of the DCI is sequentially mapped to an information bit. For example, if the DCI is mapped to information bits having a total length of 44 bits, the resource allocation field may be mapped to the 10th to 23rd bits of the information bits.

DCI는 상향링크 자원 할당 정보와 하향링크 자원 할당 정보를 포함한다. 상향링크 자원 할당 정보는 상향링크 그랜트(uplink grant)라 불릴 수 있고, 하향링크 자원 할당 정보는 하향링크 그랜트(downlink grant)라 불릴 수 있다. DCI includes uplink resource allocation information and downlink resource allocation information. The uplink resource allocation information may be referred to as an uplink grant, and the downlink resource allocation information may be referred to as a downlink grant.

한편, 반송파 집성(Carrier Aggregation: CA)은 복수의 반송파를 지원하는 것으로서, 스펙트럼 집성 또는 대역폭 집성(bandwidth aggregation)이라고도 한다. 반송파 집성에 의해 묶이는 개별적인 단위 반송파를 요소 반송파(Component Carrier: CC)라고 한다. 각 요소 반송파는 대역폭과 중심 주파수로 정의된다. 반송파 집성은 증가되는 수율(throughput)을 지원하고, 광대역 RF(Radio Frequency) 소자의 도입으로 인한 비용 증가를 방지하고, 기존 시스템과의 호환성을 보장하기 위해 도입되는 것이다. Meanwhile, carrier aggregation (CA) supports a plurality of carriers and is also referred to as spectrum aggregation or bandwidth aggregation. Individual unit carriers bound by carrier aggregation are called component carriers (CC). Each component carrier is defined by a bandwidth and a center frequency. Carrier aggregation is introduced to support increased throughput, to prevent cost increase due to the introduction of wideband radio frequency (RF) devices, and to ensure compatibility with existing systems.

예를 들어, 5MHz의 대역폭을 갖는 반송파가 5개 할당된다면, 25Mhz의 대역폭을 지원할 수 있는 것이다. For example, if five carriers having a bandwidth of 5 MHz are allocated, it can support a bandwidth of 25 MHz.

반송파 집성은 도 5와 같은 동작 밴드 내(intra-band) 인접(contiguous) 반송파 집성, 도 6과 같은 동작 밴드 내 비인접(non-contiguous) 반송파 집성, 그리고 도 7과 같은 동작 밴드 간(inter-band) 반송파 집성으로 나뉠 수 있다. Carrier aggregation includes intra-band contiguous carrier aggregation as shown in FIG. 5, non-contiguous carrier aggregation as shown in FIG. 6, and inter-band as shown in FIG. 7. band) can be divided into carrier aggregation.

우선, 도 5를 참조하면, 밴드 내 인접 반송파 집성은 동일 동작 밴드 내에서 연속적인 요소 반송파들 사이에서 이루어진다. 예를 들어, 집성되는 요소 반송파들인 CC #1, CC #2, CC #3, ... , CC #N이 모두 인접한다. First, referring to FIG. 5, in-band adjacent carrier aggregation is achieved between successive component carriers in the same operating band. For example, CC # 1, CC # 2, CC # 3, ..., CC #N which are the aggregated component carriers are all adjacent.

도 6을 참조하면, 밴드 내 비인접 반송파 집성은 불연속적인 요소 반송파들 사이에 이루어진다. 예를 들어, 집성되는 요소 반송파들인 CC #1, CC #2는 서로 특정 주파수만큼 이격되어 존재한다. Referring to FIG. 6, in-band non-adjacent carrier aggregation is achieved between discrete component carriers. For example, CC # 1 and CC # 2, which are aggregated component carriers, are spaced apart from each other by a specific frequency.

도 7을 참조하면, 밴드 간 반송파 집성은 다수의 요소 반송파들이 존재할 때, 그 중 하나 이상의 요소 반송파가 다른 주파수 대역 상에서 집성되는 형태이다. 예를 들어, 집성되는 요소 반송파들인 CC #1은 동작 밴드(band) #1에 존재하고, CC #2는 동작 밴드 #2에 존재한다. Referring to FIG. 7, when a plurality of component carriers exist, one or more component carriers are aggregated on different frequency bands. For example, CC # 1, which are aggregated component carriers, exist in operating band # 1, and CC # 2 exists in operating band # 2.

하향링크와 상향링크 간에 집성되는 반송파들의 수는 다르게 설정될 수 있다. 하향링크 요소 반송파 수와 상향링크 요소 반송파 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다.The number of carriers aggregated between the downlink and the uplink may be set differently. The case where the number of downlink component carriers and the number of uplink component carriers are the same is called symmetric aggregation, and when the number is different, it is called asymmetric aggregation.

또한, 요소 반송파들의 크기(즉 대역폭)는 서로 다를 수 있다. 예를 들어, 70MHz대역의 구성을 위해 5개의 요소 반송파들이 사용된다고 할 때, 5MHz CC(carrier #0) + 20MHz CC(carrier #1) + 20MHz CC(carrier #2) + 20MHz CC(carrier #3) + 5MHz CC(carrier #4)와 같은 형태로 구성될 수도 있다.In addition, the size (ie, bandwidth) of the component carriers may be different from each other. For example, assuming that five component carriers are used for the configuration of the 70 MHz band, 5 MHz CC (carrier # 0) + 20 MHz CC (carrier # 1) + 20 MHz CC (carrier # 2) + 20 MHz CC (carrier # 3 ) + 5MHz CC (carrier # 4) may be configured.

이하에서, 다중 반송파(multiple carrier) 시스템이라 함은, 반송파 집성을 지원하는 시스템을 말한다. 다중 반송파 시스템에서는 인접 반송파 집성 및/또는 비인접 반송파 집성이 사용될 수 있으며, 또한 대칭적 집성 또는 비대칭적 집성 중 어느 것이나 사용될 수 있다. Hereinafter, a multiple carrier system refers to a system supporting carrier aggregation. In a multi-carrier system, adjacent carrier aggregation and / or non-adjacent carrier aggregation may be used, and either symmetric aggregation or asymmetric aggregation may be used.

도 8은 다중 반송파를 지원하기 위한 프로토콜 구조의 일 예를 나타낸다.8 shows an example of a protocol structure for supporting multiple carriers.

도 8을 참조하면, 공용 MAC(Medium Access Control) 개체(810)는 복수의 반송파를 이용하는 물리(physical) 계층(820)을 관리한다. 특정 반송파로 전송되는 MAC 관리 메시지는 다른 반송파에게 적용될 수 있다. 즉, 상기 MAC 관리 메시지는 상기 특정 반송파를 포함하여 다른 반송파들을 제어할 수 있는 메시지이다. 물 리계층(820)은 TDD(Time Division Duplex) 및/또는 FDD(Frequency Division Duplex)로 동작할 수 있다. Referring to FIG. 8, the common medium access control (MAC) entity 810 manages a physical layer 820 using a plurality of carriers. The MAC management message transmitted on a specific carrier may be applied to other carriers. That is, the MAC management message is a message capable of controlling other carriers including the specific carrier. The physical layer 820 may operate in a time division duplex (TDD) and / or a frequency division duplex (FDD).

물리 계층(820)에서도 물리 제어 채널들이 사용된다. 물리 제어 정보를 전송하는 물리 하향링크 제어 채널(Physical Downlink Control Channel: PDCCH)은 단말에게 PCH(Paging CHannel)와 DL-SCH(DownLink Shared CHannel)의 자원 할당 및 DL-SCH와 관련된 HARQ(Hybrid Automatic Repeat reQuest) 정보를 알려준다. PDCCH는 단말에게 상향링크 전송의 자원 할당을 알려주는 상향링크 그랜트(uplink grant)를 나를 수 있다. Physical control channels are also used in the physical layer 820. A physical downlink control channel (PDCCH) for transmitting physical control information is a HARQ (Hybrid Automatic Repeat) related to resource allocation and DL-SCH associated with a paging channel (PCH) and a downlink shared channel (DL-SCH) to a terminal. reQuest) information. The PDCCH may carry an uplink grant informing the UE of resource allocation of uplink transmission.

PCFICH(Physical Control Format Indicator CHannel)는 PDCCH들에 사용되는 OFDM 심벌의 수를 단말에 알려주며, 매 서브프레임마다 전송된다. The Physical Control Format Indicator CHannel (PCFICH) informs the UE of the number of OFDM symbols used for the PDCCHs and is transmitted every subframe.

PHICH(Physical Hybrid ARQ Indicator Channel)는 상향링크 전송의 응답으로 HARQ ACK/NAK 신호를 나른다. The Physical Hybrid ARQ Indicator Channel (PHICH) carries HARQ ACK / NAK signals in response to uplink transmission.

PUCCH(Physical Uplink Control CHannel)은 하향링크 전송에 대한 HARQ ACK/NAK, 스케줄링 요청 및 CQI와 같은 상향링크 제어 정보를 나른다.Physical Uplink Control CHannel (PUCCH) carries uplink control information such as HARQ ACK / NAK, scheduling request, and CQI for downlink transmission.

PUSCH(Physical Uplink Shared CHannel)은 UL-SCH(UpLink Shared CHannel)을 나른다. PUSCH (Physical Uplink Shared CHannel) carries UL-SCH (UpLink Shared CHannel).

도 9는 다중 반송파 동작을 위한 프레임 구조의 일 예를 나타낸다.9 shows an example of a frame structure for multi-carrier operation.

도 9를 참조하면, 무선 프레임(radio frame)은 10개의 서브프레임으로 구성되어 있다. 서브프레임은 복수의 OFDM 심벌을 포함한다. 각 요소 반송파는 자신의 제어채널(예를 들면 PDCCH)를 가질 수 있다. 요소 반송파는 서로 인접할 수도 있고, 인접하지 않을 수도 있다. 단말은 자신의 역량에 따라 하나 또는 그 이상의 요소 반송파를 지원할 수 있다. Referring to FIG. 9, a radio frame consists of 10 subframes. The subframe includes a plurality of OFDM symbols. Each component carrier may have its own control channel (eg, PDCCH). The component carriers may or may not be adjacent to each other. The terminal may support one or more component carriers according to its capability.

요소 반송파는 방향성에 따라 전 설정(fully configured) 요소 반송파와 부분 설정(partially configured) 요소 반송파로 나뉠 수 있다. 전 설정 요소 반송파는 양 방향(bi-directional) 반송파로 모든 제어신호와 데이터를 송신 및/또는 수신할 수 있는 반송파를 가리키고, 부분 설정 요소 반송파는 단 방향(unidirectional) 반송파로 하향링크 데이터만을 송신할 수 있는 반송파를 가리킨다. 부분 설정 요소 반송파는 MBS(Multicast and Broadcast Service) 및/또는 SFN(Single Frequency Network)에 주로 사용될 수 있다.The component carrier may be divided into a fully configured component carrier and a partially configured component carrier according to directionality. The preconfigured component carrier refers to a carrier capable of transmitting and / or receiving all control signals and data on a bi-directional carrier, and the partial configuration component carrier transmits only downlink data on a unidirectional carrier. Indicates a possible carrier. The partial configuration component carrier may be mainly used for a multicast and broadcast service (MBS) and / or a single frequency network (SFN).

도 10은 다중 반송파 시스템에서 하향링크 요소 반송파와 상향링크 요소 반송파 간의 연결 설정(linkage)을 나타낸다. FIG. 10 illustrates linkage between a downlink component carrier and an uplink component carrier in a multi-carrier system.

도 10을 참조하면, 하향링크에서는 하향링크 요소 반송파 D1, D2, D2이 집성되어(aggregated) 있고, 상향링크에서는 상향링크 요소 반송파 U1, U2, U3이 집성되어 있다. 여기서 Di는 하향링크 요소 반송파의 인덱스이고, Ui는 상향링크 요소 반송파의 인덱스이다(i=1, 2, 3). Referring to FIG. 10, downlink component carriers D1, D2, and D2 are aggregated in downlink, and uplink component carriers U1, U2, and U3 are aggregated in uplink. Di is an index of a downlink component carrier, and Ui is an index of an uplink component carrier (i = 1, 2, 3).

FDD 시스템에서 하향링크 요소 반송파와 상향링크 요소 반송파는 1:1로 연결 설정되며, D1은 U1과, D2는 U2와, D3은 U3과 각각 1:1로 연결 설정된다. 단말은 논리 채널 BCCH(Broadcast Control CHannel)가 전송하는 시스템정보 또는 DCCH(Dedicated Control CHannel)가 전송하는 단말전용 RRC(Radio Resource Control) 메시지를 통해, 상기 하향링크 요소 반송파들과 상향링크 요소 반송파들 간의 연결 설정을 한다. 각 연결 설정은 셀 특정(cell specific)하게 설정할 수도 있으며, 단말 특정(UE specific)하게 설정할 수도 있다. In the FDD system, the downlink component carrier and the uplink component carrier are configured to be connected 1: 1, and D1 is configured to be connected to U1, D2 to U2, and D3 to U3. The terminal communicates between the downlink component carriers and the uplink component carriers through system information transmitted by a logical channel BCCH (Broadcast Control CHannel) or a dedicated RRC (Radio Resource Control) message transmitted by a dedicated control channel (DCCH). Set up the connection. Each connection setting may be set to be cell specific or UE specific.

하향링크 요소 반송파에 연결 설정되는 상향링크 요소 반송파의 예는 다음과 같다. An example of an uplink component carrier connected to a downlink component carrier is as follows.

1) 기지국이 하향링크 요소 반송파를 통하여 전송한 데이터에 대하여 단말이 ACK/NACK 정보를 전송할 상향링크 요소 반송파, 1) an uplink component carrier for transmitting ACK / NACK information by a user equipment to data transmitted by a base station through a downlink component carrier,

2) 단말이 상향링크 요소 반송파를 통하여 전송된 데이터에 대하여 기지국이 ACK/NACK 정보를 전송할 하향링크 요소 반송파, 2) a downlink component carrier to which the base station transmits ACK / NACK information on data transmitted through the uplink component carrier by the terminal;

3) 기지국이 랜덤 액세스 절차를 시작하는 단말이 상향링크 요소 반송파를 통하여 전송한 랜덤 액세스 프리앰블(Random Access Preamble: RAP)을 수신한 경우, 이에 대한 응답을 전송할 하향링크 요소 반송파, 3) when a base station starts a random access procedure when a terminal receives a random access preamble (RAP) transmitted through an uplink component carrier, a downlink component carrier to transmit a response thereto;

4) 기지국이 하향링크 요소 반송파를 통하여 상향링크 제어 정보를 전송하는 경우, 상기 상향링크 제어 정보가 적용되는 상향링크 요소 반송파 등이다. 4) When the base station transmits uplink control information through a downlink component carrier, it is an uplink component carrier to which the uplink control information is applied.

도 10은 하향링크 요소 반송파와 상향링크 요소 반송파간의 1:1 연결 설정만을 예시로 들었으나, 1:n 또는 n:1의 연결 설정도 성립할 수 있음은 물론이다. 또한, 요소 반송파의 인덱스는 요소 반송파의 순서 또는 해당 요소 반송파의 주파수 대역의 위치에 일치하는 것은 아니다. 10 illustrates only a 1: 1 connection setting between a downlink component carrier and an uplink component carrier, the connection configuration of 1: n or n: 1 may also be established. In addition, the index of the component carrier does not correspond to the order of the component carrier or the position of the frequency band of the component carrier.

도 11은 서빙 셀(Serving Cell)과 인접 셀(Neighbour Cell)의 개념을 설명하는 설명도이다.11 is an explanatory diagram for explaining the concept of a serving cell and a neighbor cell.

도 11을 참조하면, 시스템 주파수 대역은 복수의 반송파 주파수(carrier-frequency)로 구분된다. 여기서, 반송파 주파수는 셀의 중심 주파수(Center frequency of a cell)를 의미한다. 셀(cell)은 하향링크 주파수 자원과 상향링크 주파수 자원을 의미할 수 있다. 또는 셀은 하향링크 주파수 자원과 선택적인(optional) 상향링크 주파수 자원의 조합(combination)을 의미할 수 있다. 또한, 일반적으로 CA를 고려하지 않은 경우, 하나의 셀(cell)은 상향링크 주파수 자원과 하향링크 주파수 자원이 항상 쌍(pair)으로 존재한다.Referring to FIG. 11, a system frequency band is divided into a plurality of carrier frequencies. Here, the carrier frequency means a center frequency of a cell. A cell may mean a downlink frequency resource and an uplink frequency resource. Alternatively, the cell may mean a combination of a downlink frequency resource and an optional uplink frequency resource. In addition, in general, when a CA is not considered, one cell always includes a pair of uplink frequency resources and downlink frequency resources.

여기서, 서빙 셀(1105)은 현재 단말이 서비스를 제공받고 있는 셀을 의미한다. 인접 셀은 서빙 셀(1105)과 지리적으로 또는 주파수 대역 상에서 인접한 셀을 의미한다. 서빙 셀(1105)을 기준으로 동일한 반송파 주파수를 사용하는 인접 셀을 주파수 내 인접 셀(Intra-frequency Neighbour Cell, 1100, 1110)이라 한다. 또한, 서빙 셀(1105)을 기준으로 상이한 반송파 주파수를 사용하는 인접 셀을 주파수 간 인접 셀(Inter-frequency Neighbour Cell, 1115, 1120, 1125)라고 한다. 즉, 서빙 셀과 동일한 주파수를 사용하는 셀뿐만 아니라 다른 주파수를 사용하는 셀로서, 서빙 셀과 인접한 셀은 모두 인접 셀이라 할 수 있다. Here, the serving cell 1105 refers to a cell in which a terminal is currently receiving a service. The neighbor cell refers to a cell that is geographically adjacent to the serving cell 1105 or on a frequency band. Adjacent cells using the same carrier frequency with respect to the serving cell 1105 are called intra-frequency neighbor cells 1100 and 1110. In addition, adjacent cells using different carrier frequencies based on the serving cell 1105 are referred to as inter-frequency neighbor cells 1115, 1120, and 1125. That is, as a cell using a different frequency as well as a cell using the same frequency as the serving cell, all of the cells adjacent to the serving cell may be referred to as adjacent cells.

단말이 서빙 셀에서 주파수 내 인접 셀(1100, 1110)로 핸드오버하는 것을 주파수 내 핸드오버(Intra-frequency Handover)라 한다. 한편, 단말이 서빙 셀에서 주파수 간 인접 셀(1115, 1120. 1125)로 핸드오버하는 것을 주파수 간 핸드오버(Inter-frequency Handover)라 한다. The UE handing over from a serving cell to adjacent cells 1100 and 1110 in frequency is called an intra-frequency handover. On the other hand, the UE handover from the serving cell to the inter-frequency neighbor cells (1115, 1120. 1125) is called inter-frequency handover.

특정 셀을 통하여 패킷 데이터의 송수신이 이루어지기 위해서는, 단말은 먼저 특정 셀 또는 요소 반송파의 설정(configuration)을 완료해야 한다. 여기서, 설정(configuration)이란 해당 셀 또는 요소 반송파에 대한 데이터 송수신에 필요한 시스템 정보 수신을 완료한 상태를 의미한다. In order to transmit and receive packet data through a specific cell, the terminal must first complete configuration of a specific cell or component carrier. Herein, the configuration refers to a state in which reception of system information necessary for data transmission and reception for a corresponding cell or component carrier is completed.

일 예로, 설정(configuration)은, 데이터 송수신에 필요한 공통 물리 계층 파라미터들, 또는 MAC 계층 파라미터들, 또는 RRC 계층에서 특정 동작에 필요한 파라미터들을 수신하는 전반의 과정을 포함할 수 있다. 이에, 설정 완료된 셀 또는 요소 반송파는, 패킷 데이터가 전송될 수 있다는 시그널링 정보만 수신하면, 즉시 패킷의 송수신이 가능해지는 상태이다.For example, the configuration may include an overall process of receiving common physical layer parameters required for data transmission and reception, MAC layer parameters, or parameters required for a specific operation in the RRC layer. Accordingly, the cell or component carrier which has been set up is in a state in which packets can be immediately transmitted and received when only signaling information indicating that packet data can be transmitted is received.

한편, 설정 완료 상태의 셀은 활성화(Activation) 혹은 비활성화(Deactivation) 상태로 존재할 수 있다. 설정 완료 상태(Configuration)를 활성화 및 비활성화 상태로 구분하는 이유는 활성화 상태일 때에만 단말이 제어 채널(PDCCH) 및 데이터 채널(PDSCH)를 모니터링 혹은 수신하도록 함으로써 UE의 배터리(Battery) 소비를 최소화하기 위함이다. Meanwhile, the cell in the setting complete state may exist in an activation or deactivation state. The reason for dividing the configuration completion state into an active state and an inactive state is to minimize the battery consumption of the UE by allowing the UE to monitor or receive the control channel (PDCCH) and the data channel (PDSCH) only when the active state is active. For sake.

활성화는 트래픽 데이터의 송신 또는 수신이 행해지거나 준비 상태(ready state)에 있는 것을 말한다. 단말은 자신에게 할당된 자원(주파수, 시간 등일 수 있음)을 확인하기 위하여 활성화된 셀의 제어 채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신할 수 있다. Activation refers to the transmission or reception of traffic data being made or in a ready state. The UE may monitor or receive a control channel (PDCCH) and a data channel (PDSCH) of an activated cell in order to identify resources (which may be frequency, time, etc.) allocated thereto.

비활성화는 트래픽 데이터의 송신 또는 수신이 불가능하고, 측정이나 최소 정보의 송신/수신이 가능한 것을 말한다. 단말은 비활성화 셀로부터 트레픽 데이터의 수신은 할 수 없지만, 패킷 수신을 위해 필요한 시스템 정보(SI)를 수신할 수는 있다. 반면, 단말은 자신에게 할당된 자원(주파수, 시간 등일 수도 있음)을 확인하기 위하여 비활성화된 셀의 제어 채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신하지 않는다. Deactivation means that transmission or reception of traffic data is impossible, and measurement or transmission of minimum information is possible. The terminal may not receive traffic data from the deactivated cell, but may receive system information (SI) necessary for packet reception. On the other hand, the terminal does not monitor or receive the control channel (PDCCH) and the data channel (PDSCH) of the deactivated cell in order to check the resources (which may be frequency, time, etc.) allocated thereto.

도 12는 주서빙 셀(Primary Serving Cell)과 부서빙 셀(Secondary Serving Cell)의 개념을 설명하는 설명도이다. 12 is an explanatory diagram illustrating the concept of a primary serving cell and a secondary serving cell.

도 12를 참조하면, 주서빙 셀(1205)은 RRC 연결(establishment) 또는 재연결(re-establishment) 상태에서, 보안 입력(security input)과 NAS(Non-Access Stratum) 이동 정보(mobility information)를 제공하는 하나의 서빙 셀을 의미한다. 단말의 성능(capabilities)에 따라, 적어도 하나의 셀이 주서빙 셀(1205)과 함께 서빙 셀의 집합을 형성하도록 구성될 수 있는데, 상기 적어도 하나의 셀을 부서빙 셀(1220)이라 한다. Referring to FIG. 12, the main serving cell 1205 may transmit a security input and a non-access stratum (NAS) mobility information in an RRC connection or re-establishment state. Means one serving cell to provide. According to the capabilities of the terminal, at least one cell may be configured to form a set of serving cells together with the main serving cell 1205, and the at least one cell is called a secondary serving cell 1220.

따라서, 하나의 단말에 대해 설정된 서빙 셀의 집합은 하나의 주서빙 셀(1205)만으로 구성되거나, 또는 하나의 주서빙 셀(1205)과 적어도 하나의 부서빙 셀(1220)로 구성될 수 있다. Accordingly, the set of serving cells configured for one terminal may be configured of only one main serving cell 1205 or may consist of one main serving cell 1205 and at least one secondary serving cell 1220.

주서빙 셀(1205)의 주파수 내 인접 셀(1200, 1210) 및/또는 부서빙 셀(1220)의 주파수 내 인접셀(1215, 1225), 각각은 동일한 반송파 주파수에 속한다. 그리고, 주서빙 셀(1205)과 부서빙 셀(1220)의 주파수간 인접 셀(1230, 1235, 1240)은 상이한 반송파 주파수에 속한다. Adjacent cells 1200 and 1210 in frequency of primary serving cell 1205 and / or neighbor cells 1215 and 1225 in frequency of secondary serving 1220 each belong to the same carrier frequency. In addition, adjacent cells 1230, 1235, and 1240 between frequencies of the main serving cell 1205 and the secondary serving cell 1220 belong to different carrier frequencies.

주서빙 셀(1205)을 구성하는 요소 반송파를 주요소 반송파(primary CC)라고 한다. 따라서 하향링크 요소 반송파를 하향링크 주요소 반송파(DL PCC)라 하고, 주서빙 셀(1205)을 구성하는 상향링크 요소 반송파를 상향링크 주요소 반송파(UL PCC)라 한다. A component carrier constituting the main serving cell 1205 is called a primary CC. Accordingly, the downlink component carrier is referred to as a downlink component carrier (DL PCC), and the uplink component carrier constituting the main serving cell 1205 is referred to as an uplink component carrier (UL PCC).

또한, 부서빙 셀을 구성하는 요소 반송파를 부요소 반송파(secondary CC)라고 한다. 따라서 하향링크에서, 부서빙 셀(1220)을 구성하는 요소 반송파를 하향링크 부요소 반송파(DL SCC)라 하고, 상향링크에서, 부서빙 셀(1220)을 구성하는 요소 반송파를 상향링크 부요소 반송파(UL SCC)라 한다.In addition, the component carrier constituting the secondary serving cell is referred to as a secondary CC (secondary CC). Therefore, in the downlink, the component carrier constituting the secondary serving cell 1220 is called a downlink sub-component carrier (DL SCC), and in the uplink, the component carrier constituting the secondary serving cell 1220 is an uplink secondary component carrier. It is called (UL SCC).

주요소 반송파는 단말이 여러 요소 반송파 중에 초기에 단말과 접속(Connection 혹은 RRC Connection)을 이루게 되는 요소 반송파이다. 주요소 반송파는 다수의 요소 반송파에 관한 시그널링을 위한 연결(Connection 혹은 RRC Connection)을 담당하고, 단말과 관련된 연결정보인 단말 문맥 정보(UE Context)를 관리하는 특별한 요소 반송파이다. 또한, 주요소 반송파는 단말과 접속을 이루게 되어 RRC 연결 상태(RRC Connected Mode)일 경우에는 항상 활성화 상태로 존재한다. The major carrier is a component carrier in which the terminal initially establishes a connection (connection or RRC connection) with the terminal among various component carriers. The major carrier is a special component carrier that is in charge of a connection (connection or RRC connection) for signaling on a plurality of component carriers and manages UE context, which is connection information related to the terminal. In addition, the main carrier is always in the active state when the connection is made to the terminal in the RRC connected mode (RRC Connected Mode).

부요소 반송파는 주요소 반송파 이외에 단말에 할당된 요소 반송파로서, 부요소 반송파는 단말이 주요소 반송파 이외에 추가적인 자원할당 등을 위하여 확장된 반송파(Extended Carrier)이며 활성화 혹은 비활성화 상태로 나뉠 수 있다. 주서빙 셀(1205)과 부서빙 셀(1220)은 다음과 같은 특징을 가진다. The subcarrier is a component carrier allocated to the terminal in addition to the major carrier, and the subcarrier is an extended carrier for the additional resource allocation in addition to the major carrier and may be divided into an active or inactive state. The main serving cell 1205 and the secondary serving cell 1220 have the following characteristics.

첫째, 주서빙 셀(1205)의 상향링크을 통해서만 PUCCH(Physical Uplink Control Channel)가 전송된다. First, the PUCCH (Physical Uplink Control Channel) is transmitted only through the uplink of the primary serving cell 1205.

둘째, 주서빙 셀(1205)은 항상 활성화되어 있다. 반면에, 부서빙 셀(1220)은 특정 조건에 따라 활성화/비활성화된다. Second, the main serving cell 1205 is always active. On the other hand, the secondary serving cell 1220 is activated / deactivated according to a specific condition.

셋째, 주서빙 셀(1205)에서 무선 링크 실패(Radio Link Failure: RLF, 이하 ‘RLF’라 함)를 감지되거나, 랜덤 액세스의 최대 재시도 회수가 초과되는 경우에만, RRC 재연결(re-establishment)이 트리거링(triggering)된다. 부서빙 셀(1220)에서 RLF가 감지될 때는 RRC 재연결이 트리거링되지 않는다. Third, RRC re-establishment only when a radio link failure (RLF, hereinafter referred to as 'RLF') is detected in the main serving cell 1205, or when the maximum number of retries of random access is exceeded. ) Is triggered. When the RLF is detected in the secondary serving 1220, the RRC reconnection is not triggered.

넷째, 주서빙 셀(1205)은 보안 키(security key) 정보를 송수신할 수 있다.Fourth, the main serving cell 1205 may transmit and receive security key information.

다섯째, 주서빙 셀(1205)의 하향링크 요소 반송파와 상향링크 요소 반송파를 통해서만 RACH(Random Access CHannel) 절차가 진행된다. 단, MSG4 (contention resolution)의 경우, MSG4를 지시하는 PDCCH만은 주서빙 셀(1205)를 통하여 전송되어야 하고 MSG4 정보는 주서빙 셀(1205) 또는 부서빙 셀(1220)을 통하여 전송될 수 있다.Fifth, a random access channel (RACH) procedure is performed only through the downlink component carrier and the uplink component carrier of the main serving cell 1205. However, in the case of MSG4 (contention resolution), only the PDCCH indicating the MSG4 should be transmitted through the main serving cell 1205 and the MSG4 information may be transmitted through the main serving cell 1205 or the secondary serving cell 1220.

여섯째, NAS(non-access stratum) 정보는 주서빙 셀(1205)를 통해서 수신한다.Sixth, non-access stratum (NAS) information is received through the main serving cell 1205.

일곱째, 언제나 주서빙 셀(905)은 하향링크 주요소 반송파와 상향링크 주요소 반송파가 쌍(pair)으로 구성된다.Seventh, the main serving cell 905 always consists of a pair of a downlink major carrier and an uplink major carrier.

여덟째, 각 단말마다 다른 요소 반송파를 주서빙 셀(1205)로 설정할 수 있다.Eighth, a different component carrier may be configured as the main serving cell 1205 for each terminal.

아홉째, 부서빙 셀(1220)의 재설정(reconfiguration), 추가(adding) 및 제거(removal)와 같은 절차는 RRC 계층에 의해 수행될 수 있다. 신규 부서빙 셀(1220)의 추가에 있어서, 전용(dedicated) 부서빙 셀의 시스템 정보를 전송하는데 RRC 시그널링이 사용될 수 있다. Ninth, procedures such as reconfiguration, adding, and removal of the secondary serving cell 1220 may be performed by the RRC layer. In addition to the new secondary serving cell 1220, RRC signaling may be used to transmit system information of the dedicated secondary serving cell.

주서빙 셀(1205)과 부서빙 셀(1220)의 특징에 관한 본 발명의 기술적 사상은 반드시 상기의 설명에 한정되는 것은 아니며, 이는 예시일 뿐이고 더 많은 예를 포함할 수 있다. The technical spirit of the present invention with respect to the features of the primary serving cell 1205 and the secondary serving cell 1220 is not necessarily limited to the above description, which is merely an example and may include more examples.

하향링크 요소 반송파가 하나의 서빙 셀을 구성할 수도 있고, 하향링크 요소 반송파와 상향링크 요소 반송파가 연결 설정되어 하나의 서빙 셀을 구성할 수 있다. 그러나, 하나의 상향링크 요소 반송파만으로는 서빙 셀이 구성되지 않는다. The downlink component carrier may configure one serving cell, or the downlink component carrier and the uplink component carrier may be configured to configure one serving cell. However, the serving cell is not configured with only one uplink component carrier.

상술한 바와 같이, 반송파 집성(Carrier Aggregation:CA)은 단일 단말과 기지국 간에 다수의 하향링크 요소 반송파와 상향링크 요소 반송파로 구성된 주파수 대역을 이용하여 무선 통신을 진행하는 방식이다. 전술한 반송파 집성과 셀(Cell)에 관한 내용을 더 살펴보면, 반송파 집성을 위해 셀(Cell)은 다음과 같은 특성을 갖는다.As described above, carrier aggregation (CA) is a method of performing wireless communication using a frequency band including a plurality of downlink component carriers and uplink component carriers between a single terminal and a base station. Looking at the contents of the carrier aggregation and the cell described above, the cell has the following characteristics for carrier aggregation.

우선, 셀은 단일 요소 반송파를 기준으로 정의된다. 셀은 하향링크 요소 반송파와 상향링크 요소 반송파의 쌍(pair)으로 구성될 수 있으며, 하향링크 요소 반송파만으로도 구성될 수 있다. 하지만, 상향링크 요소 반송파만으로는 셀을 구성할 수 없다.First, a cell is defined based on a single component carrier. The cell may be configured with a pair of downlink component carriers and uplink component carriers, and may be configured only with a downlink component carrier. However, a cell cannot be configured by only an uplink component carrier.

전술한 바와 같이, 기지국과 단말 사이에서 송수신이 이루어지는 요소 반송파들을 서빙 셀(Serving Cell)이라고 한다. 따라서, 기지국과 단말 간에는 다수의 서빙 셀이 존재할 수 있다. 서빙 셀 중에서, 주서빙 셀(1205)은 RRC 연결(establishment) 또는 재연결(re-establishment) 상태에서, 보안 입력(security input)과 NAS(Non-Access Stratum) 이동 정보(mobility information)를 제공하는 하나의 서빙 셀을 의미한다. 단말의 성능(capabilities)에 따라, 적어도 하나의 셀이 주서빙 셀(1205)과 함께 서빙 셀의 집합을 형성하도록 구성될 수 있는데, 상기 적어도 하나의 셀을 부서빙 셀(1220)이라 한다. 주서빙 셀과 부서빙 셀의 관계는 상술한 바와 같다.As described above, component carriers that transmit and receive between a base station and a terminal are referred to as a serving cell. Therefore, a plurality of serving cells may exist between the base station and the terminal. Among the serving cells, the main serving cell 1205 provides security input and non-access stratum (NAS) mobility information in an RRC connection or re-establishment state. It means one serving cell. According to the capabilities of the terminal, at least one cell may be configured to form a set of serving cells together with the main serving cell 1205, and the at least one cell is called a secondary serving cell 1220. The relationship between the main serving cell and the secondary serving cell is as described above.

아울러, 셀을 구성하는 상향링크 요소 반송파의 개수는 하향링크 요소 반송파의 개수보다 작거나 같다. 또한, 하나의 상향링크 요소 반송파는 하나의 셀에만 속할 수 있으며, 각 단말에 대하여 부서빙 셀를 구성하는 상향링크 부요소 반송파와 하향링크 부요소 반송파는 상이할 수 있다.In addition, the number of uplink component carriers constituting the cell is less than or equal to the number of downlink component carriers. In addition, one uplink component carrier may belong to only one cell, and the uplink subcomponent carrier and the downlink subcomponent carrier constituting the secondary serving cell may be different for each terminal.

요소 반송파의 활성화/비활성화는 곧 서빙 셀의 활성화/비활성화의 개념과 동등하다. 예를 들어, 서빙 셀1이 하향링크 요소 반송파1으로 구성되어 있다고 가정할 때, 서빙 셀1의 활성화는 하향링크 요소 반송파1의 활성화를 의미한다. 만약, 서빙 셀2가 하향링크 요소 반송파2와 상향링크 요소 반송파2가 연결 설정되어 구성되어 있다고 가정할 때, 서빙 셀2의 활성화는 하향링크 요소 반송파2와 상향링크 요소 반송파2의 활성화를 의미한다. 그리고, 주서빙 셀은 주요소 반송파에 대응하고, 부서빙 셀은 부요소 반송파에 대응한다. The activation / deactivation of the component carrier is equivalent to the concept of activation / deactivation of the serving cell. For example, assuming that serving cell 1 is configured with downlink component carrier 1, activation of serving cell 1 means activation of downlink component carrier 1. If the serving cell 2 assumes that the downlink component carrier 2 and the uplink component carrier 2 are configured to be configured, the activation of the serving cell 2 means the activation of the downlink component carrier 2 and the uplink component carrier 2. . The main serving cell corresponds to the major carrier and the secondary serving cell corresponds to the subcarrier.

상향링크 요소 반송파의 상태가 활성화인지 또는 비활성화인지에 따라 단말은 다음의 표 1과 같은 동작을 수행할 수 있다. 이때, 주서빙 셀의 경우는, 항상 활성화되어 있으므로, 하향링크 또는 상향링크의 활성화/비활성화가 정의되는 요소 반송파는 부서빙 셀에 한정된다. The UE may perform an operation as shown in Table 1 according to whether the state of the uplink component carrier is activated or deactivated. In this case, since the main serving cell is always activated, the component carrier for which activation / deactivation of downlink or uplink is defined is limited to the secondary serving cell.

상향링크 요소 반송파의 상태State of the Uplink Component Carrier 비활성화 Disabled 활성화Activation



단말의 동작




Terminal operation
주기적 사운딩 기준 신호가 구성되어 있는 경우, 단말은 SRS의 전송을 중단한다. If the periodic sounding reference signal is configured, the terminal stops transmitting the SRS. 주기적 SRS가 구성되어 있는 경우, 단말은 주기적으로 SRS를 전송한다. (비활성 상태에서 활성화되면 SRS의 전송을 재시작한다.) If the periodic SRS is configured, the terminal periodically transmits the SRS. (If activated in the inactive state, restart the transmission of the SRS.)
단말은 상향링크 요소 반송파에 대한 상향링크 그랜트를 모두 무시한다.The terminal ignores all uplink grants for the uplink component carrier. 단말은 상향링크 요소 반송파에 대한 상향링크 그랜트를 수신한다.The terminal receives an uplink grant for an uplink component carrier. 단말은 상향링크 요소 반송파에 대한 단말 특정 검색 공간은 고려하지 않는다The terminal does not consider the UE-specific search space for the uplink component carrier 단말은 상향링크 요소 반송파에 대한 단말 특정 검색 공간에 대하여 PDCCH를 수신한다. The terminal receives the PDCCH for the UE-specific search space for the uplink component carrier. 단말은 상향링크 요소 반송파를 통한 PUSCH를 전송하지 않는다.The terminal does not transmit the PUSCH on the uplink component carrier. 단말은 상향링크 요소 반송파를 통한 PUSCH를 전송할 수 있다.The UE may transmit the PUSCH on the uplink component carrier.

일반적으로, 상향링크 요소 반송파의 활성화/비활성화는 상향링크와 연결 설정되어 있는 하향링크 요소 반송파의 활성화/비활성화 여부에 따라서 동일하게 설정된다. 따라서 활성화/비활성화와 관련하여 하향링크 요소 반송파와 상향링크 요소 반송파의 연결 설정 형태를 살펴볼 필요가 있다.In general, activation / deactivation of an uplink component carrier is equally set according to whether activation or deactivation of a downlink component carrier connected to an uplink is established. Therefore, in connection with activation / deactivation, it is necessary to look at the connection configuration form of the downlink component carrier and the uplink component carrier.

활성화/비활성화와 관련된 상향링크 요소 반송파와 하향링크 요소 반송파 간 연결(linking)은 SIB2(System Information Block2) 연결, 스케줄링(sheduling) 연결 및 경로 손실 참조(pathloss reference) 연결 중 적어도 하나일 수 있다. Linking between an uplink component carrier and a downlink component carrier associated with activation / deactivation may be at least one of a System Information Block2 (SIB2) connection, a scheduling (sheduling) connection, and a pathloss reference connection.

SIB2 연결에 있어서, SIB2는 셀 전체에 브로드캐스트되는 정보로써, SIB2는상향링크 요소 반송파에 대한 중심 주파수 위치, 대역폭 정보 등을 포함한다. 주서빙 셀에 있어서, 단말은 셀에서 브로드캐스트되는 정보를 수신하므로 상기 셀을 주서빙 셀로 설정한 모든 단말은 동일한 하향링크 요소 반송파와 상향링크 요소 반송파를 연결하여 주서빙 셀로 설정할 수 있다. 부서빙 셀의 경우, 기지국이 주서빙 셀을 통하여 SIB2 정보를 전용적으로 전송하므로, 해당 셀을 부서빙 셀로 설정한 각 단말마다 서로 다른 하향링크 요소 반송파와 상향링크 요소 반송파를 연결하여 부서빙 셀을 구성할 수 있다.In the SIB2 connection, SIB2 is information broadcast throughout the cell, and SIB2 includes a center frequency position, bandwidth information, etc. for an uplink component carrier. In the main serving cell, since the terminal receives information broadcast from the cell, all the terminals configured as the main serving cell may connect the same downlink component carrier and the uplink component carrier to configure the main serving cell. In the case of the secondary serving cell, since the base station transmits the SIB2 information exclusively through the primary serving cell, the secondary serving cell is connected by connecting a different downlink component carrier and an uplink component carrier for each UE configured as the secondary serving cell. Can be configured.

스케줄링 연결에 있어서, 상향링크 요소 반송파에 대한 PDCCH를 전송하는 하향링크 요소 반송파가 있을 때, 상기 상향링크 요소 반송파와 상기 하향링크 요소 반송파간에 연결된 것으로 본다. In a scheduling connection, when there is a downlink component carrier for transmitting a PDCCH for an uplink component carrier, it is considered to be connected between the uplink component carrier and the downlink component carrier.

경로 손실 참조 연결에 있어서, 상향링크 요소 반송파에 대한 경로 손실 추정(pathloss estimation)을 위해 참조하는 하향링크 요소 반송파가 있을 때, 상기 상향링크 요소 반송파와 상기 하향링크 요소 반송파간에 연결된 것으로 본다. In the path loss reference connection, when there is a downlink component carrier referenced for pathloss estimation for an uplink component carrier, it is considered to be connected between the uplink component carrier and the downlink component carrier.

이외에도, 활성화/비활성화와 관련된 상향링크 요소 반송파와 하향링크 요소 반송파간 연결은 여러 가지 관점에서 정의될 수 있으며, 본 발명의 기술적 사상은 상기의 설명에 한정되는 것은 아니다. In addition, the connection between the uplink component carrier and the downlink component carrier associated with the activation / deactivation can be defined in various ways, the technical idea of the present invention is not limited to the above description.

주서빙 셀에 대응하는 하향링크 주요소 반송파와 상향링크 주요소 반송파는 기존 시스템(예를 들어 LTE)과의 호환성, 시스템 정보의 전송의 관점에서 항상 활성화되는 것이 바람직하다. 그런데, 부서빙 셀에 대응하는 하향링크 부요소 반송파와 상향링크 부요소 반송파는 항상 활성화될 필요는 없고, 스펙트럼의 효율적인 분배 및 스케줄링 조건에 따라 적응적으로 활성화되거나 비활성화될 수 있다. The downlink component carrier and the uplink component carrier corresponding to the main serving cell are always activated from the viewpoint of compatibility with the existing system (for example, LTE) and transmission of system information. However, the downlink sub-carrier and uplink sub-carrier corresponding to the secondary cell need not always be activated, but can be adaptively activated or deactivated according to efficient distribution and scheduling conditions of the spectrum.

앞서 표 1에서 설명한 바와 같이, 부서빙 셀이 활성화되어 있거나, 비활성화되어 있던 상태에서 활성화되는 경우에는 SRS가 전송된다. 역시 앞서 설명한 바와 같이, 일반적으로 상향링크는 SIB2 연결 등과 같은 여러 가지 연결 설정 중 어느 하나에 의해 하향링크와 연결 설정되어 있을 수 있다. As described in Table 1 above, when the secondary serving cell is activated or activated in a deactivated state, the SRS is transmitted. As described above, in general, the uplink may be connected to the downlink by any one of various connection settings such as SIB2 connection.

상향링크에서도 주서빙 셀의 경우는 항상 활성화되어 있으나, 부서빙 셀의 경우는 비활성화 상태와 활성화 상태를 오가게 된다. 하향링크와 연결 설정되어 있는 상향링크의 부서빙 셀이 하향링크 셀의 활성화 상태를 따라서 활성화되면, SRS를 전송하게 된다. In the uplink, the primary serving cell is always activated, but the secondary serving cell is inactivated and activated. When the uplink secondary serving cell configured to be connected with the downlink is activated according to the activation state of the downlink cell, the uplink SRS is transmitted.

이때, 상향링크 요소 반송파를 사용하고 있는 경우에는 상관이 없으나, 상향링크 요소 반송파를 사용하고 있지 않음에도, 하향링크의 활성화에 따라 상향링크 셀이 활성화되어 SRS를 전송하게 되는 경우에는 불필요한 전력의 소모를 가져오게 된다. 상향링크 주서빙 셀의 경우도 항상 활성화되어 있으나, 사용하지 않는 때에도 SRS를 주기적으로 전송하는 것은 단말의 전력 소모를 증가시킬 수 있다. 이때, 상향링크 요소 반송파를 사용하지 않는 경우에는, 소정의 시간이 경과한 후에 상향링크 SRS 전송의 설정을 변경하여, 전력 소모를 줄일 수 있다. SRS의 전송을 조정함으로써, 상향링크 요소 반송파를 사용하지 않는 경우에, 동일한 자원으로 SRS를 전송하는 다른 단말과의 간섭을 줄일 수도 있다.In this case, it does not matter if an uplink component carrier is used. However, even when the uplink component carrier is not used, unnecessary power consumption is consumed when an uplink cell is activated and an SRS is transmitted according to the activation of the downlink. Will bring. The uplink main serving cell is always activated, but periodically transmitting the SRS even when not in use can increase power consumption of the terminal. In this case, when the uplink component carrier is not used, the power consumption may be reduced by changing the setting of uplink SRS transmission after a predetermined time has elapsed. By adjusting the transmission of the SRS, when not using the uplink component carrier, interference with other terminals transmitting the SRS with the same resource may be reduced.

소정의 시간이 경과한 후에 상향링크 SRS 전송의 설정을 변경하기 위해, 상향링크 SRS 전송에 대한 타이머(이하 ‘SRS 정지 타이머’라 함)를 동작시킨다. SRS 정지 타이머는 상향링크 SRS의 전송이 시작된 후 소정의 시간이 경과한 뒤에 상향링크 SRS 전송의 설정, 예컨대 전송 주기를 재설정한다.In order to change the configuration of the uplink SRS transmission after a predetermined time has elapsed, a timer (hereinafter referred to as an "SRS stop timer") for uplink SRS transmission is operated. The SRS stop timer resets the setup of the uplink SRS transmission, for example, a transmission period after a predetermined time has passed after the transmission of the uplink SRS is started.

상향링크 SRS의 전송 주기를 소정의 시간만큼 증가시켜서 상향링크 SRS의 전송 회수를 줄이면, 불필요한 전력 소모를 막을 수 있다. 이때, 전송 주기를 무한대로 설정하면, 상향링크 SRS의 전송은 정지되는 것과 같다. 단순히 전송을 정지시킬 수도 있지만, SRS는 주파수 선택적 채널 추정의 기준이 되는 것 외에도 상향링크 동기(Sync)에 트래킹하는 자료로도 사용되고, 상향링크의 전력을 측정하고 제어하는 근거가 되기도 한다. 따라서, 본 발명에서는 SRS 정지 타이머가 만료된 후에, 시스템의 필요에 따라서 SRS 전송을 정지시킬 수도 있고, 전송 주기를 조정해서, 긴 전송 주기에 적은 회수의 SRS 전송이 이루어지게 할 수도 있다.By reducing the number of transmissions of the uplink SRS by increasing the transmission period of the uplink SRS by a predetermined time, unnecessary power consumption may be prevented. At this time, if the transmission period is set to infinity, the transmission of the uplink SRS is like stopping. In addition to simply stopping transmission, SRS is not only a reference for frequency-selective channel estimation but also used as a tracking data for uplink sync, and a basis for measuring and controlling uplink power. Therefore, in the present invention, after the SRS stop timer expires, the SRS transmission may be stopped according to the needs of the system, and the transmission period may be adjusted so that a small number of SRS transmissions are made in a long transmission period.

도 13은 기지국과 단말 사이에서의 시그널링에 대한 일 예를 개략적으로 도시한 것이다. 도 13을 통해 상향링크 SRS 전송을 제어하기 위한 타이머(이하, ‘SRS 정지 타이머’라 함)의 동작에 대해 설명한다.13 schematically illustrates an example of signaling between a base station and a terminal. An operation of a timer (hereinafter, referred to as an 'SRS stop timer') for controlling uplink SRS transmission will be described with reference to FIG. 13.

단말(UE)이 기지국(eNB)에 RRC(Radio Resource Control) 설정을 요청하면(S1310), 기지국은 상향링크 요소 반송파(주요소 반송파 또는 부요소 반송파)에 대한 주기적 SRS 전송에 관한 설정을 하향링크 부요소 반송파/상향링크 부요소 반송파의 구성에 관한 메시지 등과 함께 RRC 설정 메시지를 통해 단말에 전송한다(S1310). SRS 전송에 관한 설정에는 SRS 전송의 주기나, SRS 정지 타이머의 카운팅 값 등의 내용이 포함된다.If the UE requests a radio resource control (RRC) configuration from the base station eNB (S1310), the base station configures a configuration for periodic SRS transmission for an uplink component carrier (primary component carrier or subcomponent carrier) in a downlink component. The SRC is transmitted to the UE through an RRC configuration message together with a message about the configuration of the component carrier / uplink subcomponent carrier (S1310). The setting related to the SRS transmission includes contents such as a period of the SRS transmission and a counting value of the SRS stop timer.

단말은 수신한 RRC 설정 메시지에 기반해서 RRC 설정을 완료하면, 이를 RRC 설정 완료 메시지를 통해 기지국에 보고한다(S1315). 이때 단말은 RRC 설정에 기반해서 주기적 SRS 전송을 시작하고 SRS 정지 타이머를 시작한다. When the terminal completes the RRC configuration based on the received RRC configuration message, it reports this to the base station through the RRC configuration complete message (S1315). At this time, the UE starts the periodic SRS transmission based on the RRC configuration and starts the SRS stop timer.

기지국은 RRC를 재구성할 필요가 있다고 판단한 경우에는 RRC 재구성 메시지를 전송한다(S1320). RRC 재구성 메시지는 하향링크 부요소 반송파/상향링크 부요소 반송파의 구성에 관한 메시지, SRS 전송에 관한 재설정 메시지 등을 포함할 수 있다. If it is determined that the base station needs to reconfigure the RRC, the base station transmits an RRC reconfiguration message (S1320). The RRC reconfiguration message may include a message regarding configuration of a downlink subcarrier / uplink subcarrier and a reconfiguration message regarding SRS transmission.

단말은 RRC 재구성 메시지에 기반해서 RRC를 재구성하고, RRC 재구성 완료 메시지를 기지국에 전송한다(S1320). RRC가 재구성되어, SRS 전송에 관한 설정이 변경되면, SRS 정지 타이머가 재시작된다. The terminal reconfigures the RRC based on the RRC reconfiguration message and transmits an RRC reconfiguration complete message to the base station (S1320). If the RRC is reconfigured to change the setting for SRS transmission, the SRS stop timer is restarted.

도 14는 단말과 기지국 사이의 신호 흐름을 RRC 재구성에 관련하여 개략적으로 도시한 도면이다. 여기서, 요소 반송파 설정정보는 RRC 연결 재구성 메시지에 포함된 것으로 가정하여 설명한다. 14 is a diagram schematically illustrating a signal flow between a terminal and a base station in relation to RRC reconfiguration. Here, it is assumed that component carrier configuration information is included in an RRC connection reconfiguration message.

도 14를 참조하면, 단말이 기지국으로부터 상향링크 요소 반송파의 설정을 위한 RRC 연결 재구성 메시지를 수신하면(S1400), 일정 시간 이후 단말은 상기 RRC 연결 재구성 메시지에 따른 단말 내부 재구성을 완료한다(S1405). Referring to FIG. 14, when the terminal receives an RRC connection reconfiguration message for configuring an uplink component carrier from the base station (S1400), after a predetermined time, the terminal completes internal reconfiguration of the terminal according to the RRC connection reconfiguration message (S1405). .

이후 단말이 기지국으로 RRC 연결 재구성 완료 메시지를 전송할 때까지(S1410) 시간 차가 발생할 수 있다. 이때 단말은 단말 내부 재구성의 완료, 즉 SRS 설정의 완료와 함께 주기적 SRS 전송을 시작하고 동시에 상향링크 요소 반송파에 대한 SRS 정지 타이머를 재시작할 수도 있고, 재구성 완료 메시지를 전송함과 동시에 상향링크 요소 반송파에 대한 SRS 정지 타이머를 재시작할 수도 있다.Thereafter, a time difference may occur until the UE transmits the RRC connection reconfiguration complete message to the base station (S1410). In this case, the UE may start periodic SRS transmission upon completion of UE internal reconfiguration, that is, completion of SRS configuration, and at the same time, restart the SRS stop timer for the UL component carrier, and simultaneously transmit the reconfiguration completion message and the UL component carrier. It is also possible to restart the SRS stop timer for.

다시 도 13을 참조하면, 단말이 재구성 완료 메시지를 기지국에 전송하면(S1325), 기지국은 상향링크 그랜트 메시지, 예를 들면 부요소 반송파 1에 대한 상향링크 그랜트를 전송한다(S1330). 기지국은 할당받는 부요소 반송파 1을 통해 PUSCH를 전송할 수 있다(S1335). Referring back to FIG. 13, when the terminal transmits a reconfiguration complete message to the base station (S1325), the base station transmits an uplink grant message, for example, an uplink grant for subcarrier 1 (S1330). The base station may transmit the PUSCH on the assigned subcarrier 1 (S1335).

도 13에서 점선으로 도시한 부분(1350)은 주기적 SRS, 예컨대 도 13의 경우에는 상향링크 부요소 반송파 1을 통한 주기적 SRS가 전송되고 있는 구간이다. 따라서, 이 구간에서는 SRS 정지 타이머가 작동을 하고 있다. RRC 재구성 완료 메시지의 전송과 함께 시작(1360)된 SRS 정지 타이머는, 기지국으로부터 상향링크 그랜트 메시지를 수신(S1330)한 후 재시작된다(1365). 만약 타이머가 만료(1370)되면, SRS 전송이 정지된다. 기지국으로부터 상향링크 그랜트 메시지를 수신한 경우(S1330)에, 단말의 SRS 정지 타이머는 카운팅이 재시작되지 않고, 최초로 시작될 수도 있다. 카운팅 혹은 SRS 정지 타이머의 시작은 SRS 전송 및/또는 SRS 정지 타이머에 관한 설정을 기지국으로부터 처음 받아서 SRS 정지 타이머의 카운팅을 시작하는 것을 나타내고 카운팅 혹은 SRS 정지 타이머의 재시작은, SRS에 관한 기존의 설정이 변경되고 이를 기초로 SRS 정지 타이머의 카운팅을 시작하는 것을 나타낸다.In FIG. 13, the portion 1350 illustrated as a dotted line is a period in which a periodic SRS is transmitted, for example, the periodic SRS through the uplink subcomponent carrier 1 in FIG. 13. Therefore, the SRS stop timer is operating in this section. The SRS stop timer started 1360 together with the transmission of the RRC reconfiguration complete message is restarted 1365 after receiving an uplink grant message from the base station (S1330). If the timer expires 1370, SRS transmission is stopped. When receiving an uplink grant message from the base station (S1330), the SRS stop timer of the terminal may be started first without counting being restarted. The start of the counting or SRS stop timer indicates the start of the counting of the SRS stop timer when receiving the settings for the SRS transmission and / or the SRS stop timer from the base station for the first time. The counting or restart of the SRS stop timer indicates that the existing settings for the SRS Change and start counting the SRS stop timer based thereon.

정지된 SRS 전송은, 기지국으로부터 상향링크 그랜트를 전송받아서 재시작될 수 있으며(S1340), 이 경우에는 SRS 정지 타이머 역시 재시작(1375)된다. 상향링크 그랜트를 받은 단말은 할당받은 부요소 반송파를 통해 PUDCH를 전송할 수 있다(S1345). 점선으로 도시된 부분(1355)는 이 경우에도 주기적인 SRS 전송이 재시작되고 SRS 정지 타이머 역시 재시작된 구간을 나타내고 있다.The stopped SRS transmission may be restarted by receiving an uplink grant from the base station (S1340). In this case, the SRS stop timer is also restarted (1375). The UE receiving the uplink grant may transmit the PUDCH through the allocated subcarrier (S1345). In this case, the portion 1355 shown by a dotted line indicates a period in which the periodic SRS transmission is restarted and the SRS stop timer is also restarted.

SRS를 전송하고 SRS 정지 타이머가 동작하고 있는 단말의 동작에 관하여 도 15를 참조해서 더 설명한다. 도 15는 단말에서 SRS 정지 타이머가 작동하는 방식을 개략적으로 설명하는 순서도이다.The operation of the terminal transmitting the SRS and the SRS stop timer is further described with reference to FIG. 15. 15 is a flowchart schematically illustrating a method of operating an SRS stop timer in a terminal.

단말은 기지국으로부터 상향링크 요소 반송파에 대한 SRS 설정 메시지를 수신한다(S1510). SRS 설정 메시지는 상술한 바와 같이, RRC 설정 메시지 등에 포함되어 기지국으로부터 전송될 수 있다.The terminal receives an SRS configuration message for the uplink component carrier from the base station (S1510). As described above, the SRS configuration message may be included in the RRC configuration message and transmitted from the base station.

단말은 SRS 설정 메시지에 따라 SRS 설정을 완료하고, SRS를 주기적으로 전송한다. 단말은 SRS 정지 타이머의 카운팅을 시작한다(S1520). The terminal completes the SRS configuration according to the SRS configuration message and periodically transmits the SRS. The UE starts counting the SRS stop timer (S1520).

이때 단말은 상술한 바와 같이, SRS 전송을 시작함과 동시에 SRS 정지 타이머를 시작할 수도 있고, RRC 재구성 절차를 완료했다는 메시지를 기지국에 전송함과 동시에 SRS 정지 타이머를 시작할 수도 있다. 이는 SRS 정지 타이머의 설정에 관한 문제로서, 예컨대, 기지국으로부터 지시된 SRS 설정에 따라 정해질 수 있다.In this case, as described above, the UE may start the SRS stop timer at the same time as starting the SRS transmission, or may start the SRS stop timer at the same time as transmitting a message indicating that the RRC reconfiguration procedure is completed. This is a problem regarding the setting of the SRS stop timer, for example, may be determined according to the SRS setting indicated by the base station.

단말은 SRS 정지 타이머의 카운팅을 재시작할 조건이 발생했는지를 판단한다(S1530). 카운팅의 재시작 조건은 후술하는 바와 같이 다양하다. 카운팅이 재시작할 조건이 발생한 경우에는, SRS 정지 타이머의 카운팅을 다시 시작한다(S1520). SRS 정지 타이머의 카운팅을 재시작할 요건이 발생하지 않은 경우에는 SRS 정지 타이머의 카운팅을 정지할 조건이 발생하였는지 판단한다(S1540). SRS 타이머의 정지 조건은 후술하는 바와 같이 다양하다. SRS 타이머의 카운팅 정지 조건이 발생한 경우에는 SRS 전송 주기를 재조정한다. 일반적인 경우, SRS 타이머의 카운팅이 정지되면 SRS 전송도 정지한다. 전송 주기를 무한대로 설정하면 SRS 전송의 정지에 해당하는 효과를 얻을 수 있다. 아울러, SRS 타이머의 카운팅이 종료하였을 때, SRS 전송을 어떻게 처리할 것인가에 관하여, 기지국으로부터 명확한 지시가 있거나 소정의 규칙이 정해져 있는 경우에는 그에 따라 SRS 전송의 설정을 조정할 수도 있다.The terminal determines whether a condition for restarting counting of the SRS stop timer has occurred (S1530). The restart condition of the counting varies as described below. When the condition to restart the count occurs, the counting of the SRS stop timer is restarted (S1520). If the requirement for restarting the counting of the SRS stop timer does not occur, it is determined whether a condition for stopping counting of the SRS stop timer has occurred (S1540). The stop condition of the SRS timer is various as described later. If the counting stop condition of the SRS timer occurs, readjust the SRS transmission period. In general, when the counting of the SRS timer stops, the SRS transmission also stops. If the transmission period is set to infinity, the effect corresponding to the stop of the SRS transmission can be obtained. In addition, when the counting of the SRS timer is finished, when a clear instruction from the base station or a predetermined rule is determined about how to process the SRS transmission, the setting of the SRS transmission may be adjusted accordingly.

여기서, 단말이 SRS 타이머의 카운팅 재시작 조건의 발생 여부를 판단하는 단계와 카운팅 정지 조건의 발생 여부를 판단하는 단계가 개별적인 단계로서 실행되는 것처럼 설명하였으나, 본 발명은 이에 한정되지 않으며, 단말에서 SRS 타이머의 카운팅 재시작 조건과 카운팅 정지 조건이 발생하면 그에 따라서 즉각 SRS 타이머를 재시작하거나 정지시키도록 반응할 수도 있다. 아울러, SRS 타이머의 카운팅 재시작 조건이 발생하였는지를 먼저 판단하고, SRS 타이머의 카운팅 정지 조건이 발생하였는지를 판단하는 것처럼 설명하였으나, 본 발명은 이에 한정되지 않으며, SRS 타이머가 카운팅을 재시작할 조건이 발생하였는지를 판단하기 앞서 SRS 타이머가 카운팅을 정지할 조건이 발생하였는지를 판단할 수도 있다. 또한, SRS 타이머의 카운팅 재시작 조건이 발생하였는지 판단하는 것과 SRS 타이머의 카운팅 정지 조건이 발생하였는지 판단하는 것 사이에 시간적인 선후를 고려하지 않을 수도 있다. Here, although the step of determining whether the counting restart condition of the SRS timer and the counting stop condition occurs is described as being performed as a separate step, the present invention is not limited to this, the SRS timer in the terminal If the count restart condition and the count stop condition occur, the SRS timer may immediately react to restart or stop accordingly. In addition, it was first determined whether the counting restart condition of the SRS timer occurred, and it was explained as if the counting stop condition of the SRS timer occurred. However, the present invention is not limited thereto, and it is determined whether the condition for restarting the counting of the SRS timer occurs. Before doing so, it may be determined whether a condition occurs in which the SRS timer stops counting. In addition, it may not consider the temporal precedence between determining whether the counting restart condition of the SRS timer has occurred and determining whether the counting stop condition of the SRS timer has occurred.

SRS 정지 타이머의 카운팅 정지 조건도 발생하지 않은 경우에는, SRS 정지 타이머의 카운팅이 만료되었는지 판단한다(S1550). SRS 정지 타이머의 카운팅이 만료된 경우에는 SRS 전송 주기를 조정한다. If the counting stop condition of the SRS stop timer does not occur, it is determined whether the counting of the SRS stop timer has expired (S1550). If the counting of the SRS stop timer expires, the SRS transmission period is adjusted.

상술한 바와 같이 단말의 불필요한 전력 소모를 줄이고 다른 단말의 SRS 전송에 대한 간섭을 줄이기 위해, 소정의 시간만큼 단말의 SRS 전송 주기를 증가시킨다. 물론 단말 간의 불필요한 간섭을 줄이는 목적만을 달성하기 위해, 단말의 SRS 전송 주기를 소정의 시간만큼 감축시켜 다른 단말의 SRS 전송 주기와 상이한 전송 주기로 설정할 수도 있다. As described above, in order to reduce unnecessary power consumption of the terminal and to reduce interference with SRS transmission of other terminals, the SRS transmission period of the terminal is increased by a predetermined time. Of course, in order to achieve only the purpose of reducing unnecessary interference between terminals, the SRS transmission period of the terminal may be reduced by a predetermined time and set to a transmission period different from that of another terminal.

단말의 불필요한 전력 소모를 줄이고 다른 단말의 SRS 전송과 간섭을 일으키지 않게 하기 위해, SRS 전송 주기를 증가시키는 것으로 설명하였으나, 본 발명은 이에 한하지 않고, 시스템 운용의 목적에 따라, 상술한 바와 같이 SRS 전송 주기를 감소시킬 수도 있다.In order to reduce unnecessary power consumption of the terminal and not interfere with SRS transmission of other terminals, the SRS transmission period has been described. However, the present invention is not limited thereto, and according to the purpose of system operation, the SRS is described above. It is also possible to reduce the transmission period.

전송 주기의 조정은 절대 시간을 기준으로 하여 조정할 수도 있고, 조정 전 SRS 전송 주기의 배수로 조정할 수도 있다. 예컨대, SRS 정지 타이머가 만료한 경우에는, 전송 주기를 3ms, 5ms 등으로 변경하는 조정이 가능하다. 또한, 조정 전의 전송 주기를 기준으로, 3주기만에 혹은 5주기만에 SRS를 전송하는 것처럼 전송 주기를 조정할 수도 있다. 양 경우 모두, 전송 주기를 무한대로 설정하거나 기준 전송 주기의 무한대 배(倍)로 설정하는 것도 가능함은 물론이다.The adjustment of the transmission period may be adjusted based on the absolute time, or may be adjusted in multiples of the SRS transmission period before the adjustment. For example, when the SRS stop timer expires, adjustment can be made to change the transmission period to 3ms, 5ms or the like. In addition, the transmission period may be adjusted as if the SRS is transmitted in only three cycles or only five cycles based on the transmission period before adjustment. In both cases, it is of course possible to set the transmission period to infinity or to an infinite multiple of the reference transmission period.

SRS의 설정에서 전송 주기는 일반적으로 셀 특정(Cell-specific)의 파라미터이지만, SRS 정지 타이머의 만료 후에 조정되는 전송 주기는 셀 특정의 파라미터일 수도 있고, 단말 특정(UE-specific)의 파라미터일 수도 있다. 단말 특정의 전송 주기를 조정하는 경우에는 단말마다 서로 다르게 변경된 전송 주기에 따라서 SRS를 전송하게 된다.In the configuration of the SRS, the transmission period is generally a cell-specific parameter, but the transmission period adjusted after the expiration of the SRS stop timer may be a cell-specific parameter or a UE-specific parameter. have. In the case of adjusting the UE-specific transmission period, the SRS is transmitted according to the transmission period changed differently for each UE.

이때 이런 전송 주기의 조정값은 RRC 시그널링을 통해 기지국으로부터 전송 받을 수도 있고, 기지국과 단말 사이에 미리 설정된 규약 또는 규칙에 따를 수도 있다.In this case, the adjusted value of the transmission period may be transmitted from the base station through RRC signaling, or may be in accordance with a predetermined protocol or rule between the base station and the terminal.

SRS 전송을 정지하는 경우에는, 시스템의 지원 여부에 따라서, SRS 전송 주기를 무한대로 설정하여 동일한 효과를 얻는 대신 기지국으로부터의 명확한 지시 또는 미리 설정된 소정의 프로토콜을 따라서 SRS 전송을 바로 중단할 수도 있다.In the case of stopping the SRS transmission, instead of setting the SRS transmission period to infinity depending on whether the system supports, instead of obtaining the same effect, the SRS transmission may be immediately stopped according to a clear instruction from the base station or a predetermined protocol.

SRS 정지 타이머의 카운팅이 만료되지 않은 경우에는, SRS 정지 타이머의 카운팅이 만료될 때까지 기존의 전송 주기에 따라 SRS를 전송하면서 SRS 정지 타이머의 카운팅 재시작 조건 또는 정지 조건이 발생하는지를 판단한다(S1530, S1540).If the counting of the SRS stop timer has not expired, it is determined whether the counting restart condition or the stop condition of the SRS stop timer occurs while transmitting the SRS according to the existing transmission period until the count of the SRS stop timer expires (S1530). S1540).

SRS 정지 타이머의 카운팅 만료에 따라서 SRS 전송 주기가 조정된 뒤에, 단말은 조정된 SRS 전송 주기(상술한 바와 같이, SRS 전송 정지를 포함)에 따라서 SRS를 전송하면서, SRS 전송 주기가 재조정될 사유가 발생하였는지 판단한다(S1570). SRS 전송 주기가 재조정될 사유에는 예컨대, 상향링크 요소 반송파를 다시 사용하게 됨으로써 SRS를 더 자주 전송해야 하는 조건이 발생하는 경우 등을 생각할 수 있다. 이때에는 상향링크 요소 반송파에 대한 상향링크 그랜트 메시지를 포함하는 RRC 설정 메시지 또는 RRC 재구성 메시지 등을 기지국으로부터 수신하여, 상향링크 SRS에 대한 SRS 정지 타이머를 다시 시작할 수 있다(S1510). 또는 상향링크 그랜트의 명시적인 수신없이 재조정된 SRS 전송 주기 또는 재조정된 SRS 설정에 따라서 SRS를 전송하면서 SRS 정지 타이머의 카운팅을 시작(1520)하는 경우도 생각할 수 있다.After the SRS transmission period is adjusted according to the counting expiration of the SRS stop timer, the UE transmits the SRS according to the adjusted SRS transmission period (as described above, including the SRS transmission stop), and there is a reason that the SRS transmission period is readjusted. It is determined whether it has occurred (S1570). The reason why the SRS transmission period is to be re-adjusted, for example, may be considered a case in which a condition for transmitting the SRS more frequently occurs due to the reuse of the uplink component carrier. In this case, an RRC configuration message or an RRC reconfiguration message including an uplink grant message for the uplink component carrier may be received from the base station, and the SRS stop timer for the uplink SRS may be restarted (S1510). Alternatively, it may be considered that the counting of the SRS stop timer is started 1520 while the SRS is transmitted according to the rescheduled SRS transmission period or the rescheduled SRS configuration without explicit reception of the uplink grant.

SRS 전송이 완전히 중단되거나, SRS 설정이 제거되는 경우, 단말을 끄거나 작동을 중단하는 경우 또는 단말이 휴지 상태에 들어가는 경우 등에는 절차를 중단하며, 이때에도 상술한 바와 같이 상향링크 요소 반송파에 대한 SRS 설정 메시지가 포함된 RRC 설정 메시지 또는 RRC 재구성 메시지 등을 기지국으로부터 수신(S1510)하여 절차가 재개될 수 있다.If the SRS transmission is completely stopped, or the SRS configuration is removed, the terminal is turned off or stopped, or if the terminal enters the idle state, the procedure is stopped, and as described above, even for the uplink component carrier The procedure may be resumed by receiving an RRC configuration message or an RRC reconfiguration message including an SRS configuration message from the base station (S1510).

SRS 타이머의 중단과 재시작에 관한 조건은 네트워크 상태에 따른 기지국의 지시에 의해 발생할 수도 있고, 이미 설정된 단말과 기지국 사이의 내용에 따를 수도 있다. 네트워크 상태와 관련하여 SRS 타이머의 중단과 재시작은 LTE에 기반한 다른 동작들과의 관계에서 발생할 수도 있다. SRS 타이머의 중단과 재시작 조건에 관하여 무선 네트워크 상에서의 다른 동작들과 관련해 설명한다.The condition of stopping and restarting the SRS timer may be caused by an indication of a base station according to a network state, or may be based on contents between an already set terminal and a base station. Interruption and restart of the SRS timer with respect to network conditions may occur in relation to other operations based on LTE. Interrupt and restart conditions of the SRS timer are described in relation to other operations on the wireless network.

<상향링크 그랜트와 관련된 시작/재시작 조건><Start / restart conditions associated with uplink grants>

상향링크 요소 반송파에 대한 상향링크 그랜트 정보를 포함하는 PDCCH를 수신하면, 도 13의 S1330 단계에서 설명한 바와 같이, SRS 타이머는 카운팅을 시작하거나 재시작한다.When the PDCCH including the uplink grant information for the uplink component carrier is received, as described in step S1330 of FIG. 13, the SRS timer starts or restarts counting.

<DRX와 관련된 시작/재시작 및 정지 조건><Start / Restart and Stop Conditions Associated with DRX>

LTE는 DRX(discontinuous reception)를 지원한다. DRX 역시 단말 내의 설정에 따라 변할 수 있는 DRX 사이클(cycle)을 기본으로 한다. 단말은 한 DRX 사이클 당 하나의 서브프레임에서만 하향링크 제어 시그널링을 관찰하며, 나머지 서브프레임들에서는 수신회로를 끄고 휴지(silent) 상태를 유지한다. 도 16는 DRX의 인액티비티(inactivity) 타이머와 SRS 타이머 만료 조건과의 관계를 개략적으로 도시한 개념도이다. DRX의 인액티비티 타이머가 만료되면, 단말은 휴지 상태로 들어간다. LTE supports discontinuous reception (DRX). DRX is also based on the DRX cycle (cycle) that can vary depending on the configuration in the terminal. The UE observes downlink control signaling only in one subframe per DRX cycle, and turns off the receiving circuit and maintains a silent state in the remaining subframes. 16 is a conceptual diagram schematically illustrating a relationship between an inactivity timer and an SRS timer expiration condition of a DRX. When the inactivity timer of the DRX expires, the terminal enters a dormant state.

DRX 인액티비티 타이머의 카운팅이 만료되면, SRS 타이머의 카운팅이 만료되지 않더라도 SRS 전송은 중단된다. 이와 함께, SRS 타이머도 정지된다. 즉, SRS 타이머의 만료 시점이 DRX 인액티비티 타이머의 만료 시점 전인 T1인 경우에는 정상적으로 SRS 타이머가 만료되어, SRS 전송 주기를 조정한다. SRS 타이머의 만료 시점이 T2인 경우에는 SRS 타이머가 만료되지 않아도 SRS 전송이 정지되고, SRS 타이머도 정지되거나 또는 무한대의 전송 주기로 주기가 조정된다. When the counting of the DRX inactivity timer expires, the SRS transmission is stopped even if the counting of the SRS timer does not expire. At the same time, the SRS timer is also stopped. That is, when the expiration time of the SRS timer is T1 before the expiration time of the DRX inactivity timer, the SRS timer expires normally to adjust the SRS transmission period. When the SRS timer expires at T2, the SRS transmission is stopped even if the SRS timer has not expired, and the SRS timer is also stopped or the period is adjusted to an infinite transmission cycle.

단말이 휴지 상태 동안에 잠깐 깨어나 필요한 정보를 송수신해야 하는 경우에는 상술한 사이클 외에 짧은 사이클을 추가로 이용한다. 이 짧은 ‘온 듀레이션’(On Duration) 기간도 온 듀레이션 타이머에 의해 제어된다. When the terminal wakes up briefly during the idle state and needs to transmit and receive necessary information, a short cycle is used in addition to the above-described cycle. This short "on duration" period is also controlled by the on duration timer.

온 듀레이션 타이머의 카운팅이 만료되면, SRS 타이머도 정지되거나 무한대의 전송 주기로 주기가 조정된다. 도 17은 온 듀레이션 시간(Ton)과 SRS 타이머 동작 사이의 관계를 개략적으로 설명하는 도면이다. 온 듀레이션 타이머와 관계 역시 상술한 인액티비티 타이머와의 관계와 유사하게, SRS 타이머의 만료 시점(Texp)에 도달하지 않았어도, 온 듀레이션 기간의 시작(Tini, 즉 온 듀레이션 타이머의 카운팅 시작)과 함께 SRS 타이머를 시작 또는 재시작시키고, 온 듀레이션 기간의 종료(Toff, 즉 온 듀레이션 타이머의 카운팅 만료)와 함께 SRS 타이머를 정지시킬 수 있다. When the counting of the on duration timer expires, the SRS timer also stops or the period is adjusted to an infinite transmission period. FIG. 17 is a diagram schematically illustrating a relationship between an on duration time T on and an SRS timer operation. To the on-duration timer relationship is also similar to the relationship between the above-mentioned activity timer, even if it does not reach the expiration time of the SRS timer (T exp), the beginning of the On Duration period (T ini, i.e. counting the start of the on-duration timer) and Together, the SRS timer can be started or restarted, and the SRS timer can be stopped with the end of the on duration period (T off , ie counting the duration of the on duration timer).

또한, 온 듀레이션 시간과 관련해서는, 온 듀레이션 동안 정해진 SRS 설정에 따라 SRS를 전송하면서 SRS 정지 타이머는 동작시키지 않는 방식으로 SRS 정지 타이머를 운용하는 것도 고려할 수 있다.In addition, with regard to the on-duration time, it may be considered to operate the SRS stop timer in such a manner that the SRS stop timer is not operated while transmitting the SRS according to the SRS setting determined during the on duration.

<활성화/비활성화 시그널링과 관련된 재시작 및 정지 조건><Restart and stop conditions related to enable / disable signaling>

상술한 바와 같이, 활성화/비활성화와 관련해서 상향링크 요소 반송파와 하향링크 요소 반송파 사이에는 SIB2(System Information Block2) 연결, 스케줄링(sheduling) 연결 및 경로 손실 참조(pathloss reference) 연결 등의 연결(linking)이 설정되어 있다. 주요소 반송파 또는 주요소 반송파가 구성하는 주서빙 셀은 항상 활성화되어 있으므로, 하향링크 요소 반송파와의 사이에서 연결 설정에 의해 활성화/비활성화가 문제되는 것은 부요소 반송파의 경우이다.As described above, in connection with activation / deactivation, a link between an uplink component carrier and a downlink component carrier, such as a System Information Block2 (SIB2) connection, a sheduling connection, and a pathloss reference connection, is performed. Is set. Since the subcarrier or the main serving cell configured by the subcarrier is always activated, it is the case of the subcarrier that the activation / deactivation is a problem due to the connection configuration with the downlink component carrier.

하향링크 부요소 반송파(또는 하향링크 부서빙 셀)에 대한 활성화 메시지가 수신되면, 해당 하향링크 부요소 반송파와 동일 부서빙 셀로 연결 설정되어 있는 상향링크 부요소 반송파에 관한 SRS 정지 타이머는 카운팅을 재시작한다. When the activation message for the downlink sub-carrier (or downlink secondary serving cell) is received, the SRS stop timer for the uplink sub-carrier connected to the same secondary serving cell as the corresponding downlink sub-carrier restarts counting. do.

하향링크 부요소 반송파(또는 하향링크 부서빙 셀)에 대한 비활성화 메시지가 수신되면, 해당 하향링크 부요소 반송파와 동일 부서빙 셀로 연결 설정되어 있는 상향링크 부요소 반송파에 관한 SRS 정지 타이머는 카운팅을 정지한다. When the deactivation message for the downlink sub-carrier (or downlink secondary serving cell) is received, the SRS stop timer for the uplink sub-carrier connected to the same secondary serving cell as the corresponding downlink sub-carrier stops counting. do.

<SRS 설정과 관련된 시작/재시작 및 정지 조건><Start / Restart and Stop Conditions Related to SRS Settings>

상향링크 부요소 반송파에 대한 주기적인 SRS가 최초로 설정되면, 해당 상향링크 부요소 반송파의 SRS 정지 타이머도 시작된다. SRS의 최초 설정은, 예컨대 기지국으로부터의 SRS 설정 메시지에 기반하여 이루어질 수 있다. 이때 SRS 설정 메시지는, 예컨대 상술한 바와 같이, RRC 설정 메시지 등에 포함되어 기지국으로부터 전송될 수 있다.When the periodic SRS for the uplink subcomponent carrier is initially set, the SRS stop timer of the corresponding uplink subcomponent carrier is also started. Initial configuration of the SRS may be made based on, for example, an SRS configuration message from the base station. In this case, as described above, the SRS configuration message may be included in the RRC configuration message and transmitted from the base station.

주기적으로 SRS를 전송하던 상향링크 부요소 반송파에 대해서, SRS의 설정이 변경되면, 해당 상향링크 부요소 반송파에 관한 SRS 정지 타이머가 재시작된다. For a UL subcarrier that periodically transmits an SRS, if the configuration of the SRS is changed, the SRS stop timer for the corresponding UL subcarrier is restarted.

주기적으로 SRS를 전송하던 상향링크 부요소 반송파에 대해서, SRS의 설정이 릴리즈(release)되면, 해당 상향링크 부요소 반송파에 관한 SRS 정지 타이머가 정지된다.When the configuration of the SRS is released for an uplink sub-carrier that periodically transmits the SRS, the SRS stop timer for the uplink sub-component carrier is stopped.

<RRC 재설정(reconfiguration)과 관련된 정지 조건><Stop conditions associated with RRC reconfiguration>

RRC 재설정 메시지에 상향링크 부요소 반송파에 대한 요소 반송파 제거(remove) 메시지가 포함되어 있으면, 해당 상향링크 부요소 반송파에 관한 SRS 정지 타이머가 정지된다.If the RRC reset message includes a component carrier remove message for the uplink subcomponent carrier, the SRS stop timer for the uplink subcomponent carrier is stopped.

<비주기적(aperiodic) SRS와 관련된 재시작 조건>Restart conditions associated with aperiodic SRS

일반적으로 단말은 일정한 주기를 가지고 SRS를 전송하도록 설정될 수 있으나, 상술한 바와 같이 LTE-A에서 고려되는 새로운 방식 중의 하나로 비주기 SRS(Aperiodic SRS)가 있다. A-SRS의 경우, 단말은 비주기적으로 SRS를 전송할 수 있으므로, 주기적으로 SRS를 전송하는 경우에 비해 자원이 효율적으로 사용될 수 있다. A-SRS의 전송은 비주기적이므로, 기지국이 단말로 SRS의 전송을 지시하는 경우에 한하여 단말이 A-SRS를 전송할 수 있다. 또한 기지국은 단말이 A-SRS를 전송할 시간/주파수 자원에 대한 정보를 단말에 알려주어야 한다. 단말이 A-SRS를 전송할 시간/주파수 자원에 대한 정보는 A-SRS의 전송을 지시하는 메시지와 동시에 단말에게 전송하거나, 그 이전에 단말에게 전송할 수 있다. In general, the terminal may be configured to transmit the SRS with a certain period, but as described above, there is an aperiodic SRS (Aperiodic SRS) as one of the new schemes considered in LTE-A. In the case of A-SRS, since the UE can transmit the SRS aperiodically, resources can be used more efficiently than when the SRS is periodically transmitted. Since the transmission of the A-SRS is aperiodic, the terminal may transmit the A-SRS only when the base station instructs the transmission of the SRS to the terminal. In addition, the base station should inform the terminal of the information on the time / frequency resources for the terminal to transmit the A-SRS. The information on the time / frequency resource for transmitting the A-SRS by the terminal may be transmitted to the terminal at the same time as the message indicating the transmission of the A-SRS, or may be transmitted to the terminal before.

기지국으로부터 수신한 SRS 전송 지시 또는 SRS 전송에 관한 정보에 상향링크 부요소 반송파에 대한 A-SRS 트리거링(triggering) 메시지가 포함되어 있으면, 해당 상향링크 부요소 반송파에 관한 SRS 정지 타이머가 재시작된다.If the SRS transmission indication received from the base station or the information on the SRS transmission includes the A-SRS triggering message for the uplink sub-carrier, the SRS stop timer for the uplink sub-carrier is restarted.

<HARQ 재전송과 관련된 재시작 조건><Restart conditions related to HARQ retransmission>

PUSCH에 대한 HARQ NACK 메시지가 수신되어 HARQ 재전송이 이루어지면, 해당 PUSCH의 상향링크 부요소 반송파에 관한 SRS 타이머가 재시작된다.When the HARQ NACK message for the PUSCH is received and HARQ retransmission is performed, the SRS timer for the uplink subcomponent carrier of the corresponding PUSCH is restarted.

PUSCH에 대한 HARQ ACK 메시지가 수신되지 않아 HARQ 재전송이 이루어지면, 해당 PUSCH가 전송되는 상향링크 부요소 반송파에 관한 SRS 타이머가 재시작된다.If HARQ retransmission is performed because the HARQ ACK message for the PUSCH is not received, the SRS timer for the uplink sub-carrier on which the corresponding PUSCH is transmitted is restarted.

이때, HARQ 재전송은 상향링크 그랜트를 받아서 이루어질 수도 있고, 상향링크 그랜트 없이 이루어질 수도 있다. 상향링크 그랜트 없이 HARQ 재전송이 이루어지는 경우에는 PUSCH의 전송과 동시에 SRS 정지 타이머를 재시작한다. 단말이 HARQ 재전송을 위한 상향링크 그랜트를 수신한 경우에는, 해당 HARQ 재전송이 이루어지는 상향링크 부요소 반송파에 관하여 상향링크 그랜트의 수신과 함께 SRS 정지 타이머를 재시작할 수도 있고, PUSCH의 전송과 함께 SRS 정지 타이머를 재시작할수도 있다.In this case, HARQ retransmission may be performed by receiving an uplink grant or may be performed without an uplink grant. When HARQ retransmission is performed without an uplink grant, the SRS stop timer is restarted simultaneously with the transmission of the PUSCH. When the UE receives an uplink grant for HARQ retransmission, the SRS stop timer may be restarted with the reception of an uplink grant with respect to an uplink sub-carrier for which the HARQ retransmission is performed, and the SRS stops with the transmission of the PUSCH. You can also restart the timer.

<SPS(Semi-Persistent Scheduling)와 관련된 재시작 조건> <Restart Conditions Associated with Semi-Persistent Scheduling>

기지국은 반영속적인 스케쥴링(Semi-Persistent Scheduling:SPS)을 통해 반 고정적으로(semi-static) 무선 자원의 양과 위치를 고정시킬 수도 있다. 이 경우에 기지국은 스케줄링 정보를 매 서브프레임마다 전송하지 않으며 단말이 전송한 데이터에 대한 ACK/NACK과 데이터만을 전송하게 된다. 다만 기지국은 반 고정적으로 할당된 자원의 양과 위치가 변경되는 경우에 해당하는 메시지를 전송한다.The base station may also fix the amount and location of radio resources semi-statically through Semi-Persistent Scheduling (SPS). In this case, the base station does not transmit scheduling information every subframe, but transmits only ACK / NACK and data for data transmitted by the terminal. However, the base station transmits a message corresponding to the case where the amount and location of semi-fixed allocated resources change.

SPS가 적용되는 단말이 기지국으로부터 ACK/NACK을 수신하면, 이와 함께 SRS 정지 타이머를 재시작한다. 또한, SPS가 적용되는 단말이 새로운 상향링크 그랜트를 포함하는 PDCCH를 수신하면, 변경된 설정에 따라서 PUSCH를 전송하며, 이와 함께 SRS 정지 타이머를 재시작한다. When the terminal to which the SPS is applied receives the ACK / NACK from the base station, the terminal restarts the SRS stop timer. In addition, when the terminal to which the SPS is applied receives the PDCCH including the new uplink grant, the UE transmits the PUSCH according to the changed configuration and restarts the SRS stop timer.

본 발명에 관한 SRS 타이머의 다양한 시작/재시작 및 정지 조건을 LTE 상의 동작들과 관련하여 설명하였으나, 본 발명은 이에 한정되지 않는다. SRS 타이머의 시작/재시작 및 정지 조건은 SRS의 효과적인 전송과 시스템 운용을 위해 다양하게 정해질 수 있고, 기지국의 지시 또는 기지국과 단말 사이에 미리 정해진 소정의 규칙 등에 의해 변경될 수도 있다.Although various start / restart and stop conditions of the SRS timer according to the present invention have been described in connection with operations on LTE, the present invention is not limited thereto. The start / restart and stop conditions of the SRS timer may be variously determined for efficient transmission and system operation of the SRS, and may be changed by an instruction of the base station or a predetermined rule predetermined between the base station and the terminal.

도 18은 본 발명과 관련하여 기지국에서의 동작을 개략적으로 설명하는 순서도이다. 18 is a flowchart schematically illustrating operation at a base station in relation to the present invention.

기지국은 상향링크 요소 반송파에 대한 SRS 설정 메시지를 송신한다(S1810). SRS 설정 메시지는 RRC 설정 메시지 또는 RRC 재구성 메시지 등에 포함되어 전송될 수 있다.The base station transmits an SRS configuration message for the uplink component carrier (S1810). The SRS configuration message may be included in an RRC configuration message or an RRC reconfiguration message.

단말은 수신한 SRS 설정 메시지에 따라서 SRS 전송을 하고, 이와 함께 SRS 정지 타이머를 시작한다. 이에 따라, 기지국은 단말로부터 주어진 전송 주기에 따라서 주기적으로 SRS를 전송받는다. SRS 정지 타이머가 만료되면 SRS는 전송 주기가 조정된다. 조정된 주기(상술한 바와 같이 전송 정지를 포함함)에 따라 SRS가 기지국으로 전송된다.The terminal transmits the SRS according to the received SRS configuration message and starts the SRS stop timer. Accordingly, the base station receives the SRS periodically according to a given transmission period from the terminal. When the SRS stop timer expires, the SRS adjusts the transmission period. The SRS is transmitted to the base station according to the adjusted period (including transmission stop as described above).

기지국에서는, SRS 정지 타이머가 만료되어 SRS 전송 주기가 조정되거나 SRS 전송이 정지되어서, 해당 상향링크 부요소 반송파에 대하여, 상향링크 그랜트를 생성하기 위한 상향링크 채널 정보를 확보하지 못했다고 판단하는 경우에는, A-SRS(Aperiodic SRS) 트리거링 정보를 단말에게 전송할 필요가 있는지 판단한다(S1820). A-SRS의 전송은 비주기적이므로, 기지국이 단말로 SRS의 전송을 지시하거나, SRS의 전송에 관련된 정보를 알려주어야 한다.When the base station determines that the uplink channel information for generating an uplink grant has not been secured for the uplink sub-carrier because the SRS stop timer expires and the SRS transmission period is adjusted or the SRS transmission is stopped, It is determined whether A-SRS (Aperiodic SRS) triggering information needs to be transmitted to the UE (S1820). Since the transmission of the A-SRS is aperiodic, the base station should indicate the transmission of the SRS to the terminal or inform the information related to the transmission of the SRS.

기지국이 A-SRS 전송을 위해 A-SRS 트리거링 정보를 단말에 전송할 필요가 있다고 판단한 경우에는, A-SRS 트리거링 메시지를 단말에 전송한다(S1830). 단말은 A-SRS 트리거링 메시지를 수신하고, 이에 대하여 A-SRS를 기지국으로 전송한다. 기지국은 수신한 A-SRS에 의한 상향링크 채널 정보에 기반해서 상향링크 그랜트 메시지를 단말에 전송한다(S1840). 단말이 상향링크 그랜트 메시지를 수신하면, 이는 상술한 SRS 정지 타이머의 재시작 조건에 해당하므로, SRS 정지 타이머가 변경된 설정에 따라 재시작된다.If it is determined that the base station needs to transmit A-SRS triggering information to the terminal for A-SRS transmission, the A-SRS triggering message is transmitted to the terminal (S1830). The terminal receives the A-SRS triggering message, and transmits the A-SRS to the base station. The base station transmits an uplink grant message to the terminal based on the uplink channel information received by the A-SRS (S1840). When the terminal receives the uplink grant message, since this corresponds to the restart condition of the above-mentioned SRS stop timer, the SRS stop timer is restarted according to the changed setting.

도 19는 본 발명에 따른 기지국과 단말 장치의 개념을 개략적으로 도시한 블럭도이다. 19 is a block diagram schematically illustrating the concept of a base station and a terminal device according to the present invention.

기지국(1900)에서, RF부(1930)는 상향링크 채널을 통해 신호를 수신하고, 하향링크 채널을 통해 신호를 송신한다. 다중 요소 반송파 시스템을 지원하기 위해, 기지국(1900)은 다중 안테나 시스템(1940)을 포함하고 있다. 프로세서(1910)는 RF부(1930)를 통해 수신하거나 송신할 신호를 처리한다. 본 발명에서 프로세서(1910)는 SRS 전송을 제어하기 위한 SRS 설정 메시지나 SRS 정지 타이머 카운팅 값 등을 RRC 설정 메시지 또는 RRC 재구성 메시지 등에 포함시켜 RF부(1930)을 통해 전송할 수 있다. 메모리(1920)는 시스템 동작에 필요한 시스템 정보나 제어 정보 또는 각 단말로부터 보고된 정보들, 예컨대 채널 상태 정보 등이 저장되어 있다.At the base station 1900, the RF unit 1930 receives a signal through an uplink channel and transmits a signal through a downlink channel. To support a multi-component carrier system, the base station 1900 includes a multiple antenna system 1940. The processor 1910 processes a signal to be received or transmitted through the RF unit 1930. In the present invention, the processor 1910 may include the SRS configuration message or the SRS stop timer counting value for controlling the SRS transmission, including the RRC configuration message or the RRC reconfiguration message, and transmit the same through the RF unit 1930. The memory 1920 stores system information or control information necessary for system operation, or information reported from each terminal, such as channel state information.

단말(1950)에서 RF부(1970)와 안테나부(1960)는 기지국(1900)에서 전송한 신호들을 수신하고, 기지국(1900)으로 신호를 전송한다. 프로세서(1990)는 RF부(1970)를 통해 수신한 신호 또는 RF부(1970)를 통해 전송할 신호를 처리한다. 예컨대, 프로세서(1990)는 기지국(1900)으로부터 수신한 SRS 설정 메시지 등에 따라서, 정해진 전송 주기마다 SRS를 전송하거나 A-SRS를 전송할 수 있다.  In the terminal 1950, the RF unit 1970 and the antenna unit 1960 receive signals transmitted from the base station 1900 and transmit a signal to the base station 1900. The processor 1990 processes a signal received through the RF unit 1970 or a signal to be transmitted through the RF unit 1970. For example, the processor 1990 may transmit the SRS or the A-SRS every predetermined transmission period according to the SRS configuration message received from the base station 1900.

프로세서(1990)는 SRS 전송을 제어하기 위한 SRS 정지 타이머(1995)를 포함할 수 있다. SRS 정지 타이머(1995)는 SRS의 전송과 함께 카운팅을 시작하며, 소정의 시간이 경과하여 카운팅이 만료되면, SRS 전송 주기를 다시 조정한다. 이때 SRS 전송 주기의 조정은 SRS 전송 주기를 정해진 시간만큼 증가시키거나, 종전 주기의 정수 배만큼 증가시키거나, 주기를 무한대로 설정하여 전송을 중지시키는 것 등을 포함한다.The processor 1990 may include an SRS stop timer 1995 for controlling SRS transmission. The SRS stop timer 1995 starts counting with the transmission of the SRS. When the count expires after a predetermined time, the SRS stop timer 1995 re-adjusts the SRS transmission period. In this case, the adjustment of the SRS transmission period may include increasing the SRS transmission period by a predetermined time, increasing the integer number of times by a previous period, or stopping the transmission by setting the period to infinity.

도 19에는 프로세서(1990)가 SRS 정지 타이머(1995)를 포함하는 것으로 도시하였으나, 본 발명은 이에 한하지 않으며, 프로세서(1990)가 SRS 정지 타이머(1995)를 포함한다는 본 명세서의 표현은, SRS 정지 타이머(1995)는 프로세서(1990)와 별도의 유닛으로서 프로세서의 제어를 받는 경우와, SRS 정지 타이머(1995)가 독립된 유닛으로서 자체적으로 SRS 전송을 제어하는 프로세스를 처리하는 경우를 모두 포함한다. Although FIG. 19 illustrates that the processor 1990 includes an SRS stop timer 1995, the present invention is not so limited, and an expression of the present specification that the processor 1990 includes an SRS stop timer 1995 is described in the following description. The stop timer 1995 includes both the case where the processor is controlled by the processor as a separate unit from the processor 1990, and the case where the SRS stop timer 1995 processes the process of controlling the SRS transmission by itself as an independent unit.

메모리(1980)는 시스템 정보 또는 제어 정보를 저장하며, 기지국(1900) 전송하는 다양한 정보를 필요에 따라 저장한다.The memory 1980 stores system information or control information, and stores various pieces of information transmitted by the base station 1900 as necessary.

상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다. In the exemplary system described above, the methods are described based on a flowchart as a series of steps or blocks, but the invention is not limited to the order of steps, and certain steps may occur in a different order or concurrently with other steps than those described above. Can be. In addition, those skilled in the art will appreciate that the steps shown in the flowcharts are not exclusive and that other steps may be included or one or more steps in the flowcharts may be deleted without affecting the scope of the present invention.

상술한 실시예들은 다양한 양태의 예시들을 포함한다. 다양한 양태들을 나타내기 위한 모든 가능한 조합을 기술할 수는 없지만, 해당 기술 분야의 통상의 지식을 가진 자는 다른 조합이 가능함을 인식할 수 있을 것이다. 따라서, 본 발명은 이하의 특허청구범위 내에 속하는 모든 다른 교체, 수정 및 변경을 포함한다고 할 것이다.The above-described embodiments include examples of various aspects. While it is not possible to describe every possible combination for expressing various aspects, one of ordinary skill in the art will recognize that other combinations are possible. Accordingly, it is intended that the invention include all alternatives, modifications and variations that fall within the scope of the following claims.

Claims (12)

다중 요소 반송파 시스템에서 SRS(Sounding Reference Signal)의 전송 방법으로서,
상향링크 요소 반송파에 대한 SRS 설정 메시지에 기반해서 상향링크 요소 반송파에 대한 SRS 전송의 정지(stop) 카운팅을 시작하는 단계; 및
상기 SRS 전송의 정지 카운팅이 만료되면 SRS 전송의 주기를 재조정하는 단계를 포함하는 것을 특징으로 하는 SRS의 전송 방법.
As a transmission method of SRS (Sounding Reference Signal) in a multi-component carrier system,
Starting stop counting of SRS transmission for the uplink component carrier based on the SRS configuration message for the uplink component carrier; And
And rescheduling a period of the SRS transmission when the stop counting of the SRS transmission expires.
제1항에 있어서, 상기 SRS 전송 주기의 재조정은 SRS 전송의 정지를 포함하는 것을 특징으로 하는 SRS의 전송 방법.The method of claim 1, wherein the readjustment of the SRS transmission period includes stopping the SRS transmission. 제1항에 있어서, 상기 SRS의 전송 방법은,
상기 SRS 전송의 정지 카운팅을 시작한 후에, SRS 전송의 정지 카운팅을 재시작하는 요건이 만족되었는지 판단하는 단계를 더 포함하며,
상기 요건에 해당하는 경우에는 상기 SRS 전송의 정지 카운팅을 재시작하는 것을 특징으로 하는 SRS의 전송 방법.
The method of claim 1, wherein the transmission method of the SRS,
After starting the stop counting of the SRS transmission, determining whether the requirement of restarting the stop counting of the SRS transmission is satisfied;
If the requirement is met, the SRS transmission method characterized in that the stop counting of the SRS transmission is restarted.
제1항에 있어서, 상기 SRS의 전송 방법은,
상기 SRS 전송의 정지 카운팅을 시작한 후 상기 SRS 전송의 정지 카운팅이 만료되기 전에, SRS 전송의 정지 카운팅이 정지되는 요건이 만족되었는지 판단하는 단계를 더 포함하며,
상기 요건에 해당하는 경우에는 상기 SRS 전송의 정지 카운팅을 정지하는 것을 특징으로 하는 SRS의 전송 방법.
The method of claim 1, wherein the transmission method of the SRS,
Determining whether a requirement for stopping stop counting of the SRS transmission is satisfied after initiating stop counting of the SRS transmission and before the stop counting of the SRS transmission expires;
If it meets the requirement, SRS transmission method characterized in that stop the stop counting of the SRS transmission.
다중 요소 반송파 시스템에서 SRS(Sounding Reference Signal)를 전송하는 무선 단말 장치로서,
하향링크 채널을 통해 신호를 수신하고, 상향링크 채널을 통해 신호를 송신하는 RF부;
상기 RF부를 통해 수신한 신호와 송신할 신호를 처리하는 프로세서; 및
시스템 동작을 위해 필요한 시스템 정보 및/또는 제어 정보를 포함하는 운용 정보를 저장하는 메모리를 포함하며,
상기 프로세서는 상기 SRS의 전송을 제어하기 위한 타이머를 포함하는 것을 특징으로 하는 무선 단말 장치.
A wireless terminal apparatus for transmitting a sounding reference signal (SRS) in a multi-component carrier system,
An RF unit for receiving a signal through a downlink channel and transmitting a signal through an uplink channel;
A processor for processing a signal received through the RF unit and a signal to be transmitted; And
A memory storing operation information including system information and / or control information necessary for system operation;
The processor includes a timer for controlling the transmission of the SRS.
제5항에 있어서, 상기 프로세서는 상기 타이머의 카운팅이 만료되면, 상기 SRS의 전송 주기를 재조정하는 것을 특징으로 하는 무선 단말 장치.The wireless terminal apparatus of claim 5, wherein the processor readjusts the transmission period of the SRS when the counting of the timer expires. 청구항 5에 있어서, 상기 프로세서는 상기 타이머의 카운팅 시작 후에, 상기 카운팅을 재시작하는 요건이 만족되었는지를 판단하며,
상기 요건이 만족된 경우에는 상기 타이머를 재시작하는 것을 특징으로 하는 무선 단말 장치.
The method of claim 5, wherein the processor determines whether after the start of counting the timer, a requirement of restarting the counting is satisfied.
And restarting the timer when the requirement is satisfied.
청구항 5에 있어서, 상기 프로세서는 상기 타이머의 카운팅 시작 후에, 상기 카운팅이 정지되는 요건이 만족되었는지를 판단하며,
상기 요건이 만족된 경우에는 상기 타이머를 정지시키는 것을 특징으로 하는 무선 단말 장치.
The method of claim 5, wherein the processor determines whether after the start of counting the timer, a requirement to stop the counting is satisfied.
And stop the timer when the requirement is satisfied.
다중 요소 반송파 시스템에서 SRS(Sounding Reference Signal)의 수신 방법으로서,
상향링크 요소 반송파에 대한 SRS 설정 메시지에 기반한 SRS를 수신하는 단계; 및
상기 SRS 설정 메시지의 설정 내용에 대한 변경 메시지를 송신할지 판단하는 단계를 포함하며,
상기 SRS 설정 메시지는 SRS 전송의 정지 카운팅에 관한 설정값을 포함하고,
상기 변경 메시지는 상기 SRS 전송의 정지 카운팅에 대한 재시작 또는 정지를 위한 묵시적 또는 명시적 메시지를 포함하는 것을 특징으로 하는 SRS의 수신 방법.
A method of receiving SRS (Sounding Reference Signal) in a multi-component carrier system,
Receiving an SRS based on an SRS configuration message for an uplink component carrier; And
Determining whether to transmit a change message for setting contents of the SRS configuration message;
The SRS setup message includes a setup value for stop counting of SRS transmission,
And wherein the change message comprises an implicit or explicit message for restarting or stopping the stop counting of the SRS transmission.
제9항에 있어서, 상기 SRS 설정 메시지는,
상기 SRS 설정 메시지를 송신하고 소정의 시간이 경과한 후에 SRS 전송 주기를 소정 시간만큼 변화시킬 것을 포함하는 것을 특징으로 하는 SRS의 수신 방법.
The method of claim 9, wherein the SRS configuration message,
And transmitting the SRS setting message and changing the SRS transmission period by a predetermined time after a predetermined time has elapsed.
제9항에 있어서, 상기 SRS의 수신 방법은,
상기 SRS 설정 메시지를 송신하고 소정의 시간이 경과한 후에 송신되는 변경 메시지는 상기 SRS의 전송 주기를 소정의 시간만큼 변화시키는 것을 포함하는 것을 특징으로 하는 SRS의 수신 방법.
The method of claim 9, wherein the SRS receiving method is
The change message transmitted after a predetermined time elapses after transmitting the SRS configuration message includes changing the transmission period of the SRS by a predetermined time.
다중 요소 반송파 시스템의 SRS를 수신하는 수신 장치로서,
상향링크 채널을 통해 신호를 수신하고, 하향링크 채널을 통해 신호를 송신하는 RF부;
상기 RF부를 통해 수신한 신호와 송신할 신호를 처리하는 프로세서; 및
시스템 동작을 위해 필요한 시스템 정보 및/또는 제어 정보를 포함하는 운용 정보를 저장하는 메모리를 포함하며,
상기 프로세서는 상기 SRS의 전송을 제어하기 위한 SRS 설정 정보를 상기 RF부를 통해 송신하는 것을 특징으로 하는 수신 장치.
A receiving device for receiving an SRS of a multi-component carrier system,
An RF unit for receiving a signal through an uplink channel and transmitting a signal through a downlink channel;
A processor for processing a signal received through the RF unit and a signal to be transmitted; And
A memory storing operation information including system information and / or control information necessary for system operation;
The processor is characterized in that for transmitting the SRS configuration information for controlling the transmission of the SRS through the RF unit.
KR1020100096134A 2010-10-01 2010-10-01 Method for transmitting srs in multiple component carrier system and apparatus thereof KR20120034521A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020100096134A KR20120034521A (en) 2010-10-01 2010-10-01 Method for transmitting srs in multiple component carrier system and apparatus thereof
PCT/KR2011/007063 WO2012044023A1 (en) 2010-10-01 2011-09-26 Method and apparatus for transmitting a sounding reference signal in a multi-component carrier system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100096134A KR20120034521A (en) 2010-10-01 2010-10-01 Method for transmitting srs in multiple component carrier system and apparatus thereof

Publications (1)

Publication Number Publication Date
KR20120034521A true KR20120034521A (en) 2012-04-12

Family

ID=45893383

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100096134A KR20120034521A (en) 2010-10-01 2010-10-01 Method for transmitting srs in multiple component carrier system and apparatus thereof

Country Status (2)

Country Link
KR (1) KR20120034521A (en)
WO (1) WO2012044023A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113411172A (en) 2015-08-13 2021-09-17 华为技术有限公司 Uplink reference signal transmission method, user terminal and base station
US10791512B2 (en) * 2017-07-14 2020-09-29 Qualcomm Incorporated User equipment power consumption and secondary cell activation latency reductions in a wireless communication system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8249004B2 (en) * 2008-03-14 2012-08-21 Interdigital Patent Holdings, Inc. Coordinated uplink transmission in LTE DRX operations for a wireless transmit receive unit

Also Published As

Publication number Publication date
WO2012044023A1 (en) 2012-04-05

Similar Documents

Publication Publication Date Title
US11546851B2 (en) Method for transmitting/receiving signal in wireless communication system and device therefor
JP6602756B2 (en) Terminal apparatus and method
US11240867B2 (en) Method and device for configuring and using a bandwidth part for communication in radio resource control inactive state
JP6511689B2 (en) Terminal apparatus, base station apparatus and method
JP6578272B2 (en) Terminal device and communication method
JP6568058B2 (en) Terminal apparatus, base station apparatus, and communication method
JP6559657B2 (en) Terminal device, communication method, and integrated circuit
KR102305061B1 (en) Base station, method, mobile station, and integrated circuit
JP6047512B2 (en) Retuning gap and scheduling gap in intermittent reception
CN109151988B (en) Method, mobile device, and medium using cell as reference
WO2015178421A1 (en) Terminal device and method
WO2015166846A1 (en) Terminal device, base station device, and communication method
JP6454004B2 (en) Method and apparatus for monitoring terminals in a wireless communication system supporting carrier aggregation
WO2016121631A1 (en) Terminal device and base station device
KR102330528B1 (en) Method for receiving downlink control channel in wireless communication system applying carrier aggregation technique, and apparatus therefor
WO2016121637A1 (en) Terminal device and base station device
WO2016121665A1 (en) Terminal device and base station device
WO2016052017A1 (en) Terminal device and base station device
KR20120029962A (en) Apparatus and method of activating component carrier in multiple component carrier system
WO2016052019A1 (en) Terminal device and base station device
KR20120034521A (en) Method for transmitting srs in multiple component carrier system and apparatus thereof
WO2015166886A1 (en) Terminal device and base station device

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination